730 research outputs found

    Optimal design of hybrid optical digital imaging systems

    Get PDF
    Several types of pupil modulation have been reported to decrease the aberration variance of the modulation-transfer-function (MTF) in aberration-tolerant hybrid optical-digital imaging systems. It is common to enforce restorability constraints on the MTF, requiring trade of aberration-tolerance and noise-gain. In this thesis, instead of optimising specific MTF characteristics, the expected imaging-error of the joint design is minimised directly. This method is used to compare commonly used phase-modulation functions. The analysis shows how optimal imaging performance is obtained using moderate phasemodulation, and more importantly, it shows the relative merits of different functions. It is shown that the technique is readily integrable with off-the-shelf optical design software, which is demonstrated with the optimisation of a wide-angle reflective system with significant off-axis aberrations. The imaging error can also be minimised for amplitudeonly masks. It is shown that phase aberrations in an imaging system can be mitigated using binary amplitude masks. This offers a low-cost, transmission-mode alternative to phase correction as used in active and adaptive optics. More efficient masks can be obtained by the optimisation of the imaging fidelity

    Phase control and measurement in digital microscopy

    Get PDF
    The ongoing merger of the digital and optical components of the modern microscope is creating opportunities for new measurement techniques, along with new challenges for optical modelling. This thesis investigates several such opportunities and challenges which are particularly relevant to biomedical imaging. Fourier optics is used throughout the thesis as the underlying conceptual model, with a particular emphasis on three--dimensional Fourier optics. A new challenge for optical modelling provided by digital microscopy is the relaxation of traditional symmetry constraints on optical design. An extension of optical transfer function theory to deal with arbitrary lens pupil functions is presented in this thesis. This is used to chart the 3D vectorial structure of the spatial frequency spectrum of the intensity in the focal region of a high aperture lens when illuminated by linearly polarised beam. Wavefront coding has been used successfully in paraxial imaging systems to extend the depth of field. This is achieved by controlling the pupil phase with a cubic phase mask, and thereby balancing optical behaviour with digital processing. In this thesis I present a high aperture vectorial model for focusing with a cubic phase mask, and compare it with results calculated using the paraxial approximation. The effect of a refractive index change is also explored. High aperture measurements of the point spread function are reported, along with experimental confirmation of high aperture extended depth of field imaging of a biological specimen. Differential interference contrast is a popular method for imaging phase changes in otherwise transparent biological specimens. In this thesis I report on a new isotropic algorithm for retrieving the phase from differential interference contrast images of the phase gradient, using phase shifting, two directions of shear, and non--iterative Fourier phase integration incorporating a modified spiral phase transform. This method does not assume that the specimen has a constant amplitude. A simulation is presented which demonstrates good agreement between the retrieved phase and the phase of the simulated object, with excellent immunity to imaging noise

    Phase control and measurement in digital microscopy

    Get PDF
    The ongoing merger of the digital and optical components of the modern microscope is creating opportunities for new measurement techniques, along with new challenges for optical modelling. This thesis investigates several such opportunities and challenges which are particularly relevant to biomedical imaging. Fourier optics is used throughout the thesis as the underlying conceptual model, with a particular emphasis on three--dimensional Fourier optics. A new challenge for optical modelling provided by digital microscopy is the relaxation of traditional symmetry constraints on optical design. An extension of optical transfer function theory to deal with arbitrary lens pupil functions is presented in this thesis. This is used to chart the 3D vectorial structure of the spatial frequency spectrum of the intensity in the focal region of a high aperture lens when illuminated by linearly polarised beam. Wavefront coding has been used successfully in paraxial imaging systems to extend the depth of field. This is achieved by controlling the pupil phase with a cubic phase mask, and thereby balancing optical behaviour with digital processing. In this thesis I present a high aperture vectorial model for focusing with a cubic phase mask, and compare it with results calculated using the paraxial approximation. The effect of a refractive index change is also explored. High aperture measurements of the point spread function are reported, along with experimental confirmation of high aperture extended depth of field imaging of a biological specimen. Differential interference contrast is a popular method for imaging phase changes in otherwise transparent biological specimens. In this thesis I report on a new isotropic algorithm for retrieving the phase from differential interference contrast images of the phase gradient, using phase shifting, two directions of shear, and non--iterative Fourier phase integration incorporating a modified spiral phase transform. This method does not assume that the specimen has a constant amplitude. A simulation is presented which demonstrates good agreement between the retrieved phase and the phase of the simulated object, with excellent immunity to imaging noise

    Principles and applications of wavefront coding

    Get PDF
    Abstract unavailable please refer to PD

    Light sheet adaptive optics microscope for 3D live imaging

    Get PDF
    Optical microscopy is still the main research tool for many biological studies. Indeed with the advent of genetic manipulation and specifically, the use of fluorescent protein expressing in animals and plants it has actually seen a renaissance in the past ten years, in particular with the development of novel techniques such as CARS, PALM, STORM, STED and SPIM. In all of microscopy methods one has to look through the sample at some point. The sample thus adds an additional and uncontrolled optical path, which leads to aberrations in the final image. Adaptive optics (AO) is a way of removing these unwanted aberrations which can cause image degradation and even potentially artifacts within the image. This thesis is concerned with the implementation of AO in non scanning microscopes and presents some novel methods both in wavefront sensored and sensorless configurations. A first implementation of AO on the emission path of a light sheet microscope is also presented

    Perceptual Image Quality Of Launch Vehicle Imaging Telescopes

    Get PDF
    A large fleet (in the hundreds) of high quality telescopes are used for tracking and imaging of launch vehicles during ascent from Cape Canaveral Air Force Station and Kennedy Space Center. A maintenance tool has been development for use with these telescopes. The tool requires rankings of telescope condition in terms of the ability to generate useful imagery. It is thus a case of ranking telescope conditions on the basis of the perceptual image quality of their imagery. Perceptual image quality metrics that are well-correlated to observer opinions of image quality have been available for several decades. However, these are quite limited in their applications, not being designed to compare various optical systems. The perceptual correlation of the metrics implies that a constant image quality curve (such as the boundary between two qualitative categories labeled as excellent and good) would have a constant value of the metric. This is not the case if the optical system parameters (such as object distance or aperture diameter) are varied. No published data on such direct variation is available and this dissertation presents an investigation made into the perceptual metric responses as system parameters are varied. This investigation leads to some non-intuitive conclusions. The perceptual metrics are reviewed as well as more common metrics and their inability to perform in the necessary manner for the research of interest. Perceptual test methods are also reviewed, as is the human visual system. iv Image formation theory is presented in a non-traditional form, yielding the surprising result that perceptual image quality is invariant under changes in focal length if the final displayed image remains constant. Experimental results are presented of changes in perceived image quality as aperture diameter is varied. Results are analyzed and shortcomings in the process and metrics are discussed. Using the test results, predictions are made about the form of the metric response to object distance variations, and subsequent testing was conducted to validate the predictions. The utility of the results, limitations of applicability, and the immediate ability to further generalize the results is presented

    Light sheet adaptive optics microscope for 3D live imaging

    Full text link
    • …
    corecore