1,703 research outputs found

    Speckle noise removal convex method using higher-order curvature variation

    Get PDF

    First Weak-lensing Results from "See Change": Quantifying Dark Matter in the Two Z>1.5 High-redshift Galaxy Clusters SPT-CL J2040-4451 and IDCS J1426+3508

    Full text link
    We present a weak-lensing study of SPT-CLJ2040-4451 and IDCSJ1426+3508 at z=1.48 and 1.75, respectively. The two clusters were observed in our "See Change" program, a HST survey of 12 massive high-redshift clusters aimed at high-z supernova measurements and weak-lensing estimation of accurate cluster masses. We detect weak but significant galaxy shape distortions using IR images from the WFC3, which has not yet been used for weak-lensing studies. Both clusters appear to possess relaxed morphology in projected mass distribution, and their mass centroids agree nicely with those defined by both the galaxy luminosity and X-ray emission. Using an NFW profile, for which we assume that the mass is tightly correlated with the concentration parameter, we determine the masses of SPT-CL J2040-4451 and IDCS J1426+3508 to be M_{200}=8.6_{-1.4}^{+1.7}x10^14 M_sun and 2.2_{-0.7}^{+1.1}x10^14 M_sun, respectively. The weak-lensing mass of SPT-CLJ2040-4451 shows that the cluster is clearly a rare object. Adopting the central value, the expected abundance of such a massive cluster at z>1.48 is only ~0.07 in the parent 2500 sq. deg. survey. However, it is yet premature to claim that the presence of this cluster creates a serious tension with the current LCDM paradigm unless that tension will remain in future studies after marginalizing over many sources of uncertainties such as the accuracy of the mass function and the mass-concentration relation at the high mass end. The mass of IDCSJ1426+3508 is in excellent agreement with our previous ACS-based weak-lensing result while the much higher source density from our WFC3 imaging data makes the current statistical uncertainty ~40% smaller.Comment: Accepted to Ap

    Machine Learning And Image Processing For Noise Removal And Robust Edge Detection In The Presence Of Mixed Noise

    Get PDF
    The central goal of this dissertation is to design and model a smoothing filter based on the random single and mixed noise distribution that would attenuate the effect of noise while preserving edge details. Only then could robust, integrated and resilient edge detection methods be deployed to overcome the ubiquitous presence of random noise in images. Random noise effects are modeled as those that could emanate from impulse noise, Gaussian noise and speckle noise. In the first step, evaluation of methods is performed based on an exhaustive review on the different types of denoising methods which focus on impulse noise, Gaussian noise and their related denoising filters. These include spatial filters (linear, non-linear and a combination of them), transform domain filters, neural network-based filters, numerical-based filters, fuzzy based filters, morphological filters, statistical filters, and supervised learning-based filters. In the second step, switching adaptive median and fixed weighted mean filter (SAMFWMF) which is a combination of linear and non-linear filters, is introduced in order to detect and remove impulse noise. Then, a robust edge detection method is applied which relies on an integrated process including non-maximum suppression, maximum sequence, thresholding and morphological operations. The results are obtained on MRI and natural images. In the third step, a combination of transform domain-based filter which is a combination of dual tree – complex wavelet transform (DT-CWT) and total variation, is introduced in order to detect and remove Gaussian noise as well as mixed Gaussian and Speckle noise. Then, a robust edge detection is applied in order to track the true edges. The results are obtained on medical ultrasound and natural images. In the fourth step, a smoothing filter, which is a feed-forward convolutional network (CNN) is introduced to assume a deep architecture, and supported through a specific learning algorithm, l2 loss function minimization, a regularization method, and batch normalization all integrated in order to detect and remove impulse noise as well as mixed impulse and Gaussian noise. Then, a robust edge detection is applied in order to track the true edges. The results are obtained on natural images for both specific and non-specific noise-level

    Kajian motivasi ekstrinsik di antara Pelajar Lepasan Sijil dan Diploma Politeknik Jabatan Kejuruteraan Awam KUiTTHO

    Get PDF
    Kajian ini dijalankan untuk menyelidiki pengaruh dorongan keluarga, cara pengajaran pensyarah, pengaruh rakan sebaya dan kemudahan infrastruktur terhadap motivasi ekstrinsik bagi pelajar tahun tiga dan tahun empat lepasan sijil dan diploma politeknik Jabatan Kejuruteraan Awain Kolej Universiti Teknologi Tun Hussein Onn. Sampel kajian ini beijumlah 87 orang bagi pelajar lepasan sijil politeknik dan 38 orang bagi lepasan diploma politeknik. Data kajian telah diperolehi melalui borang soal selidik dan telah dianalisis menggunakan perisian SPSS (Statical Package For Sciences). Hasil kajian telah dipersembahkan dalam bentuk jadual dan histohgrapi. Analisis kajian mendapati bahawa kedua-dua kumpulan setuju bahawa faktor-faktor di atas memberi kesan kepada motivasi ekstrinsik mereka. Dengan kata lain faktpr-faktor tersebut penting dalam membentuk pelajar mencapai kecemerlangan akademik

    Image restoration: Wavelet frame shrinkage, nonlinear evolution PDEs, and beyond

    Get PDF
    In the past few decades, mathematics based approaches have been widely adopted in various image restoration problems; the partial differential equation (PDE) based approach (e.g., the total variation model [L. Rudin, S. Osher, and E. Fatemi, Phys. D, 60 (1992), pp. 259-268] and its generalizations, nonlinear diffusions [P. Perona and J. Malik, IEEE Trans. Pattern Anal. Mach. Intel., 12 (1990), pp. 629-639; F. Catte et al., SIAM J. Numer. Anal., 29 (1992), pp. 182-193], etc.) and wavelet frame based approach are some successful examples. These approaches were developed through different paths and generally provided understanding from different angles of the same problem. As shown in numerical simulations, implementations of the wavelet frame based approach and the PDE based approach quite often end up solving a similar numerical problem with similar numerical behaviors, even though different approaches have advantages in different applications. Since wavelet frame based and PDE based approaches have all been modeling the same types of problems with success, it is natural to ask whether the wavelet frame based approach is fundamentally connected with the PDE based approach when we trace them all the way back to their roots. A fundamental connection of a wavelet frame based approach with a total variation model and its generalizations was established in [J. Cai, B. Dong, S. Osher, and Z. Shen, J. Amer. Math. Soc., 25 (2012), pp. 1033-1089]. This connection gives the wavelet frame based approach a geometric explanation and, at the same time, it equips a PDE based approach with a time frequency analysis. Cai et al. showed that a special type of wavelet frame model using generic wavelet frame systems can be regarded as an approximation of a generic variational model (with the total variation model as a special case) in the discrete setting. A systematic convergence analysis, as the resolution of the image goes to infinity, which is the key step in linking the two approaches, is also given in Cai et al. Motivated by Cai et al. and [Q. Jiang, Appl. Numer. Math., 62 (2012), pp. 51-66], this paper establishes a fundamental connection between the wavelet frame based approach and nonlinear evolution PDEs, provides interpretations and analytical studies of such connections, and proposes new algorithms for image restoration based on the new understandings. Together with the results in [J. Cai et al., J. Amer. Math. Soc., 25 (2012), pp. 1033-1089], we now have a better picture of how the wavelet frame based approach can be used to interpret the general PDE based approach (e.g., the variational models or nonlinear evolution PDEs) and can be used as a new and useful tool in numerical analysis to discretize and solve various variational and PDE models. To be more precise, we shall establish the following: (1) The connections between wavelet frame shrinkage and nonlinear evolution PDEs provide new and inspiring interpretations of both approaches that enable us to derive new PDE models and (better) wavelet frame shrinkage algorithms for image restoration. (2) A generic nonlinear evolution PDE (of parabolic or hyperbolic type) can be approximated by wavelet frame shrinkage with properly chosen wavelet frame systems and carefully designed shrinkage functions. (3) The main idea of this work is beyond the scope of image restoration. Our analysis and discussions indicate that wavelet frame shrinkage is a new way of solving PDEs in general, which will provide a new insight that will enrich the existing theory and applications of numerical PDEs, as well as those of wavelet frames
    • …
    corecore