1,363 research outputs found

    Four-coloring P6-free graphs

    Get PDF
    © Maria Chudnovsky, Sophie Spirkl, Mingxian Zhong | ACM} 2019. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in Proceedings of the 2019 Annual ACM-SIAM Symposium on Discrete Algorithms, https://doi.org/10.1137/1.9781611975482.76In this paper we present a polynomial time algorithm for the 4-COLORING PROBLEM and the 4-PRECOLORING EXTENSION problem restricted to the class of graphs with no induced six-vertex path, thus proving a conjecture of Huang. Combined with previously known results this completes the classification of the complexity of the 4-coloring problem for graphs with a connected forbidden induced subgraph.Supported by NSF grant DMS-1550991 and US Army Research Office grant W911NF-16-1-0404

    Complexity of Coloring Graphs without Paths and Cycles

    Full text link
    Let PtP_t and CℓC_\ell denote a path on tt vertices and a cycle on ℓ\ell vertices, respectively. In this paper we study the kk-coloring problem for (Pt,Cℓ)(P_t,C_\ell)-free graphs. Maffray and Morel, and Bruce, Hoang and Sawada, have proved that 3-colorability of P5P_5-free graphs has a finite forbidden induced subgraphs characterization, while Hoang, Moore, Recoskie, Sawada, and Vatshelle have shown that kk-colorability of P5P_5-free graphs for k≥4k \geq 4 does not. These authors have also shown, aided by a computer search, that 4-colorability of (P5,C5)(P_5,C_5)-free graphs does have a finite forbidden induced subgraph characterization. We prove that for any kk, the kk-colorability of (P6,C4)(P_6,C_4)-free graphs has a finite forbidden induced subgraph characterization. We provide the full lists of forbidden induced subgraphs for k=3k=3 and k=4k=4. As an application, we obtain certifying polynomial time algorithms for 3-coloring and 4-coloring (P6,C4)(P_6,C_4)-free graphs. (Polynomial time algorithms have been previously obtained by Golovach, Paulusma, and Song, but those algorithms are not certifying); To complement these results we show that in most other cases the kk-coloring problem for (Pt,Cℓ)(P_t,C_\ell)-free graphs is NP-complete. Specifically, for ℓ=5\ell=5 we show that kk-coloring is NP-complete for (Pt,C5)(P_t,C_5)-free graphs when k≥4k \ge 4 and t≥7t \ge 7; for ℓ≥6\ell \ge 6 we show that kk-coloring is NP-complete for (Pt,Cℓ)(P_t,C_\ell)-free graphs when k≥5k \ge 5, t≥6t \ge 6; and additionally, for ℓ=7\ell=7, we show that kk-coloring is also NP-complete for (Pt,C7)(P_t,C_7)-free graphs if k=4k = 4 and t≥9t\ge 9. This is the first systematic study of the complexity of the kk-coloring problem for (Pt,Cℓ)(P_t,C_\ell)-free graphs. We almost completely classify the complexity for the cases when k≥4,ℓ≥4k \geq 4, \ell \geq 4, and identify the last three open cases

    Exhaustive generation of kk-critical H\mathcal H-free graphs

    Full text link
    We describe an algorithm for generating all kk-critical H\mathcal H-free graphs, based on a method of Ho\`{a}ng et al. Using this algorithm, we prove that there are only finitely many 44-critical (P7,Ck)(P_7,C_k)-free graphs, for both k=4k=4 and k=5k=5. We also show that there are only finitely many 44-critical graphs (P8,C4)(P_8,C_4)-free graphs. For each case of these cases we also give the complete lists of critical graphs and vertex-critical graphs. These results generalize previous work by Hell and Huang, and yield certifying algorithms for the 33-colorability problem in the respective classes. Moreover, we prove that for every tt, the class of 4-critical planar PtP_t-free graphs is finite. We also determine all 27 4-critical planar (P7,C6)(P_7,C_6)-free graphs. We also prove that every P10P_{10}-free graph of girth at least five is 3-colorable, and determine the smallest 4-chromatic P12P_{12}-free graph of girth five. Moreover, we show that every P13P_{13}-free graph of girth at least six and every P16P_{16}-free graph of girth at least seven is 3-colorable. This strengthens results of Golovach et al.Comment: 17 pages, improved girth results. arXiv admin note: text overlap with arXiv:1504.0697

    Complexity of C_k-Coloring in Hereditary Classes of Graphs

    Get PDF
    For a graph F, a graph G is F-free if it does not contain an induced subgraph isomorphic to F. For two graphs G and H, an H-coloring of G is a mapping f:V(G) -> V(H) such that for every edge uv in E(G) it holds that f(u)f(v)in E(H). We are interested in the complexity of the problem H-Coloring, which asks for the existence of an H-coloring of an input graph G. In particular, we consider H-Coloring of F-free graphs, where F is a fixed graph and H is an odd cycle of length at least 5. This problem is closely related to the well known open problem of determining the complexity of 3-Coloring of P_t-free graphs. We show that for every odd k >= 5 the C_k-Coloring problem, even in the precoloring-extension variant, can be solved in polynomial time in P_9-free graphs. On the other hand, we prove that the extension version of C_k-Coloring is NP-complete for F-free graphs whenever some component of F is not a subgraph of a subdivided claw
    • …
    corecore