
   

 

 

 

 

EFFICIENT ANALYSIS OF MEDICAL IMAGE DE-NOISING FOR MRI AND 

ULTRASOUND IMAGES 

 

 

 

 

 

 

MOHAMED SALEH ABUAZOUM 

 

 

 

 

 

A dissertation submitted in fulfillment of the requirement for the award of the 

Degree Master of Electrical Engineering 

Faculty of Electrical and Electronic Engineering 

Universiti Tun Hussein Onn Malaysia   

January 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UTHM Institutional Repository

https://core.ac.uk/display/12007369?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 v 

 

 

 

 

 

 

ABSTRACT 

 

 

 

Magnetic resonance imaging (MRI) and ultrasound images have been widely exploited 

for more truthful pathological changes as well as diagnosis. However, they suffer from a 

number of shortcomings and these includes: acquisition noise from the equipment, 

ambient noise from the environment, the presence of background tissue, other organs 

and anatomical influences such as body fat, and breathing motion. Therefore, noise 

reduction is very important, as various types of noise generated limits the effectiveness 

of medical image diagnosis. In this study, an efficient analysis of MRI and ultrasound 

modalities is performed. Three experiments have been carried out that include various 

filters (Median, Gaussian and Wiener filter) and evaluating the outcomes of medical 

image de-noising after applying these three filters by calculating the peak signal-to- 

noise ratio (PSNR), which shows that Gaussian filter is better than Median and Wiener 

filter.   
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CHAPTER I 

 

 

 

 

 

INTRODUCTION  

 

 

 

 

1.1 Background 

 

 

    The influence and impact of digital images on modern society is tremendous, and 

image processing is now a critical component in science and technology. The rapid 

progress in computerized medical image reconstruction, and the associated 

developments in analysis methods and computer-aided diagnosis, has propelled medical 

imaging into one of the most important sub-fields in scientific imaging [1].  

    The arrival of digital medical imaging technologies such as positron emission 

tomography (PET), magnetic resonance imaging (MRI), computerized tomography (CT) 

and ultrasound Imaging has revolutionized modern medicine [2]. Today, many patients 

no longer need to go through invasive and often dangerous procedures to diagnose a 

wide variety of illnesses. With the widespread use of digital imaging in medicine today, 

the quality of digital medical images becomes an important issue. To achieve the best 

possible diagnosis it is important that medical images be sharp, clear, and free of noise 

and artifacts. While the technologies for acquiring digital medical images continue to 

improve, resulting in images of higher and higher resolution and quality, removing noise 

in these digital images remains one of the major challenges in the study of medical 

imaging, because they could mask and blur important subtle features in the images, 

many proposed de-noising techniques have their own problems. Image de-noising still 
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remains a challenge for researchers because noise removal introduces artifacts and 

causes blurring of the images [3].  

    This project describes different methodologies for noise reduction (or de-noising) 

giving an insight as to which algorithm should be used to find the most reliable estimate 

of the original image data given its degraded version.  Noise modelling in medical 

images is greatly affected by capturing instruments, data transmission media, image 

quantization and discrete sources of radiation. Different algorithms are used depending 

on the noise model. Most of images are assumed to have additive random noise which is 

modelled as a white Gaussian noise. Therefore it is required to exterminate a variety of 

types of de-noising algorithm for MRI and ultrasound modalities. 

1.2 Problem Statements 

    Medical images such as magnetic resonance imaging (MRI) and ultrasound 

images have been widely exploited for more truthful pathological changes as well as 

diagnosis. However, they suffer from a number of shortcomings and these includes: 

acquisition noise from the equipment, ambient noise from the environment, the presence 

of background tissue, other organs and anatomical influences such as body fat, and 

breathing motion. Therefore, noise reduction is very important, as various types of noise 

generated limits the effectiveness of medical image diagnosis. The amount of the noise 

has the tendency of being either relatively high or low. Thus, it could harshly degrade 

the image quality and cause some loss of image information details.  
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1.3 Objectives 

 The major objective of this project is noise reduction for measurable objectives 

are as follows: 

 

1. To investigate medical Image for better diagnosis.  

2. To implement the different types of de-noising filters.  

3. To observe the images after the de-noising. 

4. To evaluate the best from de-noising filters. 

1.4 Scopes 

This project is primarily concerned with The scope of the project is to focus on 

noise removal techniques for medical images (MRI) and Ultrasound: 

  

1. Using Matlab Simulink software for modalities analysis. 

2. Using Image Processing Toolbox to adding noise and to apply de-noising 

algorithms. 

3. Using some of de-noising filters with different coefficients and comparing between 

the results.   

 

 



4 
 

 

 

 

CHAPTER II 

 

 

 

  

LITERATURE REVIEW  

 

 

 

 

2.1   Related Works 

 

2.1.1 Ultrasound de-noising 

 Some of the best known standard de-speckling filters are the methods of Lee ,Frost 

and Kuan filter [4], [5]. These filters use the second-order sample statistics within a 

minimum mean squared error estimation approach. Another common de-speckling 

approach is the homomorphic Wiener filter [6], where the image is first subjected to a 

logarithmic transform and then filtered with an adaptive filter for additive Gaussian noise 

[7]. Lee filter is based on the approach that if the variance over an area is low, then the 

smoothing will be performed. Otherwise, if the variance is high (e.g. near edges), 

smoothing will not be performed. Kuan filter [4] is considered to be more superior to the 

Lee filter. It does not make approximation on the noise variance within the filter window. 

The filter simply models the multiplicative model of speckle into an additive linear form, 

but it relies on the equivalent numbers of looks (ENL) from an image to determine a 

different weighted W to perform the filtering as shown in Eq (1). 

 

𝑊 =   1 −
𝐶𝑢

𝐶𝑖
  1 + 𝐶𝑢                                            (1) 
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Where 𝐶𝑢 is the noise variation coefficient and 𝐶𝑖 is the image variation coefficient. Next, 

the Wiener is a low pass filter that filters an intensity image that has been degraded by 

constant power additive noise. It uses a pixel wise adaptive Wiener method based on 

statistics estimated from a local neighbourhood of each pixel. 

 

2.1.2 MRI de-noising 

A multitude of variation methods based on partial differential equations have been 

developed for a wide variety of images and applications [8], with some of these have been  

applied to MRI [9], [10]. However, such methods impose certain kinds of models on local 

image structure that are often too simple to capture the complexity of anatomical MR 

images. These methods, typically, does  not considered the bias introduced by Rician 

noise.  

         Healy and Weaver [11] were among the first to apply soft-thresholding based on 

wavelet techniques for de-noising MR images. Nowak [12], operating on the square 

magnitude MRI image, includes a Rician noise model in the threshold-based wavelet de-

noising scheme and thereby corrects for the bias introduced by the noise. Pizurica et al. 

[13] rely on the prior knowledge of the correlation of wavelet coefficients that represent 

significant features across scales. Table 2.1 shows the previous study of de-noising. 
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Table 2.1: Summary of previous study 

Images Algorithms References 

Ultrasound Image 

Wavelet Thresholding 

 

Novel Bayesian Multiscale 

[5] 

 

[7] 

Magnetic resonance image 

(MRI) 

Nonlinear anisotropic 

 

wavelet transforms 

[10] 

 

[11] 

Computed tomography 

(CT) 

multi-dimensional adaptive filter 

 

Edge-preserving Adaptive Filters 

[14] 

 

[15] 

 

2.2   Medical imaging 

           Medical imaging is the technique and process used to create images of the human 

body (or parts and function thereof) for clinical purposes (medical procedures seeking to 

reveal, diagnose or examine disease) or medical science (including the study of normal 

anatomy and physiology) [16]. Although imaging of removed organs and tissues can be 

performed for medical reasons, such procedures are not usually referred to as medical 

imaging. As a discipline and in its widest sense, it is part of biological imaging and 

incorporates radiology (in the wider sense), nuclear medicine, investigative radiological 

sciences, endoscopy, (medical) thermography, medical photography and microscopy (e.g. 

for human pathological investigations). Measurement and recording techniques which are 

not primarily designed to produce images, such as electroencephalography (EEG), 

magneto encephalography (MEG), Electrocardiography (EKG) and others, but which 

produce data susceptible to be represented as maps, can be seen as forms of medical 

imaging [17].  

         Radiation exposure from medical imaging in 2006 made up about 50% of total 

ionizing radiation exposure in the United States. In the clinical context, "invisible light" 

medical imaging is generally equated to radiology or "clinical imaging" and the medical 

practitioner responsible for interpreting (and sometimes acquiring) the images is a 

radiologist. "Visible light" medical imaging involves digital video or still pictures that can 
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be seen without special equipment. Dermatology and wound care are two modalities that 

utilize visible light imagery. Diagnostic radiography designates the technical aspects of 

medical imaging and in particular the acquisition of medical images. The radiographer or 

radiologic technologist is usually responsible for acquiring medical images of diagnostic 

quality, although some radiological interventions are performed by radiologists. While 

radiology is an evaluation of anatomy, nuclear medicine provides functional assessment 

[18]. Many of the techniques developed for medical imaging also have scientific and 

industrial applications. Medical imaging is often perceived to designate the set of 

techniques that non-invasively produce images of the internal aspect of the body. In this 

restricted sense, medical imaging can be seen as the solution of mathematical inverse 

problems. This means that cause (the properties of living tissue) is inferred from effect (the 

observed signal). In the case of ultrasonography the probe consists of ultrasonic pressure 

waves and echoes inside the tissue show the internal structure. In the case of projection 

radiography, the probe is X-ray radiation which is absorbed at different rates in different 

tissue types such as bone, muscle and fat. The term noninvasive is a term based on the fact 

that following medical imaging modalities do not penetrate the skin physically. But on the 

electromagnetic and radiation level, they are quite invasive. From the high energy photons 

in X-Ray Computed Tomography, to the 2+ Tesla coils of an MRI device, these modalities 

alter the physical and chemical environment of the body in order to obtain data [19]. 
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2.3   Comparison between MRI and ultrasound imaging 

    Digital medical images involving many types of images which are different from one 

to another in terms of how is produced and how it is look. In this study MRI images and 

ultrasound images are used and Table 2.2 describes the difference between them. 

 Table 2.2: Comparison between MRI and Ultrasound 
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2.4  Image noise 

 

Image noise is the random variation of brightness or color information in images 

produced by the sensor and circuitry of a scanner or digital camera. Image noise can also 

originate in film grain and in the unavoidable shot noise of an ideal photon detector [20]. 

Image noise is generally regarded as an undesirable by-product of image capture. Although 

these unwanted fluctuations became known as "noise" by analogy with unwanted sound 

they are inaudible and actually beneficial in some applications, such as dithering. The 

characteristics of noise depend on its source. The filter or the operator which best reduces 

the effect of noise also depends on the source [21]. Many image-processing packages 

contain operators to artificially add noise to an image. Deliberately corrupting an image 

with noise allows us to test the resistance of an image-processing operator to noise and 

assess the performance of various noise filters. 

2.4.1 Amplifier Noise (Gaussian Noise)  

The standard model of amplifier noise is additive, Gaussian, independent at each 

pixel and independent of the signal intensity.In color cameras where more amplification is 

used in the blue color channel than in the green or red channel, there can be more noise in 

the blue channel .Amplifier noise is a major part of the "read noise" of an image sensor, 

that is, of the constant noise level in dark areas of the image [20]. Gaussian 

noise is statistical noise that has its probability density function equal to that of the normal 

distribution, which is also known as the Gaussian distribution. In other words, the values 

that the noise can take on are Gaussian-distributed. A special case is white Gaussian noise, 

in which the values at any pairs of times are statistically independent (and uncorrelated). In 

applications, Gaussian noise is most commonly used as additive white noise to 

yield additive white Gaussian noise. If the white noise sequence  is a Gaussian sequence, 

then  is called a white Gaussian noise (WGN) sequence [21]. 

 

 

 

http://en.wikipedia.org/wiki/Statistical_noise
http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Statistically_independent
http://en.wikipedia.org/wiki/Uncorrelated
http://en.wikipedia.org/wiki/White_noise
http://en.wikipedia.org/wiki/Additive_white_Gaussian_noise
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2.4.2 Salt-and-pepper Noise  

An image containing salt-and-pepper noise will have dark pixels in bright regions 

and bright pixels in dark regions [20]. This type of noise can be caused by dead pixels, 

analog-to-digital converter errors, bit errors in transmission, etc.This can be eliminated in 

large part by using dark frame subtraction and by interpolating around dark/bright pixels. 

This noise is named for the salt and pepper appearance an image takes on after being 

degraded by this type of noise [21].  

 

2.4.3 Speckle Noise  

           Speckle noise is a granular noise that inherently exists in and degrades the quality of 

the active radar and synthetic aperture radar (SAR) images. Speckle noise in conventional 

radar results from random fluctuations in the return signal from an object that is no bigger 

than a single image-processing element. It increases the mean grey level of a local area. 

Speckle noise is caused by signals from elementary scatterers, the gravity-capillary ripples, 

and manifests as a pedestal image, beneath the image of the sea waves. [22]. 
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2.5   Classification of De-noising filters 

 

           As shown in Figure 2.1, there are two basic approaches to image de-noising, spatial 

filtering methods and transform domain filtering methods [23]. A traditional way to 

remove noise from image data is to employ spatial filters. Spatial filters can be further 

classified into non-linear and linear filters. Filtering operations in the wavelet domain can 

be subdivided into linear and nonlinear methods. 

 

 

Figure 2.1: Classification of De-noising Algorithms 
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2.6   De-noising filters review  

2.6.1 Median filter 

The median filter is a popular nonlinear digital filtering technique, often used to 

remove noise. Such noise reduction is a typical pre-processing step to improve the results 

of later processing (for example, edge detection on an image). Median filtering is very 

widely used in digital image processing because under certain conditions, it preserves 

edges while removing noise [24]. Sometimes known as a rank filter, this spatial filter 

suppresses isolated noise by replacing each pixel’s intensity by the median of the 

intensities of the pixels in its neighbourhood. It is widely used in de-noising and image 

smoothing applications. Median filters exhibit edge-preserving characteristics (cf. linear 

methods such as average filtering tends to blur edges), which is very desirable for many 

image processing applications as edges contain important information for segmenting, 

labelling and preserving detail in images. This filter may be represented by Eq (2). 

 

𝐺 𝑢, 𝑣 =  𝑚𝑒𝑑𝑖𝑎𝑛 𝐼  𝑥, 𝑦 ,  𝑥, 𝑦 ∈ 𝑤𝐹         (2) 

 

where 

𝑤𝐹 =  𝑤 𝑥 𝑤 Filter window with pixel (𝑢, 𝑣) as its middle 

 

2.6.2 Gaussian filter 

Gaussian filter is a filter whose impulse response is Gaussian function [25]. 

Gaussian filters are designed to give no overshoot to a step function input while 

minimizing the rise and fall time. This behaviour is closely connected to the fact that the 

Gaussian filter has the minimum possible group delay. Mathematically, a Gaussian filter 

modifies the input signal by convolution with a Gaussian function; this transformation is 

also known as the Weierstrass transform. Smoothing is commonly undertaken using linear 

filters such as the Gaussian function (the kernel is based on the normal distribution curve), 

which tends to produce good results in reducing the influence of noise with respect to the 
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image. The 1D and 2D Gaussian distributions with standard deviation for a data point (x) 

and pixel (x,y), are given by Eq (3) and Eq (4), respectively [26]. 

 

𝐺 𝑥 =
1

2𝜋𝜎2
. 𝑒

−
𝑥2

2𝜎2                                                          (3) 

 

𝐺 𝑥, 𝑦 =
1

2𝜋𝜎2
. 𝑒

−
𝑥2+𝑦2

2𝜎2                                                 (4) 

 

The kernel could be extended to further dimensions as well. For an image, the 2D 

Gaussian distribution is used to provide a point-spread; i.e. blurring over neighbouring 

pixels. This is implemented on every pixel in the image using the convolution operation. 

The degree of blurring is controlled by the sigma or blurring coefficient, as well as the size 

of the kernel used (squares with an odd number of pixels; e.g. 3×3, 5×5 pixels, so that the 

pixel being acted upon is in the middle). The processing can be speeded up by 

implementing the filtering in the frequency rather than spatial domain, especially for the 

slower convolution operation (which is implemented as the faster multiplication operation 

in the frequency domain). 

 

2.6.3 Wiener filter 

Wiener filters are a class of optimum linear filters which involve linear estimation 

of a desired signal sequence from another related sequence. It is not an adaptive filter. The 

wiener filter’s main purpose is to reduce the amount of noise present in a image by 

comparison with an estimation of the desired noiseless image. The Wiener filter may also 

be used for smoothing. This filter is the mean squares error-optimal stationary linear filter 

for images degraded by additive noise and blurring. It is usually applied in the frequency 

domain (by taking the Fourier transform) [21], due to linear motion or unfocussed optics 

Wiener filter is the most important technique for removal of blur in images. From a signal 

processing standpoint. Each pixel in a digital representation of the photograph should 

represent the intensity of a single stationary point in front of the camera. Unfortunately, if 



14 
 

the shutter speed is too slow and the camera is in motion, a given pixel will be an 

amalgram of intensities from points along the line of the camera's motion.  

The goal of the Wiener filter is to filter out noise that has corrupted a signal. It is 

based on a statistical approach. Typical filters are designed for a desired frequency 

response. The Wiener filter approaches filtering from a different angle. One is assumed to 

have knowledge of the spectral properties of the original signal and the noise, and one 

seeks the LTI filter whose output would come as close to the original signal as possible 

[27]. Wiener filters are characterized by the following:  

1. Assumption: signal and (additive) noise are stationary linear random processes 

with known spectral characteristics.  

2. Requirement: the filter must be physically realizable, i.e. causal (this requirement 

can be dropped, resulting in a non-causal solution).  

3. Performance criteria: minimum mean-square error. 

Wiener Filter in the Fourier Domain as in Eq (5). 

 

𝐺 𝑢, 𝑣 =
𝐻∗ 𝑢, 𝑣 𝑃𝑠 𝑢, 𝑣 

⎹𝐻  𝑢, 𝑣 ⎹ 2 𝑃𝑠 𝑢, 𝑣 + 𝑃𝑛 𝑢, 𝑣 
                (5) 

 

Where 

𝐻(𝑢, 𝑣) = Fourier transform of the point spread function 

𝑃𝑠(𝑢, 𝑣) = Power spectrum of the signal process, obtained by taking the Fourier 

transform of the signal autocorrelation 

𝑃𝑛(𝑢, 𝑣) = Power spectrum of the noise process, obtained by taking the Fourier 

transform of the noise autocorrelation 

It should be noted that there are some known limitations to Wiener filters. They are 

able to suppress frequency components that have been degraded by noise but do not 

reconstruct them. Wiener filters are also unable to undo blurring caused by band limiting 

of  𝐻(𝑢, 𝑣), which is a phenomenon in real-world imaging systems. 
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2.7   Peak Signal-to-Noise Ratio (PSNR) 

 

 

Peak signal-to-noise ratio (PSNR) is the ratio between a signal's maximum power 

and the power of the signal's noise. Engineers commonly use the PSNR to measure the 

quality of reconstructed images that have been compressed. Each picture element (pixel) 

has a colour value that can change when an image is compressed and then uncompressed. 

Signals can have a wide dynamic range, so PSNR is usually expressed in decibels, which is 

a logarithmic scale [28]. 

The PSNR is most commonly used to measure quality of reconstruction of lossy 

compression codecs (e.g., for image compression). The signal in this case is the original 

data, and the noise is the error introduced by compression. When comparing compression 

codecs it is used as an approximation to human perception of reconstruction quality, 

therefore in some cases one reconstruction may appear to be closer to the original than 

another, even though it has a lower PSNR (a higher PSNR would normally indicate that 

the reconstruction is of higher quality). One has to be extremely careful with the range of 

validity of this metric; it is only conclusively valid when it is used to compare results from 

the same codec (or codec type) and same content [29]. It is most easily defined via 

the mean squared error (MSE), where it denotes the mean square error for two m×n images 

I (i, j)& I (i, j) where one of the images is considered a noisy approximation of the other 

and is given by Eq (6) and Eq (7). 

 

 

𝑀𝑆𝐸 =  
1

𝑚𝑛
  [𝐼 𝑖, 𝑗 − 𝐾 𝑖, 𝑗 ]2                         (6)

𝑛−1

𝑗=0

𝑚−1

𝑖=0

 

 

The PSNR is defined by Eq (7) 

 

PSNRdB = 10 ∙ log10  
MAXI

2

MSE
                                      (7) 

 

http://en.wikipedia.org/wiki/Codec
http://en.wikipedia.org/wiki/Image_compression
http://en.wikipedia.org/wiki/Mean_squared_error
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Where, 𝑀𝐴𝑋𝐼 is the maximum possible pixel value of the image. When the pixels are 

represented using 8 bits per sample, which is equal to 255. 

Typical values for the PSNR in lossy image and video compression are between 30 

and 50 dB, where higher is better. Acceptable values for wireless transmission quality loss 

are considered to be about 20 dB to 25 dB [30].  

 

 

 

 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/255_(number)
http://en.wikipedia.org/wiki/Lossy_compression
http://en.wikipedia.org/wiki/Decibel
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CHAPTER III 

 

 

 

 

METHODOLOGY 

 

3.1  The concept of de-noising filters 

The idea of every de-noising filter is different from other filters because every 

filter has its own function. To give simple explanation of the de-noising filters window 

3×3 is used for median, Gaussian and Wiener filter. 

Before the beginning of the discretion of de-noising filters we have to understand the 

convolution. 

3.1.1 Convolution 

Convolution is a simple mathematical operation which is fundamental for many 

common image processing operators. Convolution provides a way of `multiplying 

together' two arrays of numbers, generally of different sizes, but of the same 

dimensionality, to produce a third array of numbers of the same dimensionality. This can 

be used in image processing to implement operators whose output pixel values are 

simple linear combinations of certain input pixel values [31]. 

In an image processing context, one of the input arrays is normally just a gray level 

image. The second array is usually much smaller, and is also two-dimensional (although 

it may be just a single pixel thick), and is known as the kernel. Figure 3.1, shows an 

example image and kernel that we will use to illustrate convolution. 

http://homepages.inf.ed.ac.uk/rbf/HIPR2/kernel.htm
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(a)                                                             (b) 

Figure 3.1: (a) Pixels of  image (b) Kernel of filter 

 

The convolution is performed by sliding the kernel over the image, generally starting at 

the top left corner, so as to move the kernel through all the positions where the kernel 

fits entirely within the boundaries of the image. Each kernel position corresponds to a 

single output pixel, the value of which is calculated by multiplying together the kernel 

value and the underlying image pixel value for each of the cells in the kernel, and then 

adding all these numbers together. So, in our example, the value of the bottom right 

pixel in the output image will be given by Eq (8). 

 

𝑂1 = 𝐼1 𝑘11 + 𝐼2 𝐾12 + 𝐼3 𝐾13 + 𝐼11 𝐾21 + 𝐼12 𝐾22 + 𝐼13 𝐾𝐾23 + 𝐼21 𝐾31

+ 𝐼22 𝐾32 + 𝐼23 𝐾33                                                                       (8) 

 

If the image has M rows and N columns, and the kernel has m rows and n columns, then 

the size of the output image will have M - m + 1 rows, and N - n + 1 columns. 

Mathematically we can write the convolution as Eq (9). 

𝑂 𝑖, 𝑗 =    𝐼 𝑖 + 𝑘 − 1, 𝑗 + 𝑙 − 1 𝐾(𝑘, 𝑙)

𝑛

𝑙=1

𝑚

𝑘=1

                                      (9) 

 

where i runs from 1 to M - m + 1 and j runs from 1 to N - n + 1. 
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3.1.2 How does Median filter work? 

The median filter considers each pixel in the image in turn and looks at its nearby 

neighbours to decide whether or not it is representative of its surroundings. Instead of 

simply replacing the pixel value with the mean of neighbouring pixel values, it replaces 

it with the median of those values [21]. 

Median filter controls the pepper and Gaussian noises. The median filter is reputed to be 

edge preserving. The transfer function used here in Eq (10) 

𝑇  𝑥, 𝑦 =   𝐼  
 𝑛 𝑥 𝑛 

2
                                              (10) 

𝐼1         𝐼2     𝐼3      …        𝐼𝑛 𝑥 𝑛 

where 𝐼 (𝑛 𝑥 𝑛) / 2  is the intensity value in the middle position of the sorted array of 

the neighbouring pixels. 

 

Neighbourhood values are (0, 0, 0, 0, 0 , 4, 4, 12, 22) 

Median value is 0 

Figure 3.2: Sorting neighbourhood values and determine median value 

 

The median is calculated by first sorting all the pixel values from the surrounding 

neighbourhood into numerical order and then replacing the pixel being considered with 

the middle pixel value as was showed in Figure 3.2. If the neighbourhood under 

consideration contains an even number of pixels, the average of the two middle pixel 

values is used. The pattern of neighbours is called the "window", which slides, pixel by 

pixel over the entire image. 
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Figure 3.3: Assumed pixels window represented on MRI image 

 

Median filtering using a 3×3 sampling window with the extending border values outside 

with 0s 

 

Figure 3.4: Movement of the window 3×3 (mask) on the pixels 

 

Figure 3.5: Sorting the pixels and determining middle pixel value 
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Figure 3.6: Pixels window after applying Median filter on all pixels 

 

3.1.3 How does Gaussian filter work? 

     Gaussian filter are a class of low-pass filter, all based on the Gaussian 

probability distribution function used to blur images and remove noise and detail. In 

one dimension, the Gaussian function is here in Eq (11). 

 

𝐺 𝑥 =
1

2𝜋𝜎2
. 𝑒

−
𝑥2

2𝜎2                                                          (11) 

 

Where 𝜎 is the standard deviation of the distribution The distribution is assumed to have 

a mean of 0. Shown graphically, we see the familiar bell shaped Gaussian distribution, 

where a large value of 𝜎 produces to a flatter curve, and a small value leads to a 

“pointier” curve. Figure 3.7 shows examples of such one dimensional 

Gaussians [25]. 

 

                          Large value of 𝜎                                   Small value of 𝜎 

 

Figure 3.7: One dimensional Gaussians 
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When working with images, we need to use the two dimensional Gaussian function 

Figure 3.8. This is simply the product of two 1D Gaussian functions (one for each 

direction) and is given by Eq (12). 

 

𝐺 𝑥, 𝑦 =
1

2𝜋𝜎2
. 𝑒

−
𝑥2+𝑦2

2𝜎2                                               (12) 

 

                            

                          𝜎 = 9                                                                  𝜎 = 3 

 

Figure 3.8: Two dimensional Gaussians 

 

The Gaussian filter works by using the 2D distribution as a point-spread function. This is 

achieved by convolving the 2D Gaussian distribution function with the image. Before 

we can perform the convolution a collection of discrete pixels we need to produce a 

discrete approximation to the Gaussian function. In theory, the Gaussian distribution is 

non-zero everywhere, which would require an infinitely large convolution kernel, but in 

practice it is effectively zero more than about three standard deviations from the mean, 

and so we can truncate the kernel at this point. The kernel coefficients diminish with 

increasing distance from the kernel’s centre. Central pixels have a higher weighting than 

those on the periphery [25]. Larger values of 𝜎 produce a wider peak (greater blurring). 

Kernel size must increase with increasing  𝜎 to maintain the Gaussian nature of the 

filter. Gaussian kernel coefficients depend on the value of 𝜎. Figure 3.9 shows a 

different convolution kernel that approximates a Gaussian with  𝜎. 
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Figure 3.9: 3×3 windows with 𝝈 = 0.849, 𝝈 = 1, 𝝈 = 2 

 

The idea of these windows distribution comes from 

 

1

16
×                =  

Figure 3.10: 3×3 windows with σ = 0.849 

 

Where  𝜎 = 0.849 and 16 is the summation of the values in 3×3 window with 𝜎 =

0.849 this window is using to explain how Gaussian filter is working by convolute it on 

the pixels of  MRI. 

 

                             

Figure 3.11: Assumed pixels window represented on MRI image 
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Figure 3.12: Movement of the window 3 x 3 (mask) on the pixels 

 

To achieve the function of Gaussian filter, the 2D Gaussian distribution of 3×3 window 

with 𝜎 = 0.849 must be convolved on the first window of MRI pixels to get first value 

of filtered pixel. 

 

1

16
 ×

 

 ×  

 

Figure 3.13: 3×3 windows with σ = 0.849, first window of MRI pixels 

 

 

1𝑠𝑡 𝑃 =
1 × 0 + 2 × 0 + 1 × 0 + 2 × 0 + 4 × 12 + 2 × 9 + 1 × 0 + 2 × 22 + 1 × 17

16
 

 

1𝑠𝑡 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑝𝑖𝑥𝑒𝑙 =  
1127

16
= 7.9375 =    8    
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