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Abstract

In the past few decades, mathematics based approaches have been widely adopted in various image restora-
tion problems, among which the partial differential equation (PDE) based approach (e.g. the total variation
model [56] and its generalizations, nonlinear diffusions [15, 52], etc.), and wavelet frame based approach are
some of successful examples. These approaches were developed through different paths and generally provided
understandings from different angles of the same problem. As shown in numerical simulations, implementa-
tions of wavelet frame based approach and PDE based approach quite often end up with solving a similar
numerical problem with similar numerical behaviors, even though different approaches have advantages in
different applications. Since wavelet frame based and PDE based approaches have all been modeling the same
type of problems with success, it is natural to ask whether wavelet frame based approach is fundamentally
connected with PDE based approach when we trace all the way back to their roots. A fundamental connection
of a wavelet frame based approach with total variation model and its generalizations were established in [8].
This connection gives wavelet frame based approach a geometric explanation and, at the same time, it equips
a PDE based approach with a time frequency analysis. It was shown in [8] that a special type of wavelet frame
model using generic wavelet frame systems can be regarded as an approximation of a generic variational model
(with the total variation model as a special case) in the discrete setting. A systematic convergence analysis,
as the resolution of the image goes to the infinity, which is the key step to link the two approaches, is also
given in [8]. Motivated by [8] and [47], this paper is to establish a fundamental connection between wavelet
frame based approach and nonlinear evolution PDEs, provide interpretations and analytical studies of such
connections, and propose new algorithms for image restoration based on the new understandings. Together
with the results in [8], we now have a better picture of how wavelet frame based approach can be used to
interpret general PDE based approach (e.g. the variational models or nonlinear evolution PDEs) and can be
used as a new and useful tool in numerical analysis to discretize and solve various variational and PDE models.
To be more precise on our contributions, we shall establish that: (1) The connections between wavelet frame
shrinkage and nonlinear evolution PDEs provide new and inspiring interpretations of both approaches that
enable us to derive new PDE models and (better) wavelet frame shrinkage algorithms for image restoration.
(2) A generic nonlinear evolution PDEs (of parabolic or hyperbolic type) can be approximated by wavelet
frame shrinkage with properly chosen wavelet frame systems and carefully designed shrinkage functions. (3)
The main idea of this work is beyond the scope of image restoration. Our analysis and discussions indicate
that wavelet frame shrinkage is a new way of solving PDEs in general, which will provide a new insight that
will enrich the existing theory and applications of numerical PDEs, as well as, those of wavelet frames.

Keywords and phrases. Image restoration, nonlinear diffusion, wavelet frames, wavelet frame shrinkage.

1 Introduction

Image restoration, including image denoising, deblurring, inpainting, computed tomography, etc., is one of the
most important areas in imaging science. Its major purpose is to enhance the quality of a given image that is
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corrupted in various ways during the process of imaging, acquisition and communication, and enable us to see
crucial but subtle objects that reside in the image. Mathematics has become one of the main driving forces
of the modern development of image restoration. There are several mathematics based approaches, the partial
differential equation (PDE) based approach (e.g. the total variation method, nonlinear evolution PDEs), and
wavelet frame based approach developed in the last few decades are successful examples among many.

One of the most commonly used nonlinear PDE based approach for image restoration, especially the classical
problem of image denoising, is the nonlinear diffusion. Since the introduction of the 2nd-order nonlinear diffusion
by Perona and Malik (PM) in 1990 [52], a variety of 2nd-order nonlinear diffusions have been proposed (see
e.g. [15,25,67] and the references therein). The fourth order nonlinear diffusion was proposed in [68,69] to resolve
the blocky effects that PM diffusion and its variants tend to produce in image denoising. Later, the fourth order
nonlinear diffusion has also been studied in [49], and high order diffusion with an edge enhancing functional
was proposed in [62]. The theoretical properties of high order diffusion have been studied in [26]. Other than
nonlinear diffusions, nonlinear hyperbolic equations, such as shock filters [51], were also used for image restoration.
What these PDE models for image restoration have in common is the seek of a good balance between the two
seemingly contradictory objectives: smoothness at locations where noise or other artifacts have been removed;
and preservation or even enhancement of the sharpness of edges, corners, etc., which are singularities.

Wavelet frame based methods are generally considered as a different approach from the nonlinear PDE based
methods, and they were developed along a fairly different path. The wavelet frame based image processing started
from [19, 20] for high-resolution image reconstructions, where an iterative algorithm by applying thresholding to
wavelet frame coefficients at each iteration to preserve sharp edges of images was proposed. In order to gain more
flexibility, in [10, 12], the authors introduced an additional weighting and proposed the model now known as the
balanced model. It was shown by [7] that the algorithm of [19,20] converges to a solution of a special case of the
balanced model. The balance algorithm has been applied to various applications in [11, 14, 16, 17]. The model
proposed by [10, 12] is called the balanced model, since it balances the sparsity of the wavelet frame coefficient
and the smoothness of the restored image. This includes two other wavelet frame based models as special cases.
One is known as the synthesis based model [24, 36, 37, 39, 40], where the sparsity term in the balanced model is
emphasized. The other is known as the analysis based model, [13, 34, 60], where the smoothness of the restored
image is emphasized. The three approaches are different from each other, unless the underlying wavelet frame
systems is in fact orthonormal/biorthogonal. However, what they have in common, is the penalization of the
sparsity of the wavelet frame coefficients of the image to be restored.

Ever since the early 90’s, numerous image restoration models and algorithms based on PDEs and wavelets
(wavelet frames) were proposed and studied in the literature. Many of them are rather successful in accurate
modeling of given image restoration problems. These approaches were developed through different paths and
generally provided understandings from different angles of the same problem. As shown in many numerical
simulations, implementations of wavelet based approach and PDE based approach quite often end up with solving
a similar numerical problem and their numerical behaviors are often comparable, although different approaches
have advantages in different applications. Since all these different approaches are modeling the same type of
problem with success, it is natural to ask whether wavelet frame based approach is fundamentally connected with
PDE methods when we trace all the way back to their roots. A fundamental connection between a wavelet frame
based approach and a general variation model (with total variation model [56] as a special case) were established
in [8]. It was shown in [8] that a special type of wavelet frame model using generic wavelet frame systems can be
regarded as an approximation of the variational model in the discrete setting.

Motivated by [8] and [47], this paper is to establish a fundamental connection between wavelet frame shrinkage
and nonlinear evolution PDEs, provide interpretations and analytical studies of such connection, and propose new
algorithms for image restoration based on the new understandings. This connection automatically gives a wavelet
frame approach a geometric explanation through nonlinear PDEs and, at the time, it equips the PDE based
approach with a time frequency analysis by the nature of the two approaches. Together with the results in [8],
we now have a better picture of how wavelet frame based approach can be used to interpret general PDE based
approach and how can it be used as a new and useful tool in numerical analysis to discretize and solve various
variational and PDE models.

Some earlier results in [64–66] showed the correspondence between Haar wavelet shrinkage and the 2nd-order
nonlinear diffusions. This work was recently generalized to the wavelet frame shrinkage and higher order nonlinear
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diffusions for the 1-dimensional case by [47]. However, it is not clear how can the 2-D wavelet frame shrinkage be
related to nonlinear PDEs? Can we theoretically justify such connection? Furthermore, can we observe something
new and something we could not see without establishing a relation between them? These important questions
are yet to be answered. As we will see that this fundamental connection between wavelet based shrinkage and
nonlinear evolution PDEs provides answers to all these questions.

The key idea of the wavelet frame based approach is to apply shrinkage (especially soft-thresholding) to wavelet
frame coefficients iteratively, so that it converges to an optimal solution of some objective functional. The bridge
between the wavelet frame based approach and PDE based approach is established when we see that a proper
choice of numerical scheme of solving nonlinear evolution PDEs can be viewed as applying a properly chosen
shrinkage operator on wavelet frame coefficients iteratively. Corresponding optimal properties are also discussed.
Furthermore, the asymptotic analysis, i.e. when the image resolution goes to infinity, will be given for a few
important cases. The connection between the wavelet frame based and PDE based approaches become clear once
we have shown the followings in the paper.

Firstly, we show that we can approximate a generic nonlinear evolution PDE (of parabolic or hyperbolic type)
using iterative (discrete) wavelet frame shrinkage by properly choosing the underlying wavelet frame systems
and carefully designing the associated shrinkage operator. Such nonlinear evolution PDE includes the nonlinear
parabolic equation called Perona-Malik equation [52], the nonlinear hyperbolic equation known as the Osher-
Rudin’s shock filter [51], and many others as examples. Our key observations are the connections between
the (discrete) wavelet frame decomposition and differential operators (that were observed in [8]); and between
the (discrete) wavelet frame reconstruction and divergence operators. The approximations by wavelet frame
transforms is fundamentally different from the widely used finite difference approximation and the well-known
wavelet Galerkin methods, in that the underlying solution and its derivatives are sampled differently in different
function spaces. We will elaborate what exactly are the samplings corresponding to wavelet frame transforms,
how they are related to the existing methods and why they are superior. Our arguments are also supported by
our numerical experiments for image restoration, in which the advantage of approximating nonlinear diffusion
equations using wavelet frames shrinkage over some standard finite difference discretization is presented. Various
optimal properties in wavelet frame domain for these numerical schemes are discussed. Furthermore, we provide
a rigorous convergence analysis of the discretization by wavelet frame shrinkage. We prove that, for a certain
quasilinear parabolic equation, the associated iterative wavelet frame shrinkage algorithm does converge to the
solution of the PDE as meshsize goes to zero. The given convergence analysis can be generalized to other well-
posed nonlinear evolution PDEs under suitable conditions.

Secondly and more importantly, the connections between wavelet frame shrinkage and nonlinear evolution
PDEs provide new and inspiring interpretations of both approaches. On one hand, the optimality property of
the wavelet frame shrinkage shed lights on that of the PDEs’. In addition, some of the wavelet frame shrinkage
algorithms that are commonly used in image restoration, such as the iterative soft-thresholding algorithms, lead
to new types of nonlinear PDEs that have not been considered in the literature. In particular, one of these
PDEs can be regarded as a regularized version of the well-known mean curvature flow. On the other hand, the
nonlinear PDE based approach also provides new insights into the desirable choices of adaptive thresholds for
wavelet frame shrinkage, which has not yet been systematically studied. In particular, the idea of anisotropy of
the Perona-Malik equation can be used to create an adaptive wavelet frame shrinkage algorithm that outperform
the traditional wavelet frame shrinkage algorithms. As shown by the numerical experiments of this paper, the
performance of some of the new iterative wavelet frame shrinkage algorithms inspired by our theoretical studies
are generally better than some existing iterative wavelet frame shrinkage algorithm that is currently widely used
in image restoration.

Finally, although we will mostly focus on PDE models and wavelet frame shrinkages for image restoration,
the significance of our findings is beyond what it may appear. In fact, our analysis and discussions in this paper
already indicate that wavelet frame based approach is a new way of solving PDEs in general. We believe that
the advantage of wavelet frame based approach over existing methods is not limited to image restoration. PDE
is one of the most powerful tools modeling the physical world. Finding numerical solutions of PDEs has always
been in the heart of numerical analysis. For different types of PDEs arise in different applications, the quality
measures of the solutions may be different, and it is very hard to predict if using wavelet frame based approach
can outperform conventional methods. However, given the vast collection of wavelet frame systems with a variety
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of desirable properties suitable to approximate functions living in different function spaces, we think wavelet
frame based approach will at least provide a new school of thoughts as complement to the existing theory and
applications of numerical PDEs.

The rest of the paper is organized as follows. We start with a brief introduction of wavelet frames and fast
wavelet frame transforms in Section 2. In the same section, we also collect several examples of wavelet frame filters
that will be used in later sections. In addition, we will introduce a general formula for iterative wavelet frame
shrinkage and discuss its optimality properties when different types of shrinkage are used. Then, we discuss how
wavelet frame shrinkage algorithms can be regarded as a discrete approximation to nonlinear evolution PDEs in
a rather general setting. Differences between our approach and some existing numerical methods for PDEs, such
as finite difference methods and wavelet Galerkin methods, are given at the end of Section 2. In Section 3, we
start with generic derivations for the correspondence of wavelet frame shrinkage to nonlinear diffusion equations.
We will show how the commonly used PDE models for image restoration can be derived from iterative shrinkage
of wavelet frame coefficients. In Section 4, we present some new high-order diffusion equations that correspond to
the B-spline tight wavelet frame systems which are commonly used in image restoration. In the same section, we
also study the rotation-invariant high-order diffusion equation and its associated frame filter banks. In Section 5,
we show that some of the iterative wavelet frame shrinkage algorithms, i.e. iterative soft-thresholding, commonly
used in image restoration lead to new nonlinear diffusion equations. We also discuss how we can borrow the idea
of anisotropy of the PM nonlinear diffusion to design new iterative wavelet frame shrinkage algorithms which
are adaptive to local image features. In Section 6, we prove the convergence of iterative wavelet frame shrinkage
algorithm to the solution of a 2nd-order nonlinear diffusion equation as meshsize goes to zero. We also address
stability and convergence of generic iterative wavelet frame shrinkage algorithms. Finally, numerical experiments
are presented in Section 7.

2 Preliminaries and Main Ideas

This section starts with an overview of wavelet frames, including some basic concepts of wavelet frames such
as vanishing moments, and generic iterative wavelet frame shrinkage algorithms. Then, we provide some of the
general ideas of how wavelet frame shrinkage algorithms can be regarded as discrete approximations to nonlinear
evolution PDEs. Finally, we point out what are the fundamental differences of wavelet frame based approach
in solving nonlinear evolution PDEs from the existing methods such as finite difference methods and wavelet
Galerkin methods, especially, in the content of image restorations.

2.1 Review of Wavelet Frames

In this subsection, we first briefly introduce the concept of wavelet frames. The interested readers should consult
[22,23,54,55] for theories of frames and wavelet frames, [57] for a short survey on the theory and applications of
frames, and [32] for a more detailed survey.

A set X = {gj : j ∈ Z} ⊂ L2(Rd), with d ∈ N, is called a frame of L2(Rd) if

A∥f∥2L2(Rd) ≤
∑
j∈Z

|⟨f, gj⟩|2 ≤ B∥f∥2L2(Rd), ∀f ∈ L2(Rd),

where ⟨·, ·⟩ is the inner product of L2(Rd). We call X a tight frame if it is a frame with A = B = 1. For any

given frame X of L2(Rd), there exists another frame X̃ = {g̃j : j ∈ Z} of L2(Rd) such that

f =
∑
j∈Z

⟨f, gj⟩g̃j ∀f ∈ L2(Rd).

We call X̃ a dual frame of X. We shall call the pair (X, X̃) bi-frames. In general, for a given frame X, its dual

frame is not unique. However, when X is a tight frame, it is self-dual, i.e. X̃ = X.
For given Ψ := {ψ1, . . . , ψL} ⊂ L2(Rd), the corresponding quasi-affine system X(Ψ) generated by Ψ is defined

by the collection of the dilations and the shifts of Ψ as

X(Ψ) = {ψℓ,n,k : 1 ≤ ℓ ≤ L;n ∈ Z,k ∈ Zd}, (2.1)

4



where ψℓ,n,k is defined by

ψℓ,n,k :=

{
2

nd
2 ψℓ(2

n · −k), n ≥ 0;
2ndψℓ(2

n · −2n−Jk), n < 0.
(2.2)

When X(Ψ) forms a (tight) frame of L2(Rd), each function ψℓ, ℓ = 1, . . . , L, is called a (tight) framelet and the
whole system X(Ψ) is called a (tight) wavelet frame system. Note that in the literature, the affine (or wavelet)
system is commonly used, which corresponds to the decimated wavelet (frame) transforms. The quasi-affine
system, which corresponds to the so-called undecimated wavelet (frame) transforms, was first introduced and
analyzed by [54]. Here, we only discuss the quasi-affine system (2.2), since it works better in image restoration
and its connection to PDEs is more natural than the affine system. The interested reader can find further details
on the affine wavelet frame systems and its relation to the quasi-affine frames in [16,32,54].

The constructions of framelets Ψ, which are desirably (anti)symmetric and compactly supported functions, are
usually based on a multiresolution analysis (MRA) that is generated by some refinable function ϕ with refinement

mask p and its dual MRA generated by ϕ̃ with refinement mask p̃ satisfying

ϕ = 2d
∑
k∈Zd

p[k]ϕ(2 · −k) and ϕ̃ = 2d
∑
k∈Zd

p̃[k]ϕ̃(2 · −k).

The idea of an MRA-based construction of bi-framelets Ψ = {ψ1, . . . , ψL} and Ψ̃ = {ψ̃1, . . . , ψ̃L} is to find masks
q(ℓ) and q̃(ℓ), which are finite sequences, such that, for ℓ = 1, 2, . . . , L,

ψℓ = 2d
∑
k∈Zd

q(ℓ)[k]ϕ̃(2 · −k) and ψ̃ℓ = 2d
∑
k∈Zd

q̃(ℓ)[k]ϕ(2 · −k). (2.3)

For a sequence {p[k]}k∈Z2 of real numbers, we use p̂(ω) to denote its (two-scale) symbol (it is also called a
filter here):

p̂(ω) =
∑
k∈Z2

p[k]e−ikω.

When p is a sequence with finitely many nonzero terms, its corresponding two-scale symbols p̂(ω) is a trigono-
metric polynomial, and we shall call it a finite impulse response (FIR) filter.

The mixed extension principle (MEP) of [55] provides a general theory of the construction of MRA-based
wavelet bi-frames. Given two sets of FIR filters {p, q(1), . . . , q(L)} and {p̃, q̃1, . . . , q̃L}, the MEP says that as long
as we have

p̂(ξ)̂̃p(ξ) + L∑
ℓ=1

q̂(ℓ)(ξ)̂̃q(ℓ)
(ξ) = 1 and p̂(ξ)̂̃p(ξ + ν) +

L∑
ℓ=1

q̂(ℓ)(ξ)̂̃q(ℓ)
(ξ + ν) = 0, (2.4)

for all ν ∈ {0, π}d \ {0} and ξ ∈ [−π, π]d, the quasi-affine systems X(Ψ) and X(Ψ̃) with Ψ and Ψ̃ given by (2.3)
forms a pair of bi-frames in L2(Rd). In particular, when p = p̃ and q(ℓ) = q̃(ℓ) for ℓ = 1, . . . , L, the MEP (2.4)
become the following unitary extension principle (UEP) discovered in [54]:

|p̂(ξ)|2 +
L∑

ℓ=1

|q̂(ℓ)(ξ)|2 = 1 and p̂(ξ)p̂(ξ + ν) +
L∑

ℓ=1

q̂(ℓ)(ξ)q̂(ℓ)(ξ + ν) = 0, (2.5)

and the system X(Ψ) is a tight frame of L2(Rd). We call {p, q(1), · · · , q(L)} and {p̃, q̃(1), · · · , q̃(L)} a pair of
bi-frame filter banks if they satisfy (2.4). p is called lowpass filter and q(ℓ), q̃(ℓ) are called highpass filters. If
{p, q(1), · · · , q(L)} satisfies (2.5), then it is called a tight frame filter bank. Note that some of the filter banks we
use in later sections only satisfy the first identity of (2.4) or (2.5), and they shall be called undecimated bi-frame
filter banks or undecimated tight frame filter banks. In this case the system generated by the functions associated
to these filters does not form a frame or tight frame for L2(Rd). However, these filters do form frames or tight
frames (undecimated) for sequence space ℓ2(Zd). Since image data are elements in ℓ2(Zd), undecimated (tight)
frames in the sequence space can also be used to efficiently represent images. Therefore, we shall consider both
types of filter banks and refer to them all as bi-frame or tight frame filter banks.
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Now, we show two simple but useful examples of univariate tight framelets. The framelet given in Example 2.1
is known as the Haar wavelet. When one uses a wavelet (affine) system, it generates an orthonormal basis of L2(R).
The quasi-affine system that the Haar wavelet generates, however, is not an orthonormal basis, but a tight frame of
L2(R) instead. We shall refer to ψ1 in Example 2.1 as the “Haar framelet”. The tight framelets given by Example
2.2 are constructed from piecewise linear B-spline first given by [54]. We shall refer to ψ1 and ψ2 in Example 2.2 as
“piecewise linear framelets”. The framelets constructed by B-splines, especially the piecewise linear framelets, are
widely used in frame based image restoration problems because they provide sparse approximations to piecewise
smooth, especially piecewise linear, functions such as images (see, e.g., [7, 11–13,16,18–20,27–29,46,70]). In this
paper, we shall refer the tight wavelet frame system constructed by Ron and Shen in [54] as the B-spline tight
wavelet frame system in general.

Notice that the framelet masks shown by the following examples correspond to standard difference operators
up to some proper scaling, which is also true for framelets constructed by higher order B-splines [54]. This is
a crucial observation in [8] indicating that a link does exist between the variational and wavelet frame based
approach. We shall further extend such an observation to framelet masks that are not standard finite difference
operators. In fact, as we will see in the next subsection, the order of the finite difference operator corresponding
to a given frame highpass filter is closely related to the vanishing moment of the associated framelet.

Example 2.1. Let p = 1
2 [1, 1] be the refinement mask of the piecewise constant B-spline B1(x) = 1 for x ∈ [0, 1]

and 0 otherwise. Define q1 = 1
2 [1,−1]. Then p and q1 satisfy both identities of (2.5). Hence, the system X(ψ1)

defined in (2.1) is a tight frame of L2(R). The mask q1 corresponds to a first order difference operator up to a
scaling.

Example 2.2. [54]. Let p = 1
4 [1, 2, 1] be the refinement mask of the piecewise linear B-spline B2(x) =

max (1− |x|, 0). Define q1 =
√
2
4 [1, 0,−1] and q2 = 1

4 [−1, 2,−1]. Then p, q1 and q2 satisfy both identities
of (2.5). Hence, the system X(Ψ) where Ψ = {ψ1, ψ2} defined in (2.1) is a tight frame of L2(R). The masks q1
and q2 correspond to the first order and second order difference operators respectively up to a scaling.

For practical concerns, we need to consider frames of L2(Rd) with d = 2 or 3, since a typical image is a discrete
function with its domain in 2 or 3 dimensional space. One way to construct frames for L2(Rd) is by taking tensor
products of univariate frames. For simplicity of notation, we will consider the 2-D case, i.e. d = 2. Arguments
for d = 3 or higher dimensions are similar.

Given a set of univariate masks {qℓ : ℓ = 0, 1, . . . , r} (here we let q0 = p for convenience), define the 2-D
masks qi[k], with i := (i1, i2) and k := (k1, k2), as

qi[k] := qi1 [k1]qi2 [k2], 0 ≤ i1, i2 ≤ r; (k1, k2) ∈ Z2. (2.6)

Then the corresponding 2-D refinable function and framelets are defined by

ψi(x, y) = ψi1(x)ψi2(y), 0 ≤ i1, i2 ≤ r; (x, y) ∈ R2,

where we have let ψ0 := ϕ for convenience. We denote

Ψ2 := {ψi; 0 ≤ i1, i2 ≤ r; i ̸= (0, 0)}.

Similarly, we can obtain q̃ℓ and Ψ̃2. If the pair of univariate masks {qℓ} and {q̃ℓ} are constructed from the MEP

(2.4), then it is easy to verify that {qi} and {q̃i} satisfies the MEP conditions as well, and thus (X(Ψ2), X(Ψ̃2))
is a pair of wavelet bi-frames for L2(R2).

In the discrete setting, let an image f be a d-dimensional array. We denote by Id := RN1×N2×···×Nd the set
of all d-dimensional images. We will further assume that all images are square images, i.e. N1 = N2 = · · · =
Nd = N and they all have supports in the open unit d-dimensional cube Ω = (0, 1)d. For simplicity, we will
focus on d = 2 throughout the rest of this paper. We denote the 2-dimensional fast Lev-level wavelet frame
transform/decomposition with {q(0), q(1), · · · , q(L)} (see, e.g., [32]) as

Wu = {Wl,ℓu : 0 ≤ l ≤ Lev− 1, 0 ≤ ℓ ≤ L}, u ∈ I2. (2.7)
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We will mostly consider the case Lev = 1 in this paper and, in that case, Wℓ = W0,ℓ. However, all results we
have can be generalized to Lev > 1 without much difficulty. In some of our analytical results and numerical
experiments, we also use multi-level wavelet frame decomposition for better image restoration quality.

The fast wavelet frame transform W is a linear operator with Wl,ℓu ∈ I2 denoting the frame coefficients of
u at level l and band ℓ. Furthermore, we have

Wl,ℓu := ql,ℓ[−·]~ u,

where ~ denotes the convolution operator with a certain boundary condition, e.g., periodic boundary condition,
and ql,ℓ is defined as

ql,ℓ = q̌l,ℓ ~ q̌l−1,0 ~ . . .~ q̌0,0 with q̌l,ℓ[k] =

{
qℓ[2

−lk], k ∈ 2lZ2;
0, k /∈ 2lZ2.

(2.8)

Notice that q0,ℓ = qℓ, and we let q0 = p for convenience. Similarly, we can define W̃u and W̃l,ℓu. We denote

the inverse wavelet frame transform (or wavelet frame reconstruction) as W̃⊤, which is the adjoint operator of

W̃ , and by the MEP, we have the perfect reconstruction formula

u = W̃⊤Wu, for all u ∈ I2. (2.9)

In particular when W is the transform for a tight frame system, the UEP gives us

u = W⊤Wu, for all u ∈ I2.

2.2 Vanishing Moments

The concept of vanishing moments of wavelet frames and their associated FIR filters is closely related to the
orders of differential operators and their corresponding finite difference operators. The correspondence between
the vanishing moments of wavelet frames and the orders of differential operators was crucial to the analysis of [8].
In this paper, the key observation, which is given in Lemma 2.1, is the connection between the vanishing moments
of FIR filters and the order of finite difference operators (and the orders of approximation as well).

For an FIR highpass filter q, let q̂(ω) =
∑

k∈Z2 q[k]e−ikω be its two-scale symbol. Throughout this paper,
for a multi-index α = (α1, α2) ∈ Z2

+ and ω ∈ R2, denote

α! = α1!α2!, |α| = α1 + α2,
∂α

∂ωα
=

∂α1+α2

∂ωα2
2 ∂ωα1

1

.

We say q (and q̂(ω)) to have vanishing moments of order α = (α1, α2), where α ∈ Z2
+, provided that

∑
k∈Z2

kβq[k] = i|β| ∂
β

∂ωβ
q̂(ω)

∣∣∣
ω=0

= 0

for all β ∈ Z2
+ with |β| < |α| and for all β ∈ Z2

+ with |β| = |α| but β ̸= α. By convention, we say that q has
the vanishing moment of order (0, 0) if

∑
k q[k] ̸= 0. We also say q to have total vanishing moments of order K

with K ∈ Z+, if ∑
k∈Z2

kβq[k] = i|β| ∂
β

∂ωβ
q̂(ω)

∣∣∣
ω=0

= 0 for all β ∈ Z2
+ with |β| < K. (2.10)

Suppose K ≥ 1. If (2.10) holds for all β ∈ Z2
+ with |β| < K except for β ̸= β0 with certain β0 ∈ Z2

+ and
|β0| = J < K, then we say q to have total vanishing moments of order K\{J + 1}.

Clearly, if q has vanishing moments of order α, then it has total vanishing moments of order at least |α|, and
it has total vanishing moments of order K\{|α|+1} with K ≥ |α|+1. It is obvious that if

∑
k1∈Z k

β1

1 q[k1, k2] = 0

for all 0 ≤ β1 < α1, k2 ∈ Z and
∑

k2∈Z k
β2

2 q[k1, k2] = 0 for all 0 ≤ β2 < α2, k1 ∈ Z, then q has vanishing moments
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of order α = (α1, α2). To have a better understanding of the concept of vanishing moments, let us look at two
examples.

Let q̂1(ω) = eiω1 − e−iω1 . Then

q̂1(0) = 0,
∂

∂ω1
q̂1(0) = 2i ̸= 0,

∂

∂ω2
q̂1(0) = 0.

Thus q̂1(ω) has vanishing moments of order (1, 0). In addition, we have

∂2

∂ω2
1

q̂1(0) = 0,
∂2

∂ω1∂ω2
q̂1(0) = 0,

∂2

∂ω2
2

q̂1(0) = 0.

Therefore, q1 has total vanishing moments of order 3\{|(1, 0)| + 1}, or 3\{2} (it does not have total vanishing

moments of order 4\{2} since ∂3

∂ω3
1
q̂1(0) = −2i ̸= 0).

Let q̂2(ω) = (eiω1 − e−iω1)(1− e−iω2)2. Then

∂β

∂ωβ
q̂2(0) = 0 for |β| < 3 and β = (3, 0), (2, 1), (0, 3),

and ∂3

∂ω1∂ω2
2
q̂2(0) = −4i ̸= 0. Thus q2 has vanishing moments of order (1, 2). Observe that ∂4

∂ω1∂ω3
2
q̂2(0) = −4 ̸= 0.

Therefore, q2 has total vanishing moments of order 4\{4} (instead of 5 \ {4}).

Lemma 2.1. Let q be an FIR highpass filter with vanishing moments of order α ∈ Z2
+. Then for a smooth

function F (x) on R2, we have

1

ε|α|

∑
k∈Z2

q[k]F (x+ εk) = Cα
∂α

∂xα
F (x) +O(ε), as ε→ 0, (2.11)

where Cα is the constant defined by

Cα =
1

α!

∑
k∈Z2

kαq[k] =
i|α|

α!

∂α

∂ωα
q̂(ω)

∣∣∣
ω=0

. (2.12)

If, in addition, q has total vanishing moments of order K\{|α|+ 1} for some K > |α|, then

1

ε|α|

∑
k∈Z2

q[k]F (x+ εk) = Cα
∂α

∂xα
F (x) +O(εK−|α|), as ε→ 0. (2.13)

Proof. Straightforward calculations based on Taylor’s expansion.

2.3 Wavelet Frame Filter Banks

For any nonlinear evolution PDE considered in this paper, we can simply use the filter bank of one of the tensor-
product B-spline wavelet frame system constructed in [54], as long as the highest order of vanishing moments of
the highpass filters is no lower than half of the order of the PDE. All we need to do is to choose appropriate
parameters for each of the highpass filter such that the ones that are inactive in the given PDE, i.e. the filters
whose associated differential operators do not appear in the PDE, converge to zero asymptotically. One may also
simply set those parameters to zero. However, choosing a parameter that asymptotically goes to zero some time
leads to better image restoration results. This idea was first appeared in [8]. We will also present some specific
choices of the parameters associated to the inactive highpass filters in Corollary 3.1 and 3.2. Numerical examples
showing the benefit of having inactive highpass filters in the filter bank are given in Section 7.

However, using B-spline type filter banks for all nonlinear evolution PDEs may not always be efficient, espe-
cially when we have too many inactive filters. We need to compute the decomposition transform associated to
those inactive filters in any case, otherwise the first identity of (2.4) is violated and we will not have the perfect
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reconstruction (2.9). In some applications, when image quality is less of a concern than computation efficiency,
it is desirable to specifically construct filter bank for a given PDE that has as few filters as possible. Therefore,
we list some of the FIR filter banks that will be used in later sections. As we will elaborate that these filters can
be used to discretize different type of nonlinear evolution PDEs, especially nonlinear diffusion equations.

Let {a, b(1), b(2)} be piecewise linear B-spline tight frame filter bank of [54] (given by Example 2.2)

â(ω) =
1

2
+

1

4
(e−iω + eiω) =

1

4
eiω(1 + e−iω)2,

b̂(1)(ω) =

√
2

4
(eiω − e−iω), b̂(2)(ω) =

1

2
− 1

4
(e−iω + eiω) =

1

4
eiω(1− e−iω)2.

(2.14)

By tensor product, we can construct the separable 2-D piecewise linear B-spline tight frame filter bank from
(2.14), which is commonly used in image denoising, image inpainting and other areas. We note that all filter
banks in this subsection except for (2.15) are undecimated bi-frame or tight frame filter banks, which mean they
only satisfy the first equation of (2.4) or (2.5).

Example 2.3. Let a, b(1) and b(2) be given in (2.14). The separable 2-D piecewise linear B-spline tight frame
filter bank p, q(1), · · · , q(8), with ω = (ω1, ω2), are given by

p̂(ω) = â(ω1)â(ω2), q̂
(1)(ω) = b̂(1)(ω1)â(ω2), q̂

(2)(ω) = â(ω1)b̂
(1)(ω2),

q̂(3)(ω) = b̂(2)(ω1)â(ω2), q̂
(4)(ω) = b̂(1)(ω1)b̂

(1)(ω2), q̂
(5)(ω) = â(ω1)b̂

(2)(ω2), (2.15)

q̂(6)(ω) = b̂(2)(ω1)b̂
(1)(ω2), q̂

(7)(ω) = b̂(1)(ω1)b̂
(2)(ω2), q̂

(8)(ω) = b̂(2)(ω1)b̂
(2)(ω2).

It is straightforward to obtain the following orders of vanishing moments of q(1), · · · , q(8):

β1 = (1, 0), β2 = (0, 1), β3 = (2, 0), β4 = (1, 1),β5 = (0, 2), β6 = (2, 1), β7 = (1, 2), β8 = (2, 2).

These filters will be used to discretize nonlinear diffusion equation (4.1).

We can construct a similar type of tight frame filter bank as (2.15) with fewer highpass filters.

Example 2.4. Let a be given in (2.14). A separable 2-D piecewise linear B-spline tight frame filter bank with
fewer highpass filters is given by

p̂(ω) = â(ω1)â(ω2), q̂
(1)(ω) =

√
2

16

(
eiω1 − e−iω1

)(
1 + e−iω2

)2
eiω2 ,

q̂(2)(ω) =

√
2

8

(
eiω1 + e−iω1

)(
eiω2 − e−iω2

)
, q̂(3)(ω) =

1

16

(
1− e−iω1

)2(
1 + e−iω2

)2
eiω1eiω2 ,

q̂(4)(ω) =

√
2

8

(
eiω1 − e−iω1

)(
eiω2 − e−iω2

)
, q̂(5)(ω) =

1

4

(
1− e−iω2

)2
eiω2 .

(2.16)

These filters will be used to discretize nonlinear diffusion equations (4.4) and (4.5).

Furthermore, we can construct tight frame filter banks which result in the rotation invariant diffusion equations
of arbitrary orders.

Example 2.5. The lowpass and highpass filters are given respectively by

p̂(ω) =
1

22m
(
1 + e−iω1

)m(
1 + e−iω2

)m
ei[m/2](ω1+ω2), m ≥ 1 (2.17)

and

q̂(s,k)(ω) = (2.18)

1

22m−k

√(
m

s

)(
s

k

)
ei[

m−k
2 ]ω1ei[m/2]ω2

(
1 + e−iω1

)m−s(
1 + e−iω2

)m−k(
1− e−iω1

)s−k(
1− e−iω2

)k
.

These filters will be used to discretize the rotation invariant nonlinear diffusion equation (4.10).
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Now, we present filter banks that will be used for the diffusion equations of Perona-Malik’s and TV models,
image inpainting diffusion, and shock filtering.

Example 2.6. The following bi-frame filter bank is constructed for the Perona-Malik diffusion (3.20):
p̂(ω) = ̂̃p(ω) = 1

4

(
1 + e−iω1

)(
1 + e−iω2

)
,

q̂(1)(ω) = 1
2

(
1− e−iω1

)
, ̂̃q(1)

(ω) = 1
16

(
1− e−iω1

)(
6 + eiω2 + e−iω2

)
,

q̂(2)(ω) = 1
2

(
1− e−iω2

)
, ̂̃q(2)

(ω) = 1
16

(
1− e−iω2

)(
6 + eiω1 + e−iω1

)
.

(2.19)

Example 2.7. The following bi-frame filter bank is constructed for the image inpainting diffusion (3.23):
p̂(ω) = ̂̃p(ω) = 1

4
(1 + e−iω1)(1 + e−iω2), q̂(1)(ω) = 1

2
(1− e−iω1), q̂(2)(ω) = − 1

2
(1− e−iω2),

q̂(3)(ω) = − 1
32
(1− e−iω1)2eiω1(6 + e−iω2 + eiω2), q̂(4)(ω) = − 1

32
(1− e−iω2)2eiω2(6 + e−iω1 + eiω1),̂̃q(1)

(ω) = 1
2
(eiω2 − 1), ̂̃q(2)

(ω) = 1
2
(eiω1 − 1), ̂̃q(3)

(ω) = ̂̃q(4)
(ω) = 1.

(2.20)

Example 2.8. The following bi-frame filter bank is constructed for the nonlinear hyperbolic equation of shock
filters (3.27):

p̂(ω) = ̂̃p(ω) = 1
16
(1 + e−iω1)2(1 + e−iω2)2eiω1eiω2 ,

q̂(1)(ω) = 1
8
(eiω1 − e−iω1)(1 + e−iω2)2eiω2 , q̂(2)(ω) = 1

8
(eiω2 − e−iω2)(1 + e−iω1)2eiω1 ,

q̂(3)(ω) = − 1
32
(1− e−iω1)2eiω1(6 + e−iω2 + eiω2), q̂(4)(ω) = − 1

32
(1− e−iω2)2eiω2(6 + e−iω1 + eiω1),̂̃q(1)

(ω) = 1
64
(eiω1 − e−iω1)(6 + e−iω2 + eiω2), ̂̃q(2)

(ω) = 1
64
(eiω2 − e−iω2)(6 + e−iω1 + eiω1),̂̃q(3)

(ω) = ̂̃q(4)
(ω) = 1.

(2.21)

Finally, we note that the filter bank that can be used to discretize a given PDE is not uniquely determined,
even we do not allow having inactive highpass filters in the filter bank. For example, other than (2.20), we can
use the following filter bank for the image inpainting diffusion (3.23):

p̂(ω) = ̂̃p(ω) =
1

16
(1 + e−iω1)2(1 + e−iω2)2eiω1eiω2 ,

q̂(1)(ω) =
1

2
(eiω1 − e−iω1), q̂(2)(ω) = −1

2
(eiω2 − e−iω2),

q̂(3)(ω) = − 1

512
(1− e−iω1)2eiω1(6 + e−iω1 + eiω1)(22 + 4e−iω2 + 4eiω2 + e−i2ω2 + ei2ω2),

q̂(4)(ω) = − 1

512
(1− e−iω2)2eiω2(6 + e−iω2 + eiω2)(22 + 4e−iω1 + 4eiω1 + e−i2ω1 + ei2ω1),

̂̃q(1)
(ω) =

1

2
(eiω2 − e−iω2), ̂̃q(2)

(ω) =
1

2
(eiω1 − e−iω1), ̂̃q(3)

(ω) = ̂̃q(4)
(ω) = 1.

However, constructing multiple filter banks for a given PDE is not the focus of this paper. Therefore, we shall
only use the filter banks presented in this section as examples.

2.4 Iterative Wavelet Frame Shrinkage

As iterative wavelet frame shrinkage (especially the soft- and hard-thresholding) is the key ingredient of wavelet
frame based approach for image restoration in [11,14,16,17,19,20,29,70]. In this section, we review the formula
for more general iterative wavelet frame shrinkage, which goes beyond the soft- and hard-thresholding, rewrite it
into a compact form that will be repeatedly used in later sections.

Let {p, q(1), · · · , q(L)} and {p̃, q̃(1), · · · , q̃(L)} be a pair of FIR filters that satisfy the first equation of (2.4).
Let {u0

j}j∈Z2 be the initial data. The (1-level) wavelet frame transform based denoising consists of the following
processes:

Ln =
∑
j∈Z2

p[j]u0
j+n, H

(ℓ)
n =

∑
j∈Z2

q(ℓ)[j]u0
j+n, n ∈ Z2, 1 ≤ ℓ ≤ L;

u1
j =

∑
n∈Z2

p̃[j − n]Ln +
L∑

ℓ=1

∑
n∈Z2

q̃(ℓ)[j − n]Sℓ(H
(ℓ)
n ), j ∈ Z2,

(2.22)
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where Sℓ, 1 ≤ ℓ ≤ L are the shrinkage functions. The first step in (2.22) is called the analysis process, and the

second one is called the synthesis process after shrinkage. Ln and H
(ℓ)
n are the lowpass and highpass outputs

of u0. The shrinkage functions we consider in this paper are not limited to the well-known soft-thresholding
that is frequently used in image restoration. As we shall see in later sections, different shrinkage operators will
correspond to different PDEs.

Proposition 2.1. Let {p, q(1), · · · , q(L)} and {p̃, q̃(1), · · · , q̃(L)} be a pair of bi-frame filter banks, and u1
j be the

resulting signal given by (2.22) after 1-step frame shrinkage of u0
j with these filter banks. Then

u1
j = u0

j +
L∑

ℓ=1

∑
n∈Z2

q̃(ℓ)[j − n]
(
Sℓ(ξ)− ξ

)∣∣∣
ξ=H

(ℓ)
n

, j ∈ Z2, (2.23)

where H
(ℓ)
n is defined by (2.22).

Proof. Since {p, q(1), · · · , q(L)} and {p̃, q̃(1), · · · , q̃(L)} satisfy the first equation of (2.4), u0
j can be recovered from

the synthesis algorithm (2.22) with Sℓ(ξ) = ξ, namely,

u0
j =

∑
n∈Z2

p̃[j − n]Ln +

L∑
ℓ=1

∑
n∈Z2

q̃(ℓ)[j − n]H(ℓ)
n , j ∈ Z2.

Thus,

u1
j =

∑
n∈Z2

p̃[j − n]Ln +
L∑

ℓ=1

∑
n∈Z2

q̃(ℓ)[j − n]Sℓ(H
(ℓ)
n )

= u0
j −

L∑
ℓ=1

∑
n∈Z2

q̃(ℓ)[j − n]H(ℓ)
n +

L∑
ℓ=1

∑
n∈Z2

q̃(ℓ)[j − n]Sℓ(H
(ℓ)
n )

= u0
j +

L∑
ℓ=1

∑
n∈Z2

q̃(ℓ)[j − n]
(
Sℓ(ξ)− ξ

)∣∣∣
ξ=H

(ℓ)
n

, j ∈ Z2.

The frame shrinkage process (2.22) can be applied iteratively:

H(ℓ),k−1
n =

∑
j∈Z2

q(ℓ)[j]uk−1
j+n, 1 ≤ ℓ ≤ L;

uk
j = uk−1

j +

L∑
ℓ=1

∑
n∈Z2

q̃(ℓ)[j − n]
(
Sℓ(H

(ℓ),k−1
n )−H(ℓ),k−1

n

)
, k = 1, 2, · · · .

(2.24)

In this paper we will also consider the channel-mixed frame shrinkage (coupled frame shrinkage):

u1
j =

∑
n∈Z2

p̃[j − n]Ln +

L∑
ℓ=1

∑
n∈Z2

q̃(ℓ)[j − n]Sℓ(H
(1)
n ,H(2)

n , · · · , H(L)
n ), j ∈ Z2, (2.25)

where Sℓ, 1 ≤ ℓ ≤ L,n ∈ Z2 are functions of several variables. If u1
j , j ∈ Z2, are given by (2.25) after channel-

mixed shrinkage, then one can obtain similarly to the proof of Proposition 2.1 that

u1
j = u0

j +
L∑

ℓ=1

∑
n∈Z2

q̃(ℓ)[j − n]
(
Sℓ(H

(1)
n , H(2)

n , · · · ,H(L)
n )−H(ℓ)

n

)
, j ∈ Z2. (2.26)
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The channel-mixed frame shrinkage process can also be applied iteratively:

H(ℓ),k−1
n =

∑
j∈Z2

q(ℓ)[j]uk−1
j+n, 1 ≤ ℓ ≤ L;

uk
j = uk−1

j +
L∑

ℓ=1

∑
n∈Z2

q̃(ℓ)[j − n]
(
Sℓ(H

(1),k−1
n , · · · ,H(L),k−1

n )−H(ℓ),k−1
n

)
, k = 1, 2, · · · .

(2.27)

Although the choice of shrinking functions Sℓ can be general, they need to be meaningfully chosen. In this
paper, we will focus on a few specific shrinkage operators which are closed-form solutions of certain optimization
problems.

Next, we rewrite (2.24) and (2.27) in operator form. We will also present the shrinkage operators that will be

analyzed in this paper. Let Wu =: d be the wavelet frame decomposition of u defined by (2.7), and W̃⊤d be

the reconstruction operator using a duel wavelet frame. We have W̃⊤W = I. For simplicity, we assume the level
of decomposition is 1, i.e. Lev = 1 in (2.7). For a given wavelet frame coefficients d = {dℓ,n : n ∈ Z2, 0 ≤ ℓ ≤ L}
and threshold α(d) = {αℓ,n(d) : n ∈ Z2, 0 ≤ ℓ ≤ L}, define the multiplicative shrinkage operator Sα(d) as

Sα(d) = {Sαℓ,n(d)(dℓ,n) = dℓ,n(1− αℓ,n(d)) : n ∈ Z2, 0 ≤ ℓ ≤ L}. (2.28)

Note that Sαℓ,n
(dℓ,n) in (2.28) denotes

(
Sα(d)

)
ℓ,n

, whose value may depend on more values than merely dℓ,n

(see e.g. (3.17)). Similarly, we denote the anisotropic and isotropic soft-thresholding operator as T 1
α and T 2

α

respectively, where

T 1
α(d) =

{
T 1
αℓ,n(d)(dℓ,n) =

dℓ,n
|dℓ,n|

max{|dℓ,n| − αℓ,n(d), 0} : n ∈ Z2, 0 ≤ ℓ ≤ L
}
, (2.29)

and

T 2
α(d) =

{
T 2
αℓ,n(d)(dℓ,n) =

dℓ,n
Rℓ,n

max
{
Rℓ,n − αℓ,n(d), 0

}
: n ∈ Z2, 0 ≤ ℓ ≤ L

}
, (2.30)

where Rℓ,n =
(∑

|βℓ′ |=|βℓ| |dℓ′,n|
2
) 1

2

. Observe that Rℓ,n = Rℓ′,n if |βℓ′ | = |βℓ|. For all shrinkage operators, we

always fix the threshold α0,n = 0, which means we never penalize the low frequency coefficients d0,n.
With the notation (2.7) and choosing the shrinking functions Sℓ as Sα and T ℘

α, we can rewrite both (2.24)
and (2.27) as

uk = W̃⊤Sαk−1(Wuk−1), k = 1, 2, · · · , (2.31)

which shall be referred to as the iterative multiplicative wavelet frame shrinkage (algorithm); and

uk = W̃⊤T ℘
αk−1(Wuk−1), k = 1, 2, · · · , ℘ = 1, 2, (2.32)

which shall be referred to as the iterative (anisotropic/isotropic) wavelet frame soft-thresholding (algorithm). Here,
αk−1 = {αℓ,n(d

k−1) : n ∈ Z2, 0 ≤ ℓ ≤ L} with dk−1 = Wuk−1. When W is the transform associated with a

tight wavelet frame system, we have W̃ = W in (2.31) and (2.32). We note that the shrinkage operator (2.28) is
in fact so general that it includes (2.29) and (2.30) as special cases. In other words, the iterative multiplicative
shrinkage (2.31) includes (2.32) as a special case. We shall give more details in Section 5 where we present
nonlinear diffusions that are in correspondence to (2.32) with various choices of thresholds. However, we will keep
the two types of thresholding separated in notation and in our discussions, since they have different thresholding
mechanism and have rather different optimality properties as will be shown in the following subsection.

2.5 Optimality of Iteration (2.31) and (2.32)

We shall show that the solutions of two consecutive time steps of (2.31) and (2.32) are linked by some optimization
problem.
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Given an α, we assume that

0 ≤ α < 1, i.e. 0 ≤ αℓ,n < 1, for all n ∈ Z2, 0 ≤ ℓ ≤ L. (2.33)

Consider the quadratic optimization problem

min
d

1

2
∥d−Wu∥22 +

1

2

∥∥∥√ α

1−α
· d

∥∥∥2
2
,

where d = {dℓ,n : n ∈ Z2, 0 ≤ ℓ ≤ L} and
√

α
1−α · d :=

{√
αℓ,n

1−αℓ,n
dℓ,n : n ∈ Z2, 0 ≤ ℓ ≤ L

}
. We first observe

that

Sα(Wu) = argmin
d

1

2
∥d−Wu∥22 +

1

2

∥∥∥√ α

1−α
· d

∥∥∥2
2
,

which is easy to derive by simple differentiation. Also, we have (see e.g. [8, 21,33])

T ℘
α(Wu) = argmin

d

1

2
∥d−Wu∥22 +

∥∥∥α · d
∥∥∥
1,℘
, ℘ = 1, 2,

where α · d :=
{
αℓ,ndℓ,n : n ∈ Z2, 0 ≤ ℓ ≤ L

}
,

∥d∥1,1 :=
∑
ℓ,n

|dℓ,n| and ∥d∥1,2 =
∑
n

m∑
l=1

( ∑
|βℓ′ |=l

|dℓ′,n|2
) 1

2

. (2.34)

Here we regrouped βℓ, 1 ≤ ℓ ≤ L, according to the order of vanishing moments |βℓ| of highpass filter q(ℓ), and we
assume the largest number among |β1|, · · · , |βL| is m.

When we have a tight frame system, i.e. W̃ = W , by [9, Propositon 3], we have

1

2
∥d−Wu∥22 =

1

2
∥W⊤d− u∥22 +

1

2
∥(I −WW⊤)d∥22. (2.35)

Therefore, the iteration (2.31) has the following optimality property

uk =

 W̃⊤
[
argmind

1
2∥d−Wuk−1∥22 + 1

2

∥∥√ αk−1

1−αk−1 · d
∥∥2
2

]
bi-frame

W⊤
[
argmind

1
2∥W

⊤d− uk−1∥22 + 1
2∥(I −WW⊤)d∥22 + 1

2

∥∥√ αk−1

1−αk−1 · d
∥∥2
2

]
tight frame.

(2.36)

Similarly, the iteration (2.32) has the following optimality property

uk =

 W̃⊤
[
argmind

1
2∥d−Wuk−1∥22 +

∥∥αk−1 · d
∥∥
1,℘

]
bi-frame

W⊤
[
argmind

1
2∥W

⊤d− uk−1∥22 + 1
2∥(I −WW⊤)d∥22 +

∥∥αk−1 · d
∥∥
1,℘

]
tight frame.

(2.37)

Judging from the formulas of the shrinkage operator, the parameter αk−1 depends only on the wavelet frame
coefficients dk−1. The first optimization problem in (2.37) is a synthesis based model [24, 36, 37, 39, 40] and the
second optimization problem is a balanced model [7, 18].

2.6 Wavelet Frame Shrinkage and Nonlinear Evolution PDEs

In this subsection, we discuss how wavelet frame shrinkage is related to nonlinear evolution PDEs in general.
We shall focus on motivation of such connection and leave the details to later sections. We will also discuss
the difference and relation between our approach and some of the existing approaches, i.e. finite difference and
wavelet Galerkin method.

In this paper, all evolution PDEs we shall consider take the following general form

ut =
L∑

ℓ=1

∂αℓ

∂xαℓ
Φℓ(Du, u), with Du = (

∂β1

∂xβ1
, . . . ,

∂βL

∂xβL
), (2.38)
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where we assume the PDE is defined on R2 for the moment, and |αℓ|, |βℓ| ≥ 0 for all 1 ≤ ℓ ≤ L. Note that
(2.38) includes diffusion, hyperbolic and Hamilton-Jacobi equations as special cases. In this paper, we shall focus
on nonlinear diffusions. However, we will also discuss a nonlinear hyperbolic equation used for image restoration
called shock filter [51].

Given a pair of bi-frame filter bank {p, q(1), . . . , q(L)} and {p̃, q̃(1), . . . , q̃(L)}, and their associated transforms

W and W̃ , we have W̃⊤W = I. We split the low and high frequency component of W̃ and W according to the
notation in (2.7) as

Wlow = W0 and Whigh = {Wℓ : 1 ≤ ℓ ≤ L}.

We define W̃low and W̃high similarly. Assuming that q(ℓ) and q̃(ℓ) having vanishing moment of order βℓ and

αℓ respectively, our key observation is based on the following relations which can be derived using Lemma 2.1 by
choosing λ and λ̃ properly:

λ ·Whighu ≈ (Du)∣∣ and
(
λ̃ · W̃high

)⊤
·
(
vℓ

)L

ℓ=1
≈ −

( L∑
ℓ=1

∂αℓ

∂xαℓ
vℓ

)∣∣, (2.39)

where u = u| and vℓ = (vℓ)| for some smooth functions u and vℓ, f| denotes the restriction of f on Z2, λ·Whighu =

{λℓWℓu : 1 ≤ ℓ ≤ L}, and
(
λ̃ · W̃high

)⊤ ·
(
vℓ

)L
ℓ=1

=
∑L

ℓ=1 λ̃ℓW̃
⊤
ℓ vℓ. Note that the first approximation of (2.39)

was observed earlier in [8], while both approximations of (2.39) in the 1-D setting was used in [47]. Using the
observation (2.39), we can discretize (2.38) as

ũk = ũk−1 − τ
(
λ̃ · W̃high

)⊤
·
(
Φℓ(λ ·Whighũ

k−1, ũk−1)
)L

ℓ=1
, (2.40)

where ũk
j denotes an approximation to the value u(hj, τk) of u(x, t) at (hj, τk), where h and τ are the spatial step

size and the time step size. Recall from Proposition 2.1 and the iterative shrinkage formula (2.26) that follows,
we have the following general expression of iterative wavelet frame shrinkage algorithm

uk = uk−1 − W̃⊤
high ·

[
Whighu

k−1 −
(
Sℓ(Whighu

k−1)
)L

ℓ=1

]
. (2.41)

Comparing (2.40) with (2.41), we will show that, if the shrinkage operator Sℓ is properly chosen, the iterative
wavelet frame shrinkage algorithm will match (2.40) in the sense that ũk = uk for all k ≥ 1 as long as ũ0 = u0.
This implies that (2.41) and its equivalent operator form (2.31) is a discrete approximation of the evolution
PDE (2.38) if the shrinkage operator is properly chosen. On the other hand, for some type of given shrinkage,
such as the soft-thresholding operator, we will work our way backwards and find the associated (new) evolution
PDEs. The main ideas here will be followed and carried out in details in Section 3 and Section 4 to establish the
connections between the nonlinear evolution PDEs (especially the nonlinear diffusions) and wavelet frame based
approach for image restorations. Furthermore, in Section 5, we will discuss how can we generalize the relation
between (2.38) and (2.41) and how new evolution PDEs and iterative wavelet frame shrinkage algorithms can be
created.

2.6.1 Difference from finite difference approach

The main advantage of wavelet frame based discretization of PDEs is that it equips the nonlinear diffusion PDE
approach with a space-frequency analysis and multi-scale analysis through the multiresolution analysis associated
to wavelet frames. This is impossible to achieve by other finite difference methods. This provides a new angle
to understand the nonlinear PDE approach. It further provides new types of nonlinear PDEs motivated from
wavelet frame based approach. On the other hand, as we will see in this paper, the PDE based approach in turns,
gives wavelet frame based approach a geometric explanation and motivates us to develop new wavelet frame based
methods which are different from those available wavelet frame methods which are mainly based on the sparse
approximation of underlying solutions in wavelet domain. We elaborate some of details here.

Judging from (2.39) and (2.40), the discretization by wavelet frame transform resembles that of the finite
difference methods normally used for numerical PDEs. However, some properties that are unique to wavelet
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frame systems make the discretization have better structures and handy to use. Such properties include, for
instance, the associated multiresolution analysis to each wavelet frame system and the perfect reconstruction

property, i.e. W̃⊤W = I, of wavelet frames. In addition, the specific way of sampling associated to a wavelet
frame systems makes the discretization by wavelet frame transform (2.39) merely the computation of sampled
derivatives via a simple wavelet decomposition algorithm that takes the samples from function values as input. In
other words, the discretization by (2.39) links the samples of derivatives directly with wavelet frame coefficients.
This, in turn, makes it possible to detect singularities in solutions via wavelet analysis, which is very important
in solving PDEs for image restoration and is different from the standard finite difference methods. All these
properties of wavelet frames enable them to outperform standard finite differencing in image restoration, which is
supported by our numerical simulations in Section 7 and some of early studies (see e.g. [13,28]). Here, we further
elaborate these differences between wavelet frame transform and finite differencing.

1. Finite difference methods and our approach are different in how discrete data is sampled from the unknown
function. For a standard finite difference method, discrete data u is sampled from its continuum counterpart
u normally by u = Rhu, where Rh is the restriction of u on a certain grid with meshsize h. However,
the wavelet frame based approach samples u using the associated refinable function, that generates the
underlying MRA of the wavelet frame system, as u = Thu with (Thu)k := 2n⟨u, ϕn,k⟩ (see (6.9)). The
sampling used by wavelet frame based approach is more general and better than that used by finite difference
methods in the following sense.

(a) When u is continuous, the two samplings are equal to each other asymptotically (see Lemma 6.1 for
details).

(b) When u ∈ L2(R2), the sampling Thu is still well defined, while Rhu is not. More important, with
the samples of u, the sampled values of various differentiations of u can be obtained by applying a
standard wavelet decomposition on Thu. In this way, we are able to directly link the sampled values of
derivatives to wavelet frame coefficients, which can be used to analyze various properties of underlying
solution, e.g. singularities.

2. For standard finite difference approximation of the operatorD =
(

∂βℓ

∂xβℓ

)L

ℓ=1
(differentiation) and

∑L
ℓ=1

∂αℓ

∂xαℓ

(divergence), there is not a bi-frame structure for the finite differencing of differentiation and divergence.
However, when we use wavelet frame transform to discretize differentiation and divergence, λ · Whigh

approximates the differentiation and λ̃ ·W̃⊤
high approximates the divergence. By augmenting the associated

low pass filter, we always have W̃⊤W = I. This property is used extensively, and without it, we will not
be able to rewrite the standard iterative wavelet frame shrinkage algorithm (2.22) as (2.23) (see the proof of
Proposition 2.1). In other words, we will not have the general iterative wavelet frame shrinkage algorithm
(2.41) that can be used to link with (2.40). Consequently, we will not have the optimality relation between
two consecutive iterations as given in (2.36) and (2.37). Note that if we start with a certain finite difference
scheme, we can complete the corresponding system to a certain bi-frame system. Therefore, implicitly, the
finite difference method is also frame based, although it may not have the MRA structure and wavelet
frames associate to it. However, the completion to a bi-frame system is not considered by finite difference
methods.

3. Finally, the advantage of the discretization by wavelet frame transforms over the finite difference methods
is the multiresolution structure of wavelet frames, or the multiple decomposition levels of wavelet frame
transform. This automatically casts a multiscale analysis and space-frequency analysis to the PDE based
approach. The multilevel decomposition allows us to detect singularities of the underly solution and its
directives at the presence of noise. The ability of detecting singularities enables us to activate wavelet
frame bands and the associated shrinkage algorithms adaptively according to the orders of singularities.
These advantages of discretization by wavelet frame transforms over the finite difference methods will be
illustrated in our numerical simulations in Section 7 (Tables 1 and 2), where multiple decomposition levels
are used.
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2.6.2 Difference from wavelet-Galerkin

The basic idea of wavelet Galerkin method [1, 43, 48, 53] is to represent the solution by a linear combination
of a refinable function ϕ for an orthonormal wavelet system. One can form the weak form of the given PDE
using refinable functions as test functions, and then one can obtain a linear system with a stiffness matrix, or an

iterative scheme associated to the linear system, which has entries like ⟨∂ϕ
α

∂xα ,
∂βϕ
∂xβ ⟩ called connection coefficients.

The value of u is sampled by a refinable function ϕ at resolution level n as ⟨u, ϕn,k⟩ and its differentiation of Du
is sampled (up to a scaling) by a refinable function ϕ at resolution level n as ⟨u,D⊤ϕn,k⟩ with D⊤ the adjoint
operator of D. The key idea of wavelet Galerkin method is to make the stiffness matrix sparse in wavelet domain.
This idea of making the stiffness matrix sparse is used in almost all other Galerkin methods. In order to make this
idea work, the wavelet system used has to be close in some way to the eigenfunctions of the differential operator.
However, it is hard to design such a wavelet system in general.

Our approach here never tries to make the stiffness matrix sparse. Instead, our methods are based on the
properties of the underlying solutions. One example of such properties is that the underlying solutions for many
differential equations considered in this paper are piecewise smooth functions, which can be sparsely approximated
by a wide range of wavelet systems. Iterative algorithms are derived by carefully designing shrinkage operators
based on prior knowledge of the underlying solutions. Such prior knowledge can be obtained either from the given
data or by a prior analysis of the underlying solution. For example, when soft-thresholding is used, we assume
that the underly solution has a good sparse approximation in wavelet frame domain.

Finally, to solve a given PDE using wavelet Galerkin method, one needs to compute the connection coefficients
first, which is an additional complication in solving PDEs, especially given the fact that many refinable functions
(except for B-splines) are defined by their refinement masks and do not have analytic forms. Comparing to
the wavelet Galerkin method, our approach (2.41) (or (2.40)) using wavelet frame transforms is much easier to
implement in practice. We can use the exact same algorithmic structure to solve a large class of (nonlinear) PDEs
(e.g. the one in the form (2.38)). We do not need to alter the fast wavelet frame transforms, while we simply

need to choose the right shrinkage operator and proper parameters λ and λ̃, which can be calculated analytically.
In other words, the easiness in implementation and flexibility in solving general nonlinear PDEs are the major
advantage of our approach over the wavelet Galerkin method.

3 Wavelet Frame Shrinkage for Nonlinear Evolution Equations

In this section, we focus on the relation between the iterative multiplicative wavelet frame shrinkage and nonlinear
diffusion equations. A nonlinear hyperbolic equation known as the shock filters [51] will also be studied, which
can be casted (formally) into the form of a nonlinear diffusion. In fact, the arguments we use to link wavelet frame
shrinkage with nonlinear diffusions can be applied to general nonlinear evolution equations (2.38). Therefore, in
the rest of this paper, we will most focus on nonlinear diffusions.

We will show that, with proper choice of the shrinkage functions, the wavelet frame shrinkage (2.24) (or
equivalently (2.31)) is a discretization of the following nonlinear diffusion equation for u = u(x, t), x ∈ R2, t ≥ 0:

ut =
L∑

ℓ=1

(−1)1+|αℓ| ∂
αℓ

∂xαℓ

{
gℓ

(( ∂βℓu

∂xβℓ

)2) ∂βℓu

∂xβℓ

}
, (3.1)

with gℓ : R 7→ R+ smooth and f being the initial function: u(x, 0) = f(x),x ∈ R2. More precisely, let
{p, q(1), · · · , q(L)} and {p̃, q̃(1), · · · , q̃(L)} be a pair of bi-frame filter banks. With u0

j = f(hj), the sequence

uk
j generated by (2.24) (or equivalently from (2.31)) approximates u(hj, kτ), where h and τ are the spatial and

temporal step sizes, provided that Sℓ in (2.24) satisfy

Sℓ(ξ) = ξ
{
1− τ

C
(ℓ)
αℓC

(ℓ)
βℓ
h|α|+|βℓ|

gℓ

( ξ2

(C
(ℓ)
βℓ

)2h2|βℓ|

)}
, ξ ∈ R, 1 ≤ ℓ ≤ L, (3.2)

16



or equivalently the shrinkage operator Sα in (2.28) satisfy

Sαℓ,n(d)(dℓ,n) = dℓ,n(1− αℓ,n(dℓ,n)) = dℓ,n

(
1− τ

C̃
(ℓ)
αℓC

(ℓ)
βℓ
h|αℓ|+|βℓ|

gℓ
( d2ℓ,n

(C
(ℓ)
βℓ

)2h2|βℓ|

))
, 1 ≤ ℓ ≤ L, (3.3)

where αℓ,βℓ in Z2
+ are the vanishing moment orders of q̃(ℓ), q(ℓ), and C̃

(ℓ)
αℓ , C

(ℓ)
βℓ

are defined by (2.12).
In this section we will also consider the following channel-mixed nonlinear diffusion

ut =

L∑
ℓ=1

(−1)1+|αℓ| ∂
αℓ

∂xαℓ

{
gℓ
( ∂β1u

∂xβ1
,
∂β2u

∂xβ2
, · · · , ∂

βLu

∂xβL

) ∂βℓu

∂xβℓ

}
, (3.4)

with gℓ : RL 7→ R+ smooth, and show how to design some tight frame and bi-frame filter banks and choose
appropriate shrinking functions/opertaor such that the iterative frame shrinkage (2.27)/(2.31) is a discretization
of (3.4).

Finally, applying similar techniques, we will show how can we design tight frame and bi-frame filter banks
and the associated shrinking functions/opertaors to discretize the Perona-Malik equation [52], Bertalmio-Sapiro-
Caselles-Ballester’s image inpainting diffusion [5] and a nonlinear hyperbolic equation known as the Osher-Rudin’s
shock filter [51].

3.1 Shrinkage for Nonlinear Diffusions

In this subsection, we discuss the correspondence between frame shrinkage and high-order nonlinear diffusion.
Let p, q(ℓ), 1 ≤ ℓ ≤ L be a tight frame filter bank. Suppose q(ℓ), 1 ≤ ℓ ≤ L have vanishing moments of orders βℓ

with C
(ℓ)
βℓ

̸= 0, where C
(ℓ)
βℓ

are the constants defined by (2.12) with q = q(ℓ) respectively. We will show that, with
properly chosen shrinkage functions, the iterative shrinkage (2.24) or equivalently (2.31) is a discretization of the
high order nonlinear diffusion equation

ut =
L∑

ℓ=1

(−1)1+|βℓ| ∂
βℓ

∂xβℓ

{
gℓ

(( ∂βℓu

∂xβℓ

)2) ∂βℓu

∂xβℓ

}
, (3.5)

for u = u(x, t), x ∈ R2, t ≥ 0 with u(x, 0) = f(x) and some smooth diffusivity function gℓ : R 7→ R+.
Recall that h and τ denote the spatial step size and the time step size. Lemma 2.1 ensures that we can use

FIR filter q(ℓ) to approximate partial derivatives ∂βℓ

∂xβℓ
u(x, t) and ∂βℓ

∂xβℓ
Gℓ(x, t), where

Gℓ(x, t) := gℓ

(( ∂βℓu

∂xβℓ

)2) ∂βℓu

∂xβℓ
.

Indeed,

∂βℓ

∂xβℓ
u(hj, τk) ≈ 1

C
(ℓ)
βℓ

1

h|βℓ|

∑
n∈Z2

q(ℓ)[n]u(hj + hn, τk), (3.6)

∂βℓ

∂xβℓ
Gℓ(hj, τk) ≈

(−1)|βℓ|

C
(ℓ)
βℓ

1

h|βℓ|

∑
m∈Z2

q(ℓ)[m]Gℓ(hj − hm, kτ) (3.7)

=
(−1)|βℓ|

C
(ℓ)
βℓ

1

h|βℓ|

∑
m∈Z2

q(ℓ)[j −m]Gℓ(hm, kτ),

where (2.11) with ε = h and ε = −h has been used in (3.6) and (3.7) respectively.
Let u0

j = f(hj), j ∈ Z2. From (3.5), (3.6) and (3.7) with k = 0, ũ1
j , j ∈ Z2 defined by

ũ1
j − ũ0

j

τ
= −

L∑
ℓ=1

1

C
(ℓ)
βℓ

h|βℓ|

∑
m

q(ℓ)[j −m]gℓ

(( 1

C
(ℓ)
βℓ

h|βℓ|

∑
n

q(ℓ)[n]ũ0
n+m

)2)( 1

C
(ℓ)
βℓ

h|βℓ|

∑
n

q(ℓ)[n]ũ0
n+m

)
,
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give approximated values of the solution u(x, t) at (hj, τ), j ∈ Z2. The above equation can be rewritten as

ũ1
j = ũ0

j − τ
L∑

ℓ=1

1

C
(ℓ)
βℓ

h|βℓ|

∑
m∈Z2

q(ℓ)[j −m]gℓ

(( 1

C
(ℓ)
βℓ

h|βℓ|
H(ℓ)

m

)2)( 1

C
(ℓ)
βℓ

h|βℓ|
H(ℓ)

m

)
, j ∈ Z2, (3.8)

where H(ℓ)
m is defined by (2.22): H(ℓ)

m =
∑

n q(ℓ)[n]ũ0
n+m =

∑
n q(ℓ)[n]f(h(n+m)).

Repeating the above process, we have ũ1
j , ũ2

j , · · · , which are approximated values of the solution u(x, t)

at (hj, 2τ), (hj, 3τ), · · · respectively. More precisely, assume we have ũk−1
j , approximated values of u(x, t) at

(hj, τ(k − 1)), j ∈ Z2. Then from (3.6), ∂βℓ

∂xβℓ
u(hj, τ(k − 1)) ≈ 1/(C

(ℓ)
βℓ

h|βℓ|)
∑

n∈Z2 q(ℓ)[n]ũk−1
n+j . This, together

with (3.7), implies that

∂βℓ

∂xβℓ
Gℓ(hj, τ(k − 1))

≈ (−1)|βℓ|

C
(ℓ)
βℓ

1

h|βℓ|

∑
m

q(ℓ)[j −m]gℓ

(( 1

C
(ℓ)
βℓ

h|βℓ|

∑
n

q(ℓ)[n]ũk−1
n+m

)2)( 1

C
(ℓ)
βℓ

h|βℓ|

∑
n

q(ℓ)[n]ũk−1
n+m

)
.

Thus, ũk
j , j ∈ Z2 defined by

ũk
j − ũk−1

j

τ
= −

L∑
ℓ=1

1

C
(ℓ)
βℓ

h|βℓ|

∑
m

q(ℓ)[j −m]gℓ

(( 1

C
(ℓ)
βℓ

h|βℓ|

∑
n

q(ℓ)[n]ũk−1
n+m

)2)( 1

C
(ℓ)
βℓ

h|βℓ|

∑
n

q(ℓ)[n]ũk−1
n+m

)
,

give approximated values of the solution u(x, t) at (hj, τk), j ∈ Z2. Hence the highpass filters q(ℓ), 1 ≤ ℓ ≤ L give
a discretization of (3.5), which can be rewritten as: for j ∈ Z2,

ũk
j = ũk−1

j − τ

L∑
ℓ=1

1

C
(ℓ)
βℓ

h|βℓ|

∑
m

q(ℓ)[j −m]gℓ

(( 1

C
(ℓ)
βℓ

h|βℓ|
H(ℓ),k−1

m

)2)( 1

C
(ℓ)
βℓ

h|βℓ|
H(ℓ),k−1

m

)
, k = 1, 2, · · · , (3.9)

where H(ℓ),k−1, 1 ≤ ℓ ≤ L are the highpass outputs of ũk−1
j defined by (2.22) with u0 replaced by ũk−1.

Let uk be the resulting sequences of the wavelet frame shrinkage (2.24) with u0
j = f(hj), j ∈ Z2. Comparing

(2.24) and (3.9), we have that uk
j = ũk

j , j ∈ Z2 for all k ≥ 2 as long as u0 = ũ0 and

Sℓ(ξ) = ξ
{
1− τ

(C
(ℓ)
βℓ

)2h2|βℓ|
gℓ

( ξ2

(C
(ℓ)
βℓ

)2h2|βℓ|

)}
, ξ ∈ R, 1 ≤ ℓ ≤ L. (3.10)

If uk is generated from (2.31), the equivalent operator form of (2.24), then condition (3.10) can be translated
equivalently to

Sαℓ,n(d)(dℓ,n) = dℓ,n(1− αℓ,n(dℓ,n)) = dℓ,n

(
1− τ

(C
(ℓ)
βℓ

)2h2|βℓ|
gℓ
( d2ℓ,n

(C
(ℓ)
βℓ

)2h2|βℓ|

))
, 1 ≤ ℓ ≤ L. (3.11)

In other words, the iterative wavelet frame shrinkage algorithm (2.24)/(2.31) generates the exact same sequence
as (3.9) provided that u0 = ũ0 and (3.10)/(3.11) is satisfied, where (3.9) is in fact a discretization of the nonlinear
diffusion (3.5). In the following theorem, we summarize this result on the relation between the wavelet frame
shrinkage algorithm (2.24)/(2.31) and the high-order nonlinear diffusion (3.5).

Theorem 3.1. Let uk be the resulting sequence from the iterative wavelet frame shrinkage (2.24)/ (2.31) with
u0
j = f(hj), j ∈ Z2 and using a tight frame filter bank {p, q(1), · · · , q(L)} with q(ℓ) having vanishing moment

βℓ. Then, uk is a discrete approximation of {u(hj, kτ) : j ∈ Z2, k = 1, 2, · · · } with u(x, t) the solution of (3.5)
provided that the shrinkage functions satisfy (2.24)/ (3.11). Furthermore, if the α given in (3.11) satisfies (2.33),
we have both the optimality properties in (2.36) hold for uk.
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Remark 3.1. In Theorem 3.1 and many other results in this paper, the statement hat “uk is a discrete approxi-
mation of {u(hj, kτ) : j ∈ Z2, k = 1, 2, · · · } with u(x, t) the solution of a given PDE” means that the discretization
by (2.31) is consistent with the given PDE. Since all the consistency proofs are very similar to each other, we
present a detailed proof of consistency for a specific PDE later in Proposition 6.1, which can be easily modified to
a proof for Theorem 3.1, as well as all other consistency results in this paper. To show that uk indeed converges to
the solution of the given PDE, we need it to be well-posed and the algorithm be stable in addition to consistency.
A complete proof of convergence of the discretization given by (2.31) to a specific PDE is given in Section 6.
Although the analysis is only applied to one particular PDE, one can easily see from the proofs in Section 6 that,
as long as the given PDE is well-posed, we can always show convergence of (2.31) with properly chosen shrinkage
functions.

With Theorem 3.1, we have the following easy corollary.

Corollary 3.1. Let uk be the resulting signal from the iterative multiplicative wavelet frame shrinkage (2.31)
with u0

j = f(hj), j ∈ Z2 and using a tight frame filter bank {p, q(1), · · · , q(L)}, with L > 2, q(ℓ) having vanishing

moment βℓ. Let L̃ be an integer with 2 ≤ L̃ < L. Then, uk is a discrete approximation of {u(hj, kτ) : j ∈
Z2, k = 1, 2, · · · } with u(x, t) the solution of

ut =
L̃∑

ℓ=1

(−1)1+|βℓ| ∂
βℓ

∂xβℓ

{
gℓ

(( ∂βℓu

∂xβℓ

)2) ∂βℓu

∂xβℓ

}
, (3.12)

provided that the shrinkage operator of (2.31) is chosen as

Sαℓ,n(d)(dℓ,n) = dℓ,n(1− αℓ,n(dℓ,n)) =


dℓ,n

{
1− τ

(C
(ℓ)
βℓ

)2h2|βℓ|
gℓ

(
(dℓ,n)2

(C
(ℓ)
βℓ

)2h2|βℓ|

)}
, for 1 ≤ ℓ ≤ L̃,

dℓ,n

{
1− C̄

(0)
ℓ τ

hsℓ
gℓ

(
C̄

(1)
ℓ (dℓ,n)2

h2|βℓ|

)}
, for L̃ < ℓ ≤ L,

(3.13)

where C̄
(0)
ℓ , C̄

(1)
ℓ ≥ 0 and sℓ < 2|βℓ|. Furthermore, if the α given in (3.13) satisfies (2.33), we have both the

optimality properties in (2.36) hold for uk.

Remark 3.2. Theorem 3.1 and Corollary 3.1 imply that we can either use the tight frame filter bank {p, q(1), · · · , q(L̃)}
or {p, q(1), q(2), . . . , q(L)} with L > L̃, to approximate the same PDE (3.12). Numerically, the discretization by
Corollary 3.1 can produce better image restoration results than the discretization by Theorem 3.1. This is in
fact consistent with our earlier findings in [8] when we discretize variational models using B-spline tight wavelet
frames.

Similarly, when a pair of bi-frame filter banks {p, q(1), · · · , q(L)} and {p̃, q̃(1), · · · , q̃(L)} are used for frame

shrinkage, the formulas used to discretize partial derivatives ∂βℓ

∂xβℓ
u(x, t) and ∂βℓ

∂xβℓ
Gℓ(x, t) in the diffusion equation

(3.1), where Gℓ(x, t) = gℓ

((
∂βℓu
∂xβℓ

)2) ∂βℓu
∂xβℓ

, are

∂βℓ

∂xβℓ
u(hj, τk) ≈ 1

C
(ℓ)
βℓ

1

h|βℓ|

∑
n∈Z2

q(ℓ)[n]u(hj + hn, τk),

∂βℓ

∂xβℓ
Gℓ(hj, τk) ≈

(−1)|βℓ|

C̃
(ℓ)
αℓ

1

h|βℓ|

∑
m∈Z2

q̃(ℓ)[j −m]Gℓ(hm, τk),

where C
(ℓ)
βℓ

and C̃
(ℓ)
αℓ are the constants defined by (2.12) with q = q(ℓ) and q = q̃(ℓ), respectively. Then ũk

j with

ũ0
j = f(hj), j ∈ Z2 defined by

ũk
j = ũk−1

j − τ
L∑

ℓ=1

1

C̃
(ℓ)
αℓ h

|βℓ|

∑
m∈Z2

q̃(ℓ)[j −m]gℓ

(( 1

C
(ℓ)
βℓ

h|βℓ|
H(ℓ),k−1

m

)2)( 1

C
(ℓ)
βℓ

h|βℓ|
H(ℓ),k−1

m

)
, (3.14)
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for k = 1, 2, · · · , provides a discretization of the diffusion equation (3.1), where H(ℓ),k−1, 1 ≤ ℓ ≤ L are the
highpass outputs of ũk−1 defined by (2.22) with u0 replaced by ũk−1. Let uk be the resulting sequences from
wavelet frame shrinkage (2.24) with u0

j = f(hj), j ∈ Z2. Comparing (2.24) with (3.14), we have uk = ũk for
k ≥ 1 if (3.2) holds. Therefore, in this case, the wavelet frame shrinkage algorithm (2.24) (or its equivalent form
(2.31)) approximates the nonlinear diffusion (3.14).

Theorem 3.2. Let uk be the resulting sequences from wavelet frame shrinkage (2.24)/ (2.31) with u0
j = f(hj), j ∈

Z2 and using a bi-frame filter bank {p, q(1), · · · , q(L)} and {p̃, q̃(1), · · · , q̃(L)} with q(ℓ) (resp. q̃(ℓ)) having van-
ishing moment βℓ (resp. αℓ). Then, uk is a discrete approximation of {u(hj, kτ) : j ∈ Z2, k = 1, 2, · · · } with
u(x, t) the solution of (3.1) provided that (3.2)/ (3.3) is satisfied. Furthermore, if the α given in (3.3) satisfies
(2.33), we have the first optimality property in (2.36) hold for uk.

Similarly, one can easily derive the correspondence between the wavelet frame shrinkage and diffusion of (3.4).
In this case, the discretization scheme for (3.4) with a bi-frame filter bank {p, q(1), · · · , q(L)} and {p̃, q̃(1), · · · , q̃(L)}
is for k = 1, 2, · · · ,

ũk
j = ũk−1

j − τ
L∑

ℓ=1

1

C̃
(ℓ)
αℓ h

|βℓ|

∑
m∈Z2

q̃(ℓ)[j −m]gℓ

( H(1),k−1
m

C
(1)
β1

h|β1|
, · · · , H(L),k−1

m

C
(L)
βL

h|βL|

)( H(ℓ),k−1
m

C
(ℓ)
βℓ

h|βℓ|

)
, (3.15)

where ũ0
j = f(hj), j ∈ Z2, and H(ℓ),k−1, 1 ≤ ℓ ≤ L are the highpass outputs of ũk−1 with q(ℓ).

Theorem 3.3. Let uk be the resulting sequence from the wavelet frame shrinkage (2.27)/ (2.31) with u0
j =

f(hj), j ∈ Z2 and using a bi-frame filter bank {p, q(1), · · · , q(L)} and {p̃, q̃(1), · · · , q̃(L)} with q(ℓ) (resp. q̃(ℓ))
having vanishing moment βℓ (resp. αℓ). Then, u

k is a discrete approximation of {u(hj, kτ) : j ∈ Z2, k = 1, 2, · · · }
with u(x, t) the solution of (3.4) provided that the shrinkage functions Sℓ of (2.27) satisfy

Sℓ(ξ1, · · · , ξL) = ξℓ −
τξℓ

C̃
(ℓ)
αℓC

(ℓ)
βℓ
h|αℓ|+|βℓ|

gℓ

( ξ1

C
(1)
β1
h|β1|

, · · · , ξL

C
(L)
βL
h|βL|

)
, ξ1, · · · , ξL ∈ R, 1 ≤ ℓ ≤ L, (3.16)

or equivalently the shrinkage operator of (2.31) is chosen as

Sαℓ,n(d)(d1,n, · · · , dL,n) = dℓ,n
(
1− αℓ,n(d1,n, . . . , dL,n)

)
= dℓ,n

(
1− τ

C̃
(ℓ)
αℓC

(ℓ)
βℓ
h|αℓ|+|βℓ|

gℓ

( d1,n

C
(1)
β1
h|β1|

, · · · , dL,n

C
(L)
βL
h|βL|

))
,

(3.17)

for 1 ≤ ℓ ≤ L. Furthermore, if the α given in (3.17) satisfies (2.33), we have the first optimality property in
(2.36) hold for uk.

With Theorem 3.3, we have the following easy corollary.

Corollary 3.2. Let uk be the resulting signal from the iterative multiplicative wavelet frame shrinkage (2.31) with

u0
j = f(hj), j ∈ Z2 and using a bi-frame filter bank {p, q(1), · · · , q(L)} and {p̃, q̃(1), · · · , q̃(L)} with L > L̃ ≥ 2,

q(ℓ) (resp. q̃(ℓ)) having vanishing moment βℓ (resp. αℓ). Then, uk is a discrete approximation of {u(hj, kτ) :
j ∈ Z2, k = 1, 2, · · · } with u(x, t) the solution of

ut =

L̃∑
ℓ=1

(−1)1+|αℓ| ∂
αℓ

∂xαℓ

{
gℓ
( ∂β1u

∂xβ1
,
∂β2u

∂xβ2

) ∂βℓu

∂xβℓ

}
, (3.18)

provided that the shrinkage operator of (2.31) is chosen as

Sαℓ,n(d)(dℓ,n) = dℓ,n
(
1− αℓ,n(d1,n, . . . , dL,n)

)
=


dℓ,n

(
1− τ

C̃
(ℓ)
αℓ

C
(ℓ)
βℓ

h|αℓ|+|βℓ|
gℓ

(
d1,n

C
(1)
β1

h|β1| ,
d2,n

C
(2)
β2

h|β2|

))
, for 1 ≤ ℓ ≤ L̃,

dℓ,n

(
1− C̄

(0)
ℓ τ

hsℓ
gℓ

(
C̄

(1)
ℓ d1,n

h|β1| ,
C̄

(2)
ℓ d2,n

h|β2| , . . . ,
C̄

(L)
ℓ dL,n

h|βL|

))
, for L̃ < ℓ ≤ L,

(3.19)
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where C̄
(j)
ℓ ≥ 0, j = 0, 1, . . . , L, and sℓ < |αℓ| + |βℓ|. Furthermore, if the α given in (3.19) satisfies (2.33), we

have the first optimality property in (2.36) hold for uk.

Remark 3.3. Theorem 3.3 and Corollary 3.2 imply that we can either use a bi-frame filter bank {p, q(1), · · · , q(L̃)}
and {p̃, q̃(1), · · · , q̃(L̃)} or {p, q(1), . . . , q(L)} and {p̃, q̃(1), . . . , q̃(L)} with L > L̃, to approximate the same PDE
(3.18). Numerically, the discretization by Corollary 3.2 can produce better image restoration results than the
discretization by Theorem 3.3.

3.2 PDE Models for Image Restoration

In this subsection we show how the iterative wavelet frame shrinkage can be used to discretize some PDE models
commonly used in image restoration. We will consider the Perona-Malik equation [52] and a modified TV equation,
Bertalmio-Sapiro-Caselles-Ballester’s image inpainting diffusion [5] and Osher-Rudin’s shock filter [51].

1. Perona-Malik’s and TV models
The most commonly used diffusion equation is

ut = div
(
g(|▽u|2)▽u

)
, (3.20)

namely,

ut =
∂

∂x1

{
g
(( ∂u
∂x1

)2
+

( ∂u
∂x2

)2) ∂u

∂x1

}
+

∂

∂x2

{
g
(( ∂u
∂x1

)2
+
( ∂u
∂x2

)2) ∂u

∂x2

}
,

where g is the diffusivity function. If g(x2) = c
1+(x/λ)2 , where c > 0, λ > 0 are constants, (3.20) is Perona-Malik’s

model; while it is the (modified) TV model if g(x2) = c√
ε2+x2

, where c > 0, ε > 0 are constants.

Let {p, q(1), q(2)} and {p̃, q̃(1), q̃(2)} be a pair of bi-frame filter banks defined by (2.19). Then q(1), q̃(1) have

vanishing moment of order (1, 0) and q(2), q̃(2) have vanishing moment of order (0, 1) with C
(1)
(1,0) = C̃

(1)
(1,0) =

C
(2)
(0,1) = C̃

(2)
(0,1) = − 1

2 . Thus, by Theorem 3.3 with g1(ξ1, ξ2) = g2(ξ1, ξ2) = g(ξ21 + ξ22), if

S1(ξ1, ξ2) = ξ1 −
4τξ1
h2

g(
4(ξ21 + ξ22)

h2
), S2(ξ1, ξ2) = ξ2 −

4τξ2
h2

g(
4(ξ21 + ξ22)

h2
), (3.21)

or equivalently

Sαℓ,n(d)(d1,n, d2,n) = dℓ,n

(
1− 4τ

h2
g

(
4(d1,n)

2 + 4(d2,n)
2

h2

))
, ℓ = 1, 2, (3.22)

then the iterative channel-mixed frame shrinkage (2.27)/(2.31) results in a discretization of Perona-Malik equation.

2. Image inpainting diffusion
The (slightly modified) diffusion equation for image inpainting is

ut = ▽(△u) · ▽u⊥ + ε△u, (x, t) ∈ D × (0, T )

with initial condition u(x, 0) = fext,x ∈ Ω, an extension of f from D to Ω\D, where ε > 0 and ▽u⊥ =

[
− ∂

∂y
∂
∂x

]
.

We consider the more general equation

ut = ▽
(
g(△u)

)
· ▽u⊥ + ε△u, (3.23)

where g is a smooth function on R. Equation (3.23) can be written as

ut =
∂

∂y

(
g(△u)∂u

∂x

)
+

∂

∂x

(
− g(△u)∂u

∂y

)
+ ε△u. (3.24)
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Thus equation (3.23), or equivalently (3.24), can be expressed in the form of (3.4) with L = 4,

β1 = (1, 0), β2 = (0, 1), β3 = (2, 0), β4 = (0, 2),

α1 = (0, 1), α2 = (1, 0), α3 = (0, 0), α4 = (0, 0),

and

g1(ξ1, ξ2, ξ3, ξ4) = g(ξ3 + ξ4), g2(ξ1, ξ2, ξ3, ξ4) = −g(ξ3 + ξ4),

g3(ξ1, ξ2, ξ3, ξ4) = g4(ξ1, ξ2, ξ3, ξ4) = −ε.

Therefore, in order for the wavelet frame shrinkage to be in corresponce to the diffusion equation (3.24), the anal-
ysis highpass filters q(1), · · · , q(4) need to have vanishing moments of orders (1, 0), (0, 1), (2, 0), (0, 2) respectively.
The synthesis highpass filters q̃(1) and q̃(2) should have vanishing moments of orders (0, 1) and (1, 0) respectively,
and filters q̃(3) and q̃(4) are just the delta filter which have vanishing moment of (0, 0) order.

The bi-frame filters needed to discretize the equation (3.24) are given by (2.20). Indeed, the highpass filters
q(1), q(2), q(3), q(4) and q̃(1), q̃(2), q̃(3), q̃(4) have vanishing moments of orders (1, 0), (0, 1), (2, 0), (0, 2) and (0, 1),
(1, 0), (0, 0), (0, 0) respectively. One can easily obtain

C
(1)
(1,0) = −1

2
, C

(2)
(0,1) =

1

2
, C

(3)
(2,0) = C

(4)
(0,2) = −1

4
, C̃

(1)
(0,1) = C̃

(2)
(1,0) = −1

2
, C̃

(3)
(0,0) = C̃

(4)
(0,0) = 1.

Thus by Theorem 3.3, if the shrinkage functions Sℓ of (2.27) and the diffusion function g satisfy

Sℓ(ξ1, ξ2, ξ3, ξ4) = ξℓ −
4τξℓ
h2

g
(
− 4ξ3 + 4ξ4

h2
)
, for ℓ = 1, 2,

Sℓ(ξ1, ξ2, ξ3, ξ4) = ξℓ
(
1− 4τε

h2
)
, for ℓ = 3, 4;

or equivalently if the shrinkage operator Sα of (2.31) satisfies

Sαℓ,n(d)(dℓ,n) =

{
dℓ,n

(
1− 4τ

h2 g
(
− 4d3,n+4d4,n

h2

))
, for ℓ = 1, 2,

dℓ,n
(
1− 4τε

h2

)
, for ℓ = 3, 4,

then, with the filters given by (2.20), the wavelet frame shrinkage (2.27)/(2.31) is a discretization of the diffusion
(3.23).

3. Osher-Rudin’s shock filter
Osher-Rudin’s shock filter (nonlinear hyperbolic equation) is governed by

ut + |▽u|F (L(u)) = 0, (x, t) ∈ Ω× (0, T ), (3.25)

with initial condition u(x, 0) = f(x), x ∈ Ω, where F is a Lipschitz continuous function satisfies{
F (0) = 0,
sign(x)F (x) > 0, for x ̸= 0.

The simplest example for F is F (x) = x. A desirable choice for L(u) is

L(u) =
u2xuxx + 2uxuyuxy + u2yuyy

|▽u|2 , (3.26)

which is the second derivative of u in the direction of n = ▽u
|▽u| . Here we consider the case F (x) = x and show

that the wavelet frame shrinkage is connected with the shock filtering of (3.25) with L(u) given by (3.26). In this
case (3.25) is

ut = −
u2xuxx + 2uxuyuxy + u2yuyy

|▽u| ,
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which can be written as

ut =
∂

∂x

(
g(|▽u|2)∂u

∂x

)
+

∂

∂y

(
g(|▽u|2)∂u

∂y

)
− g(|▽u|2)∂

2u

∂x2
− g(|▽u|2)∂

2u

∂y2
, (3.27)

where g(x) = −
√
x, x ≥ 0. Thus equation (3.27) is an equation in the form of (3.4) with L = 4,

β1 = (1, 0), β2 = (0, 1), β3 = (2, 0), β4 = (0, 2),

α1 = (1, 0), α2 = (0, 1), α3 = (0, 0), α4 = (0, 0),

and g1 = g2 = g3 = g4 = g(ξ21+ξ
2
2). Therefore, in order that the frame shrinkage corresponds to the diffusion with

equation (3.24), the analysis highpass filters q(1), · · · , q(4) have vanishing moments of orders (1, 0), (0, 1), (2, 0),
(0, 2) respectively, while the synthesis highpass filters q̃(1) and q̃(2) should have vanishing moments of orders (0, 1)
and (1, 0) respectively, and q̃(3) and q̃(4) are just the delta filter which have vanishing moment of (0, 0) order.

The filter bank that satisfies the above requirements is given by (2.21). Indeed, the highpass filters q(1), q(2), q(3), q(4)

and q̃(1), q̃(2), q̃(3), q̃(4) have vanishing moments of orders (1, 0), (0, 1), (2, 0), (0, 2) and (1, 0), (0, 1), (0, 0), (0, 0),
respectively. We have

C
(1)
(1,0) = C

(2)
(0,1) = −1, C

(3)
(2,0) = C

(4)
(0,2) = −1

4
, C̃

(1)
(0,1) = C̃

(2)
(1,0) = −1

4
, C̃

(3)
(0,0) = C̃

(4)
(0,0) = 1.

Thus, by Theorem 3.3, if the shrinkage functions Sℓ of (2.27) and the diffusion function g satisfy

Sℓ(ξ1, ξ2, ξ3, ξ4) = ξℓ −
4τξℓ
h2

g
(ξ21 + ξ22

h2
)
, for ℓ = 1, 2,

Sℓ(ξ1, ξ2, ξ3, ξ4) = ξℓ +
4τξℓ
h2

g
(ξ21 + ξ22

h2
)
, for ℓ = 3, 4;

or equivalently if the shrinkage operator Sα of (2.31) satisfies

Sαℓ,n(d)(dℓ,n) =

dℓ,n
(
1− 4τ

h2 g
(

(d1,n)2+(d2,n)2

h2

))
, for ℓ = 1, 2,

dℓ,n

(
1 + 4τ

h2 g
(

(d1,n)2+(d2,n)2

h2

))
, for ℓ = 3, 4,

then, with the filters given by (2.21), the sequence from the wavelet frame shrinkage (2.27)/(2.31) is a discretization
of (3.27).

4 PDEs Derived from Wavelet Frame Shrinkage

In the previous section, we showed, in generic settings, how to construct wavelet frame system and choose
appropriate shrinkage functions so that the wavelet frame shrinkage is a discrete approximation of a given PDE.
In this section we present several specific (new) high-order diffusion equations that are derived from wavelet
frame shrinkage (2.31) using some specific B-spline tight wavelet frame systems. Note that our techniques can be
generalized easily to many other wavelet frame systems and other (possibly new) nonlinear evolution PDEs can
be derived similarly.

4.1 Diffusions from B-spline Filter Banks

Let {p, q(1), · · · , q(8)} be the separable spline tight frame filter bank given in (2.15). The corresponding nonlinear
diffusion equation is

ut =
∂

∂x1

{
g1

(( ∂u
∂x1

)2) ∂u

∂x1

}
+

∂

∂x2

{
g2

(( ∂u
∂x2

)2) ∂u

∂x2

}
− ∂2

∂x21

{
g3

((∂2u
∂x21

)2)∂2u
∂x21

}
(4.1)

− ∂2

∂x1∂x2

{
g4

(( ∂2u

∂x1∂x2

)2) ∂2u

∂x1∂x2

}
− ∂2

∂x22

{
g5

((∂2u
∂x22

)2)∂2u
∂x22

}
+

∂3

∂x21∂x2

{
g6

(( ∂3u

∂x21∂x2

)2) ∂3u

∂x21∂x2

}
+

∂3

∂x1∂x22

{
g7

(( ∂3u

∂x1∂x22

)2) ∂3u

∂x1∂x22

}
− ∂4

∂x21∂x
2
2

{
g8

(( ∂4u

∂x21∂x
2
2

)2) ∂4u

∂x21∂x
2
2

}
,
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with the initial condition u(x, 0) = f(x),x ∈ R2. More precisely, with

C
(1)
β1

= C
(2)
β2

= −
√
2

2
, C

(3)
β3

= −1

4
, C

(4)
β4

=
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2
, C

(5)
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= −1

4
, C

(6)
β6

= C
(7)
β7

=

√
2

8
, C

(8)
β8

=
1

16
,

we know, by Theorem 3.1, that the resulting signals from the wavelet frame shrinkage (2.24)/(2.31), with the
filters (2.15), approximates the solution of diffusion equation (4.1) in discrete setting provided that the shrinking
functions Sℓ and the diffusivity gℓ have the relationship:

Sℓ(ξ) = ξ
{
1− 2τ

h2
gℓ
(2ξ2
h2

)}
for ℓ = 1, 2, Sℓ(ξ) = ξ

{
1− 16τ

h4
gℓ
(16ξ2
h4

)}
for ℓ = 3, 5,

Sℓ(ξ) = ξ
{
1− 32τ

h4
gℓ
(32ξ2
h4

)}
for ℓ = 6, 7,

S4(ξ) = ξ
{
1− 4τ

h4
gℓ
(4ξ2
h4

)}
, S8(ξ) = ξ

{
1− 256τ

h8
g8
(256ξ2
h8

)}
,

or equivalently the shrinkage operator satisfies:

Sαℓ,n(d)(dℓ,n) = dℓ,n

{
1− 2τ

h2
gℓ

(
2(dℓ,n)

2

h2

)}
, for ℓ = 1, 2,

Sαℓ,n(d)(dℓ,n) = dℓ,n

{
1− 16τ

h4
gℓ

(
16(dℓ,n)

2

h4

)}
, for ℓ = 3, 5,

Sαℓ,n(d)(dℓ,n) = dℓ,n

{
1− 32τ

h6
gℓ

(
32(dℓ,n)

2

h6

)}
, for ℓ = 6, 7,

Sα4,n(d)(d4,n) = d4,n

{
1− 4τ

h4
gℓ

(
4(dℓ,n)

2

h4

)}
, Sα8,n(d)(d8,n) = d8,n

{
1− 256τ

h8
g8

(
256(d8,n)

2

h8

)}
.

Next we construct wavelet frame filter banks with fewer highpass filters, while the lowpass filter is still the
same: p(ω) = a(ω1)a(ω2). Denote

ξ =
(
cos

ω1

2

)2
, η =

(
cos

ω2

2

)2
. (4.2)

Observe that

ξ =
∣∣∣1 + e−iω1

2

∣∣∣2, 1− ξ =
(
sin

ω1

2

)2
=

∣∣∣1− e−iω1

2

∣∣∣2,
η =

∣∣∣1 + e−iω2

2

∣∣∣2, 1− η =
(
sin

ω2

2

)2
=

∣∣∣1− e−iω2

2

∣∣∣2,
and that

4ξ(1− ξ) = (sinω1)
2 =

∣∣∣eiω1 − e−iω1

2

∣∣∣2, (1− 2ξ)2 = (cosω1)
2 =

∣∣∣eiω1 + e−iω1

2

∣∣∣2,
4η(1− η) = (sinω2)

2 =
∣∣∣eiω2 − e−iω2

2

∣∣∣2, (1− 2η)2 = (cosω2)
2 =

∣∣∣eiω2 + e−iω2

2

∣∣∣2.
From |p(ω)|2 = ξ2η2, and

1 =
(
η + (1− η)

)2

= η2 + 2η(1− η) + (1− η)2

=
(
ξ + (1− ξ)

)2

η2 + 2
(
(1− 2ξ)2 + 4ξ(1− ξ)

)
η(1− η) + (1− η)2

= ξ2η2 + 2ξ(1− ξ)η2 + (1− ξ)2η2 + 2(1− 2ξ)2η(1− η) + 8ξ(1− ξ)η(1− η) + (1− η)2,
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we know that q(ℓ), 1 ≤ ℓ ≤ 5 given by

|q̂(1)(ω)|2 = 2ξ(1− ξ)η2 =
1

2

(
sinω1)

2
(
cos

ω2

2

)4
, |q̂(2)(ω)|2 = 2(1− 2ξ)2η(1− η) =

1

2

(
cosω1)

2
(
sinω2

)2
,

|q̂(3)(ω)|2 = (1− ξ)2η2 =
(
sin

ω1

2

)4(
cos

ω2

2

)4
, |q̂(4)(ω)|2 = 8ξ(1− ξ)η(1− η) =

1

2

(
sinω1

)2(
sinω2

)2
,

|q̂(5)(ω)|2 = (1− η)2 =
(
sin

ω2

2

)4
,

which are the filters given by (2.16), together with the lowpass filter p, form a tight frame filter bank. The
highpass filters q(1), · · · , q(5) have the vanishing moments of orders

β1 = (1, 0), β2 = (0, 1), β3 = (2, 0), β4 = (1, 1), β5 = (0, 2),

respectively, and one can obtain the constants C
(ℓ)
βℓ

in (2.12) with q = q(ℓ):

C
(1)
(1,0) = C

(2)
(0,1) = −

√
2

2
, C

(3)
(2,0) = C

(5)
(0,2) =

1

4
, C

(4)
(1,1) =

√
2

2
. (4.3)

The nonlinear diffusion equation corresponding to this Ron-Shen type tight frame filter bank is

ut =
∂

∂x1

{
g1

(( ∂u
∂x1

)2) ∂u

∂x1

}
+

∂

∂x2

{
g2

(( ∂u
∂x2

)2) ∂u

∂x2

}
− ∂2

∂x21

{
g3

((∂2u
∂x21

)2)∂2u
∂x21

}
(4.4)

− ∂2

∂x1∂x2

{
g4

(( ∂2u

∂x1∂x2

)2) ∂2u

∂x1∂x2

}
− ∂2

∂x22

{
g5

((∂2u
∂x22

)2)∂2u
∂x22

}
,

with u(x, 0) = f(x), x ∈ R2. From Theorem 3.1, we have the conclusion in the following theorem.

Theorem 4.1. Let uk be the resulting signal from the wavelet frame shrinkage (2.24)/ (2.31) with u0
j = f(hj), j ∈

Z2 and using the spline tight frame filter bank {p, q(1), · · · , q(5)} given in (2.16). Then, uk is a discrete approxi-
mation of {u(hj, kτ) : j ∈ Z2, k = 1, 2, · · · } with u(x, t) the solution of (4.4), provided that the shrinkage functions
Sℓ of (2.24) are chosen as

Sℓ(ξ) = ξ
{
1− 2τ

h2
gℓ
(2ξ2
h2

)}
for ℓ = 1, 2, Sℓ(ξ) = ξ

{
1− 16τ

h4
gℓ
(16ξ2
h4

)}
for ℓ = 3, 5,

S4(ξ) = ξ
{
1− 2τ

h4
gℓ
(2ξ2
h4

)}
, ξ ∈ R;

or equivalently the shrinkage operator Sα of (2.31) is chosen as

Sαℓ,n(d)(dℓ,n) = dℓ,n
(
1− αℓ,n(dℓ,n)

)
=


dℓ,n

{
1− 2τ

h2 gℓ

(
2(dℓ,n)2

h2

)}
, for ℓ = 1, 2,

dℓ,n

{
1− 16τ

h4 gℓ

(
16(dℓ,n)2

h4

)}
, for ℓ = 3, 5,

dℓ,n

{
1− 2τ

h4 gℓ

(
2(dℓ,n)2

h4

)}
, for ℓ = 4.

Furthermore, if the α given above satisfies (2.33), both the optimality properties in (2.36) hold for uk.

4.2 Rotation-Invariant Diffusions

For some applications, the rotation invariant diffusion is preferred. In this subsection we will show that the iter-
ative wavelet frame shrinkage (2.27)/(2.31) corresponds to rotation invariant diffusion if we choose the threshold
α for Sα properly. In particular, the rotation invariant diffusion equation corresponding to the spline tight frame
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filter banks (2.16) is

ut =
∂

∂x1

{
g1

(( ∂u
∂x1

)2
+
( ∂u
∂x2

)2) ∂u

∂x1

}
+

∂

∂x2

{
g1

(( ∂u
∂x1

)2
+

( ∂u
∂x2

)2) ∂u

∂x2

}
(4.5)

− ∂2

∂x21

{
g2

((∂2u
∂x21

)2
+
( ∂2u

∂x1∂x2

)2
+
(∂2u
∂x22

)2)∂2u
∂x21

}
− ∂2

∂x22

{
g2

((∂2u
∂x21

)2
+
( ∂2u

∂x1∂x2

)2
+
(∂2u
∂x22

)2)∂2u
∂x22

}
− ∂2

∂x1∂x2

{
g2

((∂2u
∂x21

)2
+
( ∂2u

∂x1∂x2

)2
+
(∂2u
∂x22

)2) ∂2u

∂x1∂x2

}
,

with the initial condition u(x, 0) = f(x),x ∈ R2, where g1 and g2 are functions on R.

Theorem 4.2. Let uk be the resulting signal from the wavelet frame shrinkage (2.27)/ (2.31) with u0
j = f(hj), j ∈

Z2 and using the spline type tight frame filter bank {p, q(1), · · · , q(5)} given in (2.16). Then, uk is a discrete
approximation of {u(hj, kτ) : j ∈ Z2, k = 1, 2, · · · } with u(x, t) the solution of (4.5), provided that the shrinkage
functions Sℓ of (2.27) satisfy

Sℓ(ξ1, ξ2, ξ3, ξ4, ξ5) = ξℓ

{
1− 2τ

h2
g1

( 2

h2
(ξ21 + ξ22)

)}
, for ℓ = 1, 2,

Sℓ(ξ1, ξ2, ξ3, ξ4, ξ5) = ξℓ

{
1− 16τ

h4
g2

( 2

h4
(8ξ23 + ξ24 + 8ξ25)

)}
, for ℓ = 3, 5, (4.6)

S4(ξ1, ξ2, ξ3, ξ4, ξ5) = ξ4

{
1− 2τ

h4
g2

( 2

h4
(8ξ23 + ξ24 + 8ξ25)

)}
,

or equivalently the shrinkage operator Sα of (2.31) is chosen as

Sαℓ,n(d)(dℓ,n) = dℓ,n
(
1− αℓ,n(dℓ,n)

)
=


dℓ,n

{
1− 2τ

h2 gℓ

(
2(d1,n)2+2(d2,n)2

h2

)}
, for ℓ = 1, 2,

dℓ,n

{
1− 16τ

h4 gℓ

(
16(d3,n)2+2(d4,n)2+16(d5,n)2

h4

)}
, for ℓ = 3, 5,

dℓ,n

{
1− 2τ

h4 gℓ

(
16(d3,n)2+2(d4,n)2+16(d5,n)2

h4

)}
, for ℓ = 4.

(4.7)

Furthermore, if the α given in (4.7) satisfies (2.33), both the optimality properties in (2.36) hold for uk.

Next we construct tight filters which result in higher order rotation invariant diffusion. The scaling functions
for the tight filter banks are the tensor products of the B-spline of an arbitrary order m with the two-scale symbol

given by (2.17). Recall from (4.2) that ξ and η denote
(
cos ω1

2

)2
and

(
cos ω2

2

)2
, respectively. Thus from the fact∣∣p̂(ω)

∣∣2 = ξmηm and the identity

1 =
(
η + (1− η)

)m

=
m∑
r=0

(
m

r

)
ηm−r(1− η)r

=
m∑
r=0

(
m

r

)(
ξ + (1− ξ)

)m−r

ηm−r(1− η)r

=
m∑
r=0

(
m

r

)m−r∑
j=0

(
m− r

j

)
ξm−r−j(1− ξ)rηm−r(1− η)r

=

m∑
r=0

(
m

r

) m∑
s=r

(
m− r

s− r

)
ξm−sηm−r(1− ξ)s−r(1− η)r (by s = r + j)

=
m∑
s=0

s∑
r=0

(
m

s

)(
s

r

)
ξm−sηm−r(1− ξ)s−r(1− η)r

= ξmηm +
m∑
s=1

s∑
r=0

(
m

s

)(
s

r

)
ξm−sηm−r(1− ξ)s−r(1− η)r,
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we may choose tight frame highpass filters q̂(s,r)(ω), 1 ≤ s ≤ m, 0 ≤ r ≤ s by∣∣q̂(s,r)(ω)
∣∣2 =

(
m

s

)(
s

r

)(
cos

ω1

2

)2(m−s)(
cos

ω2

2

)2(m−r)(
sin

ω1

2

)2(s−r)(
sin

ω2

2

)2r
,

or by (2.18). Highpass filter q(s,r) has vanishing moment of order (s − r, s). Let Cs,r denote the constants in
(2.12) with q = q(s,r). Then it is not difficult to obtain

Cs,r =
(−1)s

22m−r

√(
m

s

)/(
s

r

)
. (4.8)

We consider the iterative channel-mixed shrinkage defined by

uk
j =

∑
n∈Z2

p[j − n]Lk−1
n +

m∑
s=1

s∑
r=0

∑
n∈Z2

q(s,r)[j − n]Ss,r(H
(s,0),k−1
n ,H(s,2),k−1

n , · · · ,H(s,s),k−1
n ), (4.9)

where u0
j = f(hj), j ∈ Z2, Lk−1 and H(s,r),k−1 are the lowpass and highpass outputs of uk−1 with lowpass filter

p and highpass filters q(s,r), and for an s with 1 ≤ s ≤ m, each of Ss,r, 0 ≤ r ≤ s is a function of s+ 1 variables.
Note that (4.9) can be casted into the form of the generic iterative wavelet frame shrinkage (2.31). However, for
notational convenience, we shall use the current form.

We can show as in the previous section that the tight frame filter bank given by (2.17) and (2.18) corresponds
to the following general high order rotation invariant nonlinear diffusion,

ut =
m∑
s=1

(−1)1+s
∑
|α|=s

∂α

∂xα

{
gs

( ∑
|β|=s

( ∂βu
∂xβ

)2) ∂αu
∂xα

}
, (4.10)

where m ≥ 1, and gs : R 7→ R+ is smooth.

Theorem 4.3. Let uk be the resulting signal from the iterative wavelet frame shrinkage (4.9) with u0
j = f(hj), j ∈

Z2 and using the tight frame filter bank {p, q(s,r), 1 ≤ s ≤ m, 0 ≤ r ≤ s} given by (2.17) and (2.18). Then, uk is
a discrete approximation of {u(hj, τk) : j ∈ Z2, k = 1, 2, · · · } with u(x, t) the solution of (4.10), provided that

Ss,r(ξ0, ξ1, · · · , ξs) = ξr

{
1− τ(

Cs,k

)2
h2s

gs

( 1

h2s

s∑
j=0

1

(Cs,j)2
ξ2j

)}
, r = 0, 1, · · · , s, (4.11)

for 1 ≤ s ≤ m.

5 Further Development

Up to this point, we have already known that given a certain nonlinear evolution equation, we can choose a wavelet
frame system and the threshold α in Sα properly such that (2.31) is an iterative finite difference scheme solving
the given equation. On the other hand, new nonlinear diffusion equations can be derived using the iterative
shrinkage (2.31) with certain wavelet frame filter banks and proper choices of the threshold α for Sα. In this
section, we focus on the discussion of the iterative shrinkage (2.32) and also on other type of iterative shrinkage
that is originated from (2.31) and (2.32). The main goal of this section is to:

1. show that the iterative wavelet frame soft-thresholding algorithms commonly used in image restoration can
lead to new nonlinear diffusion equations;

2. show that by borrowing ideas from some of the algorithms used in image restoration, we can design new
iterative multiplicative wavelet shrinkage algorithms which can also be understood as a discretization of a
certain nonlinear diffusion equation;

3. discuss how we can borrow the idea of anisotropy of the PM nonlinear diffusion to design a new iterative
wavelet frame soft-thresholding algorithm which is adaptive to local image features.
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5.1 Nonlinear Diffusions from Soft-Thresholding

Throughout this subsection, we assume that W is the transform of a tight frame system, i.e. W⊤W = I. We
will find the corresponding diffusion equations to the iterative soft-thresholding algorithms in (2.32) with various
choices of thresholds.

We start with the soft-thresholding operator with ℘ = 1 given by (2.29). We will show that the diffusion
equation corresponding to the iterative shrinkage algorithm (2.32) takes the form of (3.5) with some specific
diffusivity functions gℓ. The connection between the diffusivity functions gℓ and the shrinkage operator is given
by (3.10). In fact, the specific expression for gℓ can be solved from (3.10) by equating Sα = T 1

α and choosing an
appropriate α. Indeed, for T 1

θℓ
(ξ) = ξ

|ξ| max{|ξ| − θℓ, 0}, we have

τ

(C
(ℓ)
βℓ

)2h2|βℓ|
gℓ

( ξ2

(C
(ℓ)
βℓ

)2h2|βℓ|

)
= 1− max{|ξ| − θℓ, 0}

|ξ|
= min

{
1,
θℓ
|ξ|

}
.

Thus the diffusivity function gℓ in (3.5) satisfies

gℓ(ξ
2) = min

{ (C
(ℓ)
βℓ

)2h2|βℓ|

τ
,
C

(ℓ)
βℓ
h|βℓ|θℓ

τ |ξ|

}
.

Now, we discuss how should we choose the threshold θℓ properly such that when h, τ → 0, gℓ(ξ) is a function
independent of h and τ . Note that it is reasonable to assume that there exists C > 0 such that h2m/τ = C (see
Proposition 6.2 in Section 6), where m is the largest number among |β1|, · · · , |βL|. If we choose

θℓ =
τ |ξ|

C
(ℓ)
βℓ
h|βℓ|

g̃ℓ(ξ
2), with some smooth function g̃ℓ : R 7→ R+,

then, we have the following formula for the diffusivity functions gℓ,

gℓ(ξ
2) = min

{ (C
(ℓ)
βℓ

)2C

h2(m−|βℓ|)
, g̃ℓ(ξ)

}
=

{
min

{
(C

(ℓ)
βℓ

)2C, g̃ℓ(ξ
2)
}
, for |βℓ| = m,

g̃ℓ(ξ
2), for 1 ≤ |βℓ| < m,

(5.1)

whenever h is small enough. Then, we have the following result.

Theorem 5.1. Let {p, q(1), . . . , q(L)} be a given tight frame filter bank and let q(ℓ) have vanishing moment βℓ

with the associated constant C
(ℓ)
βℓ

given by (2.12) and m = maxℓ{|βℓ| : 1 ≤ ℓ ≤ L}. Assume that the threshold
α(d) for wavelet frame coefficients d takes the form

α(d) =
{
αℓ,n(dℓ,n) =

τ |dℓ,n|
C

(ℓ)
βℓ
h|βℓ|

g̃ℓ((dℓ,n)
2) : 1 ≤ ℓ ≤ L,n ∈ Z2

}
,

with g̃ℓ : R 7→ R+ being some smooth function; and we set h2m/τ = C for some constant C > 0 with h and τ
sufficiently small. Let uk be generated from the iterative soft-thresholding algorithm (2.32) with ℘ = 1. Then, uk

is a discrete approximation of {u(hj, kτ) : j ∈ Z2, k = 1, 2, · · · } with u(x, t) being the solution of the diffusion
equation (3.5) with the diffusivity functions given by (5.1).

Note that in Theorem 5.1, the threshold α depends on the wavelet frame coefficient d, which means that the
threshold in the iterative soft-thresholding algorithm (2.32) will be changing along with the iteration. However,
the threshold used in the literature of wavelet or wavelet frame based image restoration is generally chosen
independent of the iteration. The following corollary, which is a special case of Theorem 5.1, describes the type
of differential equation that is approximated by the iterative soft-thresholding (2.32) when the threshold α is
independent of the iteration.

Corollary 5.1. Under the same assumptions and notation as Theorem 5.1, if we choose the threshold α as

α =
{
αℓ,n =

τλℓ

C
(ℓ)
βℓ
h|βℓ|

1 ≤ ℓ ≤ L,n ∈ Z2
}
,
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for some constants λℓ > 0, then uk generated from (2.32) with ℘ = 1 approximates the solution of the diffusion
equation (3.5) with the diffusivity functions given by

gℓ(ξ
2) =

{
min

{
(C

(ℓ)
βℓ

)2C, λℓ

|ξ|

}
, for |βℓ| = m,

λℓ

|ξ| , for 1 ≤ |βℓ| < m.

In particular, when L = 2, β1 = (1, 0), β2 = (0, 1), and C
(1)
β1

= C
(2)
β2

= Cβ (e.g. the Haar framelets), the
corresponding diffusion equation to (2.32) is

ut =
∂

∂x1

(
min

{
C̄,

λ1
|ux1

|

}
ux1

)
+

∂

∂x2

(
min

{
C̄,

λ2
|ux2

|

}
ux2

)
, (5.2)

with C̄ = (Cβ)
2C.

Remark 5.1.

1. To have (2.32) approximate the 2nd order nonlinear diffusion (5.2), we do not have to use Haar framelets.
For example, we can use any B-spline tight frame filter bank, such as the piecewise linear framelets. We
only need to properly adjust the threshold in a similar way as what was described in Corollary 3.1, i.e.
introducing an additional power of h so that the terms corresponding to higher order derivatives vanish as
h→ 0.

2. The diffusion (5.2) resembles the following (an anisotropic version of) mean curvature flow for λ1 = λ2,

ut = λ

[
∂

∂x1

(
ux1

|ux1
|

)
+

∂

∂x2

(
ux2

|ux2
|

)]
,

except that the flow induced by iterative soft-thresholding, i.e. (5.2), is more regular in the sense that the
diffusivity is bounded above.

For ℘ = 2, we consider the following rotation invariant diffusion

ut =

L∑
ℓ=1

(−1)1+|βℓ| ∂
βℓ

∂xβℓ

{
gℓ

( ∑
|βℓ′ |=|βℓ|

( ∂βℓ′u

∂xβℓ′

)2) ∂βℓu

∂xβℓ

}
. (5.3)

Here, for a given βℓ, the summation
∑

|βℓ′ |=|βℓ| =
∑

{ℓ′: |βℓ′ |=|βℓ|}. The relation between the shrinkage operator
and the diffusivity functions gℓ is given by

Sℓ(ξℓ) = ξℓ

{
1− τ(

C
(ℓ)
βℓ

)2
h2|βℓ|

gℓ

( 1

h2|βℓ|

∑
|βℓ′ |=|βℓ|

ξ2ℓ′(
C

(ℓ′)
βℓ′

)2)}, 1 ≤ ℓ ≤ L. (5.4)

Now, for

T 2
θℓ
(ξℓ) =

ξℓ(∑
|βℓ′ |=|βℓ| |ξℓ′ |

2
) 1

2

max
{( ∑

|βℓ′ |=|βℓ|

|ξℓ′ |2
) 1

2 − θℓ, 0
}
,

we have

τ

(C
(ℓ)
βℓ

)2h2|βℓ|
gℓ

( ∑
|βℓ′ |=|βℓ|

ξ2ℓ′

(C
(ℓ′)
βℓ′

)2h2|βℓ′ |

)
= 1−

T 2
θℓ
(ξℓ)

ξℓ
= min

{
1,

θℓ(∑
|βℓ′ |=|βℓ| |ξℓ′ |

2
) 1

2

}
,

or

gℓ

( ∑
|βℓ′ |=|βℓ|

ξ2ℓ′
)
= min

{ (C
(ℓ)
βℓ

)2h2|βℓ|

τ
,

(C
(ℓ)
βℓ

)2h|βℓ|θℓ

τ
(∑

|βℓ′ |=|βℓ|
∣∣C(ℓ′)

βℓ′
ξℓ′

∣∣2) 1
2

}
.
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Following the same idea as the case ℘ = 1 and assuming h2m/τ = C for some C > 0, we can choose

θℓ =
τ
(∑

|βℓ′ |=|βℓ|
∣∣C(ℓ′)

βℓ′
ξℓ′

∣∣2) 1
2

(C
(ℓ)
βℓ

)2h|βℓ|
g̃ℓ

( ∑
|βℓ′ |=|βℓ|

ξ2ℓ′
)
,

so that

gℓ

( ∑
|βℓ′ |=|βℓ|

ξ2ℓ′
)
=

 min
{
(C

(ℓ)
βℓ

)2C, g̃ℓ

(∑
|βℓ′ |=|βℓ| ξ

2
ℓ′

)}
, for |βℓ| = m,

g̃ℓ

(∑
|βℓ′ |=|βℓ| ξ

2
ℓ′

)
, for |βℓ| < m,

(5.5)

whenever h is small enough. Then, we have the following result.

Theorem 5.2. Let {p, q(1), . . . , q(L)} be a given tight frame filter bank and let q(ℓ) have vanishing moment βℓ

with the associated constant C
(ℓ)
βℓ

given by (2.12) and m = maxℓ{|βℓ| : 1 ≤ ℓ ≤ L}. Assume that the threshold
α(d) for wavelet frame coefficients d takes the form

α(d) =
{
αℓ,n(dℓ,n) =

τ
(∑

|βℓ′ |=|βℓ|
∣∣C(ℓ′)

βℓ′
dℓ′,n

∣∣2) 1
2

(C
(ℓ)
βℓ

)2h|βℓ|
g̃ℓ

( ∑
|βℓ′ |=|βℓ|

(dℓ′,n)
2
)
: 1 ≤ ℓ ≤ L,n ∈ Z2

}
,

with g̃ℓ : R 7→ R+ being some smooth function; and we set h2m/τ = C for some constant C > 0 with h and τ
sufficiently small. Let uk be generated from the iterative soft-thresholding algorithm (2.32) with ℘ = 2 and the
threshold given above. Then, uk is a discrete approximation of {u(hj, kτ) : j ∈ Z2, k = 1, 2, · · · } with u(x, t)
being the solution of the diffusion equation (5.3) with the diffusivity functions given by (5.5).

Similar as Corollary 5.1, we have the following corollary which is a special case of Theorem 5.2.

Corollary 5.2. Under the same assumptions and notation as Theorem 5.2, if we choose the threshold α as

α =
{
αℓ,n =

τλℓ

C
(ℓ)
βℓ
h|βℓ|

: 1 ≤ ℓ ≤ L,n ∈ Z2
}
,

for some constants λℓ > 0, then uk generated from (2.32) with ℘ = 2 approximates the solution of the diffusion
equation (3.5) with the diffusivity functions given by

gℓ(ξ
2) =


min

{
(C

(ℓ)
βℓ

)2C, λℓ(∑
|β

ℓ′ |=|βℓ|
C

(ℓ′)
β
ℓ′

ξ2
ℓ′

)1/2

}
, for |βℓ| = m,

λℓ(∑
|β

ℓ′ |=|βℓ|
C

(ℓ′)
β
ℓ′

ξ2
ℓ′

)1/2 , for 1 ≤ |βℓ| < m.

In particular, when L = 2, β1 = (1, 0), β2 = (0, 1), and C
(1)
β1

= C
(2)
β2

= Cβ (e.g. the Haar framelets), the
corresponding diffusion equation to (2.32) is

ut =
∂

∂x1

(
min

{
C̄,

λ1/Cβ

|∇u|

}
ux1

)
+

∂

∂x2

(
min

{
C̄,

λ2/Cβ

|∇u|

}
ux2

)
, (5.6)

with C̄ = (Cβ)
2C.

Remark 5.2. The diffusion (5.6) resembles the following well-known mean curvature flow (see e.g. [2,41,42,45,
59]) for λ1 = λ2,

ut = λ

[
∂

∂x1

(
ux1

|∇u|

)
+

∂

∂x2

(
ux2

|∇u|

)]
,

except that the flow induced by iterative soft-thresholding, i.e. (5.6), is more regular in the sense that the diffusivity
is bounded above. In other words, the iterative isotropic soft-thresholding algorithm with threshold given in Corol-
lary 5.2 solves a regularized mean curvature flow. The mean curvature flow has been used in image restoration as
a regularizer that removes noise [50, 56, 61]. Since the equation is getting singular when |∇u| ≈ 0, a regularized
diffusivity was used to replace |∇u|, which is |∇u|ϵ :=

√
|∇u|2 + ϵ2. However, such regularization reduces the

ability of the PDE model to preserve edges. It is known in the literature that soft-thresholding of wavelet frame
coefficients of wavelet frame coefficients can well preserve edges. Therefore, Corollary 5.2 reveals that (5.6) is a
better regularization of the mean curvature flow than using |∇u|ϵ in place of |∇u|.
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5.2 Image-Restoration Embedded Diffusion

Other than the balanced and synthesis based model, the analysis based model (see [34,60]) is also frequently used
in image restoration. This subsection shows that, inspired by algorithms solving the analysis based model, a new
class of nonlinear diffusions, with the underlying image restoration model embedded in, can be derived.

Due to the diffusive nature of the diffusion equations, one drawback of the nonlinear diffusions we have seen
so far is that, when t→ ∞, noise and all image features will vanish. For a good diffusion equation, image features
diffuse slower than noise or other artifacts. Therefore in practice, an appropriate stopping time should be chosen
for these diffusion equations. Also, since these diffusion equations do not have an idea of what image restoration
problem it is solving, it is not guaranteed to produce relevant image restoration results. Therefore, we need to
properly place the model of the underlying image restoration into the diffusion equations.

Image restoration is usually casted as the following linear inverse problem

Au = f + η, (5.7)

where f is the observed image, η is additive noise and A is a linear operator corresponding to an image restoration
problem (i.e. A = I for denoising, A = (a∗) for deblurring, etc.). In discrete setting, we shall denote A, u and f as
A, u and f respectively. Since A is usually ill-posed, regularization based methods are usually adopted to find a
reasonable solution. In the literature, various types of regularization have been used including the total variation
model [56], and wavelet or wavelet frame based approach that includes synthesis based approach [24,36,37,39,40],
analysis based approach [34,60] and balanced approach [7, 18].

Here, we shall focus on the following analysis based model that was recently proposed by [38]:

min
u

Hλ(Wu) +
µ

2
∥Au− f∥22 +

µ2

2
∥A⊤Au−A⊤f∥2D, (5.8)

where Hλ is the Huber function (see [38] for detail) and ∥u∥2D = ⟨u,Du⟩ with D = (I − µA⊤A)−1. Two
algorithms solving (5.8) were proposed by [38]: one is based on the proximal forward-backward splitting (PFBS)
algorithm [7,18,21]; the other is based on the accelerated proximal gradient (APG) algorithm [58] (also known as
FISTA [4]). Throughout the rest of this subsection, we assume again that W is a tight frame, i.e. W⊤W = I.

Start with the PFBS algorithm that solves (5.8)

uk = (I − µA⊤A)W⊤T λ(Wuk−1) + µA⊤f , k = 1, 2, · · · , (5.9)

where T λ is the soft-thresholding operator defined by either (2.29) or (2.30). Then, comparing the PFBS
algorithm (5.9) with (2.31), it is natural to generalize (2.31) to the following algorithm

uk = (I − µA⊤A)W⊤Sαk−1(Wuk−1) + µA⊤f , k = 1, 2, · · · . (5.10)

It is not clear which energy function the algorithm (5.10) tries to minimize, since the threshold value αk−1 =
α(Wuk−1) depends on Wuk−1 which is changing along with the iteration. However, if αk = α for all k, then it
is not hard to show (similarly as in [38]) that (5.10) is a PFBS algorithm that solves the following optimization
problem

min
u

1

2
∥
√
α ·Wu∥22 +

µ

2
∥Au− f∥22 +

µ2

2
∥A⊤Au−A⊤f∥2D.

Therefore, when αk changes with k, algorithm (5.10) can be understood as an attempt to solve

min
u

1

2
∥
√

α(Wu) ·Wu∥22 +
µ

2
∥Au− f∥22 +

µ2

2
∥A⊤Au−A⊤f∥2D. (5.11)

Indeed, at each iteration k, if we let α(Wu) = α(Wuk−1) in (5.11) and conduct one step of PFBS, we obtain
the algorithm (5.10).

Now, we discuss the formulas of the nonlinear diffusions to which the algorithms (5.10) correspond. Once we
have them, the corresponding diffusions to the algorithm (5.9) are automatically given by Theorem 5.1 and The-
orem 5.2. We assume that the continuum and discrete version of the operator A satisfy the following consistency
property

Av = Av +O(h) and A⊤v = A⊤v +O(h), (5.12)
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where vj = v(jh) for j ∈ Z2 and v smooth enough. For the equations in (5.12) and below, their meaning is that
the left-hand side (in sequence space) of the equation is a discretization of the smooth function on the right-hand
side of the equation. We choose µ = κτ with some constant κ > 0. When the shrinkage given by (3.17) is used,
we have

µA⊤AW⊤Sα(Wu) = κτA⊤Au+O(τh) +O(τ2).

Then, assuming (5.12), choosing the shrinkage given by (3.17) and following a similar derivation as in Section 3,
we can obtain that the PDE approximated by algorithm (5.10) takes the form

ut =
L∑

ℓ=1

(−1)1+|βℓ| ∂
βℓ

∂xβℓ

{
gℓ

(
u,
∂β1u

∂xβ1
, · · · , ∂

βLu

∂xβL

) ∂βℓ

∂xβℓ
u
}
− κA⊤(Au− f). (5.13)

In particular, when L = 2 with β1 = (1, 0),β2 = (0, 1) and g1 = g2 = g(ξ21 + ξ22), we have the following 2nd order
nonlinear diffusion

ut = div
(
g
(
|∇u|2

)
∇u

)
− κA⊤(Au− f),

which was considered by [63].
Now, recall the APG algorithm that solves (5.8) in [38]. Given some initial guess v0 and v1, and letting t0 = 1,

t−1 = 0, the algorithm reads

vk = uk−1 +
tk−2 − 1

tk−1
(uk−1 − uk−2)

uk = (I − µA⊤A)W⊤T λ(Wvk) + µA⊤f , k = 1, 2, · · · ,
(5.14)

where tk =
1+

√
1+4(tk−1)2

2 . Following a similar argument as before, we have the following algorithm that gener-
alizes (2.31)

uk = (I − µA⊤A)W⊤Sαk−1

(
(1 + γk−1)Wuk−1 − γk−1Wuk−2

)
+ µA⊤f , k = 1, 2, · · · , (5.15)

where γk−1 = tk−2−1
tk−1 . The algorithm (5.15) (resp. (5.14)) is different from the PFBS algoirthm (5.10) (resp.

(5.9)) in that it has both uk−1 and uk−2 involved in the iteration and the weighting given by tk is changing along
with the iteration. These differences makes APG require much less number of iterations to converge than the
PFBS algorithm [4, 58]. The corresponding differential equation to the APG algorithm (5.15) will also be quite
different from that of the PFBS algorithm (5.10). Once we find the corresponding nonlinear PDE to (5.15), the
corresponding diffusions to the algorithm (5.14) are automatically given by Theorem 5.1 and Theorem 5.2.

We first have the following lemma about the asymptotical properties of tk and γk, whose proof is provided in
the end of this subsection.

Lemma 5.1. Let tk, γk, k = 2, 3, · · · be the sequences defined by tk =
1+

√
1+4(tk−1)2

2 with t1 = 1, and γk =
(tk−1 − 1)/tk. Then

tk

k
=

1

2
+O(

log k

k
); (5.16)

and

1− γk =
3

k
+O(

log k

k2
). (5.17)

For uk
j = u(jh, τk) with u smooth enough, Taylor’s expansion with respect to the time variable at t = τ(k−1)

gives us

(1 + γk−1)uk−1
j − γk−1uk−2

j = u(jh, τ(k − 1)) +O(τ),

uk − (1 + γk−1)uk−1
j + γk−1uk−2

j = (1− γk−1)τut(jh, τ(k − 1)) + τ2 1+γk−1

2 utt(jh, τ(k − 1)) +O(τ3).
(5.18)

What makes algorithm (5.15) different from (5.10) is that uk−2 is also involved in the expression, which means
we have u at three time steps present in the algorithm. This motivates us that, with a slightly different choice
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of the shrinkage operator, the corresponding PDE of algorithm (5.15) can be 2nd order in time. However, such
correspondence turns out to be slightly different from all other correspondences we have established so far.

Suppose k is some large integer of size O( 1τ ), i.e. k = C1/τ for some C1 > 0. This is a reasonable assumption
if we assume that the time interval [0, T ] is divided uniformly with size τ , and we focus on the behavior of (5.15)

for large k. By Lemma 5.1, 1+γk

2 → 1 as k → ∞. Assume that (5.12) holds and we take µ = τ2κ with some κ > 0
and choose the following shrinkage function

Sαℓ,n(d)(d1,n, · · · , dL,n) = dℓ,n

(
1− τ2

C̃
(ℓ)
αℓC

(ℓ)
βℓ
h|αℓ|+|βℓ|

gℓ

( d1,n

C
(1)
β1
h|β1|

, · · · , dL,n

C
(L)
βL
h|βL|

))
, (5.19)

for 1 ≤ ℓ ≤ L. We can see from (5.18) and Lemma 5.1 that, when τ and h are asymptotically small and k = O( 1τ ),
the algorithm (5.15) behaves asymptotically like the following nonlinear evolution PDE that is 2nd order in time

utt + Cut =
L∑

ℓ=1

(−1)1+|βℓ| ∂
βℓ

∂xβℓ

[
gℓ

(
u,
∂β1u

∂xβ1
, · · · , ∂

βLu

∂xβL

) ∂βℓ

∂xβℓ
u
]
− κA⊤(Au− f), (5.20)

where C = 3/(kτ), the positive constant term in (1 − γk−1)/τ = 3
kτ + O( log k

k2τ ). For example, when k = C1/τ ,
then C = 3/C1.

Remark 5.3.

1. Both of the algorithms (5.9) and (5.10) discretize the PDE (5.13). For different types of shrinkage, we have
different diffusivity functions gℓ (see e.g. the previous subsection for the form of gℓ that corresponds to the
soft-thresholding).

2. What makes the nonlinear diffusion (5.13) different from the ones we have seen in earlier sections is that: (1)
we have the underlying image restoration model embedded in the PDEs which lead to better image restoration
results as supported by our numerical simulations; (2) it is now safe to seek the steady state solution, i.e.
u(x,∞), which makes the determination of stopping easier.

We end this subsection by providing the proof of Lemma 5.1.
Proof of Lemma 5.1. For simplicity of presentation, denote ak = 2tk, k = 1, 2, · · · . From

ak = 1 +
√
1 + a2k−1 , (5.21)

we have
1 + ak−1 < ak < 2 + ak−1, k ≥ 2.

Thus,
(k − 1) + a1 < · · · < 1 + 1 + ak−2 < ak < 2 + 2 + ak−2 < · · · < 2(k − 1) + a1,

and hence, we have
k < ak < 2k, k = 2, 3, · · · . (5.22)

From (5.21) again, for n ≥ 1,

an+1 = 1 +
√
1 + a2n = 1 + an

√
1 + (1/an)2

= 1 + an

(
1 +

1

2

1

a2n
− 1

8

1

a4n
+O(

1

n6
)
)
= 1 + an +

1

2

1

an
− 1

8

1

a3n
+O(

1

n5
).

Thus, we have

an+1 − an = 1 +
1

2

1

an
+O(

1

n3
), n ≥ 1, (5.23)
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which leads to that

ak − a1 =
k−1∑
n=1

(an+1 − an) = k − 1 +
1

2

k−1∑
n=1

1

an
+O(1) = k − 1 +O(log k),

where the last last equality follows from (5.22) and the fact
∑k

n=1
1
n = O(log k). Therefore, we have ak/k =

1 +O(log k/k). This shows that (5.16) holds.
Applying (5.23) with n = k − 1, we have

1− γk = 1− ak−1 − 2

ak
=
ak − ak−1

ak
+

2

ak
=

1 + 1/(2ak−1) +O(1/k3)

ak
+

2

ak

=
3

ak
+O(

1

k2
) =

3

k +O(log k)
+O(

1

k2
) =

3

k
+O(

log k

k2
).

This shows (5.17). �

5.3 Adaptive Thresholding for Wavelet Frame Shrinkage

Most of the iterative wavelet (frame) shrinkage algorithms for image restoration use one (or a few) fixed threshold
for all coefficients. Since the original image to be restored can be sparsely approximated by wavelet frames,
the threshold should be chosen such that the wavelet frame coefficients corresponding to features of the image,
such as edges, are above the threshold. The rest of the coefficients are set to zero which does not hamper the
restoration quality since the representation is sparse and thus most of the small nonzero coefficients correspond
to noise instead of signal.

However, for a given nature image, it contains components with varied regularity. Therefore, a good threshold
should be:

1. Large threshold should be chosen where the image is regular, while a small threshold should be chosen
around singularities and the value of such threshold should depend on the type of the singularities.

2. The threshold near singularities should not only be moderately small, but should also be chosen such that
we only introduce smoothing along the level sets of the image, while we are not introducing any smoothing
or even sharpening in the directions normal to the level sets.

3. Since the restored image changes along with the iteration, the threshold should also be modified properly
to incorporate with the updated information of local regularities of the image.

Therefore, to get a desirable image restoration through iterative wavelet frame shrinkage, we need a thresholding
strategy satisfying the above three conditions.

It is not obvious how to design such thresholding strategy from only the perspective of wavelet frame transform.
However, since we have the connection between wavelet frame shrinkage and nonlinear diffusions, we can borrow
ideas from nonlinear diffusions, e.g. anisotropic diffusions, and use them to design a self-adaptive thresholding
strategy for iterative wavelet shrinkage.

Take the Perona-Malik equation [52] as an example. This anisotropic diffusion equation reads

ut = div
(
g(|∇u|2)∇u

)
,

where g is a function satisfying
g : [0,∞) 7→ (0,∞) decreasing;

g(0) = 1; g(x) → 0 as x→ ∞;

g(x) + 2xg′(x) > 0 for x ≤ K; g(x) + 2xg′(x) < 0 for x > K.

(5.24)

One example of g is g(x) = 1
1+xp/K for some constant K > 0 and p > 1/2. The diffusion coefficient of the Perona-

Malik equation is g(|∇u|2) which controls the amount of diffusion at each location. By the specific assumption
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on g, we can see that at smooth regions (|∇u| is small), g(|∇u|2) is large which means more diffusion is allowed;
while near singularities (|∇u| is large), g(|∇u|2) is small meaning less diffusion is allowed. If we rewrite the
Perona-Malik equation as (see [52])

ut = g(|∇u|2)uTT + g̃(|∇u|2)uNN ,

with

g̃(x) = g(x) + 2xg′(x), N =
∇u
|∇u|

and T = N⊥, |T | = 1,

we can see that around singularities, the amount of diffusion across the singularities may be negative. A negative
diffusivity means that we have a locally backward diffusion and hence the singularities such as edges are enhanced,
which is desirable for image restoration.

An alternative way of interpreting such anisotropic diffusion, is that the diffusion at different locations of an
image stops at different time or even moves in opposite directions: diffusion in regions with singularities stops
earlier to prevent smearing or even moves backward to enhance sharp features, while diffusion in smooth regions
stops late in order to remove sufficient amount of noise and other oscillatory artifacts.

Following the idea of Perona-Malik equation, we can choose the threshold α for T ℘
α in the iterative wavelet

frame soft-thresholding algorithm (2.32) to be adaptive to local features of the given image. Also, when we have a
specific image restoration model (5.7) available, we can embed the model within the algorithm similarly as (5.10)
and (5.15).

Now, we present the following iterative wavelet frame soft-thresholding algorithm with adaptive thresholds:

uk = (I − µA⊤A)W⊤T ℘
θk−1(Wuk−1) + µA⊤f , with ℘ = 1 or 2, (5.25)

where u0 = f the initial data (e.g. the observed noisy image) and

θk := θ(Gσ ∗Wuk) := θ(dk) :=
{
α0,n = 0;αℓ,n(d

k) = Cℓgℓ

(
h−2sℓ

∑
|βℓ′ |=|βℓ|

(dkℓ′,n)
2
)
: n ∈ Z2, 1 ≤ ℓ ≤ L

}
(5.26)

with Cℓ ≥ 0 being some fixed constant, gℓ(x) satisfying the first two conditions of (5.24), dk = Gσ ∗Wuk where
Gσ denotes a discretized Gaussian with variance σ and sℓ satisfying{

sℓ = |βℓ|, for ℓ ∈
{
ℓ : |βℓ| = min1≤ℓ′≤L{|βℓ′ |}

}
,

sℓ ≤ |βℓ|, otherwise.

The reason we only require gℓ satisfy the first two sets of conditions of (5.24), i.e. we do not require the diffusivity
have a backward-diffusion mechanism, is because: (1) in contrast to the shrinkage operator S, the soft-thresholding
operator already has an edge-sharpening effect; (2) when the observed image f is blurred by the blurring operator
A, the presence of image restoration model in (5.25) (second term) also has a sharpening effect.

Similarly, we can have the following iterative wavelet frame shrinkage algorithm with adaptive thresholding
that resembles (5.15) which is an accelerated version of (5.25):

uk = (I − µA⊤A)W⊤T ℘
θk−1

(
(1 + γk−1)Wuk−1 − γk−1Wuk−2

)
+ µA⊤f , ℘ = 1 or 2, (5.27)

where γk−1 = tk−2−1
tk−1 , t−1 = 0, t0 = 1, and θk is given either by (5.26) or

θk := θ
(
Gσ ∗

[
(1 + γk−1)Wuk − γk−1Wuk−1

])
.

6 Convergence Analysis

This section is to provide convergence analysis of the iterative wavelet frame shrinkage (2.31) for a 2nd-order
quasilinear parabolic equation; and the convergence of the iterative wavelet frame shrinkage algorithms (2.31)
and (2.32) for generic thresholds.
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Consider the following 2nd-order nonlinear diffusion equation
∂u
∂t = ∂

∂x1

[
g1

((
∂u
∂x1

)2
)

∂u
∂x1

]
+ ∂

∂x2

[
g2

((
∂u
∂x2

)2
)

∂u
∂x2

]
in Ω× (0, te)

u = 0 on ∂Ω× (0, te)

u(x, 0) = u0(x) in Ω,

(6.1)

where Ω = (0, 1)2 ⊂ R2, te > 0 and the initial data u0(x) ∈ L2(Ω). We shall show that under suitable assumptions,
we have that (2.31) converges to the solution of (6.1) with certain order of accuracy which depends on the choice
of the corresponding wavelet frame system. Note that we can obtain similar convergence analysis for most of the
nonlinear diffusions considered in this paper, provided that the given diffusion is well-posed. For simplicity and
clarity, we shall focus on the diffusion (6.1).

We will also analyze the stability and convergence of the following generic iterative wavelet frame shrinkage

uk =

{
W̃⊤Sαk−1(Wuk−1) ℓ2-shrinkage

W̃⊤T θk−1(Wuk−1) ℓ1-shrinkage,
(6.2)

with αk := α(dk), θk := θ(dk), where dk := Wuk. In order to include most of the iterative shrinkage formulas we
have discussed in the previous sections, we assume the thresholding function Sα(d) and T θ(d) take the following
formsSα(d) =

{
Sαℓ,n

(dℓ,n) = dℓ,n(1− αℓ,n(d)) : 0 ≤ ℓ ≤ L,n ∈ Z2
}
,

T θ(d) =
{
Tθℓ,n(dℓ,n) =

dℓ,n

w max
{
w − θℓ,n(d), 0

}
; w = w(d1,n, . . . , dL,n) : 0 ≤ ℓ ≤ L,n ∈ Z2

}
,

(6.3)

with α(d) =
{
αℓ,n(d) = gℓ(d1,n, · · · , dL,n, h, τ) : 0 ≤ ℓ ≤ L,n ∈ Z2

}
,

θ(d) =
{
θℓ,n(d) = w gℓ(d1,n, · · · , dL,n, h, τ) : 0 ≤ ℓ ≤ L,n ∈ Z2

}
.

(6.4)

We shall prove that, under suitable assumptions on the function gℓ, the iteration (6.2) has a subsequence converges
weakly to a function in L2(Ω) as h, τ → 0 and k = O( 1τ ) → ∞; and such convergence is stable.

6.1 Convergence of (2.31)

This subsection focus on the convergence of the iterative wavelet frame shrinkage (2.31), with a proper choice of
thresholds, to a solution of the nonlinear diffusion equation (6.1) as τ, h → 0. To prove convergence of (2.31),
we need to first make sure the corresponding PDE (6.1) is well-posed, for which we shall make the following
assumptions.

Assumptions 6.1. We assume that, for each ℓ = 1, 2, gℓ(ξ) ∈ C∞(R) are nonnegative functions satisfying

0 <
(
ξgℓ(ξ

2)
)′ ≤ B, ξ ∈ R, where B is a positive constant.

Under Assumption 6.1, it is clear from the theory of nonlinear semigroups and monotone operators [6] that
the quasilinear parabolic equation (6.1) is well-posed, i.e. there exists a unique solution for each given initial
data, and it is continuously dependent on the initial data with respect to the L2-norm (see e.g. [35] for a proof).
With well-posedness of the differential equation, Lax’s equivalent theorem implies that, to prove convergence of
(2.31), we only need to show consistency and stability of this iterative method. For convenience, we shall also
make the following assumptions on the underlying wavelet frame systems of (2.31). Note that the assumptions
below are satisfied by all tensor-product B-spline tight frame systems constructed by [54].

Assumptions 6.2. We shall consider the discretization given by a tensor-product tight frame system with FIR
filters {q(ℓ) : 0 ≤ ℓ ≤ L}, where q(0) = p and L ≥ 2. Assume that each q(ℓ) with 1 ≤ ℓ ≤ L has vanishing
moments of order βℓ and has total vanishing moments of order Kℓ\{|βℓ|+ 1} with 1 ≤ |βℓ| < Kℓ. In particular,
we require that β1 = (1, 0),β2 = (0, 1) and K1 = K2.
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6.1.1 Consistency

To show consistency, we need to show that for any given u ∈ C∞(R2), when the algorithm (2.31) is applied to
{u(hj, τk) : j ∈ Z2, k = 1, 2, . . .} we will recover the PDE (6.1) plus the local truncation error which decreases to
zero with a certain order of τ and h.

Lemma 2.1 implies that, for any u ∈ C∞(R2) and h > 0 small enough, we have, for 1 ≤ ℓ ≤ L,

1

h|βℓ|

∑
j∈Z2

q(ℓ)[j]u(hm± hj) = C
(ℓ)
βℓ

∂βℓu(hm)

∂xβℓ
+O(hKℓ−|βℓ|). (6.5)

For example, when the Haar wavelet frame system is used, we have K1 = K2 = 2; when the piecewise linear
wavelet frame system is used, we have K1 = K2 = 3. By Theorem 3.2 and Corollary 3.1, we can take the following
threshold α for the shrinkage operator Sα(d) that is in correspondence with the diffusivity functions of (6.1):αℓ,n(dℓ,n) =

τ

(C
(ℓ)
βℓ

)2h2
gℓ

(
(dℓ,n)2

(C
(ℓ)
βℓ

)2h2

)
for ℓ = 1, 2;

αℓ,n(dℓ,n) = 0 for 3 ≤ ℓ ≤ L.
(6.6)

Then, we have the following consistency result stating that the iterative shrinkage method (2.31) using a tight

wavelet frame satisfying Assumption 6.2, is consistent of order O(τ) +
∑2

ℓ=1O(hKℓ−|βℓ|).

Proposition 6.1. The numerical algorithm (2.31) with a tight wavelet frame system satisfying Assumption 6.2
is consistent of order O(τ) + O(hKℓ−|βℓ|) to the diffusion equation (6.1) provided that the thresholds are chosen
as (6.6).

Proof. We need to show that for any u ∈ C∞(R2), we have

uk+1
j −

{
uk
j − τ

2∑
ℓ=1

1

C
(ℓ)
βℓ

h|βℓ|

∑
m

q(ℓ)[j −m]gℓ

(( 1

C
(ℓ)
βℓ

h|βℓ|

∑
n

q(ℓ)[n]uk
n+m

)2)( 1

C
(ℓ)
βℓ

h|βℓ|

∑
n

q(ℓ)[n]uk
n+m

)}

= τ
(
uk
t,j +

2∑
ℓ=1

(
gℓ
(
(uk

βℓ
)2
)
uk
βℓ

)
βℓ,j

)
+O(τ2) +

2∑
ℓ=1

O(τhKℓ−|βℓ|),

where uk
j = u(hj, τk) and

uk
t,j = ut(jh, τk), uk

βℓ
:=

∂βℓu(x, τk)

∂xβℓ
and uk

βℓ,m
:=

∂βℓu(mh, τk)

∂xβℓ
.

Denote

G̃ℓ(ξ) = ξgℓ(ξ
2), Uk

j =
1

C
(ℓ)
βℓ

h|βℓ|

∑
n

q(ℓ)[n]uk
n+j , j ∈ Z2.

Then by (6.5),
Uk
j = uk

βℓ,j
+O(hKℓ−|βℓ|).

Applying (6.5) to G̃ℓ, we have

1

C
(ℓ)
βℓ

h|βℓ|

∑
m

q(ℓ)[j −m]G̃ℓ(U
k
m) =

∂βℓ

∂xβℓ
G̃ℓ(U

k
j ) +O(hKℓ−|βℓ|)

=
∂βℓ

∂xβℓ
G̃ℓ

(
uk
βℓ,j

+O(hKℓ−|βℓ|)
)
+O(hKℓ−|βℓ|) =

∂βℓ

∂xβℓ
G̃ℓ(u

k
βℓ,j

) +O(hKℓ−|βℓ|)

=
(
gℓ
(
(uk

βℓ
)2
)
uk
βℓ

)
βℓ,j

+O(hKℓ−|βℓ|),
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where the second to the last equality follows from the fact that G̃ℓ is differentiable. Note that uk+1
j − uk

j =

τut(jh, τk) +O(τ2). Therefore, we have

uk+1
j −

{
uk
j − τ

2∑
ℓ=1

1

C
(ℓ)
βℓ

h|βℓ|

∑
m

q(ℓ)[j −m]gℓ

(( 1

C
(ℓ)
βℓ

h|βℓ|

∑
n

q(ℓ)[n]uk
n+m

)2)( 1

C
(ℓ)
βℓ

h|βℓ|

∑
n

q(ℓ)[n]uk
n+m

)}

= uk+1
j − uk

j + τ
2∑

ℓ=1

1

C
(ℓ)
βℓ

h|βℓ|

∑
m

q(ℓ)[j −m]G̃ℓ(U
k
m)

= τ
(
uk
t,j +

(
gℓ

(
(uk

βℓ
)2
)
uk
βℓ

)
βℓ,j

)
+O(τ2) +

2∑
ℓ=1

O(τhKℓ−|βℓ|).

This concludes the proof of the proposition.

Remark 6.1.

1. Note from Corollary 3.1 that, instead of setting the thresholds αℓ,n to zeros for 3 ≤ ℓ ≤ L, we can take the
choices of α given by (3.13). The proof of consistency for these cases is very similar to that of Proposition
6.1.

2. The order of consistency we have just derived may not optimal. Optimal order of consistency can be obtained
by a more careful local truncation error analysis. However, finding an (optimal) order of approximation of
the solutions of PDEs is not what we want to focus in this paper. Although the analysis in this section can be
modified to reveal the order of approximation, we will only prove convergence without addressing the order
of convergence. The reason is that in image restoration, or image processing and analysis in general, all
data are discrete to begin with, and most data does not have nor need a corresponding continuum version.
Therefore, in this section, we show convergence, only to rigourously justify that wavelet frame shrinkage is
indeed a discretization of the corresponding PDE.

6.1.2 Stability

Same as standard finite difference discretization of nonlinear diffusions, the temporal step size τ and the spatial
step size h should satisfy a certain stability condition. For the diffusivity functions in (6.1), the multiplicative
shrinkage operator Sα defined in (2.28) takes the following form:

Sα(d) = {dℓ,n(1− αℓ,n(dℓ,n)) : n ∈ Z2, 0 ≤ ℓ ≤ L}. (6.7)

with αℓ,n given in (6.6). Now, we address the stability condition for our iterative multiplicative shrinkage algorithm
(2.31) as follows.

Assumptions 6.3. Given the shrinkage operator Sα(d) in (6.7), we assume that αℓ,n(ξ) is differentiable for
each ℓ and n, and ∣∣∣∣(ξ(1− αℓ,n(ξ)

))′
∣∣∣∣ = ∣∣1− αℓ,n(ξ)− ξα′

ℓ,n(ξ)
∣∣ ≤ 1

for all 0 ≤ ℓ ≤ L and n ∈ Z2.

The following proposition shows that the stability requirements in Assumption 6.3 can be easily achieved in
practice by assuming τ = O(h2).

Proposition 6.2. Suppose Assumption 6.1 hold for the diffusivity functions of (6.1). Given the choice of thresh-
olding α in (6.6), the stability requirements in Assumption 6.3 can be achieved by taking τ = Ch2, for some C
independent of τ and h.
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Proof. First, observe that∣∣1− αℓ,n(ξ)− ξα′
ℓ,n(ξ)

∣∣ ≤ 1 ⇔ 0 ≤ αℓ,n(ξ) + ξα′
ℓ,n(ξ) ≤ 2. (6.8)

Let C̃ := τ

(C
(ℓ)
βℓ

)2h2
. Then, we have

αℓ,n(ξ) = C̃gℓ

(
C̃ξ2/τ

)
⇒ α′

ℓ,n(ξ) =
2C̃2ξ

τ
g′ℓ

( C̃ξ2
τ

)
.

Therefore,

αℓ,n(ξ) + ξα′
ℓ,n(ξ) = C̃gℓ

( C̃ξ2
τ

)
+

2C̃2ξ2

τ
g′ℓ

( C̃ξ2
τ

)
= C̃

[
gℓ

( C̃ξ2
τ

)
+ 2

C̃ξ2

τ
g′ℓ

( C̃ξ2
τ

)]
.

Recall the assumption we imposed in Assumption 6.1:

0 < (ξgℓ(ξ
2))′ = gℓ(ξ

2) + 2ξ2gℓ(ξ
2) ≤ B.

Thus, (6.8) is satisfied whence we have C̃ ≤ 2
B , which yields the condition

τ = Ch2 with C ≤ 2(C
(ℓ)
βℓ

)2/B.

This concludes the proof.

Assume that the computation domain Ω = (0, 1)2 is discretized by a dyadic grid

{2−nk : 0 < k1, k2 < 2n, n ≥ 1}.

Therefore, the meshsize for spatial discretization is h = 2−n. We denote the index set O2
h ⊂ Z2 as

O2
h := {k ∈ Z2 : 0 < k1, k2 < 2n}.

Given any function u ∈ L2(Ω), and a compactly supported tensor-product B-spline function ϕ ∈ L2(R2), we
define the sampling operator Th : L2(Ω) 7→ ℓ2(Z2) as

(Thu)k := 2n⟨u, ϕn,k⟩, with k ∈ O2
h, (6.9)

where ϕn,k = 2nϕ(2n · −k). When a wavelet frame system associated to a refinable function ϕ is used in the
shrinkage algorithms, the underlying sampling is given by the operator Th. We denote the space ℓ2,h(O2

h) as the
collection of all vectors supported on the index set O2

h equipped with the following norm

∥v∥2ℓ2,h(O2
h)

=
∑
j∈O2

h

|vj |2h2.

Note that we have ∥Thu∥ℓ2,h(O2
h)

≤ C∥u∥L2(Ω) with some C independent of h (see e.g. [8]).

Given a t ∈ (0, te), let K = ⌊t/τ⌋. We define the discrete operator Mh,τ : ℓ2,h(O2
h) 7→ ℓ2,h(O2

h) as

Mh,τv :=
( K∏

k=0

W⊤SαkW
)
v, for v ∈ ℓ2,h(O2

h).

Note that the shrinkage operator Sα(d) defined in (2.28) is nonlinear in d, since α depends on d (see (6.7)).
Thus the product above means a product of compositions of nonlinear operators.

Definition 6.1. We say that the discrete algorithm (2.31) is stable, if for any ϵ > 0, there exist δ > 0 independent
of τ, h, such that for any u, v ∈ L2(Ω) with ∥u− v∥L2(Ω) < δ, we have

∥Mh,τThv −Mh,τThu∥ℓ2,h(O2
h)
< ϵ,

i.e. the set of operators {Mh,τTh}h,τ is equi-continuous.
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Now we show that {Mh,τTh}h,τ is indeed equi-continuous if Assumption 6.2 and 6.3 are satisfied.

Proposition 6.3. Algorithm (2.31), with threshold satisfying (6.6), is stable if Assumption 6.2 and 6.3 are
satisfied

Proof. Note that ∥W∥ℓ2,h(O2
h)

= ∥W⊤∥ℓ2,h(O2
h)

≤ 1 which is in fact true for all tight wavelet frame systems, we
have

∥Mh,τThv −Mh,τThu∥ℓ2,h(O2
h)

=
∥∥∥( K∏

k=0

W⊤SαkW
)
Thv −

( K∏
k=0

W⊤SαkW
)
Thu

∥∥∥
ℓ2,h(O2

h)

≤
∥∥∥SαK

(
W

(K−1∏
k=0

W⊤SαkW
)
Thv

)
− SαK

(
W

(K−1∏
k=0

W⊤SαkW
)
Thu

)∥∥∥
ℓ2,h(O2

h)

Let

dK
v = W

(K−1∏
k=0

W⊤SαkW
)
Thv and dK

u = W
(K−1∏

k=0

W⊤SαkW
)
Thu.

Then, we have

∥Mh,τThv −Mh,τThu∥ℓ2,h(O2
h)

≤
∥∥SαK (dK

v )− SαK (dK
u )

∥∥
ℓ2,h(O2

h)

=
∥∥dK

v · (1−α(dK
v ))− dK

u · (1−α(dK
u ))

∥∥
ℓ2,h(O2

h)

(Assumption 6.3) ≤
∥∥dK

v − dK
u

∥∥
ℓ2,h(O2

h)
≤

∥∥SαK−1(dK−1
v )− SαK−1(dK−1

u )
∥∥
ℓ2,h(O2

h)

· · ·
≤ ∥Thv − Thu∥ℓ2,h(O2

h)
≤ C∥v − u∥L2(Ω).

This shows that {Mh,τTh}h,τ is indeed equi-continuous on L2(Ω).

6.1.3 Convergence

We show that: well-posedness + consistency + stability ⇒ convergence. We first establish the following lemma
regarding the consistency between the sampling Th and the pointwise sampling for smooth functions. Given
u ∈ C(Ω), we denote the pointwise sampling operator Rhu as

(Rhu)k = u(hk), k ∈ O2
h. (6.10)

Then we have the following lemma.

Lemma 6.1. Let ϕ be a tensor-product B-spline refinable function, then we have, for every u ∈ C(Ω),

∥Thu−Rhu∥ℓ2,h(O2
h)

→ 0, as h→ 0. (6.11)

Proof. We first note that ∥ · ∥ℓ2,h(O2
h)

≤ ∥ · ∥ℓ1(O2
h)
. Thus, we focus on showing that

∥Thu−Rhu∥ℓ1(O2
h)

→ 0, as h→ 0. (6.12)

Let �k be the rectangular domain [ k1

2n ,
k1+1
2n ]× [ k2

2n ,
k2+1
2n ] with k ∈ O2

h. Then we have

∥Thu−Rhu∥ℓ1(O2
h)

=
∑
k∈O2

h

∣∣∣2n⟨u, ϕn,k⟩ − u(2−nk)
∣∣∣2−2n

=

∫
Ω

∑
k∈O2

h

∣∣∣2n⟨u, ϕn,k⟩ − u(2−nk)
∣∣∣χ�k

dx

=

∫
Ω

∣∣∣ ∑
k∈O2

h

2n⟨u, ϕn,k⟩χ�k
− u(2−nk)χ�k

∣∣∣dx.
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By [8, Lemma 4.1], for every u ∈ L1(Ω) ⊃ C(Ω) we have∫
Ω

∣∣∣ ∑
k∈O2

h

2n⟨u, ϕn,k⟩χ�k
(x)− u(x)

∣∣∣dx → 0, as n→ ∞.

On the other hand, the fact that for every u ∈ C(Ω)∫
Ω

∣∣∣ ∑
k∈O2

h

u(2−nk)χ�k
− u(x)

∣∣∣dx → 0, as n→ ∞

is well-known in real analysis. We then have (6.12) by triangular inequality.

Given any v ∈ L2(Ω) and a t ∈ (0, te), we define an operator M : L2(Ω) 7→ L2(Ω) as u(x, t) = M(v), where
u(·, t) ∈ L2(Ω) is a solution of (6.1) with u0 = v. Since the PDE (6.1) is well-posed w.r.t. the L2-norm [35], then
for any ϵ > 0, there exists δ > 0 such that for any ∥u − v∥L2(Ω) < δ, we have ∥Mu −Mv∥L2(Ω) < ϵ. In other
words, M is well-defined and continuous on L2(Ω).

Definition 6.2. A method Mh,τ is said to converge to M , if for any v ∈ L2(Ω), we have

∥ThMv −Mh,τThv∥ℓ2,h(O2
h)

→ 0 as τ, h→ 0.

Theorem 6.1. With Assumption 6.1-6.3 and assuming that Mv ∈ C∞(Ω) whenever v ∈ C∞(Ω), the iterative
algorithm (2.31) with threshold (6.6) converges to the nonlinear diffusion (6.1).

Proof. Given any u ∈ L2(Ω) and a given δ > 0, we can always find v ∈ C∞(Ω) such that ∥u− v∥L2(Ω) < δ. Then
by triangular inequality, we have

∥ThMu−Mh,τThu∥ℓ2,h(O2
h)

≤ ∥ThMu− ThMv∥ℓ2,h(O2
h)

+ ∥ThMv −Mh,τThv∥ℓ2,h(O2
h)

+ ∥Mh,τThv −Mh,τThu∥ℓ2,h(O2
h)
,

where the three terms on the right-hand-side of the inequality correspond to well-posedness, consistency and
stability respectively. Note that ∥ThMu− ThMv∥ℓ2,h(O2

h)
≤ CT ∥Mu−Mv∥L2(Ω). Thus, the first term above can

be made arbitrarily small for a properly chosen v due to well-posedness of the problem M . Same argument holds
for the last term above as well, due to stability in Proposition 6.3. We now show that

∥ThMv −Mh,τThv∥ℓ2,h(O2
h)

→ 0, as h, τ → 0.

Indeed, we have

∥ThMv −Mh,τThv∥ℓ2,h(O2
h)

≤ ∥ThMv −RhMv∥ℓ2,h(O2
h)

+ ∥RhMv −Mh,τRhv∥ℓ2,h(O2
h)

+ ∥Mh,τThv −Mh,τRhv∥ℓ2,h(O2
h)
.

By (6.11) and that Mv ∈ C∞(Ω), the first term goes to zero. By our previous consistency analysis in Proposition
6.1, we have the second term go to zero as well. Finally, following a similar proof of stability in Proposition 6.3,
we have

∥Mh,τThv −Mh,τRhv∥ℓ2,h(O2
h)

≤ ∥Thv −Rhv∥ℓ2,h(O2
h)

→ 0.

This concludes the proof of this theorem.

6.2 Behavior of the Generic Wavelet Frame Shrinkage (6.2)

We will analyze the asymptotic behavior of the iterative wavelet frame shrinkage (6.2) under suitable assumptions,
which is given as follows.

Assumptions 6.4. We make the following assumptions on the wavelet frame system we use and the threshold
function gℓ = gℓ(ξ1, · · · , ξL, h, τ):
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1. Let W be the transform operator of a tensor-product wavelet frame system constructed from a univariate

B-spline function, and assume that W̃ is the transform operator of the canonical duel system.

2. We assume that, for each 0 ≤ ℓ ≤ L, gℓ ∈ C1(RL), 0 ≤ gℓ ≤ 1 and∣∣∣ ∂
∂ξj

(
ξℓ

(
1− gℓ(ξ1, . . . , ξL, h, τ)

))∣∣∣ ≤ 1, ∀1 ≤ j ≤ L,

for every (ξ1, · · · , ξL) ∈ RL, and h, τ > 0 small enough.

Same as before, we assume Ω = (0, 1)2 is discretized by the dyadic grids {k2−n : 0 < k1, k2 < 2n, n ≥ 1}.
Then, h = 2−n and τ = O(2−np) for some p > 0. The value p comes naturally from the 2nd assumption of
Assumption 6.4 (e.g. p = 2 in Section 6.1). We define the adjoint operator of Th as T ∗

h : ℓ2,h(O2
h) 7→ L2(Ω):

T ∗
hv = 2−n

∑
j∈O2

h

vjϕn,j .

We note that ∥Thu∥ℓ2,h(O2
h)

≤ CT ∥u∥L2(Ω) and ∥T ∗
hu∥L2(Ω) ≤ CT ∥u∥ℓ2,h(O2

h)
.

With Assumption 6.4, we have the following theorem.

Theorem 6.2. Suppose all requirements in Assumption 6.4 are satisfied. For any given artificial time t > 0, let
K = ⌊t/τ⌋ be the stopping iteration of (6.2).

1. For any given initial data v ∈ L2(Ω), we denote the K step iterative procedure based on the first formula of
(6.2) as a nonlinear operator T ∗

hM
S
h Th : L2(Ω) 7→ L2(Ω):

T ∗
hM

S
h Thv := T ∗

h

( K∏
k=0

W̃⊤SαkW
)
Thv.

Then, for every v ∈ L2(Ω), the sequence {T ∗
hM

S
h Thv}h has a weakly converging subsequence in L2(Ω).

Furthermore, the iterative algorithm (6.2) is stable in the follow sense: for any ϵ > 0, there is a δ > 0
independent of h, such that for any ∥u− v∥L2(Ω) < δ, we have

∥T ∗
hM

S
h Thu− T ∗

hM
S
h Thv∥L2(Ω) < ϵ.

2. Denote the K step iterative procedure based on the second formula of (6.2) as a nonlinear operator T ∗
hM

T
h Th :

L2(Ω) 7→ L2(Ω):

T ∗
hM

T
h Thv := T ∗

h

( K∏
k=0

W̃⊤T θkW
)
Thv.

Same conclusions in 1. also hold for T ∗
hM

T
h Th.

Proof. We shall only prove part 1., since the proof of part 2. is similar. Note from the first set of assumptions of

Assumption 6.4, we have ∥W ∥ℓ2,h(O2
h)

= CW and ∥W̃ ∥ℓ2,h(O2
h)

= 1
CW

. Therefore, we have

∥T ∗
hM

S
h Thv∥L2(Ω) ≤

CT

CW

∥∥∥SαkW
(K−1∏

k=0

W̃⊤SαkW
)
Thv

∥∥∥
ℓ2,h(O2

h)

≤ CT

CW

∥∥∥W(K−1∏
k=0

W̃⊤SαkW
)
Thv

∥∥∥
ℓ2,h(O2

h)
≤ CT

∥∥∥(K−1∏
k=0

W̃⊤SαkW
)
Thv

∥∥∥
ℓ2,h(O2

h)

≤ · · · ≤ CT ∥Thv∥ℓ2,h(O2
h)

≤ C2
T ∥v∥L2(Ω),

where the second inequality follows from the assumption 0 ≤ gℓ ≤ 1. This shows that {T ∗
hM

S
h Thv}h is bounded,

hence it has a weakly converging subsequence in L2(Ω).
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On the other hand, using the second inequality of 2. of Assumption (6.4) and following a similar derivation
as in the proof of equi-continuity in Proposition 6.3, we can easily show that, for any u, v ∈ L2(Ω) and some
constant C > 0, we have

∥T ∗
hM

S
h Thu− T ∗

hM
S
h Thv∥L2(Ω) ≤ C∥u− v∥L2(Ω),

which gives us the stability.

7 Numerical Simulations and Comparisons

In this section, we conduct numerical experiments using some of the algorithms we discussed in earlier sections.
Recall the general image restoration model

Au = f + η,

where f is the observed image and η is assumed to be Gaussian white noise. We take image deblurring as the
specific image restoration problem, where A is the convolution operator with the kernel generated in MATLAB
by “fspecial(’gaussian’,11,1.5)”. To measure quality of the restored image, we use the PSNR value defined by

PSNR := −20 log10
∥u− ũ∥2

N
,

where u and ũ are the original and restored images respectively, and N is total number of pixels in u.
We will compare performance of some of the algorithms discussed earlier in this paper for image deblurring.

For convenience of the readers, we list these algorithms here. Note that all the parameters that are not specifically
mentioned below are chosen manually for optimal image restoration quality. For Algorithm 1 and 2, we stop our
iteration when we have the highest PSNR values of the restored images. For the rest of the algorithms, since we
have image restoration model embedded in the algorithms, we can let the iteration run until convergence. In our
experiments, we adopt the following stopping criterion for Algorithms 3-6:

∥uk − uk−1∥2/∥f∥2 < 10−5.

All of the following algorithms are implemented on a Windows laptop with Intel Core i7 processor (1.73 GHz)
and 8GB memory.

List of algorithms used for comparison.

1. Perona-Malik equation with standard discretization (PM-SD) [52]:

ut = div
(
g(|Gσ ∗ ∇u|2)∇u

)
. (PM)

We take g(ξ) = 1
1+ξ/K .

2. Perona-Malik equation discretized by Haar (PM-Haar) and piecewise linear (PM-Linear) B-spline wavelet
frame systems:

uk = W⊤Sαk−1(Wuk−1).

Here we choose the level of decomposition Lev = 1 for W . The shrinkage operator Sαk−1(dk−1) =
{Sαℓ,n(dk−1)(d

k−1) : 1 ≤ ℓ ≤ L} is chosen as in (3.21) for ℓ = 1, 2 with g(ξ) = 1/(1 + ξ/K). We
choose Sαℓ,n

for 3 ≤ ℓ ≤ L as in Corollary 3.2 with sℓ = |α1|+ |β1| = 2 and

gℓ

( C̃(1)
1 ξ1
h|β1|

,
C̃

(2)
2 ξ2
h|β2|

, . . . ,
C̃

(L)
2 ξL
h|βL|

)
= g

( ∑
|βℓ′ |=|βℓ|

ξ2ℓ′

C
(ℓ′)
βℓ′

hβℓ′

)
.

3. Iterative soft-thresholding algorithm by Haar (IST-Haar) and piecewise linear (IST-Linear) B-spline
wavelet frame systems:

uk = (I − µA⊤A)W⊤T 2
λ(Wuk−1) + µA⊤f .

Here we choose the level of decomposition Lev = 3 for W and λ is some fixed threshold.
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4. Adaptive multiplicative-thresholding by Haar (AMT-Haar) and piecewise linear (AMT-Linear) B-spline
wavelet frame systems:

uk = (I − µA⊤A)W⊤Sαk−1(Wuk−1) + µA⊤f .

Here we choose the level of decomposition Lev = 3 for W . We take

Sαk−1(Wuk−1) = {Sαl,ℓ,n(Wluk−1)(Wlu
k−1) : 0 ≤ l ≤ Lev− 1, 1 ≤ ℓ ≤ L},

where Wlu = {Wl,ℓu : 1 ≤ ℓ ≤ L}. The shrinkage operator Sαl,ℓ,n
is chosen the same as in (2) for l = 0

and Sαl,ℓ,n
= Sα0,ℓ,n

for l > 0.

5. Adaptive soft-thresholding by Haar (AST-Haar) and piecewise linear (AST-Linear) B-spline wavelet
frame systems:

uk = (I − µA⊤A)W⊤T 2
θk−1(Wuk−1) + µA⊤f .

Here, the threshold

θk−1 =
{
θl,ℓ(Wl,1u

k−1,Wl,2u
k−1, . . . ,Wl,Lu

k−1) : 0 ≤ l ≤ Lev− 1, 1 ≤ ℓ ≤ L
}
,

is chosen as

θl,ℓ(ξ1, ξ2, . . . , ξL) = Cℓg
( ∑

|βℓ′ |=|βℓ|

ξ2ℓ′

C
(ℓ′)
βℓ′

hβℓ′

)
,

for all l = 0, 1, . . . ,Lev− 1. Here we choose g = 1/(1 + x0.25/K), Lev = 3 and Cℓ > 0 some fixed constants.

6. Image-restoration embedded diffusion with standard discretization (IRED-SD) [52]:

ut = div
(
g(|Gσ ∗ ∇u|2)∇u

)
− κA⊤(Au− f). (IRED)

Table 1: Comparisons for image deconvolution. PSNR values of the restored images by Algorithm (1) and (2)
(without the knowledge of image restoration model): PM-SD, PM-Haar and PM-Linear. The bolded number
indicates the best PSNR value for each image example.

Image Name PM-SD PM-Haar PM-Linear
Barbara 24.8097 24.9080 24.9625
Boat 23.4765 23.5915 23.6089

Peppers 23.6635 23.8096 23.8203

Table 2: Comparisons for image deconvolution. PSNR values of the restored images by algorithms (3)-(6): IST-
Haar, IST-Linear, AMT-Haar, AMT-Linear, AST-Haar, AST-Linear and IRED-SD. The bolded number indicates
the best PSNR value for each image example.

Image Name IST-Haar IST-Linear AMT-Haar AMT-Linear AST-Haar AST-Linear IRED-SD
Barbara 25.5111 25.5204 25.5987 25.5651 25.4221 25.5398 25.5482
Boat 24.6767 24.7341 24.8784 24.7906 24.7158 24.9417 24.6955

Peppers 24.9834 25.0974 25.1419 25.4677 25.0221 25.3208 25.2149

Our results in Table 1 shows that the discretization provided by wavelet frame shrinkage is better than
the standard discretization by [52] in terms of restoration quality. The results in Table 2 shows that with
image restoration model being properly incorporated in the algorithms, better results can be obtained. More
importantly, the new algorithms AMT and AST outperform the IST algorithm that is commonly used in wavelet
frame based image restoration problems. In addition, the AMT algorithm, which is a discretization of the IRED,
generates better results than the standard discretization of the IRED.
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Figure 1: Test images: original (first row) and observed (second row). The PSNR values of the observed images
are 23.4519 (Barbara), 22.4428 (Boat) and 22.5482 (Peppers). The image size of “Barbara” is 195 × 195, and
both “Boat” and “Peppers” has size 256× 256.

In Section 5.2, we proposed accelerated version of AMT and IRED. The accelerated algorithm and PDE
produce results of similar quality as their corresponding non-accelerated versions, while the total number of
iterations and computation time are greatly reduced. For the same image deblurring problem and with the
same stopping criterion, we implemented the accelerated (APG) version of AMT and IRED following the generic
formulas of (5.15) and (5.20). To be more precise, we implement the following accelerated AMT (A-AMT)

uk = (I − µA⊤A)W⊤Sαk−1

(
(1 + γk−1)Wuk−1 − γk−1Wuk−2

)
+ µA⊤f , k = 1, 2, · · · ,

where the shrinkage operator Sα is chosen exactly the same as that of Algorithm 4 above. The accelerated IRED
takes the form

utt + Cut = div
(
g(|Gσ ∗ ∇u|2)∇u

)
− κA⊤(Au− f). (A-IRED),

which is discretized by the standard finite differencing [52]. We shall call the A-IRED discretized by such finite
differencing as A-IRED-FD. The parameters for A-AMT are chosen exactly the same as AMT, and we choose
C = 0.2 for A-IRED. A comparison of efficiency is summarized in Table 3.

Table 3: Comparisons for image deconvolution. PSNR values of the restored images by algorithms (3)-(6): IST-
Haar, IST-Linear, AMT-Haar, AMT-Linear, AST-Haar, AST-Linear and IRED-SD. The bolded number indicates
the best PSNR value for each image example.

AMT-Linear A-AMT-Linear IRED-FD A-IRED-FD
Image Name Time (sec.) PSNR Time (sec) PSNR Time (sec) PSNR Time (sec) PSNR

Barbara 23.38 25.5651 15.34 25.5657 7.11 25.5482 3.50 25.5555
Boat 40.44 24.7906 23.27 24.7322 9.62 24.6955 5.06 24.6916

Peppers 55.95 25.4677 31.46 25.4678 17.21 25.2149 8.73 25.2201
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