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Abstract

In this paper we present a polynomial time algorithm for the 4-coloring problem and
the 4-precoloring extension problem restricted to the class of graphs with no induced six-
vertex path, thus proving a conjecture of Huang. Combined with previously known results
this completes the classification of the complexity of the 4-coloring problem for graphs with a
connected forbidden induced subgraph.
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1 Introduction

All graphs in this paper are finite and simple. We use [k] to denote the set {1, . . . , k}. Let G be
a graph. A k-coloring of G is a function f : V (G) → [k]. A k-coloring is proper if for every edge
uv ∈ E(G), f(u) 6= f(v), and G is k-colorable if G has a proper k-coloring. The k-coloring
problem is the problem of deciding, given a graph G, if G is k-colorable. This problem is well-
known to be NP -hard for all k ≥ 3.

A function L : V (G) → 2[k] that assigns a subset of [k] to each vertex of a graph G is a k-list
assignment for G. For a k-list assignment L, a function f : V (G) → [k] is an L-coloring if f is a
k-coloring of G and f(v) ∈ L(v) for all v ∈ V (G). A graph G is L-colorable if G has a proper L-
coloring. We denote by X0(L) the set of all vertices v of G with |L(v)| = 1. The k-list coloring
problem is the problem of deciding, given a graph G and a k-list assignment L, if G is L-colorable.
Since this generalizes the k-coloring problem, it is also NP -hard for all k ≥ 3.

A k-precoloring (G,X, f) of a graph G is a function f : X → [k] for a set X ⊆ V (G) such that
f is a proper k-coloring of G|X. Equivalently, a k-precoloring is a k-list assignment L in which
|L(v)| ∈ {1, k} for all v ∈ V (G). A k-precoloring extension for (G,X, f) is a proper k-coloring g of
G such that g|X = f |X , and the k-precoloring extension problem is the problem of deciding,
given a graph G and a k-precoloring (G,X, f), if (G,X, f) has a k-precoloring extension.

We denote by Pt the path with t vertices. Given a path P , its interior is the set of vertices
that have degree two in P . We denote the interior of P by P ∗. A Pt in a graph G is a sequence
v1 − . . . − vt of pairwise distinct vertices where for i, j ∈ [t], vi is adjacent to vj if and only if
|i− j| = 1. We denote by V (P ) the set {v1, . . . , vt}, and if a, b ∈ V (P ), say a = vi and b = vj and
i < j, then a − P − b is the path vi − vi+1 − . . . − vj . A graph is Pt-free if there is no Pt in G.
Throughout the paper by “polynomial time” or “polynomial size” we mean running time, or size,
that is polynomial in |V (G)|.

Since the k-coloring problem and the k-precoloring extension problem are NP -hard
for k ≥ 3, their restrictions to graphs with a forbidden induced subgraph have been extensively
studied; see [2, 6] for a survey of known results. In particular, the following is known (given a graph
H, we say that a graph G is H-free if no induced subgraph of G is isomorphic to H):

Theorem 1 ([6]). Let H be a (fixed) graph, and let k > 2. If the k-coloring problem can
be solved in polynomial time when restricted to the class of H-free graphs, then every connected
component of H is a path.

Thus if we assume that H is connected, then the question of determining the complexity of k-
coloring H-free graph is reduced to studying the complexity of coloring graphs with certain induced
paths excluded, and a significant body of work has been produced on this topic. Below we list a
few such results.

Theorem 2 ([1]). The 3-coloring problem can be solved in polynomial time for the class of
P7-free graphs.

Theorem 3 ([4]). The k-coloring problem can be solved in polynomial time for the class of
P5-free graphs.

Theorem 4 ([5]). The 4-coloring problem is NP -complete for the class of P7-free graphs.

Theorem 5 ([5]). For all k ≥ 5, the k-coloring problem is NP -complete for the class of P6-free
graphs.
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The only cases for which the complexity of k-coloring Pt-free graphs is not known are k = 4,
t = 6, and k = 3, t ≥ 8.

The main result of this paper is the following:

Theorem 6. The 4-precoloring extension problem can be solved in polynomial time for the
class of P6-free graphs.

In contrast, the 4-list coloring problem restricted to P6-free graphs is NP -hard as proved
by Golovach, Paulusma, and Song [6]. As an immediate corollary of Theorem 6, we obtain that
the 4-coloring problem for P6-free graphs is also solvable in polynomial time. This proves a
conjecture of Huang [5], thus resolving the former open case above, and completes the classification
of the complexity of the 4-coloring problem for graphs with a connected forbidden induced
subgraph.

1.1 Preliminary and Sketch of the Proof

We start with some notations. Let G be a graph. For X ⊆ V (G) we denote by G|X the subgraph
induced by G on X, and by G \X the graph G|(V (G) \X). If X = {x}, we write G \ x to mean
G \ {x}. For disjoint subsets A,B ⊂ V (G) we say that A is complete to B if every vertex of A is
adjacent to every vertex of B, and that A is anticomplete to B if every vertex of A is non-adjacent
to every vertex of B. If A = {a} we write a is complete (or anticomplete) to B to mean {a} that
is complete (or anticomplete) to B. If a 6∈ B is not complete and not anticomplete to B, we say
that a is mixed on B. Finally, if H is an induced subgraph of G and a ∈ V (G) \V (H), we say that
a is complete to, anticomplete to, or mixed on H if a is complete to, anticomplete to, or mixed on
V (H), respectively. For v ∈ V (G) we write NG(v) (or N(v) when there is no danger of confusion)
to mean the set of vertices of G that are adjacent to v. Observe that since G is simple, v 6∈ N(v).
For A ⊆ V (G), an attachment of A is a vertex of V (G) \ A complete to A. For B ⊆ V (G) \ A we
denote by B(A) the set of attachments of A in B. If F = G|A, we sometimes write B(F ) to mean
B(V (F )).

Given a list assignment L for G, we say that the pair (G,L) is colorable if G is L-colorable. For
X ⊆ V (G), we write (G|X,L) to mean the list coloring problem where we restrict the domain of the
list assignment L to X. Let X ⊂ V (G) be such that |L(x)| = 1 for every x ∈ X, and let Y ⊂ V (G).
We say that a list assignment M is obtained from L by updating Y from X if M(v) = L(v) for
every v 6∈ Y , and M(v) = L(v) \

⋃
x∈N(v)∩X{L(x)} for every v ∈ Y . If Y = V (G), we say that

M is obtained from L by updating from X. If M is obtained from L by updating from X0(L), we
say that M is obtained from L by updating. Let L = L0, and for i ≥ 1 let Li be obtained from
Li−1 by updating. If Li = Li−1, we say that Li is obtained from L by updating exhaustively. Since
0 ≤

∑
v∈V (G) |Lj(v)| <

∑
v∈V (G) |Lj−1(v)| ≤ 4|V (G)| for all j < i, it follows that i ≤ 4|V (G)| and

thus Li can be computed from L in polynomial time.
An excellent starred precoloring of a graph G is a six-tuple P = (G,S,X0, X, Y ∗, f) such that

(A) f : S ∪X0 → {1, 2, 3, 4} is a proper coloring of G|(S ∪X0);

(B) V (G) = S ∪X0 ∪X ∪ Y ∗;

(C) G|S is connected and no vertex in V (G) \ S is complete to S;

(D) every vertex in X has neighbors of at least two different colors (with respect to f) in S;

(E) no vertex in X is mixed on a component of G|Y ∗; and
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(F) for every component of G|Y ∗, there is a vertex in S ∪X0 ∪X complete to it.

We call S the seed of P . We define two list assignments associated with P . First, define LP (v) =
{f(v)} for every v ∈ S∪X0, and let LP (v) = {1, 2, 3, 4}\(f(N(v)∩S)) for v 6∈ S∪X0. Second, MP

is the list assignment obtained as follows. First, define M1 to be the list assignment for G|(X ∪X0)
obtained from LP | {X ∪X0} by updating exhaustively; let X1 = {x ∈ X ∪ X0 : |M1(x1)| = 1}.
Now define MP (v) = LP (v) if v 6∈ X ∪ X0, and MP (v) = M1(v) if v ∈ X ∪ X0. Let X0(P ) =
X0(MP ). Then S ∪X0 ⊆ X0(P ). A precoloring extension of P is a proper 4-coloring c of G such
that c(v) = f(v) for every v ∈ S ∪ X0; it follows that MP (v) = {c(v)} for every v ∈ X0(P ).
It will often be convenient to assume that X0 = X0(P ) \ S, and this assumption can be made
without loss of generality. Note that in this case, MP (v) = LP (v) for all v ∈ X. A subset Q of
X is orthogonal if there exist a, b ∈ {1, 2, 3, 4} such that for every q ∈ Q either MP (q) = {a, b}
or MP (q) = {1, 2, 3, 4} \ {a, b}. We say that P is orthogonal if N(y) ∩ X is orthogonal for every
y ∈ Y ∗.

For an excellent starred precoloring P and a collection excellent starred L of precolorings, we
say that L is an equivalent collection for P (or that P is equivalent to L) if P has a precoloring
extension if and only if at least one of the precolorings in L has a precoloring extension, and a
precoloring extension of P can be constructed from a precoloring extension of a member of L in
polynomial time.

We break the proof of Theorem 6 into two independent parts. In one part, we reduce the
4-precoloring extension problem for P6-free graphs to determining if an excellent starred
precolorings of a P6-free graph has a precoloring extension, and finding one if it exists. In fact,
we restrict the problem further, by ensuring that there is a universal bound (that works for all
4-precolorings of all P6-free graphs) on the size of the seed of the excellent starred precolorings that
we need to consider. More precisely, we prove:

Theorem 7. There exists an integer C > 0 and a polynomial-time algorithm with the following
specifications.

Input: A 4-precoloring (G,X0, f) of a P6-free graph G.

Output: A collection L of excellent starred precolorings of G such that

1. If for every P ′ ∈ L we can in polynomial time either find a precoloring extension of P ′, or
determine that none exists, then we can construct a 4-precoloring extension of (G,X0, f) in
polynomial time, or determine that none exists:

2. |L| ≤ |V (G)|C ; and

3. for every (G′, S′, X ′0, X
′, Y ∗, f ′) ∈ L,

• |S′| ≤ C;

• X0 ⊆ S′ ∪X ′0;

• G′ is an induced subgraph of G; and

• f ′|X0 = f |X0.

The proof of Theorem 7 is hard and technical, so we outline the idea here and leave the detailed
proof to the appendix. It consists of several steps. At each step we replace the problem that we
are trying to solve by a polynomially sized collection of simpler problems, where by “simpler” we
mean “closer to being an excellent starred precoloring”. The strategy at every step is to “guess”
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(by exhaustively enumerating) a bounded number of vertices that have certain key properties, and
their colors, add these vertices to the seed, and show that the resulting precoloring is better than
the one we started with. The other part of the proof of Theorem 6 is an algorithm that tests
in polynomial time if an excellent starred precoloring (where the size of the seed is fixed) has a
precoloring extension. The goal of the present paper is to solve this problem. We prove:

Theorem 8. For every positive integer C there exists a polynomial-time algorithm with the follow-
ing specifications.

Input: An excellent starred precoloring P = (G,S,X0, X, Y ∗, f) of a P6-free graph G with |S| ≤ C.

Output: A precoloring extension of P or a determination that none exists.

Clearly, Theorem 7 and Theorem 8 together imply Theorem 6. The proof of Theorem 8 consists
of several steps. At each step we replace the problem that we are trying to solve by a polynomially
sized collection of simpler problems, and the problems created in the last step can be encoded
via 2-SAT. Here is an outline of the proof. First we show that an excellent starred precoloring
P of a P6-free graph G can be replaced by a polynomially sized collection L of excellent starred
precolorings of G that have an additional property (to which we refer as “being orthogonal”) and
P has a precoloring extension if and only if some member of L does. Thus in order to prove
Theorem 8, it is enough to be able to test if an orthogonal excellent starred precoloring of a P6-free
graph has a precoloring extension. Our next step is an algorithm whose input is an orthogonal
excellent starred precoloring P of a P6-free graph G, and whose output is a “companion triple” for
P . A companion triple consists of a graph H that may not be P6-free, but certain parts of it are, a
list assignment L for H, and a correspondence function h that establishes the connection between
H and P . Moreover, in order to test if P has a precoloring extension, it is enough to test if (H,L)
is colorable.

The next step of the algorithm is replacing (H,L) by a polynomially sized collection M of list
assignments for H, such that (H,L) is colorable if and only if there exists L′ ∈ L such that (H,L′)
is colorable, and in addition for every L′ ∈ L the pair (H,L′) is “insulated”. Being insulated
means that H is the union of four induced subgraphs H1, . . . ,H4, and in order to test if (H,L′) is
colorable, it is enough to test if (Hi, L

′) is colorable for each i ∈ {1, 2, 3, 4}. The final step of the
algorithm is converting the problem of coloring each (Hi, L

′) into a 2-SAT problem, and solving it
in polynomial time. Moreover, at each step of the proof, if a coloring exists, then we can find it,
and convert in polynomial time into a precoloring extension of P .

This paper is organized as follows. In Section 2 we produce a collection L of orthogonal excellent
starred precolorings. In Section 3 we construct a companion triple for an orthogonal precoloring.
In Section 4 we start with a precoloring and its companion triple, and construct a collection M of
lists L′ such that every pair (H,L′) is insulated. Finally, in Section 5 we describe the reduction to
2-SAT. Section 6 contains the proof of Theorem 8 and of Theorem 6. In the appendix, we give a
detailed proof of Theorem 7.

2 From Excellent to Orthogonal

Let P = (G,S,X0, X, Y ∗, f) be an excellent starred precoloring. For v ∈ X ∪ Y ∗, the type of v
is the set N(v) ∩ S. Thus the number of possible types for a given precoloring is at most 2|S|.
In this section we will prove several lemmas that allow us to replace a given precoloring by an
equivalent polynomially sized collection of “nicer” precolorings, with the additional property that
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the size of the seed of each of the new precolorings is bounded by a function of the size of the seed
of the precoloring we started with. Keeping the size of the seed bounded allows us to maintain the
property that the number of different types of vertices of X ∪ Y ∗ is bounded, and therefore, from
the point of view of running time, we can always consider each type separately.

For T ⊆ S we denote by LP (T ) the set {1, 2, 3, 4} \
⋃

v∈T {f(v)}. Thus if v is of type T , then
LP (v) = LP (T ). For T ⊆ S and U ⊆ X ∪Y ∗ we denote by U(T ) the set of vertices of U of type T .

A subset Q of X is orthogonal if there exist a, b ∈ {1, 2, 3, 4} such that for every q ∈ Q either
MP (q) = {a, b} or MP (q) = {1, 2, 3, 4}\{a, b}. We say that P is orthogonal if N(y)∩X is orthogonal
for every y ∈ Y ∗.

The goal of this section is to prove that for every excellent starred precoloring P of a P6-free
graph G, there is a an equivalent collection L(P ) of orthogonal excellent starred precolorings of G.
We start with a few technical lemmas.

Lemma 1. Let P = (G,S,X0, X, Y ∗, f) be an excellent starred precoloring of a P6-free graph G.
Let i, j ∈ {1, 2, 3, 4} and k ∈ {1, 2, 3, 4} \ {i, j}. Let Ti, Tj be types such that LP (Ti) = {i, k} and
LP (Tj) = {j, k}, and let xi, x

′
i ∈ X(Ti) and xj , x

′
j ∈ X(Tj). Suppose that yi, yj ∈ Y ∗ are such that

i, j ∈ MP (yi) ∩MP (yj), where possibly yi = yj. Suppose further that the only possible edge among
xi, x

′
i, xj , x

′
j is xixj, and yi is adjacent to x′i and not to xi, and yj is adjacent to x′j and not to xj.

Then there does not exist y ∈ Y ∗ with i, j ∈ MP (y) and such that y is complete to {xi, xj} and
anticomplete to {x′i, x′j}.

Proof. Suppose such y exists. Since no vertex of X is mixed on a component of G|Y ∗, it follows
that y is anticomplete to {yi, yj}. Since xi, x

′
i ∈ X and i, k ∈ LP (Ti), it follows that there exists

sj ∈ Ti with LP (sj) = {j}. Similarly, there exists si ∈ Tj with LP (si) = {i}. Since i ∈ LP (Ti) and
j ∈ LP (Tj), it follows that si is anticomplete to {xi, x′i} and sj is anticomplete to {xj , x′j}.

Since i, j ∈MP (yi)∩MP (yj)∩MP (y) it follows that {si, sj} is anticomplete to {yi, yj , y}. Since
x′i − sj − xi − y− xj − si − x′j (possibly shortcutting through xixj) is not a P6 in G, it follows that
si is adjacent to sj . If yi is non-adjacent to x′j , and yj is non-adjacent to x′i, then yi 6= yj , and since
P is excellent, yi is non-adjacent to yj , and so yi− x′i− sj − si− x′j − yj is a P6, a contradiction, so
we may assume that yi is adjacent to x′j . But now x′j − yi−x′i− sj −xi− y is a P6, a contradiction.
This proves Lemma 1.

Lemma 2. Let P = (G,S,X0, X, Y ∗, f) be an excellent starred precoloring of a P6-free graph G.
Let {i, j, k, l} = {1, 2, 3, 4}. Let Ti, Tj be types such that LP (Ti) = {i, k} and LP (Tj) = {j, k},
and let xi, x

′
i ∈ X(Ti) and xj , x

′
j ∈ X(Tj). Let yii, y

i
j ∈ Y ∗ with i, l ∈ MP (yii) ∩MP (yij), and let

yji , y
j
j ∈ Y ∗ with j, l ∈MP (yji ) ∩MP (yjj ), where possibly yii = yij and yji = yjj . Assume that

• some component Ci of G|Y ∗ contains both yii, y
j
i ;

• some component Cj of G|Y ∗ contains both yij , y
j
j ;

• for every t ∈ {i, j} there is a path M in Ct from yit to yjt with l ∈MP (u) for every u ∈ V (M);

• the only possible edge among xi, x
′
i, xj , x

′
j is xixj;

• yii, y
j
i are adjacent to x′i and not to xi;

• yij , y
i
j are adjacent to x′j and not to xj.

Then there do not exist yi, yj ∈ Y ∗ with i, l ∈MP (yi), j, l ∈MP (yj) and such that
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• some component C of G|Y ∗ contains both yi and yj, and

• l ∈MP (u) for every u ∈ V (C), and

• {yi, yj} is complete to {xi, xj} and anticomplete to {x′i, x′j}.

Proof. Suppose such yi, yj exist. Since P is an excellent starred precoloring, no vertex of X is mixed
on a component of G|Y ∗, and therefore V (C) is anticomplete to V (Ci) ∪ V (Cj). Since xi, x

′
i ∈ X

and i, k ∈ LP (Ti), it follows that there exists sj ∈ Ti with LP (sj) = {j}. Similarly, there exists
si ∈ Tj with LP (si) = {i}. Since i ∈ LP (Ti) and j ∈ LP (Tj), it follows that si is anticomplete to
{xi, x′i} and sj is anticomplete to {xj , x′j}. Since i ∈MP (yi) ∩MP (yii) ∩MP (yij), it follows that si

is anticomplete to {yi, yii, yij}, and similarly sj is anticomplete to {yj , yji , y
j
j}.

First we prove that si is adjacent to sj . Suppose not. Since x′i − sj − xi − xj − si − x′j is

not a P6 in G, it follows that xi is non-adjacent to xj . But now x′i − sj − xi − yj − xj − si or
x′i − sj − xi − yj − sj − x′j is a P6 in G, a contradiction. This proves that si is adjacent to sj .

If yji is adjacent to x′j , then x′j − yji − x′i − sj − xi − yj is a P6, a contradiction. Therefore x′j is

non-adjacent to yji , and therefore x′j is anticomplete to Ci. Similarly, x′i is anticomplete to Cj . In
particular it follows that Ci 6= Cj .

Since LP (Tj) = {i, k} there exists sl ∈ S with LP (sl) = {l} such that sl is complete to

X(Tj). Since l ∈ MP (y) for every y ∈ {yii, y
j
i , y

i
j , y

j
j , y

i, yj}, it follows that sl is anticomplete to

{yii, y
j
i , y

i
j , y

j
j , y

i, yj}. Recall that xi, x
′
i ∈ X(Ti), and so no vertex of S is mixed on {xi, x′i}. Similarly

no vertex of S is mixed on {xj , x′j}. If sl is anticomplete to {xi, x′i}, then one of yji − x′i− sj − sl −
x′j − yjj , x

′
i − sj − xi − yj − xj − sl, x

′
i − sj − xi − xj − sl − x′j is a P6, so sl is complete to {xi, x′i}.

Since yii − x′i − sj − si − x′j − yjj is not a P6, it follows that either sj is adjacent to yii, or si is

adjacent to yjj . We may assume that sj is adjacent to yii.

Let M be a path in Ci from yji to yii with l ∈MP (u) for every u ∈ V (M). Since sj is adjacent

to yii and not to yji , there is exist adjacent a, b ∈ V (M) such that sj is adjacent to a and not to
b. Since l ∈ MP (u) for every u ∈ V (M), it follows that sl is anticomplete to {a, b}. But now if
sl is non-adjacent to sj , then b − a − sj − xi − sl − x′j is a P6, and if sl is adjacent to sj , then

b− a− sj − sl − x′j − yjj is a P6; in both cases a contradiction. This proves Lemma 2.

Let P = (G,S,X0, X, Y ∗, f) be an excellent starred precoloring of a P6-free graph G. Let
S′′ ⊆ X, and let X ′′0 ⊆ X ∪ Y ∗. Let f ′ : S ∪X0 ∪ S′′ ∪X ′′0 → {1, 2, 3, 4} be such that f ′|(S ∪X0) =
f |(S ∪X0) and (G,S ∪X0 ∪ S′′ ∪X ′′0 , f ′) is a 4-precoloring of G. Let X ′′ be the set of vertices x of
X \X ′′0 such that x as a neighbor z ∈ S′′ with f ′(z) ∈MP (x). Let

S′ = S ∪ S′′

X ′0 = X0 ∪X ′′ ∪X ′′0

X ′ = X \ (X ′′ ∪ S′′ ∪X ′′0 )

Y ∗′ = Y ∗ \X ′′0 .

We say that P ′ = (G,S′, X ′0, X
′, Y ∗′, f ′) is obtained from P by moving S′′ to the seed with colors

f ′(S′′), and moving X ′′0 to X0 with colors f ′(X ′′0 ). Sometimes we say that “we move S′′ to S with
colors f ′(S′′), and X ′′0 to X0 with colors f ′(X ′′0 )”.

In the next lemma we show that this operation creates another excellent starred precoloring.
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Lemma 3. Let P = (G,S,X0, X, Y ∗, f) be an excellent starred precoloring of a P6-free graph
G. Let S′′ ⊆ X and X ′′0 ⊆ X ∪ Y ∗, and let S′, X ′0, X

′, Y ∗′, f ′ be as above. Then either P ′ =
(G,S′, X ′0, X

′, Y ∗′, f ′) is an excellent starred precoloring.

Proof. We need to check the following conditions:

1. f ′ : S′ ∪X ′0 → {1, 2, 3, 4} is a proper coloring of G|(S′ ∪X ′0);

2. V (G) = S′ ∪X ′0 ∪X ′ ∪ Y ∗′;

3. G|S′ is connected and no vertex in V (G) \ S′ is complete to S′;

4. every vertex in X ′ has neighbors of at least two different colors (with respect to f ′) in S′;

5. no vertex in X ′ is mixed on a component of G|Y ∗′; and

6. for every component of G|Y ∗′, there is a vertex in S′ ∪X ′0 ∪X ′ complete to it.

Next we check the conditions.

1. holds by the definition of P ′.

2. holds since S′ ∪X ′0 ∪X ′ ∪ Y ∗′ = S ∪X0 ∪X ∪ Y ∗.

3. G|S′ is connected since G|S is connected, and every z ∈ S′′ has a neighbor in S. Moreover,
since no vertex of V (G)\S is complete to S, it follows that no vertex of V (G)\S′ is complete
to S′.

4. follows from the fact that X ′ ⊆ X.

5. follows from the fact that Y ∗′ ⊆ Y ∗ and X ′ ⊆ X.

6. follows from the fact that Y ∗′ ⊆ Y ∗ and S ∪X0 ⊆ S′ ∪X ′0.

Let P = (G,S,X0, X, Y ∗, f) be an excellent starred precoloring. Let i, j ∈ {1, 2, 3, 4}. Write
Xij = {x ∈ X such that MP (x) = {i, j}}. For y ∈ Y ∗ let CP (y) (or C(y) when there is no danger
of confusion) denote the vertex set of the component of G|Y ∗ that contains y.

Let P = (G,S,X0, X, Y ∗, f) be an excellent starred precoloring, and let {i, j, k, l} = {1, 2, 3, 4}.
We say that P is kl-clean if there does not exist y ∈ Y ∗ with the following properties:

• i, j ∈MP (y), and

• there is u ∈ C(y) with k ∈MP (u), and

• y has both a neighbor in Xik and a neighbor in Xjk.

We say that P is clean if it is kl-clean for every k, l ∈ {1, 2, 3, 4}.
We say that P is kl-tidy if there do not exist vertices yi, yj ∈ Y ∗ such that

• i ∈MP (yi), j ∈MP (yj), and

• C(yi) = C(yj), and

• there is a path M from yi to yj in C such that l ∈MP (u) for every u ∈ V (M), and
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• there is u ∈ V (C) with k ∈MP (u), and

• yi has a neighbor in Xki and a neighbor in Xkj

Observe that since no vertex of X is mixed on an a component of G|Y ∗, it follows that N(yi)∩Xki

is precisely the set of vertices of Xki that are complete to C(yi), and an analogous statement holds
for Xkj . We say that P is tidy if it is kl-tidy for every k, l ∈ {1, 2, 3, 4}.

We say that P is kl-orderly if for every y in Y ∗ with {i, j} ⊆MP (y), N(y)∩Xik is complete to
N(y) ∩Xjk. We say that P is orderly if it is kl-orderly for every k, l ∈ {1, 2, 3, 4}

Finally, we say that P is kl-spotless if no vertex y in Y ∗ with {i, j} ⊆MP (y) has both a neighbor
in Xik and a neighbor in Xjk. We say that P is spotless if it is kl-spotless for every k, l ∈ {1, 2, 3, 4}

Our goal is to replace an excellent starred precoloring by an equivalent collection of spotless
precolorings. First we prove a lemma that allows us to replace an excellent starred precoloring with
an equivalent collection of clean precolorings.

Lemma 4. There is a function q : N→ N such that the following holds. Let G be a P6-free graph,
and let P = (G,S,X0, X, Y ∗, f) be an excellent starred precoloring of G. Then there is an algorithm
with running time O(|V (G)|q(|S|)) that outputs a collection L of excellent starred precolorings of G
such that:

• |L| ≤ |V (G)|q(|S|);

• |S′| ≤ q(|S|) for every P ′ ∈ L;

• every P ′ ∈ L is kl-clean for every (k, l) for which P is kl-clean;

• every P ′ ∈ L is 14-clean;

• L is an equivalent collection for P .

Proof. Without loss of generality we may assume that X0 = X0(P ) \ S. Thus LP (x) = MP (x)
for every x ∈ X. We may assume that P is not 14-clean for otherwise we may set L = {P}. Let
Y be the set of vertices of Y ∗ with 2, 3 ∈ MP (y) and such that some u ∈ C(y) has 1 ∈ MP (u).
Let T1, . . . , Tp be the subsets of S with LP (Ts) = {1, 2} and Tp+1, . . . , Tm the subsets of S with
LP (Ts) = {1, 3}. Let Q be the collection of all m-tuples

((S1, Q1), (S2, Q2), . . . , (Sm, Qm))

where for every r ∈ {1, . . . ,m}

• Sr ⊆ X(Tr) and |Sr| ∈ {0, 1},

• if Sr = ∅, then Qr = ∅

• Sr = {xr} then Qr = {y} where y ∈ Y ∩N(xr).

For Q ∈ Q construct a precoloring PQ as follows. Let r ∈ {1, . . . ,m}. We may assume that
r ≤ p.

• Assume first that Sr = {xr}. Then Qr = {yr}. Move {xr} to the seed with color 1, and for
every y ∈ Y such that N(y)∩X(Tr) ⊂ N(yr)∩X(Tr) \ {xr}, move N(y)∩X(Tr) to X0 with
the unique color of LP (Tr) \ {1}.
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• Next assume that Sr = ∅. Now for every y ∈ Y move N(y) ∩X(Tr) to X0 with the unique
color of LP (Tr) \ {1}.

In the notation of Lemma 3, if the precoloring of G|(X ′0∪S′) thus obtained is not proper, remove Q
form Q. Therefore we may assume that the precoloring is proper. Repeatedly applying Lemma 3
we deduce that PQ is an excellent starred precoloring. Observe that Y ∗′ = Y ∗. Since X ′ ⊆ X and
Y ∗′ = Y ∗, it follows that if P is kl-clean, then so is PQ.

Now we show that PQ is 14-clean. Let Y ′ be the set of vertices y of Y ∗ such that 2, 3 ∈MPQ
(y)

and some vertex u ∈ C(y) has 1 ∈ MPQ
(u). Observe that Y ′ ⊆ Y . It is enough to check that

no vertex of Y ′ has both a neighbor in X ′12 and a neighbor in X ′13. Suppose this is false, and
suppose that y ∈ Y ′ has a neighbor x2 ∈ X ′12 and a neighbor x3 ∈ X ′13. Then x2 ∈ X12 and
x3 ∈ X13. We may assume that x2 ∈ X(T1) and x3 ∈ X(Tp+1). Since x2, x3 6∈ X0(PQ), it follows
that both S1 6= ∅ and Sp+1 6= ∅, and therefore Q1 6= ∅ and Qp+1 6= ∅. Write S1 = {x′2}, Q1 = {y2},
Sp+1 = {x′3} and Qp+1 = {y3}. Since some u ∈ C(y) has 1 ∈ MPQ

(u), and since x′2, x
′
3 are not

mixed on C(y), it follows that y is anticomplete to {x′2, x′3}. Again since x2 6∈ X0(PQ), it follows
that N(y) ∩X(T1) 6⊆ N(y2) ∩X(T1), and so we may assume that x2 6∈ N(y2). Similarly, we may
assume that x3 6∈ N(y3). But now the vertices x2, x

′
2, x3, x

′
3, y2, y3, y contradict Lemma 1. This

proves that PQ is 14-clean.
Since S′ = S ∪

⋃m
i=1 Si, and since m ≤ 2|S|, it follows that |S′| ≤ |S|+ m ≤ |S|+ 2|S|.

Let L = {PQ : Q ∈ Q}. Then |L| ≤ |V (G)|2m ≤ |V (G)|2|S|+1
. We show that L is an equivalent

collection for P . Since every P ′ ∈ L is obtained from P by precoloring some vertices and updating,
it is clear that if c is a precoloring extension of a member of L, then c is a precoloring extension of
P . To see the converse, let c be a precoloring extension of P . For every i ∈ {1, . . . ,m} define Si

and Qi as follows. If no vertex of Y has a neighbor x ∈ X(Ti) with c(x) = 1, set Si = Qi = ∅. If
some vertex of Y has neighbor x ∈ X(Ti) with c(x) = 1, let y be a vertex with this property and
in addition with N(y) ∩ X(Ti) minimal; let x ∈ X(Ti) ∩ N(y) with c(x) = 1; and set Qi = {y}
and Si = {x}. Let Q = ((S1, Q1), . . . , (Sm, Qm)). We claim that c is a precoloring extension of PQ.
Write PQ = (G,S′, X ′0, X

′, Y ′, f ′). We need to show that c(v) = f ′(v) for every v ∈ S′ ∪X ′0. Since
c is a precoloring extension of P , it follows that c(v) = f(v) = f ′(v) for every v ∈ S ∪X0. Since
S′ \S =

⋃m
s=1 Ss and c(v) = f ′(v) = 1 for every v ∈

⋃m
s=1 Ss, we deduce that c(v) = f ′(v) for every

v ∈ S′. Finally let v ∈ X ′0 \ X0. It follows that v ∈ X, f ′(v) is the unique color of MP (v) \ {1},
and there are three possibilities.

1. 1 ∈MP (v) and v has a neighbor in
⋃m

s=1 Ss, or

2. there is i ∈ {1, . . . ,m} with Si = {xi} and Qi = {yi}, and there is y ∈ Y ∗ such that
N(y) ∩X(Ti) ⊆ (N(yi) ∩X(Ti)) \ {xi}, and v ∈ N(y) ∩X(Ti), or

3. there is i ∈ {1, . . . ,m} with Si = Qi = ∅, and there is y ∈ Y ∗ such that v ∈ N(y) ∩X(Ti).

We show that in all these cases c(v) = f ′(v).

1. Let x ∈
⋃m

s=1 Ss. Then c(x) = 1, and so c(v) 6= 1, and thus c(v) = f ′(v).

2. By the choice of yi and since N(y) ∩X(Ti) ⊆ (N(yi) ∩X(Ti)) \ {xi}, it follows that c(u) 6= 1
for every u ∈ N(y) ∩X(Ti), and therefore c(v) = f ′(v).

3. Since Si = ∅, it follows that for every y′ ∈ Y ∗ and for every u ∈ N(y′) ∩X(Ti) we have that
c(u) 6= 1, and again c(v) = f ′(v).

This proves that c is a precoloring extension of PQ, and completes the proof of Lemma 4.
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Repeatedly applying Lemma 4 and using symmetry, we deduce the following:

Lemma 5. There is a function q : N→ N such that the following holds. Let G be a P6-free graph.
Let P = (G,S,X0, X, Y ∗, f) be an excellent starred precoloring of G. Then there is an algorithm
with running time O(|V (G)|q(|S|)) that outputs a collection L of excellent starred precolorings of G
such that:

• |L| ≤ |V (G)|q(|S|);

• |S′| ≤ q(|S|) for every P ′ ∈ L;

• every P ′ ∈ L is clean;

• L is an equivalent collection for P .

Next we show that a clean precoloring can be replaced with an equivalent collection of precol-
orings that are both clean and tidy.

Lemma 6. There is a function q : N→ N such that the following holds. Let G be a P6-free graph.
Let P = (G,S,X0, X, Y ∗, f) be a clean excellent starred precoloring of G. Then there is an algorithm
with running time O(|V (G)|q(|S|)) that outputs a collection L of excellent starred precolorings of G
such that:

• |L| ≤ |V (G)|q(|S|);

• |S′| ≤ q(|S|) for every P ′ ∈ L;

• every P ′ ∈ L is clean;

• every P ′ ∈ L is kl-tidy for every k, l for which P is kl-tidy;

• every P ′ ∈ L is 14-tidy;

• L is an equivalent collection for P .

Proof. Without loss of generality we may assume that X0 = X0(P ) \ S, and thus LP (x) = MP (x)
for every x ∈ X. We may assume that P is not 14-tidy for otherwise we may set L = {P}. Let Y
be the set of all pairs (y2, y3) with y2, y3 ∈ Y ∗ such that

• 2 ∈MP (y2), 3 ∈MP (y3),

• y2, y3 are in the same component C of G|Y ∗,

• there is a path M from y2 to y3 in C such that 4 ∈MP (u) for every u ∈ V (M), and

• for some u ∈ V (C), 1 ∈MP (u),

Let T1, . . . , Tp be the subsets of S with LP (Ts) = {1, 2} and let Tp+1, . . . , Tm be the subsets of
S with LP (Ts) = {1, 3}. Let Q be the collection of all m-tuples

((S1, Q1), (S2, Q2), . . . , (Sm, Qm))

where for r ∈ {1, . . . ,m}

• Sr ⊆ X(Tr) and |Sr| ∈ {0, 1},
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• if Sr = ∅, then Qr = ∅

• Sr = {xr} then Qr = {(yr2, yr3)} where (yr2, y
r
3) ∈ Y and xr is complete to {yr2, yr3}.

For Q ∈ Q construct a precoloring PQ = (GQ, SQ, XQ
0 , XQ, Y Q, fQ) as follows. Let r ∈

{1, . . . ,m}; for r = 1, . . . ,m, we proceed as follows.

• Assume first that Sr = {xr}. Then Qr = {(yr2, yr3)}. Move xr to the seed with color 1, and for
every (y2, y3) ∈ Y such that N(y2) ∩X(Tr) ⊂ N(yr2) ∩ (X(Tr) \ {xr}), move N(y2) ∩X(Tr)
to X0 with the unique color of LP (Tr) \ {1}.

• Next assume that Sr = ∅. Now for every y ∈ Y move N(y) ∩X(Tr) to X0 with the unique
color of LP (Tr) \ {1}.

In the notation of Lemma 3, if the precoloring of G|(X ′0∪S′) thus obtained is not proper, remove Q
form Q. Therefore we may assume that the precoloring is proper. Repeatedly applying Lemma 3
we deduce that PQ is an excellent starred precoloring. Observe that Y Q = Y ∗, MPQ

(y) ⊆ MP (y)

for every y ∈ Y Q, and MPQ
(x) = MP (x) for every x ∈ XQ \X0(PQ). It follows that PQ is clean,

and that if P is kl-tidy, then so is PQ.
Now we show that PQ is 14-tidy. Suppose that there exist y2, y3 ∈ Y Q that violate the definition

of being 14-tidy. Let x2 ∈ XQ
12 and x3 ∈ XQ

13 be adjacent to y2, say, and therefore complete to
{y2, y3}. We may assume that x2 ∈ X(T1) and x3 ∈ X(Tp+1). Since x2, x3 6∈ X0(PQ), it follows that
both S1 6= ∅ and Sp+1 6= ∅, and therefore Q1 6= ∅ and Qp+1 6= ∅. Write S1 = {x′2}, Q1 = {(y22, y23)},
Sp+1 = {x′3} and Qp+1 = {y32, y33}.

Since there is a vertex u in the component of G|Y Q containing y2, y3 with 1 ∈ MPQ
(u), and

since no vertex of X is mixed on a component of Y ∗, it follows that {y2, y3} is anticomplete to
{x′2, x′3}. Since x2 6∈ X0(PQ), it follows that N(y2) ∩X(T1) 6⊆ N(y22) ∩ (X(T1) \ {x′2}), and so we
may assume that x2 6∈ N(y22). Similarly, we may assume that x3 6∈ N(y32). But now, since no vertex
of X is mixed on a component of Y ∗, we deduce that the vertices x2, x

′
2, x3, x

′
3, y

2
2, y

3
2, y

2
3, y

3
3, y2, y3

contradict Lemma 2. This proves that PQ is 14-tidy.
Since S′ = S ∪

⋃m
i=1 Si, and since m ≤ 2|S|, it follows that |S′| ≤ |S|+ m ≤ |S|+ 2|S|.

Let L = {PQ : Q ∈ Q}. Then |L| ≤ |V (G)|3m ≤ |V (G)|3×2|S| . We show that L is an equivalent
collection for P . Since every P ′ ∈ L is obtained from P by precoloring some vertices and updating,
it is clear that every precoloring extension of a member of L is a precoloring extension of P . To
see the converse, suppose that P has a precoloring extension c. For every i ∈ {1, . . . ,m} define Si

and Qi as follows. If there does not exist (y22, y
3
2) ∈ Y such that some x ∈ X(Ti) with c(x) = 1 is

complete to {y22, y32}, set Si = Qi = ∅. If such a pair exists, let (y22, y
3
2) be a pair with this property

and subject to that with the set N(y22) ∩ X(Ti) minimal; let x ∈ X(Ti) be complete to {y22, y32}
and with c(x) = 1; and set Qi = {(y22, y32)} and Si = {x}. Let Q = ((S1, Q1), . . . , (Sm, Qm)). We
claim that c is a precoloring extension of PQ. Write PQ = (G,S′, X ′0, X

′, Y ′, f ′). We need to show
that c(v) = f ′(v) for every v ∈ S′ ∪ X ′0. Since c is a precoloring extension of P , it follows that
c(v) = f(v) = f ′(v) for every v ∈ S ∪X0. Since S′ \ S =

⋃m
s=1 Ss and c(v) = f ′(v) = 1 for every

v ∈
⋃m

s=1 Ss, we deduce that c(v) = f ′(v) for every v ∈ S′. Finally let v ∈ X ′0 \X0. Then v ∈ X,
f ′(v) is the unique color of MP (v) \ {1}, and there are three possibilities.

1. 1 ∈MP (v) and v has a neighbor in
⋃m

s=1 Ss, or

2. there is i ∈ {1, . . . ,m} with Si = {xi} and Qi = {(y2i , y3i )}, and there exists (y2, y3) ∈ Y such
N(y2) ∩X(Ti) ⊆ X(Ti) ∩ (N(y2i ) \ {xi}), or
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3. there is i ∈ {1, . . . ,m} with Si = Qi = ∅, and there exists (y2, y3) ∈ Y such that v ∈
X(Ti) ∩N(y2).

We show that in all these cases c(v) = f ′(v).

1. Let x ∈
⋃m

s=1 Ss. Then c(x) = 1, and so c(v) 6= 1, and thus c(v) = f ′(v).

2. By the choice of y2i , y
3
i and since N(y2) ∩ X(Ti) ⊆ (N(y2i ) ∩ X(Ti)) \ {xi}), it follows that

c(u) 6= 1 for every u ∈ N(y2) ∩X(Ti), and therefore c(v) = f ′(v).

3. Since Si = ∅, it follows that for every (y2, y3) ∈ Y and for every u ∈ N(y2) ∩X(Ti) we have
c(u) 6= 1, and again c(v) = f ′(v).

This proves that c is an extension of PQ, and completes the proof of Lemma 6.

Repeatedly applying Lemma 6 and using symmetry, we deduce the following:

Lemma 7. There is a function q : N→ N such that the following holds. Let G be a P6-free graph.
Let P = (G,S,X0, X, Y ∗, f) be a clean excellent starred precoloring of G. Then there is an algorithm
with running time O(|V (G)|q(|S|)) that outputs a collection L of excellent starred precolorings of G
such that:

• |L| ≤ |V (G)|q(|S|);

• |S′| ≤ q(|S|) for every P ′ ∈ L;

• every P ′ ∈ L is clean and tidy;

• L is an equivalent collection for P .

Our next goal is to show that a clean and tidy precoloring can be replaced with an equivalent
collection of orderly precolorings.

Lemma 8. There is a function q : N→ N such that the following holds. Let G be a P6-free graph.
Let P = (G,S,X0, X, Y ∗, f) be a clean, tidy starred precoloring of G. Then there is an algorithm
with running time O(|V (G)|q(|S|)) that outputs a collection L of excellent starred precolorings of G
such that:

• |L| ≤ |V (G)|q(|S|);

• |S′| ≤ q(|S|) for every P ′ ∈ L;

• every P ′ ∈ L is clean and tidy;

• every P ′ ∈ L is kl-orderly for every (k, l) for which P is kl-orderly;

• every P ′ ∈ L is 14-orderly;

• P is equivalent to L.

Proof. Without loss of generality we may assume that X0 = X0(P ), and so LP (x) = MP (x) for
every x ∈ X. We may assume that P is not 14-orderly for otherwise we may set L = {P}. Let
Y = {y ∈ Y ∗ such that {2, 3} ⊆ MP (y)}. Let T1, . . . , Tp be the types with L(Ts) = {1, 2} and
Tp+1, . . . , Tm the types with L(Ts) = {1, 3}. Let Q be the collection of all p(m− p)-tuples of pairs
(Si, Qj) with i ∈ {1, . . . , p} and j ∈ {p + 1, . . . ,m}, where
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• Si, Qj ⊆ Y ;

• |Si|, |Qj | ∈ {0, 1};

• if N(Si) ∩X(Ti) = ∅, then Si = ∅;

• if N(Qj) ∩X(Tj) = ∅, then Qj = ∅.

For Q ∈ Q construct a precoloring PQ as follows. Let i ∈ {1, . . . , p} and j ∈ {p + 1, . . . ,m}.

• Assume first that Si = {yi} Qj = {yj}. If there is an edge between N(yi) ∩ X(Ti) and
N(yj) ∩ X(Tj), remove Q from Q. Now suppose that N(yi) ∩ X(Ti) is anticomplete to
N(yj)∩X(Tj). Move T = (N(yi)∩X(Ti))∪ (N(yj)∩X(Tj)) into X0 with color 1. For every
y ∈ Y complete to T and both with a neighbor in X(Ti) \ T and a neighbor in X(Tj) \ T ,
proceed as follows: if 4 ∈ MP (y), move y to X0 with color 4; if 4 6∈ MP (y), remove Q from
Q.

• Next assume that exactly one of Si, Qj is non-empty. By symmetry we may assume that
Si = {yi} and Qj = ∅. Move T = N(yi) ∩ X(Ti) into X0 with color 1. For every y ∈ Y
complete to T and both with a neighbor in X(Ti) \ T and a neighbor in X(Tj), proceed as
follows: if 4 ∈MP (y), move y to X0 with color 4; if 4 6∈MP (y), remove Q from Q.

• Finally assume that Si = Qj = ∅. For every y ∈ Y with both a neighbor in X(Ti) and a
neighbor in X(Tj), proceed as follows: if 4 ∈MP (y), move y to X0 with color 4; if 4 6∈MP (y),
remove Q from Q.

Let Q ∈ Q, and let PQ = (G,S′, X ′0, X
′, Y ∗′, f ′). Since X ′ ⊆ X, Y ′ ⊆ Y ∗ and MPQ

(v) ⊆MP (v) for
every v, it follows that PQ is excellent, clean, tidy, and that for k, l ∈ {1, 2, 3, 4}, if P is kl-orderly,
then PQ is kl-orderly.

Next we show that PQ is 14-orderly. Suppose that some y ∈ Y has a neighbor in x2 ∈ X ′12
and a neighbor in x3 ∈ X ′13 such that x2 is non-adjacent to x3. Then x2 ∈ X12 and x3 ∈ X13.
We may assume that x2 ∈ X(T1) and x3 ∈ X(Tp+1). Since x2, x3 6∈ X0(PQ), it follows that both
S1 6= ∅ and Qp+1 6= ∅. Let S1 = {y2} and Qp+1 = {y3}. Since x2, x3 6∈ X0(PQ), it follows that y2 is
non-adjacent to x2, and y3 is non-adjacent to x3. Since y 6∈ X0(PQ), we may assume by symmetry
that there is x′2 ∈ N(y2) ∩ X(T1) such that y is non-adjacent to x′2. Let x′3 ∈ N(y3) ∩ X(Tp+1).
Since x2, x3, y 6∈ X0(PQ), it follows that {x′2, x′3} is anticomplete to {x2, x3}. By the construction
of Q, x′2 is non-adjacent to x′3. By Lemma 1, y is adjacent to x′3. Since LP (T1) = {1, 2}, there is
s3 ∈ S complete to X(T1). Since 3 ∈MPQ

(y)∩LP (y2)∩LP (y3)∩LP (x′3)∩L(x3), it follows that s3
is anticomplete to {y, y2, y3, x3, x′3}. Similarly, since LP (Tp+1) = {1, 3}, there is s2 ∈ S complete to
X(Tp+1). Since 2 ∈MPQ

(y)∩LP (y2)∩LP (y3)∩LP (x2)∩LP (x′2), it follows that s2 is anticomplete
to {y, y2, y3, x2, x′2}. Since y2 − x′2 − s3 − x2 − y − t is not a P6 for t ∈ {x3, x′3}, it follows that y2
is complete to {x3, x′3}. Since y3 − x′3 − y − x2 − s3 − x′2 is not a P6, it follows that y3 is adjacent
to at least one of x2, x

′
2. Since the path x2 − y − x3 − y2 − x′2 cannot be extended to a P6 via y3,

follows that y3 is complete to {x2, x′2}. But now s2− x3− y− x2− y3− x′2 is a P6, a contradiction.
This proves that PQ is 14-orderly.

Observe that S′ = S, and so |S′| = |S|. Observe also that also that p(m− p) ≤ (m2 )2, and since

m ≤ 2|S|, it follows that p(m− p) ≤ 22|S|−2. Let L = {PQ : Q ∈ Q}. Now |L| ≤ |V (G)|2p(m−p) ≤
|V (G)|22|S|−1

.
We show that L is an equivalent collection for P . Since every P ′ ∈ L is obtained from P by

precoloring some vertices and updating, it is clear that if c is a precoloring extension of a member
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of L, then c is a precoloring extension of P . To see the converse, suppose that P has a precoloring
extension c. For every i ∈ {1, . . . , p} and j ∈ {p + 1, . . . ,m} define Si and Qj as follows. If every
vertex of Y has a neighbor x ∈ X(Ti) with c(x) 6= 1, set Si = ∅, and if every vertex of Y has a
neighbor x ∈ X(Tj) with c(x) 6= 1, set Qj = ∅. If some vertex of Y has no neighbor x ∈ X(Ti)
with c(x) 6= 1, let yi be a vertex with this property and in addition with N(y) ∩X(Ti) maximal;
set Si = {yi}. If some vertex of Y has no neighbor x ∈ X(Tj) with c(x) 6= 1, let yj be a vertex with
this property and in addition with N(y) ∩ X(Tj) maximal; set Qj = {yj}. We claim that c is a
precoloring extension of PQ. Write PQ = (G,S′, X ′0, X

′, Y ′, f ′). We need to show that c(v) = f ′(v)
for every v ∈ S′ ∪ X ′0. Since c is a precoloring extension of P , and since S = S′, it follows that
c(v) = f(v) = f ′(v) for every v ∈ S′ ∪X0. Let v ∈ X ′0 \X0. It follows that either

1. Si = {yi}, Qj = {yj}, and v ∈ X and v ∈ (N(yi) ∩X(Ti)) ∪ (N(yj) ∩X(Tj)) and f ′(v) = 1,
or

2. Si = {yi}, Qj = {yj}, v ∈ Y , v is complete to (N(yi)∩X(Ti))∪ (N(yj)∩X(Tj)), v has both
a neighbor in X(Ti) \N(yi) and a neighbor in X(Tj) \N(yj), and f ′(v) = 4, or

3. (possibly with the roles of i and j exchanged) Si = {yi}, Qj = ∅, and v ∈ X and v ∈
N(yi) ∩X(Ti), and f ′(v) = 1, or

4. (possibly with the roles of i and j exchanged) Si = {yi}, Qj = ∅, v ∈ Y , v is complete to
N(yi)∩X(Ti), v has both a neighbor in X(Ti)\N(yi) and a neighbor in X(Tj), and f ′(v) = 4,
or

5. Si = Qj = ∅, v ∈ Y , v has both a neighbor in X(Ti) and a neighbor in X(Tj), and f ′(v) = 4.

We show that in all these cases c(v) = f ′(v).

1. By the choice of yi, yj , c(u) = 1 for every u ∈ (N(yi) ∩ X(Ti)) ∪ (N(yj) ∩ X(Tj)), and so
c(v) = f ′(v).

2. It follows from the maximality of yi, yj that v has both a neighbor x2 ∈ X(Ti) with c(x2) = 2
and a neighbor x3 ∈ X(Tj) with c(x3) = 3. Since P is clean, it follows that 1 6∈ MP (v), and
therefore c(v) = 4.

3. By the choice of yi, c(u) = 1 for every u ∈ N(yi) ∩X(Ti), and so c(v) = f ′(v).

4. It follows from the maximality of yi that v has a neighbor x2 ∈ X(Ti) with c(x2) = 2. Since
Qj = ∅, v has a neighbor x3 ∈ X(Tj) with c(x3) = 3. Since P is clean, it follows that
1 6∈MP (v), and so c(v) = 4.

5. Since Si = Qj = ∅, it follows that v has both a neighbor x2 ∈ X(Ti) with c(x2) = 2, and
a neighbor x3 ∈ X(Tj) with c(x3) = 3. Since P is clean, it follows that 1 6∈ MP (v), and so
c(v) = 4.

This proves that c is an extension of PQ, and completes the proof of Lemma 8.

Repeatedly applying Lemma 8 and using symmetry, we deduce the following:

Lemma 9. There is a function q : N→ N such that the following holds. Let G be a P6-free graph.
Let P = (G,S,X0, X, Y ∗, f) be a clean and tidy excellent starred precoloring of G. Then there
is an algorithm with running time O(|V (G)|q(|S|)) that outputs a collection L of excellent starred
precolorings of G such that:
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• |L| ≤ |V (G)|q(|S|);

• |S′| ≤ q(|S|) for every P ′ ∈ L;

• every P ′ ∈ L is clean, tidy and orderly;

• P is equivalent to L.

Next we show that a clear, tidy and orderly excellent starred precoloring can be replaced by an
equivalent collection of spotless precolorings.

Lemma 10. There is a function q : N → N such that the following holds. Let G be a P6-free
graph. Let P = (G,S,X0, X, Y ∗, f) be a clean, tidy and orderly excellent starred precoloring of G.
Then there is an algorithm with running time O(|V (G)|q(|S|)) that outputs a collection L of excellent
starred precolorings of G such that:

• |L| ≤ |V (G)|q(|S|);

• |S′| ≤ q(|S|) for every P ′ ∈ L;

• every P ′ ∈ L is clean, tidy and orderly;

• every P ′ ∈ L is kl-spotless for every (k, l) for which P is kl-spotless;

• every P ′ ∈ L is 14-spotless;

• P is equivalent to L.

Proof. The proof follows closely the proof of Lemma 8, deviating from it only when we show that
every P ′ ∈ L is 14-spotless. Without loss of generality we may assume that X0 = X0(P ), and
so LP (x) = MP (x) for every x ∈ X. We may assume that P is not 14-spotless for otherwise we
may set L = {P}. Let Y = {y ∈ Y ∗ such that {2, 3} ⊆ MP (y)}. Let T1, . . . , Tp be the types
with L(Ts) = {1, 2} and Tp+1, . . . , Tm the types with L(Ts) = {1, 3}. Let Q be the collection of
all p(m − p)-tuples (Pi, Qj) with i ∈ {1, . . . , p} and j ∈ {p + 1, . . . ,m}, where Si, Qi ⊆ Y and
|Pi|, |Qi| ∈ {0, 1}.

For Q ∈ Q construct a precoloring PQ as follows. Let i ∈ {1, . . . , p} and j ∈ {p + 1, . . . ,m}.

• Assume first that Si = {yi} Qj = {yj}. If there is an edge between N(yi) ∩ X(Ti) and
N(yj) ∩ X(Tj), remove Q from Q. Now suppose that N(yi) ∩ X(Ti) is anticomplete to
N(yj)∩X(Tj). Move T = (N(yi)∩X(Ti))∪ (N(yj)∩X(Tj)) into X0 with color 1. For every
y ∈ Y complete to T and both with a neighbor in X(Ti) \ T and a neighbor in X(Tj) \ T ,
proceed as follows: if 4 ∈ MP (y), move y to X0 with color 4; if 4 6∈ MP (y), remove Q from
Q.

• Next assume that exactly one of Si, Qj is non-empty. By symmetry we may assume that
Si = {yi} and Qj = ∅. Move T = N(yi) ∩ X(Ti) into X0 with color 1. For every y ∈ Y
complete to T and both with a neighbor in X(Ti) \ T and a neighbor in X(Tj), proceed as
follows. If 4 ∈MP (y), move y to X0 with color 4; if 4 6∈MP (y), remove Q from Q.

• Finally assume that Si = Sj = ∅. For every y ∈ Y with both a neighbor in X(Ti) and a
neighbor in X(Tj), proceed as follows: if 4 ∈MP (y), move y to X0 with color 4; if 4 6∈MP (y),
remove Q from Q.
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Let Q ∈ Q, and let PQ = (G,S′, X ′0, X0, Y
∗′, f ′). If f ′ is not a proper coloring of G|(S′ ∪ X ′0),

remove Q from Q. Since X ′ ⊆ X, Y ′ ⊆ Y ∗ and MPQ
(v) ⊆ MP (v) for every v, it follows that PQ

is excellent, clean, tidy and orderly, and that for k, l ∈ {1, 2, 3, 4}, if P is kl-spotless, then PQ is
kl-spotless.

Next we show that PQ is 14-spotless. Suppose that some y ∈ Y has a neighbor in x2 ∈ X ′12
and a neighbor in x3 ∈ X ′13. Then x2 ∈ X12 and x3 ∈ X13. We may assume that x2 ∈ X(T1) and
x3 ∈ X(Tp+1). Since x2, x3 6∈ X0(PQ), it follows that both S1 6= ∅ and Qp+1 6= ∅. Let S1 = {y2}
and Qp+1 = {y3}. Since x2, x3 6∈ X0(PQ), it follows that y2 is non-adjacent to x2, and y3 is non-
adjacent to x3. Since y 6∈ X0(PQ), we may assume by symmetry that there is x′2 ∈ N(y2) ∩X(T1)
such that y is non-adjacent to x′2. Let x′3 ∈ N(y3)∩X(Tp+1). Since x2, x3 6∈ X0(PQ), it follows that
{x′2, x′3} is anticomplete to {x2, x3}. By the construction of Q, x′2 is non-adjacent to x′3. Now, since
G is orderly, y is non-adjacent to x′3, contrary to Lemma 1. This proves that PQ is 14-spotless.

Observe that S = S′, and so |S| = |S′|. Observe also that also that p(m− p) ≤ (m2 )2, and since

m ≤ 2|S|, it follows that p(m− p) ≤ 22|S|−2. Let L = {PQ : Q ∈ Q}. Now |L| ≤ |V (G)|2p(m−p) ≤
|V (G)|22|S|−1

.
The remainder of the proof follows word for word the proof of Lemma 8, and we omit it. This

proves that PQ has a precoloring extension, and completes the proof of Lemma 10.

Observe that if an excellent starred precoloring is spotless, then it is clean and orderly. Repeat-
edly applying Lemma 10 and using symmetry, we deduce the following:

Lemma 11. There is a function q : N → N such that the following holds. Let G be a P6-free
graph. Let P = (G,S,X0, X, Y ∗, f) be a clean, tidy and orderly excellent starred precoloring of G.
Then there is an algorithm with running time O(|V (G)|q(|S|)) that outputs a collection L of excellent
starred precolorings of G such that:

• |L| ≤ |V (G)|q(|S|);

• |S′| ≤ q(|S|) for every P ′ ∈ L;

• every P ′ ∈ L is tidy and spotless;

• P is equivalent to L.

We now summarize what we have proved so far. Let P = (G,S,X0, X, Y ∗, f) be an excellent
starred precoloring of a P6-free graph G. We say that y ∈ Y ∗ is wholesome if |MP (y)| ≥ 3. A
component of G|Y ∗ if wholesome if it contains a wholesome vertex. We say that P is near-orthogonal
if for every wholesome y ∈ Y ∗ either

• y has orthogonal neighbors in X, or

• there exist {i, j, k, l} = {1, 2, 3, 4} such that

– N(y) ∩X ⊆ Xki ∪Xkj , and

– For every u ∈ C(y), |MP (u) ∩ {i, j}| ≤ 1, and

– if there is vi ∈ C(y) with i ∈ MP (vi) and vj ∈ C(y) with j ∈ MP (vj), then for some
u ∈ C(y), l 6∈MP (u).

Lemma 12. There is a function q : N→ N such that the following holds. Let P = (G,S,X0, X, Y ∗, f)
be an excellent starred precoloring of a P6-free graph G. Then there is an algorithm with running
time O(|V (G)|q(|S|)) that outputs a collection L of excellent starred precolorings of G such that:
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• |L| ≤ |V (G)|q(|S|);

• |S′| ≤ q(|S|) for every P ′ ∈ L;

• every P ′ ∈ L is near-orthogonal;

• P is equivalent to L.

Proof. Let L1 be the collection of precolorings obtained by applying Lemma 5 to P . Let L2 be the
union of the collections of precolorings obtained by applying Lemma 7 to each member of L1. Let
L3 be the union of the collections of precolorings obtained by applying Lemma 9 to each member
of L2. Let L be the union of the collections of precolorings obtained by applying Lemma 11 to each
member of L3. Then L satisfies the first, second and fourth bullet in the statement of Lemma 12,
and every P ′ ∈ L is tidy and spotless. Let P ′ ∈ L, write P ′ = (S′, X ′0, X

′, Y ′, f ′). Suppose that
P ′ is not near-orthogonal. Let y ∈ Y ′, and assume that the neighbors of y are not orthogonal. We
show that y satisfies the conditions in the definition of near-orthogonal. We may assume that y has
a neighbor in X ′12 and a neighbor in X ′13. Since P ′ is spotless, it follows that for every u ∈ C(y),
|MP (u) ∩ {2, 3}| ≤ 1. Since y is wholesome, we may assume that MP (y) = {1, 2, 4}. Since P ′ is
spotless, it follows that N(y) ∩ X ′ ⊆ X ′12 ∪ X ′13. Since P ′ is tidy and 1 ∈ MP (y), it follows that
if there is v2 ∈ C(y) with 2 ∈ MP (v2) and v3 ∈ C(y) with 3 ∈ MP (v3), then for some u ∈ C(y)
4 6∈ MP (u). This proves that y satisfies the conditions in the definition of near orthogonal, and
completes the proof of Lemma 12.

Let P = (G,S,X0, X, Y ∗, f) be an excellent starred precoloring. Let {i, j, k, l} = {1, 2, 3, 4}, let
T i be a type of X with LP (T i) = {i, k} and let T j be a type of X with LP (T j) = {j, k}. A type
A extension with respect to (T i, T j) is a precoloring extension c of P such that there exists y ∈ Y ∗

with k, i ∈ MP (y) and such that y has a neighbor xi ∈ X(T i) and a neighbor xj ∈ X(T j) with
c(xi) = c(xj) = k.

Let T (P ) be the set of all pairs (T i, T j) of types of X with |LP (T j) ∩ LP (T j)| = 1. We say
that P is smooth if P has a precoloring extension c such that for every (T i, T j) ∈ T (P ), c is not of
type A with respect to (T i, T j). A precoloring extension of P is good if it is not of type A for any
T ∈ T (P ).

We say that an excellent starred precoloring P ′ = (G,S′, X ′0, X
′, Y ∗′, f ′) is a refinement of P if

for every type T ′ of X ′, there is a type T of X such that X ′(T ′) ⊆ X(T ).

Lemma 13. There is a function q : N→ N such that the following holds. Let P = (G,S,X0, X, Y ∗, f)
be a near-orthogonal excellent starred precoloring of a P6-free graph G. There is an algorithm with
running time O(|V (G)|q(|S|) that outputs a collection L of near-orthogonal excellent starred precol-
orings of G such that:

• |L| ≤ |V (G)|q(|S|);

• |S′| ≤ q(|S|) for every P ′ ∈ L;

• a precoloring extension of a member of L is also a precoloring extension of P ;

• if P has a precoloring extension, then some P ′ ∈ L is smooth.

Proof. Let T (P ) = {(T1, T
′
1), . . . , (Tt, T

′
t)}. Let Q be the collection of t-tuples of triples QTi,T ′i

=
(YTi,T ′i

, ATi,T ′i
, BTi,T ′i

) such that

• |YTi,T ′i
| = |ATi,T ′i

| = |BTi,T ′i
| ≤ 1.
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• ATi,T ′i
⊆ X(Ti).

• BTi,T ′i
⊆ X(T ′i ).

• YTi,T ′i
⊆ Y ∗ and if YTi,T ′i

= {y}, then LP (Ti) ⊆MP (y).

• YTi,T ′i
is complete to ATi,T ′i

∪BTi,T ′i
.

• ATi,T ′i
is anticomplete to BTi,T ′i

.

For Q = (QTi,T ′i
)(Ti,T ′i )∈T (P ) ∈ Q, we construct a precoloring PQ by moving ATi,T ′i

∪BTi,T ′i
to the seed

with the unique color of LP (Ti) ∩ LP (T ′i ) for all (Ti, T
′
i ) ∈ T (P ). Let PQ = (G,S′, X ′0, X

′, Y ′, f ′).
Since X ′ ⊆ X and Y ′ ⊆ Y ∗, and MP ′(v) ⊆MP (v) for every v ∈ V (G), it follows that PQ is excellent,
near-orthogonal and for every type T ′ of X ′, there is a type T of X such that X ′(T ′) ⊆ X(T ).

Let L = {P} ∪ {PQ : Q ∈ Q}. Observe that there are at most 2|S| types, and therefore

t ≤ 22|S|. Now |S′| ≤ |S|+ 2t ≤ |S|+ 22|S|+1 and |L| ≤ |V (G)|3t ≤ |V (G)|3×22|S| .
Since every member of L is obtained from P by precoloring some vertices and updating, it

follows that every precoloring extension of a member of L is also a precoloring extension of P .
Now we prove the last assertion of Lemma 13. Suppose that P has a precoloring extension.

We need to show that some P ′ ∈ L is smooth. Let c be a precoloring extension of P . For every
(Ti, T

′
i ) ∈ T (P ) such that c is of type A with respect to (Ti, T

′
i ), proceed as follows. We may

assume that LP (Ti) = {1, 2} and LP (T ′i ) = {1, 3}. Let y ∈ Y ∗ with 1, 2 ∈ MP (y), x2 ∈ X(Ti)
and x3 ∈ X(T ′i ) such that y is adjacent to x2, x3 and c(x2) = c(x3) = 1, and subject to the
existence of such x2, x3, choose y with the set {x ∈ N(y)∩X(T ′i ) such that c(x) = 1} minimal. Let
QTi,T ′i

= ({y}, {x2}, {x3}). For every (Ti, T
′
i ) ∈ T (P ) such that c is not of type A with respect to

(Ti, T
′
i ), set QTi,T ′i

= (∅, ∅, ∅). Let Q = (QTi,T ′i
)(Ti,T ′i )∈P ; then PQ ∈ L.

We claim that c is a precoloring extension of PQ that is not of type A for any (Ti, T
′
i ) ∈ T (PQ).

Write PQ = (G,S′, X ′0, X
′, Y ′, f ′). Let {i, j, k, l} = {1, 2, 3, 4}. Suppose that T i is a type of X ′ with

LPQ
(T i) = {i, k} and T j is a type of X ′ with LPQ

(T j) = {j, k}, and such that (T i, T j) ∈ T (PQ),
and y′ ∈ Y ′ with i, k ∈MPQ

(y′) has neighbor x′i ∈ X ′(T i) and x′j ∈ X ′(T j) with c(x′i) = c(x′j) = k.

Let (T̃ i, T̃ j) ∈ T (P ) be such that X ′(T i) ⊆ X(T̃ i) and X ′(T j) ⊆ X(T̃ j). Since i, k ∈ MP (y),

it follows that c is of type A for (T̃ i, T̃ j), and therefore |Y
T̃ i,T̃ j | = |A

T̃ i,T̃ j | = |B
T̃ i,T̃ j | = 1. Let

Y
T̃ i,T̃ j = {y} A

T̃ i,T̃ j = {xi} and B
T̃ i,T̃ j = {xj}. Since k ∈MPQ

(y′) it follows that y′ is anticomplete

to {xi, xj}. By the choice of y, it follows that y′ has a neighbor x′ ∈ X(T̃ j) \N(y) with c(x′) = k,
and so we may assume that x′j is non-adjacent to y. Since LP (T ′i ) = {j, k} there exists si ∈ S with
f(si) = i such that si is complete to {xj , x′j}. Since i ∈ LP (xi) ∩ LP (y′) ∩ LP (y), it follows that si
is anticomplete to {xi, y′, y}. Since c(xi) = c(x′i) = c(xj) = c(x′j), it follows that {xi, x′i, xj , x′j} is a
stable set. But now xi − y − xj − si − x′j − y′ is a P6 in G, a contradiction. This proves that c is a
good precoloring extension of PQ, and completes the proof of Lemma 13.

We are finally ready to construct orthogonal precolorings.

Lemma 14. There is a function q : N→ N such that the following holds. Let P = (G,S,X0, X, Y ∗, f)
be a near-orthogonal excellent precoloring of a P6-free graph G. There exist an induced subgraph G′

of G and an orthogonal excellent starred precoloring P ′ = (G′, S′, X ′0, X
′, Y ′, f ′) of G′, such that

• S = S′,

• if P is smooth, then P ′ has a precoloring extension, and
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• if c is a precoloring extension of P ′, then a precoloring extension of P can be constructed from
c in polynomial time.

Moreover, P ′ can be constructed in time O(|V (G)|q(|S|)).

Proof. We may assume that P is not orthogonal. We say that a component C of G|Y ∗ is troublesome
if C is wholesome, and the set of attachments of C in X are not orthogonal. Let W be the union
of the vertex sets of the component of G|Y ∗ that are not wholesome.

We construct a set Z, starting with Z = ∅. For every troublesome component C, proceed as
follows. We may assume that C has attachments in X12 and in X13. Since P is near-orthogonal,
and C is wholesome, we may assume that C contains a vertex z with MP (z) = {1, 2, 4}.

• If there is y ∈ V (C) with MP (y) = {1, 3}, move N(y) ∩X12 to X0 with color 2.

• Suppose that there is no y as in the first bullet. If |V (C)| > 2, or V (C) = {z} and z has a
neighbor v in X0 with f(v) = {4}, move N(z) ∩X13 to X0 with color 3.

• If none of the first two conditions hold, add V (C) to Z. Observe that in this case V (C) = {y},
y has no neighbors in Z \ {y}. Moreover, since P is near-orthogonal, V (C) is anticomplete to
X \ (X12 ∪X13), and so for every u ∈ N(y), 4 6∈ LP (u). In this case we call 4 the free color
of y.

Let P ′′ = (G,S′, X ′0, X
′′, Y ′′, f ′) be the precoloring we obtained after we applied the procedure

above to all troublesome components. Let G′ = G \ Z, and let P ′ = (G′, S′, X ′0, X
′, Y ′, f ′) where

Y ′ = Y ′′ \W ∪ Z and X ′ = X ′′ ∪W . Since no vertex of W is wholesome, It follows from the
definition of MP that every vertex of W has neighbors of at least two different colors in S′ (with
respect to f ′). Since W is anticomplete to Y ′, X ′ \W ⊆ X, and Y ′ ⊆ Y ∗, we deduce that P ′ is
excellent and orthogonal. It follows from the construction of Z that every precoloring extension of
P ′ can be extended to a precoloring extension of P by giving each member of Z its free color.

It remains to show that if P is smooth, then P ′ has a precoloring extension. Suppose that P
is smooth, and let c be a good precoloring extension of P . We claim that c|V (G′) is a precoloring
extension of P ′. We need to show that c(v) = f ′(v) for every v ∈ S′ ∪ X ′0. Since S = S′, and
f(v) = f ′(v) for every v ∈ X0, it is enough to show that c(v) = f ′(v) for every v ∈ X ′0 \X0. Thus
we may assume that there is a troublesome component C of G|Y ∗ that has an attachment in X12

and an attachment in X13, and v ∈ X(C). Since P is near-orthogonal, we may assume that C
contains a vertex y with MP (y) = {1, 2, 4}, and v ∈ X12 ∪X13. There are two possibilities.

1. There is y ∈ V (C) with MP (y) = {1, 3}, v ∈ N(y) ∩ X12 and f ′(v) = 2, but c(v) = 1. We
show that this is impossible. Since c is a good coloring, it follows that c(u) = 3 for every
u ∈ N(y) ∩X13, contrary to the fact that c is a coloring of G.

2. There is no y as in the first case, and either |V (C)| > 2, or V (C) = {z} and z has a neighbor
u in X0 with f(u) = {4}, and v ∈ X13 ∩ N(z), f ′(v) = 3 but c(v) = 1. We show that this
too is impossible. It follows that there is a vertex y′ ∈ V (C) with c(y) 6= 4. Choose such
y′ with 4 6∈ MP (y′) if possible. Since P is excellent, y′ is adjacent to v. Since c is a good
coloring, it follows that c(u) = 2 for every u ∈ X12∩N(y′). This implies that c(y′) = 3. Since
P is near-orthogonal and 3 ∈ MP (y′), it follows that 2 6∈ MP (y′). Since MP (y′) 6= {1, 3}, it
follows that 4 ∈ L(y′). Since 1, 2 ∈ MP (y) and 3 ∈ MP (y′), and since P is near-orthogonal,
it follows that there is z ∈ V (C) such that 4 6∈MP (z). Since c(v) = 1 and c(u) = 2 for every
attachment of V (C) in X12, it follows that c(z) = 3, contrary to the choice of y′.
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Thus c(v) = f ′(v) for every v ∈ S′ ∪ X ′0, and so c|V (G′) is a precoloring extension of P ′. This
completes the proof of Lemma 14.

We can now prove the main result of this section.

Theorem 9. There is a function q : N→ N such that the following holds. Let P = (G,S,X0, X, Y ∗, f)
be an excellent starred precoloring of a P6-free graph G with |S| ≤ C. Then there is an algorithm
with running time O(|V (G)|q(|S|)) that outputs a collection L of orthogonal excellent starred precol-
orings of induced subgraphs of G such that:

• |L| ≤ |V (G)|q(|S|);

• |S′| ≤ q(|S|) for every P ′ ∈ L, and

• P has a precoloring extension, if and only if some P ′ ∈ L has a precoloring extension;

• given a precoloring extension of a member of L, a precoloring extension of P can be constructed
in polynomial time.

Proof. By Lemma 12 there exist a function q1 : N → N and a polynomial-time algorithm that
outputs a collection L1 of excellent starred precolorings of G such that:

• |L1| ≤ |V (G)|q1(|S|);

• |S′| ≤ q1(|S|) for every P ′ ∈ L1;

• every P ′ ∈ L1 is near-orthogonal; and

• P is equivalent to L1.

Let P ′ ∈ L1. Write P ′ = (G,S(P ′), X0(P
′), X(P ′), Y ∗(P ′), fP ′). By Lemma 13 there exist a

function q2 : N → N and a polynomial-time algorithm that outputs a collection L(P ′) of near-
orthogonal excellent starred precolorings of G such that:

• |L(P ′)| ≤ |V (G)|q2(|S(P ′)|);

• |S′| ≤ q2(|S(P ′)|) for every P ′ ∈ L;

• if P ′ has a precoloring extension, then some P ′′ ∈ L(P ′) is smooth; and

• a precoloring extension of a member of L(P ′) is also a precoloring extension of P ′.

Let L2 =
⋃

P ′∈L L(P ′).
Clearly L2 has the following properties:

• |L2| ≤ |V (G)|q1(q2(|S|));

• |S′| ≤ q1(q2(|S(P )|)) for every P ′ ∈ L2;

• if P has a precoloring extension, then some P ′′ ∈ L(P ′) is smooth; and

• given a precoloring extension of a member of L2, one can construct in polynomial time a
precoloring extension of P .
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Let P ′′ ∈ L2. Write P ′′ = (G,S(P ′′), X0(P ;′ ), X ′(P ′), Y ∗(P ′′), fP ′′). By Lemma 14, there
exists an induced subgraph G′ of G and an orthogonal excellent starred precoloring Orth(P ′′) =
(G′, S′, X ′0, X

′, Y ′, f ′) of G′, such that

• S(P ′′) = S′;

• if P ′′ is smooth, then Orth(P ′′) has a precoloring extension; and

• if c is a precoloring extension of Orth(P ′′), then a precoloring extension of P ′′, and therefore
of P , can be constructed from c in polynomial time.

Moreover, Orth(P ′′) can be constructed in polynomial time.
Let L = {Orth(P ′′) : P ′′ ∈ L2}. Now L has the following properties.

• |L| ≤ |V (G)|q1(q2(|S|);

• |S′| ≤ q1(q2(|S|)) for every P ′ ∈ L; and

• if c is a precoloring extension of P ′ ∈ L, then a precoloring extension of P can be constructed
from c in polynomial time.

• every P ′ ∈ L is orthogonal.

To complete the proof of the Theorem 9 we need to show that if P has a precoloring extension, then
some P ′ ∈ L has a precoloring extension. So assume that P has a precoloring extension. Since L1
is equivalent to P , it follows that some P1 ∈ L1 has a precoloring extension. This implies that some
P2 ∈ L(P1) ⊆ L2 is smooth. But now Orth(P2) has a precoloring extension, and Orth(P2) ∈ L.
This completes the proof of Theorem 9.

3 Companion triples

In view of Theorem 9 we now focus on testing for the existence of a precoloring extension for an
orthogonal excellent starred precoloring.

Let G be a P6-free graph, and let P = (G,S,X0, X, Y ∗, f) be an orthogonal excellent starred
precoloring of G. We may assume that X0 = X0(P ). Let C(P ) be the set of components of G|Y ∗,
and let C ∈ C(P ). It follows that X \X(C) is anticomplete to V (C), and we may assume (using
symmetry) that X(C) ⊆ X12∪X34. We now define the precoloring obtained from P by contracting
the ij-neighbors of C, or, in short, by neighbor contraction. We may assume that {i, j} = {1, 2}.
Suppose that X12 ∩X(C) 6= ∅, and let x12 ∈ X12 ∩X(C). Let G̃ be the graph define as follows:

V (G̃) = G \ (X12 ∩X(C)) ∪ {x12}

G̃ \ {x12} = G \ (X12 ∩X(C))

NG̃(x12) =
⋃

x∈X12∩X(C)

NG(x) ∩ V (G̃).

Moreover, let
X̃ = X \ (X12 ∩X(C)) ∪ {x12}.

Then P̃ = (G̃,X0, X̃, Y ∗, f) is an orthogonal excellent starred precoloring of G̃. We say that P̃ is
obtained from P by contracting the 12-neighbors of C, or, in short, obtained from P by neighbor
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contraction. We call x12 the image of X12 ∩X(C), and define x12(C) = x12. Observe that x12 ∈ X
(this fact simplifies notation later), and that MP (v) = MP̃ (v) for every v ∈ V (G̃).

For i, j ∈ {1, 2, 3, 4} and t ∈ X0 ∪S let G̃ij(t) = G̃|(X̃ij ∪Y ∗ ∪{t}). While graph G̃ may not be
P6-free, the following weaker statement holds:

Lemma 15. Let P be an excellent orthogonal precoloring of a P6-free graph G. Let C ∈ C(P ) and
assume that X(C)∩X12 is non-empty. Let P̃ = (G̃,X0, X̃, Y ∗, f) be obtained from P by contracting
the 12-neighbors of C. Then G̃ij(t) is P6-free for every i, j ∈ {1, 2, 3, 4} and t ∈ S ∪X0.

Proof. If {i, j} 6= {1, 2}, then G̃ij(t) is an induced subgraph of G, and therefore it is P6-free. So we
may assume that {i, j} = {1, 2}. Suppose that Q = q1− . . .− q6 is a P6 in G̃ij(t). Since G̃ij(t) \x12
is an induced subgraph of G, it follows that x12 ∈ V (Q). If the neighbors of x12 in Q have a
common neighbor n ∈ X(C)∩X12, then G|((V (Q) \ {x12})∪ {n}) is a P6 in G, a contradiction. It
follows that x12 has two neighbors in Q, say a, b, each of a, b has a neighbor in X12 ∩X(C), and
no vertex of X(C) ∩ X12 is complete to {a, b}. Since V (C) is complete to X(C), it follows that
a, b 6∈ V (C), and so a, b ∈ (X12 \ X(C)) ∪ (Y ∗ \ V (C)) ∪ {t}. Let Q′ be a shortest path from a
to b with Q′∗ ⊆ X(C) ∪ V (C). Since V (Q) \ {a, b, t} is anticomplete to V (C), and V (Q) \ {a, b}
is anticomplete to X(C) ∩X12, it follows that V (Q′) is anticomplete to V (Q) \ ({x12} ∪ {a, b, t}).
Moreover, if t 6= a, b, then t is anticomplete to Q′∗ \V (C). If follows that if t 6∈ V (Q)\{a, b, x12} or
t is anticomplete to V (Q′)∩ V (C) then q1−Q− a−Q′− b−Q− q6 is a path of length at least six
in G, a contradiction; so t ∈ V (Q) \ {a, b, x12}, and t has a neighbor in V (Q′) ∩ V (C). Since V (C)
is complete to X(C), it follows that |V (C) ∩ V (Q′)| = 1, and |Q′∗| = 3. Let V (Q′) ∩ V (C) = {q′}.
We may assume that b has a neighbor c ∈ V (Q) \ {x12}, and if a = qi and b = qj , then i < j. Since
a−Q′ − b− c is not a P6 in G, it follows that t = c. But now q1 − a−Q′ − q − t−Q− q6 is a P6

in G, a contradiction. This proves Lemma 15.

Let P = (G,S,X0, X, Y ∗, f) be an orthogonal excellent starred precoloring. Let H be a graph,
and let L be a 4-list assignment for H. Recall that X0(L) is the set of vertices of H with |L(x0)| = 1.
Let M be the list assignment obtained from MP by updating Y ∗ from X0. We say that (H,L, h)
is a near-companion triple for P with correspondence h if there is an orthogonal excellent starred
precoloring P̃ = (G̃, S,X0, X̃, Y ∗, f) obtained from P by a sequence of neighbor contractions, and
the following hold:

• V (H) = X̃ ∪ Z;

• h : Z → C(P );

• for every z ∈ Z, N(z) = X̃(V (h(z)));

• H|(Z ∪ X̃ij) is P6-free for all i, j;

• Z is a stable set;

• for every x ∈ X̃, L(x) ⊆MP (x) = M(x);

• for every z ∈ Z such that L(z) 6= ∅, if q ∈ {1, 2, 3, 4} and q 6∈ L(z), then some vertex V (h(z))
has a neighbor u ∈ S ∪X0 ∪X0(L) with f(u) = q; and

• for every z ∈ Z and every q ∈ L(z), there is v ∈ V (h(z)) with q ∈ M(v), and no vertex
u ∈ S ∪X0 with f(u) = q is complete to V (h(z)).

For z ∈ Z, we call h(z) the image of z.
If (H,L, h) is a near-companion triple for P , and in addition
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• P̃ has a precoloring extension if and only if (H,L) is colorable, and a coloring of (H,L) can
be converted to a precoloring extension of P in polynomial time.

we say that (H,L, h) is a companion triple for P .
For i, j ∈ {1, 2, 3, 4} and t ∈ S∪X0 let Hij(t) be the graph obtained from H|(X̃ij∪Z) by adding

the vertex t and making t adjacent to the vertices of NG̃(t) ∩ X̃ij . The following is a key property
of near-companion triples.

Lemma 16. Let G be a P6-free graph, let P = (G,S,X0, X, Y ∗, f) be an orthogonal excellent
starred precoloring of G, and let (H,L, h) be a near-companion triple for P . Let M be the list
assignment obtained from MP by updating Y ∗ from X0. Assume that L(v) 6= ∅ for every v ∈ V (H).
Let i, j ∈ {1, 2, 3, 4} and t ∈ X0 ∪ S, and let Q be a P6 in Hij(t). Then t ∈ V (Q), and there exists
q ∈ V (Q) \N(t) such that f(t) 6∈M(q).

Proof. Since H|(X̃ij∪Z) is P6-free, it follows that t ∈ V (Q). Suppose that for every q ∈ V (Q)\N(t),
f(t) ∈ L(q). Let z ∈ V (Q) ∩ Z. Since t is anticomplete to Z, it follows that f(t) ∈ L(z) By the
definition of a near-companion triple, there is a vertex q(z) ∈ V (h(z)) such that f(t) ∈ M(q(z)).
Since M is obtained from MP by updating Y ∗ from X0, it follows that t is non-adjacent to q(z).
Now replacing z with q(z) for every z ∈ V (Q)∩Z, we get a P6 in G̃ij(t) that contradicts Lemma 15.
This proves Lemma 16.

The following is the main result of this section.

Theorem 10. Let G be a P6-free graph and let P = (G,S,X0, X, Y ∗, f) be an orthogonal excellent
starred precoloring of G. Then there is a polynomial time algorithm that outputs a companion triple
for P .

Proof. We may assume that X0 = X0(P ). Let M be the list assignment obtained from MP by
updating Y ∗ from X0. Write C = C(P ). For Q ⊆ {1, 2, 3, 4} and C ∈ C, we say that a coloring c
of (C,M) is a Q-coloring if c(v) ∈ Q for every v ∈ V (C). Given Q ⊆ {1, 2, 3, 4}, we say that Q
is good for C if (C,M) admits a proper Q-coloring, and bad for C otherwise. By Theorem 2, for
every Q with |Q| ≤ 3, we can test in polynomial time if Q is good for C. Let Q(C) be the set of
all inclusion-wise maximal bad subsets of {1, 2, 3, 4}. Observe that if Q is bad, then all its subsets
are bad.

Here is another useful property of Q(C).

(1)
Let Q ∈ Q(C), and let i ∈ Q be such that no u ∈ S∪X0 with f(u) = i has a neighbor
in V (C). Then for every j ∈ {1, 2, 3, 4} \Q, we have (Q \ {i}) ∪ {j} ∈ Q(C).

Suppose not. Let Q′ = Q\{i}∪{j}. Let c be a proper Q′-coloring of (C,M). It follows from the
definition of M that i ∈ M(y) for every y ∈ V (C). Recolor every vertex u ∈ V (C) with c(u) = j
with color i. This gives a proper Q-coloring of (C,M), a contradiction. This proves (1).

First we describe a sequence of neighbor contractions to produce P̃ as in the definition of a
companion triple. Let C ∈ C with |V (C)| > 1. Let {i, j, k, l} = {1, 2, 3, 4} and let X(C) ⊆
Xij ∪ Xkl. We may assume (without loss of generality) that X(C) ⊆ X12 ∪ X34. If X(C) meets
both X12 and X34, contract the 1, 2-neighbors of C, and the 3, 4-neighbors of C; observe that in
this case X̃(C) = {x12(C), x34(C)}. If X(C) meets exactly one of X12, X34, say X(C) ⊆ X12,
and {3, 4} is bad for C, contract the 12-neighbors of C. Repeat this for every Q ∈ Q(C); let
P̃ = (G̃, S,X0, X̃, Y ∗, f) be the resulting precoloring. Observe that X̃ ⊆ X.

(2)
P has a precoloring extension if and only if P̃ has a precoloring extension, and a
precoloring extension of P̃ can be converted into a precoloring extension of P in
polynomial time.
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Since |C(P )| ≤ |V (G)|, it is enough to show that the property of having a precoloring extension,
and the algorithmic property, do not change when we perform one step of the construction above.

Let us say that we start with P1 = (G1, S,X0, X1, Y
∗, f) and finish with P1 = (G2, S,X0, X2, Y

∗, f).
We claim that in all cases, each of the sets that is being contracted (that is, replaced by its image)
is monochromatic in every precoloring extension of P .

Let C ∈ C(P ) with |V (C)| > 1, such that P2 is obtained from P1 by contracting neighbors of
C. Let {i, j, k, l} = {1, 2, 3, 4} and let X1(C) ⊆ Xij ∪Xkl. If X̃(C) meets both Xij and Xkl, then
since |V (C)| > 1, each of the sets X1(C)∩Xij , X1(C)∩Xkl is monochromatic in every precoloring
extension of P1, as required. So we may assume that X1(C) ⊆ Xij . Now X1(C) is monochromatic
in every precoloring extension of P1 because the set {k, l} is bad for C. This proves the claim.

Now suppose that a set A was contracted to produce its image a. If P1 has a precoloring
extension, we can give a the unique color that appears in A, thus constructing an extension of P2.
On the other hand, if P2 has a precoloring extension, then every vertex of A can be colored with
the color of a. This proves (2).

Next we define L : X̃ → 2[4]. Start with L(x) = MP̃ (x) for every x ∈ X̃. Again let C ∈ C with

|V (C)| > 1, let {i, j, k, l} = {1, 2, 3, 4}, and let X̃(C) ⊆ Xij ∪Xkl. For every Q ∈ Q(C) such that
Q = {1, 2, 3, 4} \ {i}, update L by removing i from L(x) for every x ∈ Xij ∩ X̃(C).

Next assume that X(C) meets both Xij , Xkl , the sets {i, k}, {i, l} are good for C, and the sets
{j, k}, {j, l} are bad for C. Update L by removing i from L(xij(C)).

Finally, assume that X(C) meets both Xij , Xkl , the set {i, k} is good for C, and the sets
{i, l}, {j, k}, {j, l} are bad for C. Update L by removing i from L(xij(C)) and by removing k from
L(xkl(C)).

Now the following holds.

(3)

Let {1, 2, 3, 4} = {i, j, k, l} and let C ∈ C such that X(C) ⊆ Xij ∪Xkl.

1. If {1, 2, 3, 4} \ {i} ∈ Q(C), then i 6∈
⋃

x∈X̃(C) L(x).

2. If X̃(C) meets both Xij and Xkl and {i, k}, {i, l} are both good for C, and
{j, k}, {j, l} are both bad for C, then i 6∈ L(xij(C)) ∪ L(xkl(C)).

3. If X̃(C) meets both Xij and Xkl and {i, k} is good for C, and {i, l}, {j, k}, {j, l}
are bad for C, then i, k 6∈ L(xij(C)) ∪ L(xkl(C)).

Next we show that:

(4) If c is a precoloring extension of P̃ , then c(x) ∈ L(x) for every x ∈ X̃.
This is clear for x such that L(x) = M(x), so let x ∈ X̃ be such that L(x) 6= M(x). Then

there exists C ∈ C with |V (C)| > 1, and {i, j, k, l} = {1, 2, 3, 4} with X̃(C) ⊆ Xij ∪Xkl, such that
x ∈ X̃(C). Suppose that c(x) ∈M(x) \ L(x). Observe that c|V (C) is a coloring of (C,M). There
are three possible situations in which c(x) could have been removed from M(x) to produce L(x).

• {1, 2, 3, 4} \ {i} is bad for C, and x ∈ Xij , and c(x) = i. In this case, since (C,M) is not
{1, 2, 3, 4} \ {i}-colorable, it follows that some v ∈ V (C) has c(v) = i, but V (C) is complete
to X̃(C), a contradiction.

• X̃(C) meets both Xij and Xkl, the sets {i, k}, {i, l} are good for C, the sets {j, k}, {j, l} are
bad for C, x = xij(C), and c(x) = i. Since X̃(C) ∩Xkl 6= ∅, it follows that c(u) ∈ {k, l} for
some u ∈ X̃(C). Since the sets {j, k}, {j, l} are bad for C and |V (C)| > 1, it follows that
c(v) = i for some v ∈ V (C), but xij(C) is complete to V (C), a contradiction.
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• X̃(C) meets both Xij and Xkl, the set {i, k} is good for C, the sets {i, l}, {j, k}, {j, l} are bad
for C, and either x = xij(C) and c(x) = i, or x = xkl(C) and c(x) = l. Since X̃(C) meets both
Xij and Xik and |V (C)| > 1, it follows that |c(V (C))∩{i, j}| = 1, and |c(V (C))∩{k, l}| = 1.
Since {j, k}, {j, l} are bad for C, it follows that for some v ∈ V (C) has v(c) = i, and so
c(xij(C)) 6= i. Since {i, l} is bad for C, it follows that c(V (C)) = {i, k}, and so c(x) 6= k, in
both cases a contradiction.

This proves (4).

Finally, for every C ∈ C, we construct the set h−1(C) and define L(v) for every v ∈ h−1(C).
If |V (C)| = 1, say C = {y}, let h−1(C) = {y}, and let L(y) = M(y).
Now assume |V (C)| > 1. We may assume that X̃(C) ⊆ X12 ∪X34.
If all subsets of {1, 2, 3, 4} of size three are bad, then set h−1C = {z} and L(z) = ∅. From now

on we assume that there is a good subset for C of size at most three.
If X̃(C) ⊆ X12 or X̃(C) ⊆ X34, set h−1(C) = ∅.
So we may assume that X̃(C) meets both X12 and X34. If all sets of size two, except {1, 2}

and {3, 4} are bad for C, set h−1C = {z} and L(z) = ∅. Next let Q ∈ Q(C) with |Q| = 2; write
{i, j, k, l} = {1, 2, 3, 4}, and say Q = {i, j}. We say that Q is friendly if there exist ui, uj ∈ S ∪X0,
both with neighbors in C, and with f(ui) = i and f(uj) = j. For every friendly set Q, let v(C,Q) be
a new vertex, and let h−1(C) consist of all such vertices v(C,Q). Set L(v(C,Q)) = {1, 2, 3, 4} \Q.

Let Z =
⋃

C∈C h
−1(C). Finally, define the correspondence function h by setting h(z) = C for

every z ∈ h−1(C) and C ∈ C.
Now we define H. We set V (H) = X̃ ∪ Z, and pq ∈ E(H) if and only if either

• p, q ∈ X̃ and pq ∈ E(G), or

• there exists C ∈ C such that p ∈ h−1(C) and q ∈ X̃(C).

The triple (H,L, h) that we have constructed satisfies the following.

• X̃ ⊆ V (H); write Z = V (H) \ X̃.

• N(z) = X̃(V (h(x))) for every z ∈ Z.

• Z is a stable set.

• For every x ∈ X̃, L(x) ⊆MP (x) = M(x).

• h : Z → C(P ).

• If z ∈ Z with L(z) 6= ∅, and q ∈ {1, 2, 3, 4} \ L(z), then some vertex V (h(z)) has a neighbor
u ∈ S ∪X0 with f(u) = q. (This is in fact stronger than what is required in the definition of
a companion triple; we will relax this condition later.)

To complete the proof of Theorem 10, it remains to show the following

1. For every z ∈ Z and every q ∈ L(z), there is v ∈ V (h(z)) with q ∈ M(v), and no vertex
u ∈ S ∪X0 with f(u) = q is complete to V (h(z)).

2. for every i, j ∈ {1, 2, 3, 4}, H|(X̃ij ∪ Z) is P6-free.

3. P has a precoloring extension if and only if (H,L) is colorable, and a proper coloring of (H,L)
can be converted to a precoloring extension of P in polynomial time.
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We prove the first statement first. Let z ∈ Z and q ∈ L(z), and suppose that for every
v ∈ V (h(z)) q 6∈ M(v), or some vertex u ∈ S ∪ X0 with f(u) = q is complete to V (h(z)). It
follows that |V (h(Z))| > 1. Since z ∈ Z, it follows that there exists a set {i, j} ∈ Q(h(Z)) and
L(z) = {1, 2, 3, 4} \ {i, j}. But now it follows that {q, i, j} is also bad for h(Z), contrary to the
maximality of {i, j}. This proves the first statement.

Next we prove the second statement. By Lemma 15, G̃|(X̃ij ∪ Y ∗) is P6-free for every i, j ∈
{1, 2, 3, 4}. Suppose Q is a P6 in H. Let C ∈ C(P ). Since no vertex of V (H) \ h−1(C) is mixed on
h−1(C), it follows that |V (Q)∩h−1(C)| ≤ 1. Moreover, X̃ij(h

−1(C)) = X̃ij(C). Let G′ be obtained
from G̃ by replacing each C ∈ C by a single vertex of C, choosing this vertex to be in V (Q) if
possible. Then G′ is an induced subgraph of G, and Q is a P6 in G′, a contradiction. This proves
the second statement.

Finally we prove the last statement. Let C1 = {C ∈ C : |V (C)| = 1}, and let Y =
⋃

C∈C1 V (C).
Then Y ⊆ Z.

Suppose first that P has a precoloring extension. By (2), there exists a precoloring extension
of P̃ ; denote it by c. By (4), c|(X̃ ∪ Y ) is a coloring of (H|(X ∪ Y ), L). It remains to show that
c can be extended to Z \ Y . Let z ∈ Z, and let h(z) = C. Then there is a friendly set {i, j} ∈ Q
such that z = v(C,Q). Since Z is a stable set, in order to show that c can be extended to Z \ Y ,
it is enough to show that

L(z) 6⊆ c(X̃(C)).

Since L(v(C,Q)) = {1, 2, 3, 4} \Q, it is enough to show that

{1, 2, 3, 4} \ c(X̃(C)) 6⊆ Q.

But the latter statement is true because

c(V (C)) ⊆ {1, 2, 3, 4} \ c(X̃(C))

and c(V (C)) is a good set, and therefore c(V (C)) 6⊆ Q. This proves that if P̃ has a precoloring
extension, then (H,L) is colorable.

Now let c be a proper coloring of (H,L). By (2) it is enough to show that P̃ has a precoloring
extension. We define a precoloring extension c̃ of P̃ . Set c̃(v) = f(v) for every v ∈ S ∪ X0, and
c̃(x) = c(x) for every x ∈ X̃ ∪Y . It follows from the definition of L that c̃ is a precoloring extension
of (G̃ \ (Y ∗ \ Y ), S,X0, X̃, Y ).

Let C ∈ C with |V (C)| > 2. We extend c̃ to C. We will show that for every Q ∈ Q(C),
{1, 2, 3, 4} \ c(X̃(C)) 6⊆ Q. Consequently T = {1, 2, 3, 4} \ c(X̃(C)) is good for C. Since some
vertex of S ∪ X0 ∪ X̃ is complete to V (C), it follows that |T | ≤ 3. Therefore we can define
c̃ : V (C)→ {1, 2, 3, 4} to be a proper T -coloring of (C,M), which can be done in polynomial time
by Theorem 2.

So suppose that there is Q ∈ Q(C) such that {1, 2, 3, 4} \ c(X̃(C)) ⊆ Q. Then {1, 2, 3, 4} \Q ⊆
c(X̃(C)). By (3.1), |Q| < 3.

We may assume that X̃(C) ⊆ X12 ∪ X34. Suppose first that X̃(C) meets both X12 and X34,
and so X̃(C) = {x12(C), x34(C)}. Then |c(X̃(C))| = 2, and so |Q| 6= 1. Therefore may assume that
|Q| = 2. If Q is friendly, then c(v(C,Q)) 6∈ Q, and so {1, 2, 3, 4} \Q 6⊆ c(X̃(C)), so we may assume
that Q is not friendly. By symmetry, we may assume that Q ∈ {{1, 2}, {1, 3}}. If Q = {1, 2},
then since L(x12(C)) ⊆ {1, 2}, it follows that {1, 2, 3, 4} \ Q 6⊆ c(X̃(C)), so we may assume that
Q = {1, 3}.

Suppose first that for every i ∈ Q, there is no vertex u ∈ S ∪X0 with c(u) = i and such that
u has a neighbor in V (C). Now (1) implies that every set of size two is bad for C. Therefore
h−1(C) = {z} and L(z) = ∅, contrary to the fact that c is a proper coloring of (H,L).
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We may assume from symmetry that

• there is a vertex u ∈ S ∪X0 with c(u) = 1 and such that u has a neighbor in V (C).

• there is no vertex u ∈ S ∪X0 with c(u) = 3 and such that u has a neighbor in V (C).

Now by (1) all the sets sets {1, 2}, {1, 3}, {1, 4} are bad. If the only good set is {3, 4}, then
L(z) = ∅, contrary to the fact that c is a coloring of (H,L). Therefore, at least one of {2, 3}, {2, 4}
is good, and (3.2) and (3.3) imply that 2 6∈ L(u) for every u ∈ X̃(C), contrary to the fact that
2 ∈ {1, 2, 3, 4} \Q ⊆ c(X̃). This proves that not both X̃(C) ∩Xij and X̃(C) ∩Xkl are non-empty.

We may assume that X̃(C) ⊆ X12. Then c(X̃(C)) ⊆ {1, 2}, and so 3, 4 ∈ Q. Since |Q| < 3, we
have Q = {3, 4}. It follows from the construction of G̃ that |X̃(C)| ≤ 1, contrary to the fact that
{1, 2, 3, 4}\Q ⊆

⋃
u∈X(C){c(u)}. This completes the proof of the second statement, and Theorem 10

follows.

4 Insulating cutsets

Our next goal is to transform companion triples further, restricting them in such a way that we
can test colorability.

Let H be a graph and let L be a 4-list assignment for H. We say that D ⊆ V (H) is a chromatic
cutset in H if V (H) = A ∪ B ∪D, A 6= ∅, and a ∈ A is adjacent to b ∈ B only if L(a) ∩ L(b) = ∅.
For i, j ∈ {1, 2, 3, 4} let Dij = {d ∈ D : L(d) ⊆ {i, j}}. The set A is called the far side of the
chromatic cutset. We say that a chromatic cutset D is 12-insulating if D = D12∪D34 and for every
{p, q} ∈ {{1, 2}, {3, 4}} and every component D̃ of H|Dpq the following conditions hold.

• D̃ is bipartite; let (D1, D2) be the bipartition.

• |L(d)| = |L(d′)| for every d, d′ ∈ D1 ∪D2.

• There exists a ∈ A with a neighbor in D̃ and with L(a) ∩ {p, q} 6= ∅.

• Suppose that |L(d)| = 2 for every d ∈ V (D̃). Write {i, j} = {p, q} and let {s, t} = {1, 2}. If
a ∈ A has a neighbor in d ∈ Ds and i ∈ L(a), and b ∈ B has a neighbor in D̃, then

– if b has a neighbor in Ds, then j 6∈ L(b), and

– if b has a neighbor in Dt, then i 6∈ L(b).

Insulating cutsets are useful for the following reason. We say that a component D̃ of H|Dpq is
complex if |L(d)| = 2 for every d ∈ V (D̃).

Theorem 11. Let D be a 12-insulating chromatic cutset in (H,L), and let A,B be as in the
definition of an insulating cutset. Let D′ be the union of the vertex sets of complex components of
H|D12 and of H|D34, and let D′′ = D \D′. If (H|(B ∪D′′), L) and (H \B,L) are both colorable,
then (H,L) is colorable. Moreover, given proper colorings of (H|(B ∪ D′′), L) and (H \ B,L), a
proper coloring of (H,L) can be found in polynomial time.

Proof. Let c1 be a proper coloring of (H|(B ∪D′′), L) and let c2 be a proper coloring of (H \B,L).
A conflict in c1, c2 is a pair of adjacent vertices u, v such that c1(u) = c2(v). Since c1, c2 are

both proper colorings and D is a chromatic cutset, and |L(d)| = 1 for every d ∈ D′′, we deduce that
every conflict involves one vertex of D′ and one vertex of B. Below we describe a polynomial-time
procedure that modifies c2 to reduce the number of conflicts (with c1 fixed).

27



Let u ∈ D′ and v ∈ B be a conflict. Then uv ∈ E(H) and c1(u) = c2(v). Let D̃ be the
component of G|D containing u. Then V (D̃) ⊆ D′ and D̃ is bipartite; let (D1, D2) be the bipartition
of D̃. We may assume that u ∈ D1. We may also assume that L(d) = {1, 2} for every d ∈ V (D̃),
and that c1(u) = c2(v) = 2. Since L(d) = {1, 2} for every d ∈ V (D̃), it follows that for every
i ∈ {1, 2} and d ∈ Di, we have c2(d) = i. Let c3 be obtained from c2 by setting c3(d) = 1 for every
d ∈ D2; c3(d) = 2 for every d ∈ D1; and c3(d) = c2(d) for every w ∈ (A ∪D) \ (D1 ∪D2). (This
modification can be done in linear time).

First we show that c3 is a proper coloring of (H \B,L). Since L(d) = {1, 2} for every d ∈ V (D̃),
c3(v) ∈ L(v) for every v ∈ A∪D. Suppose there exist adjacent xy ∈ D∪A such that c3(x) = c3(y).
Since D̃ is a component of H|D, we may assume that x ∈ D1 ∪D2 and y ∈ A. Suppose first that
x ∈ D1. Then c3(y) = c3(x) = 2, and so 2 ∈ L(y) and y has a neighbor in D1. But v ∈ B has a
neighbor in D1 and 1 ∈ L(v), which is a contradiction. Thus we may assume that x ∈ D2. Then
c3(y) = c3(x) = 1, and so 1 ∈ L(y) and y has a neighbor in D2. But v ∈ B has a neighbor in D1,
and 1 ∈ L(b), again a contradiction. This proves that c3 is a proper coloring of (H \B,L).

Clearly u, v is not a conflict in c1, c3. We show that no new conflict was created. Suppose that
there is a new conflict, namely there exist adjacent u′ ∈ D′ and v′ ∈ B such that c1(v

′) = c3(u
′),

but c1(v
′) 6= c2(u

′). Then u′ ∈ V (D̃). If u′ ∈ D1, then both v and v′ have neighbors in D1, and
1 ∈ L(v), and 2 ∈ L(v′); if u′ ∈ D2, then v has a neighbor in D1 and v′ has a neighbor in D2, and
1 ∈ L(v′) ∩ L(v); and in both cases we get a contradiction. Thus the number of conflicts in c1, c3
was reduced.

Now applying this procedure at most |V (G)|2 times we obtained a proper coloring c′1 of (H|(B∪
D′′), L) and a proper coloring c′2 of (H \ B,L) such that there is no conflict in c′1, c

′
2. Now define

c(v) = c′1(v) if v ∈ B ∪D′′ and c(v) = c′2(v) if v ∈ V (H) \B; then c is a proper coloring of (H,L).
This proves Theorem 11.

Let G be a P6-free graph, let P = (G,S,X0, X, Y ∗, f) be an orthogonal excellent starred pre-
coloring of G, and let (H,L, h) be a companion triple for P . Let {i, j, k, l} = {1, 2, 3, 4}. Let
Zij = {z ∈ Z : N(z) ∩ X̃ ⊂ Xij ∪Xkl}. It follows from the definition of a companion triple that
Zij = Zkl and that Z =

⋃
i,j∈{1,2,3,4} Z

ij . Next we prove a lemma that will allow us to replace a
companion triple for P with a polynomially sized collection of near-companion triples for P , each
of which has a useful insulating cutset. We will apply this lemma several times, and so we need to
be able to apply it to near-companion triples for P , as well as to companion triples.

Lemma 17. There is function q : N→ N such that the following holds. Let G be a P6-free graph,
let P = (G,S,X0, X, Y ∗, f) be an orthogonal excellent starred precoloring of G, and let (H,L, h) be
a near-companion triple for P . Then there is an algorithm with running time O(|V (G)|q(|S|)) that
outputs a collection L of 4-list assignments for H such that

• |L| ≤ |V (G)|q(|S|);

• if L′ ∈ L and c is a proper coloring of (H,L′), then c is a proper coloring of (H,L); and

• if (H,L) is colorable, then there exists L′ ∈ L such that (H,L′) is colorable.

Moreover, for every L′ ∈ L,

• L′(v) ⊆ L(v) for every v ∈ V (H);

• (H,L′, h) is a near companion triple for P ;

• if for some i, j ∈ {1, 2, 3, 4} (H,L) has an ij-insulating cutset D′ with far side Zij, then D′

is an ij-insulating cutset with far side Zij in (H,L′, h); and
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• (H,L′) has a 12-insulating cutset D ⊆ X̃ with far side Z12.

Proof. Let P̃ = (G̃, S,X0, X̃, Y ∗, f) be as in the definition of a near-companion triple. Assume that
Z12 6= ∅. If one of the graphs G̃|X̃12 and G̃|X̃34 is not bipartite, set L = ∅. From now on we assume
that G̃|X̃12 and G̃|X̃34 are bipartite. We may assume that X0 = X0(P̃ ). Let T1, . . . , Tp be types
of X̃ with |LP (Ti)| = 2 and such that |LP (Ti) ∩ {1, 2}| = 1. It follows that |LP (Ti) ∩ {3, 4}| = 1.
Let Q be the set of all 2m-tuples Q = (Q1, . . . , Qm, P1, . . . , Pm) such that

• |Qi| ≤ 1, Qi ⊆ X̃(Ti), and if Qi = {q}, then L(q) ∩ {1, 2} 6= ∅.

• |Pi| ≤ 1, Pi ⊆ X̃(Ti), and if Pi = {p}, then L(p) ∩ {3, 4} 6= ∅.

For x ∈ X̃ \(X12∪X34) and z ∈ Z12 we say that z is a 12-grandchild of x if there is a component
C of X̃12 such that both x and z have neighbors in V (C); a 34-grandchild is defined similarly. Let
G12(x) be the set of 12-grandchildren of x; define G34(x) similarly.

We define a 4-list assignment L′Q for H. Start with L′Q = L. For every i ∈ {1, . . . ,m}, proceed
as follows. If |Qi| = 1, say Qi = {qi}, set L′Q(qi) to be the unique element of L(qi) ∩ {1, 2}. For

every x ∈ X̃(Ti) such that G12(qi) ⊂ G(x) and G12(x) \ G12(qi) 6= ∅, update L′Q(x) by removing
from it the unique element of L(x) ∩ {1, 2}. Next assume that Qi = ∅. In this case, for every
x ∈ X̃(Ti) \ {qi, pi} such that x has a grandchild, update L′Q(x) by removing from it the unique
element of L(x) ∩ {1, 2}.

If |Pi| = 1, say Pi = {pi}, set L′Q(pi) to be the unique element of L(pi) ∩ {3, 4}. For every

x ∈ X̃(Ti) such that G34(pi) ⊂ G(x) and G12(x)\G12(pi) 6= ∅, update L′Q(x) by removing from it the
unique element of L(x)∩{3, 4}. Next assume that Pi = ∅. In this case, for every x ∈ X(Ti)\{pi, qi}
such that some component of H|X̃34 contains both a neighbor of x and a neighbor of a vertex in
Z12, update L′Q(x) by removing from it the unique element of L(x) ∩ {3, 4}.

If some vertex z ∈ X̃ \ X̃12 has neighbors on both sides of the bipartition of a component of
H|(X̃12), set L′Q(z) = L(z) \ {1, 2}. If some vertex z ∈ X̃ \ X̃34 has neighbors on both sides of the

bipartition of a component of H|(X̃34), set L′Q(z) = L(z) \ {3, 4}. Finally, set L′Q(v) = L(v) for
every other v ∈ V (H) not yet specified. Now let LQ be obtained from L′Q by updating exhaustively
from

⋃m
i=1(Pi ∪Qi).

We need to check the following statements.

1. LQ(v) ⊆ L(v) for every v ∈ V (H).

2. (H,LQ, h) is a near-companion triple of P .

3. If for some i, j ∈ {1, 2, 3, 4} (H,L) has an ij-insulating cutset D′ with far side Zij , then D′

is an ij-insulating cutset with far side Zij in (H,LQ).

4. (H,LQ) has a 12-insulating cutset with far side Z12.

Clearly LQ(v) ⊆ L(v) for every v ∈ V (H), and consequently it is routine to check that the
third statement holds, and that in order to prove the second statement it is sufficient to prove the
following:

(5)
Set f(x) = LQ(x) for every x ∈ X0(LQ). Then for every z ∈ Z with L(z) 6= ∅ and
q ∈ {1, 2, 3, 4} such that q 6∈ LQ(z), there is a vertex in h(z) that has a neighbor
u ∈ S ∪X0 ∪X0(LQ) with f(u) = q.

We now prove this statement. Let z ∈ Z and q ∈ {1, 2, 3, 4} such that q 6∈ LQ(z). We need
to show that there is a vertex in h(z) that has a neighbor u ∈ S ∪ X0 ∪ X0(L′) with f(u) = q.
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If q 6∈ L(z), the claim follows from the fact that (H,L, h) is a near-companion triple for P , so we
may assume that q ∈ L(z), and therefore z has a neighbor u in X0(LQ) with f(u) = q. Since Z is
stable, it follows that u ∈ X̃, and therefore, by the definition of a companion triple, u is complete
to V (h(z)). This proves (5).

Finally, we prove that (H,LQ) has a 12-insulating cutset with far side Z12. Let D1, . . . , Dt

be the components of H|X̃12 that contain a vertex x such that x has a neighbor z in Z12 with
LQ(x) ∩ LQ(z) 6= ∅. Let F 1, . . . , F s be defined similarly for X̃34. Let D = X0(LQ) ∪

⋃t
i=1 V (Di) ∪⋃w

j=1 V (Fj). We claim that D is the required cutset. Clearly D is a chromatic cutset, setting the

far side to be Z12 and B = V (H)\(A∪D), and the first two bullets of the definition of an insulating
cutset are satisfied. Let D̃ ∈ {D1, . . . , Dt} (the argument is symmetric for F1, . . . , Fs). We need to
check the following properties.

• D̃ is bipartite.
This follows from the fact that G̃|X̃ij = H|X̃ij is bipartite. Let (D1, D2) be the bipartition
of D̃.

• |L(d)| = |L(d′)| for every d, d′ ∈ D1 ∪D2.
Since L(d) ⊆ {1, 2} for every d ∈ V (D̃), and since we have updated exhaustively, it follows
that if V (D̃) meets X0(LQ), then V (D̃) ⊆ X0(LQ).

• There exists a ∈ A with a neighbor in D̃ and with L(a) ∩ {1, 2} 6= ∅.
This follows immediately from the definition of D.

• Suppose that |L(d)| = 2 for every d ∈ V (D̃). We need to check that for {i, j} = {1, 2}, if
a ∈ A has a neighbor in d ∈ D1 and i ∈ LQ(a), and b ∈ B has a neighbor in D̃, then

– if b has a neighbor in D1, then j 6∈ LQ(b), and

– if b has a neighbor in D2, then i 6∈ LQ(b).

We now check the condition of the last bullet. Let a ∈ A have a neighbor d ∈ D1 and 1 ∈ LQ(a).
Suppose b ∈ B has a neighbor in D1 ∪D2, and violates the conditions above. It follows from the
definition of Z12 and B that b ∈ X̃ and |LQ(b)| = 2. We may assume that b ∈ T1(X). Since
|LQ(b)| = 2, we deduce that LQ(b) = L(b) = MP (b) = LP (T1). Since b exists, Q1 6= ∅. Since
|L(d)| = 2 for every d ∈ V (D̃), it follows that q1 is anticomplete to D1 ∪ D2. Since b 6∈ X0(LQ),
there is a component D0 of H|X̃12 such that q1 has a neighbor d0 ∈ V (D0) and b is anticomplete
to V (D0). Let {i} = LQ(b) ∩ {1, 2}, and let {1, 2} \ {i} = {j}. Then j 6∈ LQ(b) = MP (b), and so
j 6⊆ LP (T1). Consequently, there is s ∈ S with f(s) = j, such that s is complete to X̃(T1). Since
V (D̃) ∪ V (D0) ⊆ X12, it follows that s is anticomplete to V (D̃) ∪ V (D0).

Suppose first that V (D̃) 6= {d}. Since b is not complete to D1∪D2 (because LQ(b)∩{1, 2} 6= ∅),
there is an edge d1d2 of D̃, such that b is adjacent to d2 and not to d1. Now d1−d2− b− s− q1−d0
is a P6 in G̃12(s), contrary to Lemma 15.

This proves that V (D̃) = {d}, and so b is adjacent to d, i = 2 and j = 1. Therefore LP (T1) ∩
{1, 2} = {2}, and so LQ(q1) = c(q1) = 2. Since d0 ∈ X̃12, it follows that LQ(d0) = 1. Since
1 ∈ LQ(a) and LQ is obtained by exhaustive updating, we deduce that a is non-adjacent to d0.
But now since 1 ∈ LQ(a) and f(s) = 1, we deduce that a− d− b− s− q0 − d0 is a path in H12(s)
contradicting Lemma 16. This proves that (H,LQ) has a 12-insulating cutset with far side Z12.

Let L = {LQ ; Q ∈ Q}. Then |L| ≤ |(V (G)|2m. Since m ≤ 2|S|, it follows that |L| ≤ |V (G)|2|S| .
Since LQ(v) ⊆ L(v) for every v ∈ V (H), it follows that every coloring of (H,L′) is a coloring of
(H,L).
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Now suppose that (H,L) is colorable, and let c be a coloring. We show that some L′ ∈ L is
colorable. Let i ∈ {1, . . . ,m}. For a vertex u ∈ X̃(Ti) define val(u) = |G12(u)|. If some vertex u of
X̃(Ti) with a 12-grandchild has c(u) ∈ L(u)∩ {1, 2}, let qi be such a vertex with val(qi) maximum
and set Qi = {qi}. If no such u exists, let Qi = ∅.

Define P1, . . . , Pm similarly replacing X̃12 with X̃34. Let

Q = (Q1, . . . , Qm, P1, . . . , Pm).

We show that c(v) ∈ LQ(v) for every v ∈ V (H), and so (H,LQ) is colorable. Since LQ is obtained
from L′Q by updating, it is enough to prove that c(v) ∈ L′Q(v). Suppose not. There are two
possibilities (possibly replacing 12 with 34).

1. v ∈ X̃(Ti), Qi 6= ∅, G12(qi) is a proper subset of G12(v), and c(v) ∈ {1, 2};

2. v ∈ X̃(Ti), Qi = ∅, G12(v) 6= ∅, and c(v) ∈ {1, 2}.

We show that in both cases we get a contradiction.

1. In this case val(v) > v(qi), contrary to the choice of qi.

2. The existence of v contradicts the fact that Qi = ∅.

This proves that (H,LQ) is colorable and completes the proof of Theorem 17.

Let P = (G,S,X0, X, Y ∗, f) be an orthogonal excellent starred precoloring of a P6-free graph
G. We say that a near-companion triple (H,L, h) is insulated if for every i ∈ {2, 3, 4} such that
Z1i is non-empty, (H,L) has a 1i-insulating cutset D ⊆ X̃ with far side Z1i. We can now prove
the main result of this section.

Theorem 12. There is function q : N→ N such that the following holds. Let G be a P6-free graph,
let P = (G,S,X0, X, Y ∗, f) be an orthogonal excellent starred precoloring of G, and let (H,L, h)
be a near-companion triple for P . There is an algorithm with running time O(|V (G)|q(|S|)) that
outputs a collection L of 4-list assignments for H such that

• |L| ≤ |V (G)|q(|S|).

• If L′ ∈ L and c is a proper coloring of (H,L′), then c is a proper coloring of (H,L).

• If (H,L) is colorable, there exists L′ ∈ L such that (H,L′) is colorable.

Moreover, for every L′ ∈ L.

• L′(v) ⊆ L(v) for every v ∈ V (H).

• (H,L′, h) is insulated.

Proof. Let L2 be as in Lemma 17. By symmetry, we can apply Lemma 17 with 12 replaced by
13 to (H,L′, h) for every L′ ∈ L2; let L3 be the union of all the collections of lists thus obtained.
Again by symmetry, we can apply Lemma 17 with 12 replaced by 14 to (H,L′, h) for every L′ ∈ L3;
let L4 be the union of all the collections of lists thus obtained. Now L4 is the required collection of
lists.
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5 Divide and Conquer

The main result of this section is the last piece of machinery that we need to solve the 4-precoloring-
extension problem.

We need the following two facts.

Theorem 13. [3] There is a polynomial time algorithm that tests, for graph H and a list assignment
L with |L(v)| ≤ 2 for every v ∈ V (H), if (H,L) is colorable, and finds a proper coloring if one
exists.

Theorem 14. [7] The 2-SAT problem can be solved in polynomial time.

We prove:

Lemma 18. Let G be a P6-free graph and let P = (G,S,X0, X, Y ∗, f) be an orthogonal excellent
starred precoloring of G. Let (H,L′, h) be a companion triple for P , where V (H) = X̃ ∪ Z, as in
the definition of a companion triple. Assume that D ⊆ X̃ is a 12-insulating chromatic cutset in
(H,L′) with far side Z12. There is a polynomial time algorithm that test if (H|(Z12 ∪ D), L′) is
colorable, and finds a proper coloring if one exists.

Proof. We may assume that X0 = X0(P ). Let P̃ = (G̃, S,X0, X̃, Y ∗, f) be as in the definition
of a companion triple, where V (H) = X̃ ∪ Z. By Theorem 13 we can test in polynomial time if
H|(D ∩ X̃12, L

′) and H|(D ∩ X̃34, L
′) is colorable. If one of these pairs is not colorable, stop and

output that (H|(Z12 ∪D), L) is not colorable. So we may assume both the pairs are colorable, and
in particular every component of H|(D ∩ X̃12) and H|(D ∩ X̃34) is bipartite.

We modify L′ without changing the colorability property. First, let L′′ be obtained from L′ by
updating exhaustively from X0(L′). Next if v ∈ V (H) \ X̃12 has a neighbor on both sides of the
bipartition of a component of H|X̃12, we remove both 1 and 2 from L′′(v), and the same for X̃34; call
the resulting list assignment L. (We have already done a similar modification while constructing
list assignments LQ in the proof of Lemma 17, but there we only modified lists of vertices in X̃, so
this step is not redundant.) Set f(u) = L(u) for every u ∈ X0(L). Clearly:

(6) If v ∈ V (H) is adjacent to x ∈ X0(L), then L(v) ∩ L(x) = ∅.
Next we prove:

(7)
Let {p, q} ∈ {{1, 2}, {3, 4}} and let z ∈ Z12 with |L(z) ∩ {p, q}| = 1. Let L(z) ∩
{p, q} = {i} and {p, q} \ L(z) = {j}. Then there exists y ∈ V (h(z)) and u ∈
S ∪X0 ∪X0(L) such that f(u) = j and uy ∈ E(G̃).

To prove (7) let z ∈ Z with L(z)∩{1, 2} = {1} (the other cases are symmetric). Since 1 ∈ L(z),
it follows that z does not have neighbors on both sides of the bipartition of a component of H|X̃12,
and therefore L(z) = L′′(z). If 2 6∈ L′(z), then such u exists from the definition of a near-companion
triple, so we may assume 2 ∈ L′(z). This implies that there is u ∈ X0(L) such that u is adjacent to
z, and f(u) = 2. Since Z is stable, it follows that u ∈ X̃ ∪X0 ∪S, and so u is complete to V (h(z)),
and (7) follows.

We define an instance I of the 2-SAT problem. The variables are the vertices of Z12, and the
clauses are as follows:

1. For every z1, z2 ∈ Z12, if L(zi) ∩ {1, 2} = {i} for i = 1, 2 and z1, z2 have neighbors on the
same side of the bipartition of some component of H|(D ∩ X̃12), add the clause (¬z1 ∨ ¬z2).
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2. For every z1, z2 ∈ Z12, if L(z1) ∩ {1, 2} = L(z2) ∩ {1, 2} ∈ {{1}, {2}} for i = 1, 2 and z1, z2
have neighbors on opposite sides of the bipartition of some component of H|(D ∩ X̃12), add
the clause (¬z1 ∨ ¬z2).

3. For every z3, z4 ∈ Z12, if L(zi) ∩ {3, 4} = {i} for i = 3, 4 and z3, z4 have neighbors on the
same side of the bipartition of some component of H|(D ∩ X̃34), add the clause (z3 ∨ z4).

4. For every z3, z4 ∈ Z12, if L(z3) ∩ {3, 4} = L(z4) ∩ {3, 4} ∈ {{3}, {4}} for i = 3, 4 and z3, z4
have neighbors on opposite sides of the bipartition of some component of H|(D ∩ X̃34), add
the clause (z3 ∨ z4).

5. If z ∈ Z12 and L(z) ⊆ {1, 2}, add the clause (z ∨ z).

6. If z ∈ Z and L(z) ⊆ {3, 4}, add the clause (¬z ∨ ¬z).

By Theorem 14 we can test in polynomial time if I is satisfiable.
We claim that I is satisfiable if and only if (H|(Z12 ∪D), L) is colorable, and a proper coloring

of (H|(Z12 ∪D), L) can be constructed in polynomial time from a satisfying assignment for I.
Suppose first that (H|(Z12∪D), L) is colorable, and let c be a proper coloring. For z ∈ Z12, set

z = TRUE if c(z) ∈ {1, 2} and z = FALSE if c(z) ∈ {3, 4}. It is easy to check that every clause
is satisfied.

Now suppose that I is satisfiable, and let g be a satisfying assignment. Let A′ be the set
of vertices z ∈ Z12 with g(z) = TRUE, and let B′ = Z12 \ A′. Let A = A′ ∪ (D ∩ X̃12) and
B = B′ ∪ (D∩ X̃34). For v ∈ A let LA(v) = L′(v)∩{1, 2}, and for v ∈ B let LB(v) = L′(v)∩{3, 4}.
In order to show that (H|(Z12 ∪ D), L) is colorable and find a proper coloring, it is enough to
prove that (H|A,LA) and (H|B,LB) are colorable, and find their proper colorings. We show that
(H|A,LA) is colorable; the argument for (H|B,LB) is symmetric.

Since for every z ∈ Z12 with L(z) ⊆ {3, 4} (¬z ∨ ¬z) is a clause (of type 6) in I, it follows that
L(z)∩{1, 2} 6= ∅ for every z ∈ A. Let A1 = {v ∈ A : LA(v) = {1}}, A2 = {v ∈ A : LA(v) = {2}),
and A3 = A \ (A1 ∪ A2) Let F be a graph defined as follows. V (F ) = (A3 ∪ {a1, a2}), where
F \ {a1, a2} = H|A3, a1a2 ∈ E(F ), and for i = 1, 2 v ∈ A3 is adjacent to ai if and only if v has a
neighbor in Ai in H.

We claim that (H|A,LA) is colorable if and only if F is bipartite; and if F is bipartite, then a
proper coloring of (H|A,LA) can be constructed in polynomial time. Suppose F is bipartite and let
(F1, F2) be the bipartition. We may assume ai ∈ Fi. Let i ∈ {1, 2}. For every v ∈ (Fi ∪Ai) \ {ai},
we have that i ∈ LA(v), and so we can set c(v) = i. This proves that (H|A,LA) is colorable, and
constructs a proper coloring. Next assume that (H|A,LA) is colorable. For i = 1, 2, let F ′i be the
set of vertices of A colored i. Then Ai ⊆ F ′i , and setting Fi = (F ′i \Ai)∪ {ai}, we get that (F1, F2)
is a bipartition of F . This proves the claim.

Finally we show that F is bipartite. Recall that the pair (H|(D ∩ X̃12), L) is colorable, and
therefore H|(D ∩ X̃12) is bipartite. Since LA(v) ⊆ L(v) for every v ∈ A3, and LA(v) ∩ {1, 2} 6= ∅
for every v ∈ A, it follows that no vertex of A ∩ Z12 has a neighbor on two opposite sides of a
bipartition of a component of H|(D ∩ X̃12). Since Z12 is stable, this implies that the graph H|A is
bipartite.

Suppose that F is not bipartite. Then there is an odd cycle C in F , and so V (C)∩{a1, a2} 6= ∅.
In H this implies that there is a path T = t1 − . . .− tk with {t2, . . . , tk−1} ⊆ A3, such that either

• k is even, and for some i ∈ {1, 2} t1, tk ∈ Ai, or

• k is odd, t1 ∈ A1, and tk ∈ A2.
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Since T is a path in H|(Z ∪ X̃12), it follows that k ≤ 5. If t1 ∈ X̃12 ∩D, then t1 ∈ X0(L), and so
by (6), t2 ∈ A1 ∪A2, a contradiction. This proves that t1 ∈ Z12, and similarly tk ∈ Z12.

Suppose first that k is even. Since Z12 is stable, it follows that k 6= 2, and so k = 4. Since
t1, t4 ∈ Z12 and since Z12 is stable, it follows that t2, t3 ∈ X̃12. But now (¬t1 ∨ ¬t4) is a clause (of
type 2) in I, and yet g(t1) = g(t4) = TRUE, a contradiction.

This proves that k is odd. If k = 3 then, since Z12 is stable, t2 ∈ X̃12, and so (¬t1 ∨ ¬t3) is a
clause (of type 1) in I, and yet g(t1) = g(t3) = TRUE, a contradiction. This proves that k = 5.
Since Z12 is stable, it follows that t2, t4 ∈ X̃12. If t3 ∈ X̃12, then (¬t1 ∨ ¬t5) is a clause (of type 1)
in I, contrary to the fact that both g(t1) = g(t5) = TRUE, a contradiction. Therefore t3 ∈ Z12.
We may assume that t1 ∈ A1. By (7) there exist u ∈ S ∪ X0 ∪ X0(L) and y1 ∈ V (h(t1)) such
that f(u) = 2 and uy1 ∈ E(G̃). Since t2 ∈ X̃, it follows that t2 is complete to V (h(t1)), and in
particular t2 is adjacent to y1. Since X0 = X0(P ), it follows that u is anticomplete to {t2, t4}. Let
i ∈ {3, 5}. By the definition of a companion triple, since 2 ∈ L(ti), there exists yi ∈ V (h(ti)) such
that u is non-adjacent to yi in G̃. Now since no vertex of X̃ is mixed on a component to G̃|Y ∗,
it follows that u − y1 − t2 − y3 − t4 − y5 is a P6 in G̃12(u), contrary to Lemma 15. This proves
Lemma 18.

6 The complete algorithm

First we prove Theorem 8, which we restate.

Theorem 15. For every integer C there exists a polynomial-time algorithm with the following
specifications.

Input: An excellent starred precoloring P = (G,S,X0, X, Y ∗, f) of a P6-free graph G with |S| ≤ C.

Output: A precoloring extension of P or a determination that none exists.

Proof. By Theorem 9 we can construct in polynomial time a collection L of orthogonal excellent
starred precolorings of G, such that in order to determine if P has a precoloring extension (and
find one if it exists), it is enough to check if each element of L has a precoloring extension, and find
one if it exists. Thus let P1 ∈ L. By Theorem 10 we can construct in polynomial time a companion
triple (H,L, h) for P1, and it is enough to check if (H,L, h) is colorable.

Now proceed as follows. If L(v) = ∅ for some v ∈ V (H), stop and output “no precoloring
extension”. So we may assume L(v) 6= ∅ for every v ∈ V (H). Let L be a collection of lists as in
Theorem 12. If L = ∅, stop and output “no precoloring extension”, so we may assume that L 6= ∅.
Let L′ ∈ L; then (H,L′, h) is insulated. For every i let Di be and insulating 1i-cutset with far side
Z1i, and let Di′ = {d ∈ Di : |L′(d)| = 2}. Let Hi = H|(Di∪Z1i), and let H1 = H\

⋃4
i=2(D

i′∪Z1i).
Observe that V (H1) ⊆ X̃. By Lemma 18, we can check if each of the pairs (Hi, L

′) with i ∈ {2, 3, 4}
is colorable, and by Theorem 13, we can check if (H1, L

′) is colorable and find a proper coloring
if one exists. If one of these pairs is not colorable, stop and output “no precoloring extension”.
So we may assume that (Hi, L

′) is colorable for every i ∈ {1, . . . , 4}. Observe that D2 is an
insulating 12-cutset in (H|(V (H1)∪ V (H2)), L

′) with far side Z12, D3 is an insulating 13-cutset in
(H|(V (H1) ∪ V (H2) ∪ V (H3)), L

′) with far side Z13, and D4 is an insulating 14-cutset in (H,L′)
with far side Z14. Now three applications of Theorem 11 show that (H,L) is colorable, and produce
a proper coloring. This proves 15.

We can now prove the main result of the series, the following.
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Theorem 16. There exists a polynomial-time algorithm with the following specifications.

Input: A 4-precoloring (G,X0, f) of a P6-free graph G.

Output: A precoloring extension of (G,X0, f) or a determination that none exists.

Proof. Let L be as in Theorem 7. Then L can be constructed in polynomial time, and it is enough
to check if each element of L has a precoloring extension, and find one if it exists. Now apply the
algorithm of Theorem 15 to every element of L.
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Appendix: Finding an Excellent Precoloring

A Establishing the Axioms on Y0

Given a P6-free graph G and a precoloring (G,A, f), our goal is to construct a polynomial number
of seeded precolorings P = (G,S,X0, X, Y0, Y, f) satisfying the following axioms, and such that if
we can decide for each of them if it has a precoloring extension, then we can decide if (G,A, f) has
a 4-precoloring extension, and construct one if it exists.

(i) G \X0 is connected.

(ii) S is connected and no vertex in V (G) \ S is complete to S.

(iii) Y0 = V (G) \ (N(S) ∪X0 ∪ S).

(iv) No vertex V (G) \ (Y0 ∪X0) is mixed on an edge of Y0.

(v) If |LS,f (v)| = 1 and v 6∈ S, then v ∈ X0; if |LS,f (v)| = 2, then v ∈ X; if |LS,f (v)| = 3, then
v ∈ Y ; and if |LS,f (v)| = 4, then v ∈ Y0.

(vi) There is a color c ∈ {1, 2, 3, 4} such for every vertex y ∈ Y with a neighbor in Y0, f(N(y)∩S) =
{c}. We let L = {1, 2, 3, 4} \ {c}.

(vii) With L as in (vi), we let Y ∗L be the subset of YL of vertices that are in connected components
of G|(Y0 ∪YL) containing a vertex of Y0. Then no vertex of Y \Y ∗L has a neighbor in Y0 ∪Y ∗L ,
and no vertex in X is mixed on an edge of Y0 ∪ Y ∗L .

(viii) With Y ∗L as in (vii), for every component C of G|(Y0 ∪ Y ∗L ), there is a vertex v in X complete
to C.

We start with a useful lemma.

Lemma 19. Let G be a graph and let X ⊆ V (G) be connected. If v ∈ V (G) \X is mixed on X,
the there is an edge xy of X such that v is adjacent to x and not to y.

Proof. Since v is mixed on X, both the sets N(v) ∩X and X \N(v) are non-empty. Now since X
is connected, there exist x ∈ N(v) ∩X and y ∈ X \N(v) such that x is adjacent to y, as required.
This proves Lemma 19.

Now we establish the first axiom.

Lemma 20. Given a 4-precoloring (G,X0, f) of a P6-free graph G, there is an algorithm with
running time O(|V (G)|2) that outputs a collection L of seeded precolorings such that:

• |L| ≤ |V (G)|;

• every P ′ ∈ L is of the form P ′ = (G|(V (C) ∪X0), ∅, X0, ∅, V (C), ∅, f) for a component C of
G \X0;

• every P ′ ∈ L satisfies (i)

• (G,X0, f) has a 4-precoloring extension if and only if each of the seeded precolorings P ′ ∈ L
has a precoloring extension; and
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• given a precoloring extension for each of the seeded precolorings P ′ ∈ L, we can compute a
4-precoloring extension for (G,X0, f) in polynomial time.

Proof. For each connected component C of G \X0, the algorithm outputs the seeded precoloring
(G|(V (C)∪X0), ∅, X0, ∅, V (C), ∅, f). Since the coloring is fixed on X0, it follows that (G,X0, f) has
a 4-precoloring extension if and only if the 4-precoloring on X0 can be extended to every connected
component C of G \X0. This implies the statement of the lemma.

The next lemma is used to arrange the following axioms, which we restate:

(ii) S is connected and no vertex in V (G) \ S is complete to S.

(iii) Y0 = V (G) \ (N(S) ∪X0 ∪ S).

Lemma 21. There is a constant C such that the following holds. Let P = (G, ∅, X0, ∅, Y0, ∅, f) be
a seeded precoloring of a P6-free graph G with P satisfying (i). Then there is an algorithm with
running time O(|V (G)|C) that outputs an equivalent collection L for P such that

• |L| ≤ |V (G)|C ;

• every P ′ ∈ L is a normal subcase of G;

• every P ′ = (G′, S′, X ′0, X
′, Y ′0 , Y

′, f ′) ∈ L with seed S′ satisfies |S′| ≤ C; and

• every P ′ ∈ L satisfies (i), (ii) and (iii).

Moreover, for every P ′ ∈ L, given a precoloring extension of P ′, we can compute a precoloring
extension for P in polynomial time.

Proof. If |V (G) \ X0| ≤ 5, we enumerate all possible colorings. Now let v ∈ V (G) \ X0, and let
S′ = {v}. While there is a vertex w in V (G) \ S′ complete to S′, we add w to S′. Let S denote
the set S′ when this procedure terminates. If either |S| ≥ 5 or (G|(S ∪X0), ∅, X0, S, ∅, ∅, f) has no
precoloring extension, then we output that P has no precoloring extension. Otherwise, we construct
L as follows. For every proper coloring f ′ of G|S such that f ∪f ′ is a proper coloring of G|(S∪X0),
we add

P ′ = (G,S,X0 \ S,N(S) \X0, V (G) \ (X0 ∪ S ∪N(S)), ∅, f ∪ f ′)

to L. Since |S| ≤ 4, it follows that the first three bullets hold, and (iii) holds for P ′ by the definition
of P ′. Since X0 is unchanged, it follows that (i) holds. Since S is a maximal clique, we have that
(ii) holds for P ′. This concludes the proof.

The next four lemmas are technical tools that we use several times in the course of the proof.
They are used to show that if we start with a seeded precoloring that has certain properties, and
then move to its normal subcase, then these properties are preserved (or at least can be restored
with a simple modification).

For a seeded precoloring P = (G,S,X0, X, Y0, Y, f), a type is a subset of S. For v ∈ V (G) \
(S ∪X0), the type of v, denoted by TP (v) = TS(v), is N(v) ∩ S. For a type T and a set A, we let
A(T ) = {v ∈ A : TP (v) = T}.

Lemma 22. Let P = (G,S,X0, X, Y0, Y, f) be a seeded precoloring of a P6-free graph G satisfying
(ii) and (iii), and let Let T, T ′ ⊆ S with |f(T )| = |f(T ′)| = 1 and such that f(T ) 6= f(T ′). Let
y, y′ ∈ N(Y0) such that T (y) = T and T (y′) = T ′. Let z, z′ ∈ Y0 be such that yz and y′z′ are edges,
and suppose that z is non-adjacent to z′ and that y is non-adjacent to y′. Then either yz′ or y′z is
an edge.
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Proof. Suppose both the pairs yz′ and y′z are non-adjacent. Since P satisfies (ii) and (iii), it follows
that G|S is connected and both y, y′ have neighbors in S. Let Q be a shortest path from y to y′

with interior in S. Since |f(T )| = |f(T ′) = 1 and f(T ) 6= f(T ′), it follows that T ∩ T ′ = ∅, and so
|Q∗| > 1. But now z − y −Q − y′ − z′ is a path of length at least six in G, a contradiction. This
proves Lemma 22.

Lemma 23. Let P = (G,S,X0, X, Y0, Y, f) be a seeded precoloring of a P6-free graph satisfying
(ii), (iii) and (iv), and let P ′ = (G′, S′, X ′0, X

′, Y ′0 , Y
′, f ′) be a normal subcase of P satisfying (iii).

Then no v ∈ Y0 \ (S′ ∪ Y ′0) has both a neighbor in S′ and a neighbor in Y ′0.

Proof. Suppose such v exists. Let y ∈ Y0 be a neighbor of v. Since P ′ is a normal subcase of P ,
P ′ satisfies (ii). Since v has both a neighbor in Y ′0 and a neighbor in S′, and since P ′ satisfies (iii),
it follows that v ∈ X ′ ∪ Y ′ ∪X ′0. Since v ∈ Y0, it follows that v is anticomplete to S. Therefore v
has a neighbor in S′ \ S ⊆ X ∪ Y ∪ Y0. Since P ′ satisfies (ii), there is a path Q from v to a vertex
s of S with Q∗ ⊆ S′. Then V (Q) \ {v} is anticomplete to Y ′0 . Let R be the maximal subpath of
v − Q − s, with v ∈ V (R), such that V (R) ⊆ Y0. Then s 6∈ V (R), and there is a unique vertex
t ∈ V (Q) \ V (R) with a neighbor in V (R). Since t ∈ N(Y0), it follows that t 6∈ S ∪ Y0, and so
t ∈ X ∪ Y . But t is mixed on V (R) ∪ {y} ⊆ Y0, contrary to the fact that P satisfies (iv). This
proves Lemma 23.

Lemma 24. There is a constant C such that the following holds. Let P = (G,S,X0, X, Y0, Y, f) be a
seeded precoloring of a P6-free graph G with P satisfying (i), and let P ′ = (G′, S′, X ′0, X

′, Y ′0 , Y
′, f ′)

be a normal subcase of P satisfying (iii) and (iv). Then there is an algorithm with running time
O(|V (G)|C) that outputs an equivalent collection L for P ′, such that |L| ≤ 1, and if L = {P ′′},
then

• there is Z ⊆ Y ′0 such that P ′′ = (G′ \ Z, S′, X ′0, Y ′0 \ Z, Y ′, f) and P ′′ is a normal subcase of
P ′;

• P ′′ satisfies (i)—(iv);

• if P ′ satisfies (v), then P ′′ satisfies (v).

Moreover, given a precoloring extension of P ′′, we can compute a precoloring extension for P in
polynomial time.

Proof. Since P ′ is a normal subcase of P , it follows that P ′ satisfies (ii). We may assume that P ′

does not satisfy (i), for otherwise we can set L = {P ′}. Now let C be a connected component of
G′ \X ′0 with S′ ∩ V (C) = ∅. It follows that V (C) ⊆ Y ′0 and C is a component of G|Y ′0 .

Let x ∈ N(V (C)) ∩ (X ′0 \ X0). Since P satisfies (i), such a vertex x exists. By Lemma 23,
x ∈ X ∪ Y . Since P ′ satisfies (iv), it follows from Lemma 19 that x is complete to V (C). Let
f ′(x) = c. Then in every precoloring extension d of P ′ we have d(v) 6= c for every v ∈ V (C).

Let A = {v ∈ X ′0 : f ′(v) 6= c}. By Theorem 2 and since G is P6-free, we can decide in polynomial
time if (G′|(V (C) ∪ A), A, f ′|A) has a precoloring extension with colors in {1, 2, 3, 4} \ {c}. If not,
then P ′ has no precoloring extension, and we set L = ∅. If (G′|(V (C)∪A), A, f ′|A) has a precoloring
extension using only colors in {1, 2, 3, 4} \ {c}, then P ′ has a precoloring extension if and only if
(G′ \ V (C), S′, X ′0, X

′, Y ′0 \ V (C), Y ′, f ′) does.
We repeat this process a polynomial number of times until G′ \ X ′0 is connected, and output

the resulting seeded precoloring P ′′ = (G′′, S′, X ′0, X
′, Y ′′0 , Y

′, f ′) satisfying (i). Since Y ′′0 ⊆ Y ′0 , and
the other sets of P ′′ remain the same as in P ′, it follows that the P ′′ satisfies (ii)–(iv), and if P ′

satisfies (v), then so does P ′′. This proves Lemma 24.
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Lemma 25. Let P = (G,S,X0, X, Y0, Y, f) be a seeded precoloring of a P6-free graph satisfying
(ii), (iii) and (iv), and let P ′ = (G′, S′, X ′0, X

′, Y ′0 , Y
′, f ′) be a normal subcase of P satisfying (iii).

Then P ′ satisfies (iv). Moreover, if P satisfies (vi), then P ′ satisfies (vi).

Proof. Since P ′ is a normal subcase of P , P ′ satisfies (ii). First we show that P ′ satisfies (iv).
Suppose not, then there exists v ∈ V (G)\X ′0 mixed on an edge xy of Y ′0 , say v is adjacent to y and
not to x. It follows that v ∈ X ′ ∪ Y ′, and since P satisfies (iv), v ∈ Y0. Therefore v has a neighbor
in S′, contrary to Lemma 23. This proves that P ′ satisfies (iv).

Next assume that P satisfies (vi). We show that P ′ satisfies (vi). Let L as in (vi) applied to P .
Suppose there exists y ∈ N(Y ′0) with LP ′(y) 6= L and |LP ′(y)| = 3. Since P satisfies (vi), it follows
that y ∈ Y0 \ Y ′0 , and y has a neighbor s ∈ S′, contrary to Lemma 23. This proves that P ′ satisfies
(vi).

This completes the proof of Lemma 25.

The next lemma is another technical tool, used to establish axioms (iv) and (vii).

Lemma 26. There is a function q : N→ N such that the following holds. Let P = (G,S,X0, X, Y0, Y, f)
be a seeded precoloring of a P6-free graph G with P satisfying (i), (ii) and (iii). Let L ⊆ [4] with
|L| = 3, let c4 be the unique element of [4] \L. Let R ⊆ Y0 ∪ YL such that Y0 ⊆ R. Assume further
that if t ∈ (X ∪ Y ) \ R has a neighbor in R, then for every z ∈ R, LP (t) 6= LP (z), and that there
is no path t− z1 − z2 − z3 with t ∈ (X ∪ Y ) \R and z1, z2, z3 ∈ R. Then there is an algorithm with
running time O(|V (G)|q(|S|)) that outputs an equivalent collection L for P such that

• |L| ≤ |V (G)|q(|S|);

• every P ′ ∈ L is a normal subcase of P ;

• every P ′ = (G′, S′, X ′0, X
′, Y ′0 , Y

′, f ′) ∈ L with seed S′ satisfies |S′| ≤ q(|S|);

• every P ′ ∈ L satisfies (ii) and (iii).

• no vertex of (X ′ ∪ Y ′) \R is mixed on an edge of (Y ′ ∪ Y ′0) ∩R.

Moreover, for every P ′ ∈ L, given a precoloring extension of P ′, we can compute a precoloring
extension of P in polynomial time.

Proof. If G contains a K5, then P has no precoloring extension; we output L = ∅ and stop. Thus
from now on we assume that G has no clique of size five. Let Y 5

0 = R and let Z5 = (X ∪ Y ) \ R.
Let T 5 be the set of types of vertices in Z5, and set j = 4.

LetQj be the set of |T j |-tuples (Sj,T )T∈T j+1 , where each Sj,T ⊆ Zj+1(T ) and Sj,T is constructed
as follows (starting with Sj,T = ∅):

• If R = Y0 or c4 ∈ f(T ) proceed as follows. While there is a vertex z ∈ Zj+1(T ) complete
to Sj,T and such that there is clique {a1, . . . , aj} ⊆ Y0

j+1 with N(z) ∩ {a1, . . . , aj} = {a1},
choose such z with N(z) ∩R maximal and add it to Sj,T .

• If R 6= Y0 and c4 6∈ f(T ), while there is z ∈ Zj+1(T ) complete to Sj,T such that there is clique
{a1, . . . , aj} ⊆ Y0

j+1 with N(z) ∩ {a1, . . . , aj} = {a1}, add z to Sj,T . Let X0(z) be the set of
all z′ ∈ Zj+1(T ) such that

– z′ is complete to Sj,T \ {z}
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– there is a clique {b1, . . . , bj} ⊆ Y0
j+1 such that N(z′) ∩ {b1, . . . , bj} = {b1}, and

– N(z′) ∩R is a proper subset of N(z) ∩R.

When no such vertex z exists, let Xj,T
0 =

⋃
z∈Sj,T X0(z). Define f ′(z′) = c4 for every z′ ∈ Xj,T

0

(observe that since c4 6∈ f(T ), it follows that c4 ∈ LP (z′)).

Since G has no clique of size five, it follows that |Sj,T | ≤ 4 for all T . Let Q ∈ Qj ; write

Q = (Sj,T )T∈T j+1 . Let Sj = Sj,Q =
⋃

T∈T j+1 Sj,T . Let Y j
0 = Y j,Q

0 = Y j+1
0 \N(Sj), Xj

0 = Xj,Q
0 =⋃

T∈T j+1 X
j,T
0 . Zj = Zj,Q = (Zj+1 \Xj

0)∪ (Y j+1
0 \ Y j

0 ) and let T j be the set of types of Zj (in P ).
If j > 2, decrease j by 1 and repeat the construction above, to obtain a new set Qj−1; repeat this
for each Q ∈ Qj .

Suppose j = 2. Then Q was constructed by fixing Q4 ∈ Q4, constructing Q3 (with Q4 fixed),
fixing Q3 ∈ Q3, constructing Q2 (with Q3 fixed), and finally fixing Q ∈ Q2. Write Q2 = Q. For
consistency of notation we write Q5 = ∅, Z5 = Z5,Q5 and Y 5

0 = Y 5,Q5
0 . Let S′ = S ∪

⋃4
j=2 S

j,Qj . If

R 6= Y0, let X ′0 = X0 ∪
⋃4

j=2X
j,Qj

0 ; if R = Y0, let X ′0 = X0.
For every function f ′ : S′ \ S → {1, 2, 3, 4} such that f ∪ f ′ is a proper coloring of G|(S′ ∪X ′0),

let
Pf ′,Q = (G,S′, X ′0, Z

2,Q ∩X,Y 2,Q
0 , Z2,Q ∩ Y, f ∪ f ′).

Let L be the set of all PQ,f ′ as above. Observe that S′ is obtained from S by adding a clique of
size at most four for each type in T j at each of the three steps (j = 4, 3, 2), and since |T j | ≤ 2|S|

for every j, it follows that |S ∪ S′| ≤ |S| + 12 × 2|S|. Since |S′ \ S| ≤ 12 × 2|S|, it follows that

|L| ≤ (4|V (G)|)12×2|S| .
In the remainder of the proof we show that every PQ,f ′ ∈ L satisfies the required properties.

(8) S ∪
⋃4

k=j S
k is connected for every j ∈ {2, . . . , 4}. In particular S′ is connected.

Since for every j, we have that Sj,Qj ⊆ Zj+1, it follows that every vertex of Sj,Qj has a neighbor
in S ∪

⋃4
k=j+1 S

k,Qk , and (8) follows.

(9) Let j ∈ {2, . . . , 5}. There is no path z − a− b− c with z ∈ Zj,Qj and a, b, c ∈ Y
j,Qj

0 .
Suppose for a contradiction that there exist j and z violating (9); we may assume z is chosen

with j maximum. By assumption j 6= 5 and z ∈ Y
j,Qj

0 \Y j+1,Qj+1

0 . It follows that z has a neighbor
z′ ∈ Sj,Qj and that z is anticomplete to S ∪

⋃4
k=j+1 S

k,Qk . Since z′ ∈ Sj,Qj ⊆ Zj+1,Qj , it follows

that z′ has a neighbor s ∈ S ∪
⋃4

k=j+1 S
k,Qk . But now s − z′ − z − a − b − c is a P6 in G, a

contradiction. This proves (9).

(10)
Let j ∈ {2, . . . , 4}. No vertex z ∈ Zj,Qj has exactly one neighbor in a clique

{a1, . . . , aj} ⊆ Y
j,Qj

0 .
Suppose for a contradiction that there exist j and z violating (10); we may assume that z is

chosen with j maximum. Write Qj = (Sj,T ). Let {a1, . . . , aj} ⊆ Y
j,Qj

0 be a clique with N(z) ∩
{a1, . . . , aj} = {a1}.

Suppose first that z ∈ R. Let k be maximum such that z ∈ Zk,Qk . Then z 6∈ Zk+1,Qk+1 , and

thus z ∈ Y
k+1,Qk+1

0 , z has a neighbor z′ ∈ Sk,Qk , and z is anticomplete to S ∪
⋃4

l=k+1 S
l,Ql . It

follows that z′ ∈ Zk+1,Qk+1 . But now z′ − z − a1 − aj is a path with z, a1, aj ∈ Y
k+1,Qk+1

0 contrary
to (9). This proves that z 6∈ R.

It follows that z ∈ Zj+1,Qj+1 ∩ (X ∪Y ), and in particular z has a neighbor in S. Let T = TP (z).
It follows that Sj,T 6= ∅; let z′ ∈ Sj,T be the first vertex that was added to Sj,T that is non-adjacent
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to z (such a vertex exists by the definition of Sj,T ). Then LP (z) = LP (z′). Since z′ ∈ Sj,Qj ,

it follows that z′ is anticomplete to Y
j,Qj

0 . Since a1 ∈ Y
j,Qj

0 ⊆ Y
j+1,Qj+1

0 , it follows that z has

a neighbor in Y
j+1,Qj+1

0 non-adjacent to z′, and hence (by the choice of z′ if Y0 = R, and since

z 6∈ X0(z
′) if Y0 6= R), it follows that z′ has a neighbor a′ ∈ Y j+1

0 that is non-adjacent to z.
Suppose first that a′ is complete to {a1, . . . , aj}. Since G contains no clique of size five, it follows

that j < 4. But now N(z′) ∩ {a′, a1, . . . , aj} = {a′}, contrary to the maximality of j.
Suppose next that a′ is mixed on {a1, . . . , aj}. Let x be a neighbor and y be a non-neighbor of

a′ in {a1, . . . , aj}. Then z′ − a′ − x− y is a path, which contradicts an assumption of the theorem.
It follows that a′ is anticomplete to {a1, . . . , aj}. Since z, z′ 6∈ R and have neighbors in R, it

follows that there is a vertex t ∈ T that is anticomplete to R (this is immediate if R = Y0, and
follows from the fact that LP (z) 6= L if R 6= Y0). Now a′ − z′ − t − z − a1 − aj is a P6 in G, a
contradiction. This proves (10).

By (8) Pf ′,Q satisfied (ii), and by construction (iii) holds. Now from (10) with j = 2 we deduce
that no vertex of (X ′ ∪ Y ′) \R is mixed on an edge of (Y ′ ∪ Y ′0) ∩R.

It remains to show that L is equivalent to P . Clearly for every P ′ ∈ L, a precoloring extension
of P ′ is also a precoloring extension of P .

Let d be a precoloring extension of P . We show that some P ′ ∈ L has a precoloring extension.
Let j ∈ {2, 3, 4}; define Sj,T and f ′ as follows (starting with Sj,T = ∅):

• If R = Y0 or c4 ∈ f(T ) proceed as follows. While there is a vertex z ∈ Zj+1(T ) complete
to Sj,T and such that there is clique {a1, . . . , aj} ⊆ Y0

j+1 with N(z) ∩ {a1, . . . , aj} = {a1},
choose such z is such that N(z) ∩R maximal and add it to Sj,T ; set f ′(z) = d(z).

• If R 6= Y0 and c4 6∈ f(T ), while there is z ∈ Zj+1(T ) complete to Sj,T such that there is
clique {a1, . . . , aj} ⊆ Y0

j+1 with N(z) ∩ {a1, . . . , aj} = {a1}, choose such z with d(z) 6= c4
and subject to that with N(z) ∩ R maximal; add z to Sj,T and set f ′(z) = d(z). Let X0(z)
be the set of all z′ ∈ Zj+1(T ) such that

– z′ is complete to Sj,T \ {z},
– there is a clique {b1, . . . , bj} ⊆ Y0

j+1 such that N(z′) ∩ {b1, . . . , bj} = {b1}, and

– N(z′) ∩R is a proper subset of N(z) ∩R.

It follows from the choice of z that d(z′) = c4 for every z′ ∈ X0(z). When no such vertex z
exists, let Xj,T

0 =
⋃

z∈Sj,T X0(z); thus d(z′) = c4 for every z′ ∈ Xj,T
0 . Define f ′j,T (z′) = c4 for

every z′ ∈ Xj,T
0 , then f ′j,T (z) = d(z) for every z ∈ Xj,T

0 .

Let Qj = (Sj,T ) and let f ′j =
⋃

T f ′j,T . It follows that Pf2,Q2 = (G,S′, X ′0, X
′, Y ′0 , Y

′, f ∪ f ′)
satisfies d(v) = f2(v) for every v ∈ S′ ∪ X ′0, and thus d is is a precoloring extension of Pf2,q2 , as
required. This proves Lemma 26.

The next lemma is used to arrange the following axiom, which we restate:

(iv) No vertex V (G) \ (Y0 ∪X0) is mixed on an edge of Y0.

Lemma 27. There is a function q : N→ N such that the following holds. Let P = (G,S,X0, X, Y0, Y, f)
be a seeded precoloring of a P6-free graph G with P satisfying (i), (ii) and (iii). Then there is an
algorithm with running time O(|V (G)|q(|S|)) that outputs an equivalent collection L for P such that

• |L| ≤ |V (G)|q(|S|);
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• every P ′ ∈ L is a normal subcase of P ;

• every P ′ = (G′, S′, X ′0, X
′, Y ′0 , Y

′, f ′) ∈ L with seed S′ satisfies |S′| ≤ q(|S|); and

• every P ′ ∈ L satisfies (i), (ii), (iii) and (iv).

Moreover, for every P ′ ∈ L, given a precoloring extension of P ′, we can compute a precoloring
extension for P in polynomial time.

Proof. Let S5 = ∅. Let Z = X ∪ Y . Since P satisfies (iii), it follows that every vertex of Z has
a neighbor in S. While there is a vertex z ∈ Z complete to S5 and a path z − a − b − c with
a, b, c ∈ Y0, we add z to S5. If |S5| ≥ 5, then G contains a K5 and thus it has no precoloring
extension; set L = ∅ and stop. Thus we may assume that |S5| ≤ 4. Let Y 5

0 = Y0 \N(S5) and let
Z5 = Z ∪ (Y0 \ Y 5

0 ). Since S is connected, and since every vertex of S5 has a neighbor in S, it
follows that S ∪ S5 is connected.

(11) There is no path z − a− b− c with z ∈ Z5 and a, b, c ∈ Y 5
0 .

Suppose for a contradiction that such a path exists, and suppose first that z ∈ Z. By the choice
of S5, it follows that there exists a vertex z′ ∈ Z ∩S5 non-adjacent to z. Since S ∪S5 is connected,
there exists a path Q connecting z and z′ with interior in S ∪ S5. Since P satisfies (iii) and by the
construction of S5, it follows that Q∗ is anticomplete to {a, b, c}. But now z′ −Q− z − a− b− c is
a path of length at least six in G, a contradiction.

It follows that z ∈ N(S5)\Z, and thus z ∈ Y0\Y 5
0 . Let s′ ∈ S5∩N(z). Then s′ is anticomplete to

{a, b, c}. Moreover, s′ ∈ Z, and so s′ has a neighbor s ∈ S. Since P satisfies (iii), s is anticomplete
to Y0, and so s is anticomplete to {z, a, b, c}. But now s − s′ − z − a − b − c is a P6 in G, a
contradiction. This proves (11).

For every f ′ : S5 → [4] such that f ∪ f ′ is a proper coloring of G|(S ∪ S5), let Pf ′ = (G,S ∪
S5, X0, Z

5, Y 5
0 , ∅, f ∪ f ′). Then Pf ′ is a normal subcase of P that satisfies (i)-(iii).

Let Mf ′ be the collection of seeded precolorings obtained by applying Lemma 26 to P ′f with

R = Y 5
0 , and let M be the union of all such Mf ′ . By (11) every P ′′ ∈M satisfies (ii)–(iv).

Finally let L be obtained from M by applying Lemma 24 to every member of M. Then every
P ′ ∈ L satisfies (i)–(iv), as required. This proves Lemma 27.

The purpose of Lemma 28 is to organize vertices according to their lists (which, in turn, arise
from the colors of their neighbors in the seed) to satisfy the following axiom:

(v) If |LS,f (v)| = 1 and v 6∈ S, then v ∈ X0; if |LS,f (v)| = 2, then v ∈ X; if |LS,f (v)| = 3, then
v ∈ Y ; and if |LS,f (v)| = 4, then v ∈ Y0.

Moreover, we will construct new seeded precolorings in controlled ways from seeded precolorings
satisfying (i), (ii), (iii), and (iv), to arrange that these axioms as well as (v) still hold for the new
instances.

Lemma 28. There is a constant C such that the following holds. Let P = (G,S,X0, X, Y0, Y, f)
be a seeded precoloring of a P6-free graph G with P satisfying (i), (ii), (iii) and (iv), and let
P ′ = (G′, S′, X ′0, X

′, Y ′0 , Y
′, f ′) be a normal subcase of P . Then there is an algorithm with running

time O(|V (G)|C) that outputs an equivalent collection L for {P} of seeded precoloring with |L| ≤ 1,
such that if L = {P ′′} then

• P ′′ is a normal subcase of P ′, and
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• P ′′ satisfies (i), (ii), (iii), (iv) and (v).

• If P ′ (vi), then P ′′ satisfies (vi).

• If P ′ satisfies (vii), then P ′′ satisfies (vii).

Moreover, given a precoloring extension of P ′′, we can compute a precoloring extension for P in
polynomial time.

Proof. Since P ′ is a normal subcase of P , it follows that P ′ satisfies (ii). By moving vertices between
Y ′0 and X ′ ∪ Y ′, we may assume that P ′ satisfies (iii). By Lemma 25 P ′ satisfies (iv).

Let Zi = {v ∈ V (G) \ (S′ ∪X ′0) : |LP ′(v)| = i}. If Z0 6= ∅, then P ′ has no precoloring extension,
and we output this and L = ∅ and stop. Thus, we may assume that Z0 = ∅. Let f ′′ : Z1 → {1, 2, 3, 4}
with f ′′(v) = c if LP ′(v) = {c}. Since P ′ satisfies (iii), it follows that Y ′0 = Z4, and so the seeded
precoloring P̃ = (G′, S′, X ′0 ∪ Z1, Z2, Z4, Z3, f

′ ∪ f ′′) satisfies (iv). For the same reason, if P ′

satisfies (vi), then so does P̃ , and if P ′ satisfies (vii), then so does P̃ . Let P ′′ be obtained from
the precoloring P̃ as in Lemma 24. It follows that P ′′ satisfies (i)–(v), and P ′′ is a normal subcase
of P ′. Clearly if P̃ satisfies (vi), then so does P ′′, and if P̃ satisfies (vii), then so does P ′′. This
proves Lemma 28.

In the next lemma we establish (vi), which we restate:

(vi) There is a color c ∈ {1, 2, 3, 4} such for every vertex y ∈ Y with a neighbor in Y0, f(N(y)∩S) =
{c}. We let L = {1, 2, 3, 4} \ {c}.

Lemma 29. There is a function q : N→ N such that the following holds. Let P = (G,S,X0, X, Y0, Y, f)
be a seeded precoloring of a P6-free graph G with P satisfying (i), (ii), (iii), (iv) and (v). Then
there is an algorithm with running time O(|V (G)|q(|S|)) that outputs an equivalent collection L for
P such that

• |L| ≤ |V (G)|q(|S|);

• every P ′ ∈ L is a normal subcase of P ;

• every P ′ = (G′, S′, X ′0, X
′, Y ′0 , Y

′, f ′) ∈ L with seed S′ satisfies |S′| ≤ q(|S|); and

• every P ′ ∈ L satisfies (i), (ii), (iii), (iv), (v) and (vi).

Moreover, for every P ′ ∈ L, given a precoloring extension of P ′, we can compute a precoloring
extension for P in polynomial time.

Proof. A seeded precoloring P = (G,S,X0, X, Y0, Y, f) is acceptable if for every precoloring ex-
tension c of P and for every non-adjacent y, y′ ∈ Y ∩ N(Y0) with LP (y) 6= LP (y′), we have
{c(y), c(y′)} 6⊆ LP (y) ∩ LP (y′).

First we construct a collection M of seeded precolorings that is an equivalent collection for
P , and such that every member of M is acceptable. We proceed as follows. Let T be the set
of all pairs (T, T ′) with T, T ′ ⊆ S and |f(T )| = |f(T ′)| = 1 and f(T ) 6= f(T ′). Write T =
{(T1, T

′
1), . . . , (Tt, T

′
t)}. Let Q be the set of all t-tuples Q = (QT1,T ′1

, . . . , QTt,T ′t
) such that QTi,T ′i

=
(PTi,T ′i

,MTi,T ′i
, NTi,T ′i

) where

• |PTi,T ′i
| = |MTi,T ′i

| ≤ |NTi,T ′i
| ≤ 1.

• PTi,T ′i
⊆ Y (Ti) and NTi,T ′i

⊆ Y (T ′i ).
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• MTi,T ′i
⊆ Y0.

• MTi,T ′i
is complete to PTi,T ′i

∪NTi,T ′i
.

• PTi,T ′i
is anticomplete to NTi,T ′i

.

Let V (QTi,T ′i
) = PTi,T ′i

∪MTi,T ′i
∪NTi,T ′i

and let S(Q) =
⋃t

i=1 V (QTi,T ′i
). Let (Ti, T

′
i ) ∈ T . Define

Z(Ti, T
′
i ) as follows.

• If |PTi,T ′i
| = |MTi,T ′i

| = |NTi,T ′i
| = 0 , then Z(Ti, T

′
i ) = Y (T ′i) ∩N(Y0).

• If |PTi,T ′i
| = |MTi,T ′i

| = 0 and |NTi,T ′i
| = 1, then Z(Ti, T

′
i ) = (Y (T ′i) ∩N(Y0)) \N(NTi,T ′i

).

• If |PTi,T ′i
| = |MTi,T ′i

| = |NTi,T ′i
| = 1, then Z(Ti, T

′
i ) = ∅.

Let Z(Q) =
⋃

(Ti,T ′i )∈T
Z(Ti, T

′
i ). A function f ′ is said to be Q-admissible if f ′ : S(Q) ∪ Z(Q) →

{1, . . . , 4} and for every i ∈ {1, . . . , t} it satisfies:

• f ′(PTi,T ′i
), f ′(NTi,T ′i

) ∈ [4] \ (f(Ti) ∪ f(T ′i )).

• If Z(Ti, T
′
i ) ⊆ Y (T ′i ), then f ′(Z(Ti, T

′
i )) = f(Ti).

• If Z(Ti, T
′
i ) ⊆ Y (Ti), then f ′(Z(Ti, T

′
i )) = f(T ′i ).

• The coloring f ∪ f ′ of G|(S ∪ S(Q) ∪X0 ∪ Z(Q)) is proper.

For every Q-admissible function f ′ with domain S(Q) ∪ Z(Q), let

PQ,f ′ = (G,S∪S(Q), X0∪Z(Q), X, Y0\(S(Q)∪N(S(Q))), (Y \(S(Q)∪Z(Q)))∪(N(S(Q))∩Y0), f∪f ′).

Then PQ,f ′ is a normal subcase of P .
Since every vertex in X∪Y has a neighbor in S, it follows that PQ,f ′ satisfies (ii); by construction

(iii) holds. By Lemma 25, PQ,f ′ satisfies (iv). Let M be the union of the collections obtained by
applying Lemma 28, where the union is taken over all Q, f ′ as above. Then every member of M
satisfies (i)–(v).

We show that there is a function q1 : N → N such that |S ∪ S(Q)| ≤ q1(|S|) and |M| ≤
|V (G)|q1(|S|). Since there are at most 2|S| types, it follows that t ≤ 22|S|. Now, since for every
(Ti, T

′
i ) ∈ T we have that |V (QTi,T ′i

)| ≤ 3, it follows that for every Q ∈ Q we have |S(Q)| ≤ 3× 2t,

and so |S ∪ S(Q)| ≤ |S| + 3 × 22|S| and |Q| ≤ |V (G)|3×22|S| . Finally, for every Q, there are
at most 4|S(Q)| = 43t possible precoloring of S(Q), since every precoloring of S(Q) extends to an

admissible function in a unique way, and we deduce that |M| ≤ 43t×|Q| ≤ 43×2
2|S|×|V (G)|3×22|S| ≤

(4|V (G)|)3×22|S| as required.

(12)
Let P ′ ∈ M with P ′ = (G,S′, X ′0, X

′, Y ′0 , Y
′, f ′). If y ∈ Y ′ has a neighbor z ∈ Y ′0,

then y ∈ Y .
Suppose that y 6∈ Y . Then y ∈ Y0 ∩ Y ′ and there exist s ∈ S′ \ S such that y is adjacent to s,

contrary to Lemma 23. This proves (12).

Next we show that every precoloring in M is acceptable. Let P ′ = (G,S′, X ′0, X
′, Y ′0 , Y

′, f ′) ∈
M, and suppose there exist non-adjacent y, y′ ∈ N(Y ′0) ∩ Y ′ with LP ′(y) 6= LP ′(y

′) and such
that there exists a precoloring extension c with c(y), c(y′) ∈ LP ′(y) ∩ LP ′(y

′). Let z ∈ N(y) ∩ Y ′0
and z′ ∈ N(y′) ∩ Y ′0 . Then z, z′ ∈ Y0, and so by Lemma 23, y, y′ ∈ Y , LP (y) = LP ′(y) and
LP (y′) = LP ′(y

′). Let T = T (y) and T ′ = T (y′) (in P ). Then T ∩ T ′ = ∅. By Lemma 22
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we may assume that z = z′. Since Y ′ ∩ Y (T ) and Y ′ ∩ Y (T ′) are both non-empty, it follows
that |V (QT,T ′)| > 1. Let PT,T ′ = {p}, MT,T = {m} and NT,T ′ = {n}. Since z ∈ Y ′0 , it follows
that z is anticomplete to V (QT,T ′). Since P ′ satisfies (v), f ′(p), f ′(n) ∈ LP (y) ∩ LP (y′) and
|LP ′(y)| = |LP ′(y

′)| = 3, it follows that {y, y′, p, n} is a stable set. By symmetry, we may assume
that f ′(m) ∈ LP ′(y), and hence y is not adjacent to m. Let s ∈ T \ T ′; then z − y − s− p−m− n
is a P6 in G, a contradiction. This proves that every seeded precoloring in M is acceptable.

Next we show that M is equivalent to P . Clearly every precoloring extension of a member
of M is a precoloring extension of P . For the converse, let c be a precoloring extension of P .
For every pair of types (T, T ′) ∈ T for which there exist non-adjacent y ∈ Y (T ) ∩ N(Y0) and
y′ ∈ Y (T ′) ∩ N(Y0), such that c(y), c(y′) 6∈ f(T ) ∪ f(T ′), choose such a pair y, y′ and let z be a
common neighbor of y, y′ in Y0 (such z exists by Lemma 22); set PT,T ′ = {y}, MT,T ′ = {z} and
NT,T ′ = {y′}, and define f ′(y) = c(y), f ′(y′) = c(y′) and f ′(z) = c(z). Let Z(Ti, T

′
i ) = ∅.

Now let (T, T ′) ∈ T be such that no such y, y′ exist. Suppose that there exists y ∈ Y (T ′)∩N(Y0)
with c(y) 6= f(T ), let NT,T ′ = {y}, PT,T ′ = MT,T ′ = ∅, and let f ′(y) = c(y). Let Z(Ti, T

′
i ) =

(Y (T ) ∩N(Y0)) \N(y), and set f ′(v) = f(T ′) for every v ∈ Z(Ti, T
′
i ). Since (T, T ′) does not have

the property described in the previous paragraph, it follows that c((Y (T )∩N(Y0))\N(y)) = f(T ′),
and so c(v) = f ′(v) for every v ∈ Z(Ti, T

′
i ). Finally, suppose that c(Y (T ′) ∩ N(Y0)) = f(T ).

Then set PT,T ′ = MT,T ′ = NT,T ′ = ∅ and Z(Ti, T
′
i ) = Y (T ′) ∩ N(Y0). Define f ′(v) = f(T ) for

every v ∈ Z(Ti, T
′
i ). Let Q consist of all the triples QT,T ′ = (PT,T ′ ,MT,T ′ , NT,T ′) as above. Let

S(Q) =
⋃

(T,T ′)∈T V (QT,T ′), and Z(Q) =
⋃

(T,T ′)∈T Z(Ti, T
′
i ). Let

PQ,f ′ = (G,S∪S(Q), X0∪Z(Q), X, Y0\(S(Q)∪N(S(Q))), (Y \(S(Q)∪Z(Q)))∪(N(S(Q))∩Y0), f∪f ′).

Then c is a precoloring extension of PQ,f ′ . Moreover, PQ,f ′ was one of the seeded precoloring we
considered in the process of constructing M, and so M contains the seeded precoloring obtained
from PQ,f ′ by applying Lemma 28. It follows that M is an equivalent collection for P .

Let P ′ = (G,S′, X ′0, X
′, Y ′0 , Y

′, f ′) ∈M be an acceptable seeded precoloring. For c ∈ {1, 2, 3, 4}
and a precoloring extension d of P ′, we say that is c is active for L and d if there exists a vertex
v ∈ Y ′ ∩N(Y ′0) with LP ′(v) = L and d(v) = c.

Define L1(P ′) as follows. For every function g : Y ′ ∩N(Y ′0)→ [4] such that

• g(v) ∈ LP ′(v) for every v ∈ Y ∩N(Y ′0),

• |g(Y ′L ∩N(Y ′0)| = 1 for every L ∈
(
[4]
3

)
, and

• f ′ ∪ g is a proper coloring of G|(S′ ∪X ′0 ∪ (Y ′ ∩N(Y ′0))),

let
P ′′g = (G,S′, X ′0 ∪ (Y ′ ∩N(Y ′0)), X ′, Y ′0 , Y

′ \N(Y ′0), f ′ ∪ g).

It is easy to check that P ′′g satisfies (ii)—(vi). Let P ′g be obtained from P ′′g by applying Lemma 28.
Then P ′g satisfies (i)—(vi). Let L1(P ′) be the collections of all such P ′g.

Next we construct L2(P ′). For every L ∈
(
[4]
3

)
, for every y1, y2 ∈ Y ′L ∩ N(Y ′0), and for every

c1, c2 ∈ L, define a function g as follows. Let g(yi) = ci. For every L′ ∈
(
[4]
3

)
\ L, let Z(L′) be

the set of vertices v ∈ Y ′L′ such that v has a non-neighbor n ∈ {y1, y2} with g(n) ∈ L′. For every
v ∈ Z(L′), let g(v) be the unique element of L′ \ L. Finally, let Z =

⋃
L′∈([4]3 )\L Z(L′).

If f ′ ∪ g is a proper coloring of G|(S ∪X0 ∪ {y1, y2}), let

P ′′L,y1,y2,c1,c2 = (G,S ∪ {y1, y2}, X0 ∪ Z,X, Y0 \N({y1, y2}), Y \ (Z ∪ {y1, y2}), f ′ ∪ g).
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It is easy to check that P ′′L,y1,y2,c1,c2 satisfies (i)—(vi). Let P ′L,y1,y2,c1,c2 be obtained from P ′′L,y1,y2,c1,c2
by applying Lemma 28. Let L2(P ′) be the collection of all P ′L,y1,y2,c1,c2 constructed this way; then
every member of L2 satisfies (i)—(vi).

We claim that L(P ′) = L1(P ′)∪L2(P ′) is an equivalent collection for {P ′}. Clearly a precoloring
extension of an element of L(P ′) is a precoloring extension of P . Now let c be a precoloring extension
of P . If for every L ∈

(
[4]
3

)
there is at most one active color for L and c, then c is a precoloring

extension of a member of L1(P ), so we may assume that there is L0 ∈
(
[4]
3

)
such that at least two

colors are active for L and c. We may assume that L = {1, 2, 3} and the colors 1, 2 are active. Let
yi ∈ Y ′L0 with c(y) = i. We claim that c is a precoloring extension of P ′′L0,y1,y2,1,2

. Let L ∈
(
[4]
3

)
\L0.

Since P ′ is acceptable, for every v ∈ Y ′L that has a non-neighbor n ∈ {y1, y2} with c(n) ∈ L′, we
have that c(v) ∈ L′ \ L0. It follows that c(v) = g(v), and the claim holds. This proves that L(P ′)
is an equivalent collection for {P ′}.

Finally, setting

L =
⋃

P ′∈M
L(P ′),

Lemma 29 follows. This completes the proof.

The next lemma is used to arrange the following axiom, which we restate:

(vii) With L as in (vi), we let Y ∗L be the subset of YL of vertices that are in connected components
of G|(Y0 ∪YL) containing a vertex of Y0. Then no vertex of Y \Y ∗L has a neighbor in Y0 ∪Y ∗L ,
and no vertex of X is mixed on Y0 ∪ Y ∗L .

Lemma 30. There is a function q : N→ N such that the following holds. Let P = (G,S,X0, X, Y0, Y, f)
be a seeded precoloring of a P6-free graph G with P satisfying (i), (ii), (iii), (iv), (v) and (vi). Then
there is an algorithm with running time O(|V (G)|q(|S|)) that outputs an equivalent collection L for
P such that

• |L| ≤ |V (G)|q(|S|);

• every P ′ ∈ L is a normal subcase of P ;

• for every P ′ = (G′, S′, X ′0, X
′, Y ′0 , Y

′, f ′) ∈ L, |S′| ≤ q(|S|);

• every P ′ ∈ L satisfies (i), (ii), (iii), (iv), (v), (vi) and (vii);

Moreover, for every P ′ ∈ L, given a precoloring extension of P ′, we can compute a precoloring
extension for P in polynomial time.

Proof. We may assume that G contains no K5, for otherwise, P does not have a precoloring
extension and we output L = ∅ and stop.

With L as in (vi) and Y ∗L as in (vii), let Y ∗ = (X ∪ (Y \Y ∗L ))∩N(Y0 ∪Y ∗L ). By the definition of
Y ∗L , it follows that LP (y) 6= L for every y ∈ Y ∗, and if y ∈ Y ∗∩Y , then y is anticomplete to Y0. Let
T = {T1, . . . , Tt} be the set of types of vertices in Y ∗. Let L = {c1, c2, c3} and {c4} = {1, 2, 3, 4}\L.
Let Q consist of all t-tuples Q = ((ST1 , RT1), . . . , (STi , RTt)) such that

• |RTi | ≤ |STi | ≤ 1.

• STi ∪RTi ⊆ Y ∗(Ti).

• STi is complete to RTi .
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Let V (Q) =
⋃t

i=1(STi∪RTi). For every Q ∈ Q and for every f ′ : V (Q)→ L with f ′(v) ∈ LP (v)\{c4}
for all v ∈ V (Q), we proceed as follows. Let Ỹ 1

Q,f ′ be the set of all vertices v in Y ∗ such that

ST (v) = ∅. Let Ỹ 2
Q,f ′ be the set of all vertices v in Y ∗ such that ST (v) 6= ∅ , RT (v) = ∅ and

v is complete to ST (v). Let ỸQ,f ′ = Ỹ 1
Q,f ′ ∪ Ỹ 2

Q,f ′ . Let f ′(v) = c4 for every v ∈ ỸQ,f ′ Since
V (Q) ⊆ Y ∗, it follows that G|(S ∪ V (Q)) is connected. Suppose that f ∪ f ′ is a proper coloring of
G|(S ∪X0 ∪ V (Q) ∪ ỸQ,f ′). Let L′ be obtained from the normal subcase

(G,S ∪ V (Q), X0 ∪ ỸQ,f ′ , X \ (ỸQ,f ′ ∪ V (Q)), Y0, Y \ (ỸQ,f ′ ∪ V (Q)), f ∪ f ′ ∪ g)

of P by applying Lemma 28. Suppose that L′ = {PQ,f ′}. Write PQ,f ′ = (G,S′, X ′0, X
′, Y ′0 , Y

′, f ′).
Then PQ,f ′ satisfies (i)–(vi). Furthermore, PQ,f ′ has a precoloring extension if and only if P has a
precoloring extension d such that d(v) = f ′(v) for every v ∈ V (Q), and d(v) = c4 for every v ∈ Y ∗

such that either

• ST (v) = ∅, or

• ST (v) 6= ∅, RT (v) = ∅, and v is complete to ST (v).

Moreover, |V (Q)| ≤ 2|T | ≤ 2|S|+1.
Let L1 be the set of all seeded precolorings PQ,f ′ as above (ranging over all Q ∈ Q). Then L1 is an

equivalent collection for P , and |L1| ≤ (3|V (G)|)2|S|+1
. Let P ′ ∈ L1 with P ′ = (G,S′, X ′0, X

′, Y ′0 , Y
′, f ′).

Since P ′ satisfies (vi), let L be as in (vi) and let Y ′∗L be as in (vii).

(13) There is no path z − a− b− c with z ∈ (X ′ ∪ Y ′) \ Y ′∗L and a, b, c ∈ Y ′∗L ∪ Y ′0.
Suppose that such a path z − a − b − c exists. First we show that z ∈ X ∪ Y . Suppose not,

then z ∈ Y0 and z has a neighbor s′ ∈ S′ \ S. Since P satisfies (vi), it follows that s′ ∈ X. Since
{z, a, b, c} ⊆ Y0 ∪YL, and since P satisfies (v), we deduce that there exists s ∈ T (s′) with f(s) ∈ L.
Consequently, s is anticomplete to {z, a, b, c}. But now s − s′ − z − a − b − c is a P6 in G, a
contradiction. This proves that z ∈ X ∪ Y .

Since LS,f (z) 6= L, there exists t ∈ T (z) with f(t) ∈ L. Since z 6∈ X ′0, it follows that ST (v) 6= ∅,
and either

• RT (z) 6= ∅ , or

• RT (z) = ∅, and z is not complete to ST (z).

Let ST (z) = {s}. Since f ′(s) ∈ L, it follows that s is anticomplete to {a, b, c}. If z is non-adjacent
to s, then s − t − z − a − b − c is a P6, a contradiction. It follows that z is adjacent to s, and
therefore RT (z) 6= ∅; say RT (z) = {r}. Since s is adjacent to r, it follows that f ′(z) 6= f ′(r). Since
z 6∈ X0, and since (v) holds, it follows that z is non-adjacent to r. Since f ′(r) ∈ L, it follows that
r is anticomplete to {a, b, c}. But now r − s − z − a − b − c is a P6 in G, a contradiction. This
proves (13).

In view of (13), let L2(P ′) be the collection of precolorings obtained from P ′ by applying
Lemma 26 with R = Y ′0 ∪ Y ′

∗
L. Let P ′′ ∈ L2(P ′); write P ′′ = (G,S′′, X ′′0 , X

′′, Y ′′0 , Y
′′, f ′′). Then P ′′

satisfies (ii) and (iii) and no vertex of (X ′′ ∪Y ′′) \R is mixed on (Y ′′ ∪Y ′′0 )∩R. By Lemma 25, P ′′

satisfies (iv) and (vi).
Let L3(P ′′) be obtained by applying Lemma 28 to P ′′, and let P̃ ∈ L3(P ′′). Write P̃ =

(G̃, S̃, X̃0, X̃, Ỹ0, Ỹ , f̃). By Lemma 28, P̃ satisfies (i)–(vi). Since P ′′ satisfies (iii), S̃ = S′′ and
Ỹ0 = Y ′′0 . Define Ỹ ∗L as in (vii), then Ỹ ∗L = R ∩ Ỹ . Since no vertex of (X ′′ ∪ Y ′′) \ R is mixed on
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(Y ′′ ∪ Y ′′0 )∩R, it follows that no vertex of (X̃ ∪ Ỹ ) \ Ỹ ∗L is mixed on Y ′′0 ∪ Ỹ ∗L , and since P̃ satisfies
(vi), we deduce that P̃ satisfies (vii). Now setting

L =
⋃

P1∈L1

⋃
P2∈L2(P1)

L3(P2)

Lemma 30 follows.

We are now ready to prove the final lemma of this section, used to prove the following axiom,
which we restate:

(viii) With Y ∗L as in (vii), for every component C of G|(Y0 ∪Y ∗L ), there is a vertex v in X complete
to C.

Lemma 31. There is a constant c such that the following holds. Let P = (G,S,X0, X, Y0, Y, f) be
a seeded precoloring of a P6-free graph G satisfying (i), (ii), (iii), (iv), (v), (vi), and (vii). Let L be
as in (vi) and let Y ∗L as in (vii). There is an algorithm with running time O(|V (G)|c) that outputs
an equivalent collection L of seeded precolorings, such that |L| ≤ 1, and if L = {P ′}, then

• there is Z ⊆ Y0 ∪ Y ∗L such that P ′ = (G \ Z, S,X0, X, Y0 \ Z, Y \ Z, f), and

• P ′ satisfies (i)–(viii).

Proof. We may assume that P does not satisfy (viii) for otherwise we set L = {P}. A component
C of G|(Y0∪Y ∗L ) is deficient if no vertex of X is complete to V (C). Let C be a deficient component.
It follows from (vii) that X is anticomplete to V (C). Let A = V (C)∩Y0, B = V (C) \A. For every
vertex v ∈ A∪B, let L(v) = {1, 2, 3, 4} \ (f(N(v)∩ (S ∪X0))). It follows that L(v) ⊆ L for v ∈ B.
Moreover, by (i), it follows that B 6= ∅. Let L = {c1, c2, c3} and let {c4} = {1, 2, 3, 4} \ L.

For every component D of G|A, we proceed as follows.
Let P(D) be the set of lists L∗ ⊆ {1, 2, 3, 4} with |L∗| ≤ 3 such that D can be colored with

list assignment L′(x) = L(x) ∩ L∗ for x ∈ V (D). Since G is P6-free, it follows from Theorem 2
that P(D) can be computed in polynomial time. Since C is connected, it follows from (iv) that
some vertex of B is complete to D. Consequently, in any precoloring extension of P , at most three
colors appear in D, and at least one color of L does not appear in D. Therefore, if P(D) = ∅,
or if L ⊆ L′ for every L′ ∈ P(D), then P has no precoloring extension we set L = ∅ and stop.
Let P∗(D) be the set of L′ ⊆ {1, 2, 3, 4} such that L′ 6∈ P(D), but for every proper superset
L′′ ⊆ {1, 2, 3, 4} of L′ with |L′′| ≤ 3, we have that L′′ ∈ P(D). Let d ∈ V (D). We now replace D
by a stable set R(D) = {d(L∗)}L∗ of copies of d, one for each L∗ ∈ P∗(D) with c4 ∈ L∗, and set
L′(d(L∗)) = {1, 2, 3, 4}\L∗. Then L′(d(L∗)) ⊆ L. Let C ′ denote the graph obtained by this process
(repeated for every component of C|Y0) from C. Let L′(v) = L(v) for every v ∈ V (C) \ Y0. Since
C ′ is obtained from an induced subgraph of G by replacing vertices with stable sets, it follows that
C ′ is P6-free.

We claim that C has a proper L-coloring if and only if C ′ has a proper L′-coloring. Suppose
that C has a proper L-coloring c. We need to show that c|V (C)\Y0

can be extended to each R(D).
We can consider each D separately.

Let D be a component of C|Y0. Let L∗ = c(D). Let L∗∗ = c(N(D)). We claim that for
every r ∈ R(D), L′(r) \ L∗∗ 6= ∅. Suppose L′(r) ⊆ L∗∗. Then {1, 2, 3, 4} \ L′(r) ∈ P∗(D), but
L∗ ⊆ {1, 2, 3, 4} \ L∗∗ ⊆ {1, 2, 3, 4} \ L′(r), a contradiction. This proves that for every r ∈ R(D),
there exists d(r) ∈ L′(r) \ L∗∗, and setting c(r) = d(r) we obtain a coloring of C ′.

Next suppose that C ′ has a proper L′-coloring c. Let L∗ = {1, 2, 3, 4} \ c(N(D)). If L∗ ∈ P(D),
then we color D with an L-coloring using only those colors in L∗; this is possible by the definition
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of P(D). Thus we may assume that L∗ 6∈ P(D). Since L(x) ⊆ L for all x ∈ N(D) ⊆ B, it follows
that c4 ∈ L∗. From the definition of P∗(D), it follows that some superset L∗∗ of L∗ is in P∗(D).
Then L′(d′(L∗∗) = {1, 2, 3, 4} \L∗∗ ⊆ {1, 2, 3, 4} \L∗ = c(N(D)). However, c(d′) ∈ L′(d′), and thus
c(d) ∈ c(N(D)) = c(N(d)), contrary to the fact that c is a proper coloring. This proves that C has
a proper L-coloring if and only if C ′ has a proper L′-coloring.

We have so far proved the following:

• C ′ has a proper L′-coloring if and only if C has a proper L-coloring;

• C ′ is P6-free; and

• for every x ∈ V (C ′), we have that L′(x) ⊆ L.

By Theorem 2, we can decide in polynomial time if C ′ has a proper L′-coloring, and thus if
C has a proper L-coloring. If not, then P has no precoloring extension; we set L = ∅ and stop.
If C has a proper L-coloring, then (G \ V (C), S,X0, X, Y0 \ V (C), Y \ V (C), f) has a precoloring
extension if and only if P does.

By repeatedly applying this algorithm to every deficient component C of G|(Y0∪Y ∗L ), and setting
Z =

⋃
V (C) where the union is taken over all such components, we set P ′ = (G \ Z, S,X0, X, Y0 \

Z, Y \ Z, f) and output L = {P ′}. Then P ′ satisfies (i)-(viii), and Lemma 31 follows.

We call a seeded precoloring good if it satisfies (i), (ii), (iii), (iv), (v), (vi), (vii), and (viii).
By applying Lemmas 20, 21, 27, 28,29, 30 and 31, each to every seeded precoloring in the output

of the previous one, we finally derive the main theorem of Section A.

Theorem 17. There is a constant C such that the following holds. Let G be a P6-free graph, and
let (G,A, f) be a 4-precoloring of G. Then there exists a polynomial-time algorithm that computes
a collection L of seeded precolorings such that

• L is equivalent for P .

• for every (G′, S′, X ′0, X
′, Y ′0 , Y

′, f ′) ∈ L, G′ is an induced subgraph of G, A ⊆ X ′0 ∪ S′ and
f ′|A = f |A.

• every P ∈ L is good

• every seeded precoloring in L has a seed of size at most C;

• |L| ≤ |V (G)|C .

By Theorem 17, to solve the 4-precoloring extension problem in polynomial time, it is sufficient
to solve the precoloring extension problem for good seeded precolorings of P6-free graphs (with seed
size bounded by a constant) in polynomial time.

B Establishing the Axioms on Y

In the previous section, we arranged that components of G|(Y0 ∪ Y ) containing a vertex of Y0 are
well-behaved. In this section, we deal with components of G|(Y0 ∪ Y ) that do not contain a vertex
of Y0.

Let P be a starred precoloring. We say that a collection L of starred precolorings is an equivalent
collection for P if P has a precoloring extension if and only if at least one of the starred precolorings
in L does.

The following are the axioms we want to establish for starred precolorings.
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(I) Every vertex y in Y satisfies |LP (y)| = 3.

(II) Let L1, L2 ⊆ {1, 2, 3, 4} with |L1| = |L2| = 3 and L1 6= L2. Then there is no path a − b − c
with LP (a) = L1, LP (b) = LP (c) = L2 with a, b, c ∈ Y .

(III) Let L1, L2, L3 ⊆ {1, 2, 3, 4} with |L1| = |L2| = |L3| = 3 and L1 6= L2 6= L3 6= L1. Then there
is no path a− b− c with LP (a) = L1, LP (b) = L2, LP (c) = L3 with a, b, c ∈ Y .

(IV) Let L1 ⊆ {1, 2, 3, 4} with |L1| = 3. Then there is no path a− b− c with LP (b) = LP (c) = L1

and a ∈ X, b, c ∈ Y .

(V) Let L1, L2 ⊆ {1, 2, 3, 4} with |L1| = |L2| = 3. Then there is no path a− b− c with LP (b) =
L1, LP (c) = L2 and a ∈ X with LP (a) 6= L1 ∩ L2.

(VI) For every component C of G|Y , for which there is a vertex of X is mixed on C, there exist
L1, L2 ⊆ {1, 2, 3, 4} with |L1| = |L2| = 3 such that C contains a vertex xi with LP (xi) = Li

for i = 1, 2, every vertex x in C satisfies LP (x) ∈ {L1, L2}, and every x ∈ X mixed on C
satisfies LP (x) = L1 ∩ L2.

(VII) For every component C of G|Y such that some vertex of X is mixed on C, and for L1, L2 as
in (VI), LP (v) = L1 ∩ L2 for every vertex v ∈ X with a neighbor in C.

(VIII) Y = ∅.

We begin by showing that starred precolorings exist, and we establish axiom (I).

Lemma 32. Let P be a good seeded precoloring of a P6-free graph G. Then

P ′ = (G,S,X0, X, Y \ Y ∗L , Y ∗L ∪ Y0, f)

(with Y ∗L as in (vii)) is a starred precoloring satisfying (I) and P ′ has a precoloring extension if
and only if P does, and every precoloring extension of P ′ is a precoloring extension of P .

Proof. This is easily verified by checking the definition of a starred precoloring.

Our next goal is to establish axiom (II), which we restate.

(II) Let L1, L2 ⊆ {1, 2, 3, 4} with |L1| = |L2| = 3 and L1 6= L2. Then there is no path a − b − c
with LP (a) = L1, LP (b) = LP (c) = L2 with a, b, c ∈ Y .

This lemma will also be useful for proving (IV).

Lemma 33. There is a function q : N → N such that the following holds. Let L1 ⊆ {1, 2, 3, 4}
with |L1| = 3, and let P = (G,S,X0, X, Y, Y ∗, f) be a starred precoloring of a P6-free graph G
with P satisfying (I). Then there is an algorithm with running time O(|V (G)|q(|S|)) that outputs
an equivalent collection L for P such that

• |L| ≤ |V (G)|q(|S|);

• every P ′ ∈ L is a starred precoloring of G;

• every P ′ ∈ L with seed S′ satisfies |S′| ≤ q(|S|);

• every P ′ = (G,S′, X ′0, X
′, Y ′, Y ∗, f ′) ∈ L satisfies (I) and Y ′ ⊆ Y ;
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• if there is no path a− b− c with LP (a) 6= L′1, LP (b) = LP (c) = L′1 with a, b, c ∈ Y for some
L′1 with |L′1| = 3, then there is no path a− b− c with LP ′(a) 6= L′1, LP ′(b) = LP ′(c) = L′1 with
a, b, c ∈ Y ′;

• if P satisfies (II), and if there is no path a− b−c with LP (a) 6= L′1, LP (b) = LP (c) = L′1 with
a, b, c ∈ X ∪ Y for some L′1 with |L′1| = 3, then there is no path a− b− c with LP ′(a) 6= L′1,
LP ′(b) = LP ′(c) = L′1 with a, b, c ∈ X ′ ∪ Y ′; and

• there is no path a− b− c with LP ′(a) 6= L1, LP ′(b) = LP ′(c) = L1 with a, b, c ∈ X ′ ∪ Y ′.

Moreover, for every P ′ ∈ L, given a precoloring extension of P ′, we can compute a precoloring
extension for P in polynomial time, if one exists.

Proof. Let L1 ⊆ {1, 2, 3, 4} with |L1| = 3, and let P = (G,S,X0, X, Y, Y ∗, f) be a starred precolor-
ing of a P6-free graph G with P satisfying (I). We check in polynomial time if G contains a K5. If
so, then P does not have a precoloring extension and we output L = ∅ as an equivalent collection.
Therefore, for the remainder of the proof we may assume that G contains no K5.

Let L = ∅. Let Y1 = {y ∈ Y : LP (y) = L1}. Let T = {T1, . . . , Tr} be the set of types T ⊆ S
with f(T ) 6= {1, 2, 3, 4} \ L1 and |f(T )| ≤ 2, and if P satisfies (II), |f(T )| = 2. Let Q be the set of
all r-tuples of quadruples ((Q1, R1c1, d1), . . . , (Qr, Rr, cr, dr)) such that for every i ∈ {1, . . . , r},

• ci, di ∈ L1;

• 1 ≥ |Qi| ≥ |Ri| and Qi ∪Ri is a clique; and

• Qi ∪Ri ⊆ (X ∪ Y )(Ti).

For every Q = ((Q1, R1, c1, d1), . . . , (Qr, Rr, cr, dr)) ∈ Q, we proceed as follows. Let S′Q =
Q1 ∪R1 ∪ · · · ∪Qr ∪Rr, and let f ′ : S′ → L1 be such that f ′(qi) = ci for all i for which Qi = {qi},
and f ′(ri) = di for all i for which Ri = {ri}. Let

Ỹ Q =
⋃

i:Qi=∅

(X ∪ Y )(Ti),

and let gQ : Ỹ Q → {1, 2, 3, 4} \ L1 be the constant function. Let

Z̃Q =
⋃

i:Ri=∅,Qi 6=∅

((X ∪ Y )(Ti) ∩N(Qi)),

and let g′Q : Z̃Q → {1, 2, 3, 4} \ L1 be the constant function.
For i ∈ {1, . . . , r}, let X̃i and g′′Qi be defined as follows. If |f(Ti)| = 1, we let X̃i = X(Ti) ∩

N(Qi)∩N(Ri). If |f(Ti)| = 2, we let X̃i = X(Ti)∩N(Qi). We let g′′Q(X̃i) = {1, 2, 3, 4} \ (f ′(Ti)∪
f ′(Qi) ∪ f ′(Ri)). Let X̃Q = X̃1 ∪ · · · ∪ X̃r.

Then, if f ∪ f ′ ∪ gQ ∪ g′Q ∪ g′′Q is a proper coloring of G|(S ∪ S′Q ∪X0 ∪ Ỹ Q ∪ Z̃Q ∪ X̃Q), we
add the starred precoloring

P ′Q =(G,S ∪ S′Q,

X0 ∪ X̃Q ∪ Ỹ Q ∪ Z̃Q,

X \ (X̃Q ∪ Ỹ Q ∪ Z̃Q ∪ S′Q),

Y \ (X̃Q ∪ Ỹ Q ∪ Z̃Q ∪ S′Q),

Y ∗, f ∪ f ′ ∪ gQ ∪ g′Q ∪ g′′Q)
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to L.
This starred precoloring satisfies (I). Every precoloring extension of P ′Q is a precoloring exten-

sion of P . Moreover, suppose that c is a precoloring extension of P . Let Q = ((Q1, R1c1, d1), . . . , (Qr, Rr, cr, dr))
be defined as follows:

• For every type Ti ∈ T such that c((X ∪ Y )(Ti)) ⊆ {1, 2, 3, 4} \ L1, we let Qi = Ri = ∅ and
ci, di ∈ L1 arbitrary.

• For every type Ti ∈ T such that there exist x, y ∈ (X ∪ Y )(Ti) with c(x), c(y) ∈ L1 and
xy ∈ E(G), we let Qi = {x}, Ri = {y} and ci = c(x), di = c(y).

• For every type Ti ∈ T such that do not there exist x, y as above, but there is a vertex
v ∈ (X ∪ Y )(Ti) with c(v) ∈ Li, we let Qi = {v} , Ri = ∅, ci = c(v), di = d(v).

Note that if |Qi∪Ri| < 2, then every vertex v in (X∪Y )(Ti) complete to Qi∪Ri satisfies c(v) 6∈ L1,
and so g and g′ agree with c on Ỹ and Z̃, respectively. It follows that P ′Q ∈ L and c is a precoloring
extension of P ′Q. Consequently, that L is an equivalent collection for P .

We now prove that every P ′Q ∈ L satisfies the claims of the lemma. Let Q = ((Q1, R1c1, d1), . . . , (Qr, Rr, cr, dr))
with P ′Q ∈ L, and write P ′ = P ′Q ∈ L with P ′ = (G,S′, X ′0, X

′, Y ′, Y ∗, f ′). Let Y ′1 = {y ∈ Y ′ : LP ′(y) = L1}.

(14)

If there is no path a − b − c with LP (a) 6= L′1, LP (b) = LP (c) = L′1 with a, b, c ∈ Y
for some L′1 with |L′1| = 3, then there is no path a − b − c with LP ′(a) 6= L′1,
LP ′(b) = LP ′(c) = L′1 with a, b, c ∈ Y ′; and if P satisfies (II), and if there is no path
a−b−c with LP (a) 6= L′1, LP (b) = LP (c) = L′1 with a, b, c ∈ X∪Y for some L′1 with
|L′1| = 3, then there is no path a − b − c with LP ′(a) 6= L′1, LP ′(b) = LP ′(c) = L′1
with a, b, c ∈ X ′ ∪ Y ′.

Suppose not; and let a − b − c be such a path. Since b, c ∈ Y ′ ⊆ Y , it follows that LP (b) =
LP (c) = L′1. By the assumption of (14), it follows that LP (a) 6= LP ′(a), and so a ∈ Y ∩X ′. This
implies that |LP ′(a)| = 2. Since a 6∈ Y ′, it follows that the first statement of (14) is proved.

Therefore, we may assume that (II) holds for P . Since P satisfies (II), it follows that LP (a) = L′1.
Moreover, there is a vertex s ∈ S′ \ S with f(s) ∈ L′1 and as ∈ E(G). Since b ∈ Y ′, it follows that
s − a − b is a path. But since P satisfies (II), it follows that S′ \ S ⊆ X by construction, and so
s ∈ X. But then the path s− a− b contradicts the assumption of (18). This implies (18).

(15) There is no path z − a− b− c with z ∈ (X ′ ∪ Y ′) \ Y ′1 and a, b, c ∈ Y ′1.
Suppose not; and let z − a − b − c as in (15). It follows that z ∈ X ∪ Y and a, b, c ∈ Y1. Let

Ti = N(z) ∩ S ∈ T . Since z 6∈ X ′0, it follows that z 6∈ X̃Q ∪ Ỹ Q ∪ Z̃Q. Therefore, Qi ∪Ri contains
a vertex y non-adjacent to z. Since ci, di ∈ L1, it follows that y is anticomplete to {z, a, b, c}. Let
s ∈ Ti with f(s) ∈ L1; then s is a common neighbor of y and z. It follows that s is not adjacent to
a, b, c. But then y − s− z − a− b− c is a P6 in G, a contradiction. This proves (15).

Let L5 = L. We repeat the following procedure for j = 4, 3, 2. For every P ′ = (G,S′, X ′0, X
′, Y ′, Y ∗, f ′) ∈

Lj+1, we proceed as follows. We let Lj(P ′) = ∅. Let Y ′1 = {y ∈ Y ′ : LP ′(y) = L1}. Let Y ∗1
be the set of vertices y in (X ′ ∪ Y ′) \ Y ′1 such that there is a clique {a1, . . . , aj} ⊆ Y ′1 and

N(y) ∩ {a1, . . . , aj} = {a1}. Let T j =
{
T j
1 , . . . , T

j
rj

}
be the set of all types T ⊆ S′ such that

f(T ) 6= {1, 2, 3, 4} \ L1 and |f(T )| ≤ 2, and if P ′ satisfies (II), |f(T )| = 2. Let Q(P ′) be the set of
all rj-tuples of quadruples ((Q1, R1c1, d1), . . . , (Qr, Rr, cr, dr)) such that for every i ∈ {1, . . . , rj},

• ci, di ∈ L1;

• 1 ≥ |Qi| ≥ |Ri| and Qi ∪Ri is a clique; and
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• Qi ∪Ri ⊆ (X ∪ Y )(Ti).

For every Q = ((Q1, R1c1, d1), . . . , (Qr, Rr, cr, dr)) ∈ Q, we proceed as follows. Let S′Q =
Q1 ∪ R1 ∪ · · · ∪Qr ∪ Rr, and let gQ : S′ → L1 such that gQ(qi) = ci for all i such that Qi = {qi},
and gQ(ri) = di for all i such that Ri = {ri}.

For i ∈ {1, . . . , rj}, we let Zi be the set of vertices z ∈ (X∪Y )(Ti) such that one of the following
holds:

• Qi = ∅;

• Qi = {qi}, and N(qi) ∩ Y ′1 ( N(z) ∩ Y ′2 ;

• Qi = {qi}, Ri = {ri}, z is adjacent to qi and N(ri) ∩ Y ′2 ( N(z) ∩ Y ′1 ;

We let Z̃Q = Z1 ∪ · · · ∪ Zrj and g′Q : Z̃Q → {1, 2, 3, 4} \ L1. Let

X̃Q =
⋃

i:Ri=∅,Qi 6=∅

((X ∪ Y )(Ti) ∩N(Si)),

and let g′′Q : X̃Q → {1, 2, 3, 4} \ L1 be the constant function. Let

P ′Q =(G,S′ ∪ SQ, X ′0 ∪ Z̃Q ∪ X̃Q,

X ′ \ (SQ ∪ Z̃Q ∪ X̃Q),

Y ′ \ (SQ ∪ Z̃Q ∪ X̃Q), Y ∗,

f ′ ∪ gQ ∪ g′Q ∪ g′′Q).

If f ′ ∪ gQ ∪ g′Q ∪ g′′Q is proper coloring of G|(S′ ∪ SQ ∪ Z̃Q ∪ X̃Q), then we add P ′Q to Lj(P ′).
It follows that for every Q ∈ Q(P ′), every precoloring extension of P ′Q is a precoloring

extension of P ′. Moreover, suppose that c is a precoloring extension of P ′. We define Q =
((Q1, R1c1, d1), . . . , (Qr, Rr, cr, dr)) as follows:

• For every type Ti ∈ T such that c((X ∪ Y )(Ti)) ∩ L1 = ∅, we let Qi = Ri = ∅ and ci, di ∈ L1

arbitrary.

• For every type Ti ∈ T such that c((X ∪ Y )(Ti)) ∩ L1 6= ∅, we let v a vertex v ∈ (X ∪ Y )(Ti)
with c(v) ∈ L1 with N(v)∩ Y1 maximal. We let Qi = {v} , ci = c(v). If there is a vertex w in
N(v) ∩ (X ∪ Y )(Ti) with c(w) ∈ L1, then we choose such a vertex with N(w) ∩ Y1 maximal
and let Ri = {w} , di = c(w); otherwise we let Ri = ∅ and di ∈ L1 arbitrary.

The second bullet implies that c(x) 6∈ L1 for every x ∈ (X ∪ Y )(Ti) such that Qi = {qi} and
N(qi)∩Y ′1 ( N(v)∩Y ′1 . Similarly, c(x) 6∈ L1 for every x ∈ (X ∪Y )(Ti)∩N(Qi) such that Ri = {ri}
and N(ri) ∩ Y ′1 ( N(v) ∩ Y ′1 . It follows that Q ∈ Q(P ′), P ′Q ∈ Lj(P ′), and c is a precoloring
extension of P ′Q. Thus Lj(P ′) is an equivalent collection for P ′. By construction, P ′Q satisfies (I)
for every Q ∈ Q(P ′).

Now let
Lj =

⋃
P ′∈Lj+1

Lj(P ′).

Since Lj+1 is an equivalent collection for P and since Lj is the union of equivalent collections for
every P ′ ∈ Lj+1, it follows that Lj is an equivalent collection for P .
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Let P ′ ∈ Lj+1. Let Q = ((Q1, R1c1, d1), . . . , (Qr, Rr, cr, dr)) ∈ Q(P ′), and let P ′Q = (G,S′′, X ′′0 , X
′′, Y ′′, Y ∗, f ′′) ∈

Lj(P ′). Let Y ′′1 = {y ∈ Y ′′ : LP ′Q(y) = L1}. From the previous step (j + 1) of our argument, we
may assume that (16) and (15) hold for j + 1 for P ′ and Y ′1 . This is true when j = 4 as well, since
G contains no K5.

(16)
There is no vertex z ∈ (X ′′ ∪ Y ′′) \ Y ′′1 with N(z) ∩ {a1, . . . , aj} = {a1} for a clique
{a1, . . . , aj} ⊆ Y ′′1 .

Suppose for a contradiction that z is such a vertex. Write P ′ = (G,S′, X ′0, X
′, Y ′, Y ∗, f ′). Let

Y ′1 = {y ∈ Y ′ : LP ′(y) = L1} for i = 1, 2. Suppose first that z ∈ Y ′1 . Then z has a neighbor
s ∈ S′′ \ S′. It follows that f ′′(s) ∈ L1 and s 6∈ Y ′1 . Consequently, s is anticomplete to {a1, . . . , aj}.
But then the path s− z − a1 − aj contradicts the fact that (15) holds for P ′.

It follows that z ∈ (X ′ ∪ Y ′) \ Y ′1 and {a1, . . . , aj} ⊆ Y ′1 . Let i such that S′ ∩N(z) = Ti. Since
z 6∈ X ′′0 , it follows Qi 6= ∅; say Qi = {qi}. If z is non-adjacent to qi, let s = qi. Otherwise, it follows
that Ri = {ri}, say; let s = ri. In both cases, it follows that s is non-adjacent to z.

Since a1, . . . , aj 6∈ X ′′, it follows that s is non-adjacent to a1, . . . , aj . The definition of Zi implies
that N(s) ∩ Y ′2 6⊂ N(z) ∩ Y ′2 . Since a1 ∈ (N(z) \N(s)) ∩ Y ′1 , we deduce that there exists a vertex
y ∈ (N(z) \N(s)) ∩ Y ′1 .

Let s′ ∈ Ti with f(s′) ∈ L1. Then, s′ is non-adjacent to a1, . . . , aj . But y − s− s′ − z − a1 − aj
is not a P6 in G, and thus y has a neighbor in {a1, . . . , aj}. But y is not complete to {a1, . . . , aj},
since P ′ satisfies (16) for j + 1. It follows that y is mixed on {a1, . . . , aj}, and thus by Lemma 19
there is a path y − a− b with a, b ∈ {a1, . . . , aj}. But then s− y − a− b is a path, contrary to the
fact that P ′ satisfies (15). This concludes the proof of (16).

(17) There is no path z − a− b− c with z ∈ (X ′′ ∪ Y ′′) \ Y ′1 and a, b, c ∈ Y ′′1 .
Suppose not; and let z− a− b− c be such a path. Since Y ′′1 ⊆ Y ′1 , the fact that P ′ satisfies (15)

implies that z 6∈ X ′ ∪ Y ′, and thus z ∈ Y ′1 . Thus z has a neighbor s ∈ S′′ \ S′ with f(s) ∈ L1. It
follows that s ∈ X ′ ∪ Y ′, and thus s− z − a− b is a path, contrary to the fact that (15) holds for
P ′. This proves (17).

(18)

If there is no path a− b− c with LP ′(a) 6= L′1, LP ′(b) = LP ′(c) = L′1 with a, b, c ∈ Y ′

for some L′1 with |L′1| = 3, then there is no path a − b − c with LP ′′(a) 6= L′1,
LP ′′(b) = LP ′′(c) = L′1 with a, b, c ∈ Y ′′; and if P ′ satisfies (II), and if there is no
path a−b−c with LP ′(a) 6= L′1, LP ′(b) = LP ′(c) = L′1 with a, b, c ∈ X∪Y for some L′1
with |L′1| = 3, then there is no path a−b−c with LP ′(a) 6= L′1, LP ′′(b) = LP ′′(c) = L′1
with a, b, c ∈ X ′′ ∪ Y ′′.

Suppose not; and let a − b − c be such a path. Since b, c ∈ Y ′′ ⊆ Y ′, it follows that LP ′(b) =
LP ′(c) = L′1. By the assumption of (18), it follows that LP ′(a) 6= LP ′′(a), and so a ∈ Y ′ ∩ X ′′.
This implies that |LP ′′(a)| = 2. Since a 6∈ Y ′′, it follows that the first statement of (18) is proved.

Therefore, we may assume that (II) holds for P ′. Since P ′ satisfies (II), it follows that LP ′(a) =
L′1. Moreover, there is a vertex s ∈ S′′ \S′ with f ′(s) ∈ L′1 and as ∈ E(G). Since b ∈ Y ′′, it follows
that s − a − b is a path. But since P ′ satisfies (II), it follows that S′′ \ S′ ⊆ X ′ by construction,
and so s ∈ X ′. But then the path s− a− b contradicts the assumption of (18). This implies (18).

It follows that (15) and (18) holds for P ′Q for every P ′ ∈ Lj+1 and Q ∈ Q(P ′). Moreover,
by construction, Lj is an equivalent collection for P . If j > 2, we repeat the procedure for j − 1;
otherwise, we stop.

At termination, we have constructed an equivalent collection L2 for P and every P ′ = (G,S′, X ′0, X
′, Y ′, Y ′0 , f

′) ∈
L2 satisfies (I) and (16) for j = 2, and thus the last bullet of the lemma. The third-to-last and
second-to-last bullets of the lemma follow from (14) and (18). Thus, L2 satisfies the properties of
the lemma, and hence, the lemma is proved.
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Lemma 34. There is a function q : N→ N such that the following holds. Let P = (G,S,X0, X, Y, Y ∗, f)
be a starred precoloring of a P6-free graph G with P satisfying (I). Then there is an algorithm with
running time O(|V (G)|q(|S|)) that outputs an equivalent collection L for P such that

• |L| ≤ |V (G)|q(|S|);

• every P ′ ∈ L is a starred precoloring of G;

• every P ′ ∈ L with seed S′ satisfies |S′| ≤ q(|S|); and

• every P ′ ∈ L satisfies (I) and (II).

Moreover, for every P ′ ∈ L, given a precoloring extension of P ′, we can compute a precoloring
extension for P in polynomial time, if one exists.

Proof. Let L = {P}. We repeat the following for every pair L1, L2 of distinct lists of size three
contained in {1, 2, 3, 4}. We apply Lemma 33 to every starred precoloring P ′ ∈ L, and replace L
by the union of the equivalent collections produced by Lemma 33. Then we move to the next pair
of lists.

The next lemma is a simple tool that we will use to establish further axioms.

Lemma 35. Let G be a P6-free graph with u, v ∈ V (G) such that V (G) = {u, v} ∪ N(u) ∪ N(v),
uv 6∈ E(G), N(u) ∩N(v) = ∅, and N(u), N(v) stable. Then there is a partition A0, A1, . . . , Ak of
N(u) and a partition B0, B1, . . . , Bk of N(v) with k ≥ 0 such that

• A0 is complete to N(v);

• B0 is complete to N(u); and

• for i = 1, . . . , k, Ai, Bi 6= ∅ and Ai is complete to N(v) \Bi and Bi is complete to N(u) \Ai,
and Ai is anticomplete to Bi.

Proof. Let G, u, v as in the lemma. The result holds if N(u) = ∅ or N(v) = ∅; thus we may assume
that both sets are non-empty. Let a ∈ N(u), b ∈ N(v). If ab ∈ E(G), we let A0 = {a} , B0 = {b};
otherwise, we let A1 = {a} , B1 = {b}. Now let A0, A1, . . . , Ak, B0, B1, . . . , Bk be chosen such
that their union is maximal subject to satisfying the conditions of the lemma. If their union is
V (G) \ {u, v}, then there is nothing to show; thus we may assume that there is a vertex x 6∈ {u, v}
not contained in their union. Without loss of generality, we may assume that x ∈ N(v).

If x is complete to A = A0∪A1∪· · ·∪Ak, we can add x to B0, contrary to the maximality of our
choice of sets. Suppose first that x is complete to A1∪· · ·∪Ak. Let Ak+1 = A0\N(x). Then Ak+1 is
non-empty, since x has a non-neighbor in A. But then A0\Ak+1, A1, . . . , Ak, Ak+1, B0, B1, . . . , Bk, {x}
satisfies the conditions of the lemma and has strictly larger union; a contradiction.

It follows that x has a non-neighbor in A \ A0; without loss of generality we may assume that
there is y ∈ A1 non-adjacent to x. Let w ∈ B1. Suppose that x has a neighbor z ∈ A1. Then
w− v− x− z − u− y is a P6 in G, a contradiction. It follows that x has no neighbor in A1. If x is
complete to A \ A1, we can add x to B1 and enlarge the structure, a contradiction; hence x has a
non-neighbor z in A \ A1. It follows that z is adjacent to w. But then x − v − w − z − u − y is a
P6 in G, a contradiction. This concludes the proof of the lemma.

The purpose of the following lemmas is to establish the following axiom, which we restate:
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(III) Let L1, L2, L3 ⊆ {1, 2, 3, 4} with |L1| = |L2| = |L3| = 3 and L1 6= L2 6= L3 6= L1. Then there
is no path a− b− c with LP (a) = L1, LP (b) = L2, LP (c) = L3 with a, b, c ∈ Y .

Lemma 36. There is a function q : N → N such that the following holds. Let L1, L2, L3 ⊆
{1, 2, 3, 4} with |L1| = |L2| = |L3| = 3 and L1 6= L2 6= L3 6= L1. Let P = (G,S,X0, X, Y, Y ∗, f) be a
starred precoloring of a P6-free graph G with P satisfying (I) and (II). Then there is an algorithm
with running time O(|V (G)|q(|S|)) that outputs an equivalent collection L for P such that

• |L| ≤ |V (G)|q(|S|);

• every P ′ ∈ L is a starred precoloring of G;

• every P ′ ∈ L with seed S′ satisfies |S′| ≤ q(|S|);

• every P ′ ∈ L satisfies (I) and (II);

• every P ′ = (G,S′, X ′0, X
′, Y ′, Y ∗, f ′) ∈ L satisfies that there is no path a − b − c − d with

LP ′(a) = L1, LP ′(b) = LP ′(d) = L2, LP ′(c) = L3 with a, b, c, d ∈ Y ′; and

• if P satisfies the previous bullet for L1, L2, L3 and for L3, L2, L1, then every P ′ = (G,S′, X ′0, X
′, Y ′, Y ∗, f ′) ∈

L satisfies that there is no path a − b − c with LP ′(a) = L1, LP ′(b) = L2, LP ′(c) = L3 with
a, b, c ∈ Y ′.

Moreover, for every P ′ ∈ L, given a precoloring extension of P ′, we can compute a precoloring
extension for P in polynomial time.

Proof. We say that the conditions of the last bullet hold for P if P satisfies the second-to-last bullet
for L1, L2, L3 and L3, L2, L1.

Let Yi = {y ∈ Y : LP (y) = Li} for i = 1, 2, 3. Let T = {T1, . . . , Tr} be the set of types T ⊆ S
with f(T ) = {1, 2, 3, 4} \ L1. We let Q be the set of all r-tuples (Q1, . . . , Qr), where for each i,
Qi = (S1

i , S
2
i , R

1
i , R

2
i , c

1
i , c

2
i , c

3
i , c

4
i ) such that the following hold:

1.
{
c1i , c

2
i

}
⊆ {1, 2, 3, 4}.

2. 1 ≥ |S1
i | ≥ |S2

i | ≥ |R1
i | ≥ |R2

i |.

3. S1
i 6= ∅ if and only if one of the following holds:

• there is a path a− b− c− d with a ∈ Y1, b, d ∈ Y2, c ∈ Y3 and N(a) ∩ S = Ti; or

• the conditions of the last bullet hold for P and there is a path a− b− c with a ∈ Y1, b ∈
Y2, c ∈ Y3 and N(a) ∩ S = Ti.

4. S1
i ∪ S2

i is a stable set, and S1
i ∪ S2

i ⊆ Y1(Ti).

5. If S1
i = {s1i }, then s1i has a neighbor in Y2.

6. If S2
i = {s2i }, then s2i has a neighbor in Y2.

7. If S2
i 6= ∅, then

{
c1i , c

2
i

}
= L1 \ (L2 ∩ L3) and c1i ∈ L3, c

2
i ∈ L2.

8. R1
i ⊆ (N(S1

i ) \N(S2
i )) ∩ Y2.

9. R2
i ⊆ (N(S2

i ) \N(S1
i )) ∩ Y3.

10. R1
i ∪R2

i is a stable set.
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11.
{
c3i , c

4
i

}
⊆ L2 ∩ L3.

We let S′Q =
⋃r

i=1(S
1
i ∪ S2

i ) and T ′Q =
⋃r

i=1(R
1
i ∪R2

i ). Define f ′Q : S′Q ∪ T ′Q → {1, 2, 3, 4} by

setting f ′Q(v) = cji if Sj
i = {v} for j = 1, 2 and f ′Q(v) = cj+2

i if Rj
i = {v} for j = 1, 2. Let S′1 be

the set of v ∈ (T ′Q ∪ S′Q) such that f ′Q(v) ∈ L2 ∩ L3. Let S′2 be the set of v ∈ (T ′Q ∪ S′Q) such
that f ′Q(v) ∈ L2 \ L3, and let S′3 be the set of v ∈ (T ′Q ∪ S′Q) such that f ′Q(v) ∈ L3 ∩ L2. Let

X̃Q = (N(S′1) ∩ (Y1 ∪ Y2 ∪ Y3)) ∪ (N(S′2) ∩ (Y1 ∪ Y2)) ∪ (N(S′3) ∩ (Y1 ∪ Y2)) ∪ (N(T ′Q) ∩ (Y2 ∪ Y3)).

For i ∈ {1, . . . , r}, we further define Z̃i = ∅ if |S1
i ∪ S2

i | < 2 or |R1
i | > 0, and Z̃i = (N(S1

i ) \
N(S2

i )) ∩ Y2 otherwise. We let Z̃Q =
⋃r

i=1 Z̃i. Let gQ : Z̃ → L2 \ L3 be the constant function. For
i ∈ {1, . . . , r}, we let Ỹi = ∅ if |S1

i ∪S2
i | < 2 or |R1

i ∪R2
i | 6= 1, and Ỹi = (N(S2

i )\(N(S1
i )∪N(R1

i )))∩Y3
otherwise. We let Ỹ Q =

⋃r
i=1 Ỹi. Let g′Q : Ỹ → L3\L2 be the constant function. For i ∈ {1, . . . , r},

we let W̃i = ∅ if |S1
i ∪ S2

i | 6= 1 or c1i ∈ L1 ∩ L2 ∩ L3, and W̃i = Y1(Ti) \ S1
i otherwise. We let

W̃Q =
⋃r

i=1 W̃i. We define g′′Q : W̃ → L1 by setting g′′(W̃i \N(S1
i )) =

{
c1i
}

and g′′(W̃i∩N(S1
i )) =

L1 \ (
{
c1i
}
∪ (L2 ∩ L3).

Let P ′Q be the starred precoloring

(G,S∪S′Q∪T ′Q, X0∪W̃Q∪Ỹ Q∪Z̃Q, X∪X̃Q, Y \(S′Q∪T ′Q∪W̃Q∪X̃Q∪Ỹ Q∪Z̃Q), Y ∗, f∪f ′Q∪gQ∪g′Q∪g′′Q).

Since P satisfies (II), it follows that P ′ satisfies (II) as well. We let L =
{
P ′Q : Q ∈ Q, f ∪ f ′Q ∪ gQ ∪ g′Q ∪ g′′Q is a proper coloring

}
.

(19) L is an equivalent collection for P .
Let L1 =

{
c1, c2, c3

}
, L2 =

{
c1, c2, c4

}
and L3 =

{
c1, c3, c4

}
. Let Y ∗1 denote the set of vertices

in Y1 with a neighbor in Y2. Every precoloring extension for P ′Q ∈ L is a precoloring extension for
P . Now suppose that P has a precoloring extension c : V (G) → {1, 2, 3, 4}. We define an r-tuple
(Q1, . . . , Qr), where for each i, Qi = (S1

i , S
2
i , R

1
i , R

2
i , c

1
i , c

2
i , c

3
i , c

4
i ). For i ∈ {1, . . . , r}, we define

Qi = (S1
i , S

2
i , R

1
i , R

2
i , c

1
i , c

2
i , c

3
i , c

4
i ) as follows:

• If neither bullet of 3 is satisfied, we let Qi = (∅, ∅, ∅, ∅, c1, c1, c1, c1).

• If Y ∗1 (Ti) contains a vertex v with c(v) = c1, we let Qi = ({v} , ∅, ∅, ∅, c1, c1, c1, c1).

• If Y ∗1 (Ti) contains a vertex v with c(v) = c2 such that c(Y ∗1 (Ti) \ N(v)) ⊆
{
c3
}

, we let
Qi = ({v} , ∅, ∅, ∅, c2, c1, c1, c1).

• If Y ∗1 (Ti) contains a vertex v with c(v) = c3 such that c(Y ∗1 (Ti) \ N(v)) ⊆
{
c2
}

, we let
Qi = ({v} , ∅, ∅, ∅, c3, c1, c1, c1).

• Let u, v ∈ Y ∗1 (Ti) such that c(u) = c2, c(v) = c3 and uv 6∈ E(G). We let A = (N(u)\N(v))∩Y2
and B = (N(v) \N(u)) ∩ Y3. We proceed as follows:

– If c(A) ⊆ L2 \ L3, we let Qi = ({u} , {v} , ∅, ∅, c2, c3, c1, c1).
– If there is a vertex x ∈ A such that c(x) ∈ L2 ∩ L3 and c(B \ N(x)) ⊆ L3 \ L2, we let

Qi = ({u} , {v} , {x} , ∅, c2, c3, c(x), c1).

– If there is x ∈ A and y ∈ B such that c(x), c(y) ∈ L2 ∩ L3 and xy 6∈ E(G), we let
Qi = ({u} , {v} , {x} , {y} , c2, c3, c(x), c(y)).

It follows from the definitions of Ỹ Q, Z̃Q, W̃Q that c|(Ỹ Q∪Z̃Q∪W̃Q) = gQ|Z̃Q ∪ g′Q|Ỹ Q ∪ g′′Q|W̃Q . It

follows that Q ∈ Q and c is a precoloring extension of P ′Q. Thus L is an equivalent collection for
P , which proves (19).
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Let Q ∈ Q and let P ′Q ∈ L with P ′Q = (G,S′, X ′0, X
′, Y ′, Y ∗, f ′), and let Y ′i = {y ∈ Y ′ : LP ′(y) = Li}

for i = 1, 2, 3. We claim the following.

(20)
For every i ∈ {1, . . . , r} such that S1

i = {u} , S2
i = {v}, we have that N(u)∩(Y ′2∪Y ′3)

is anticomplete to N(v) ∩ (Y ′2 ∪ Y ′3).
From the properties of Q, we know that f ′(u) ∈ L1 ∩ L3 and f ′(v) ∈ L1 ∩ L2. Since u, v ∈ S′,

it follows that N(u) ∩ Y ′3 = ∅, since N(u) ∩ Y3 ⊆ X̃Q; similarly, N(v) ∩ Y ′2 = ∅. We let A =
(N(u) \ N(v)) ∩ Y2 and B = (N(v) \ N(u)) ∩ Y3. It follows that v is anticomplete to A and u is
anticomplete to B. Let a1, . . . , at be the components of G|A, and let b1, . . . , bs be the components
of G|B. Since P satisfies (II), it follows that for every i ∈ [t] and j ∈ [s], V (ai) is either complete
or anticomplete to V (bj).

Let H be the graph with vertex set {u, v}∪{a1, . . . , at}∪{b1, . . . bs}; where NH(u) = {a1, . . . , at},
NH(v) = {b1, . . . , bs}, the sets {a1, . . . , at} and {b1, . . . , bs} are stable, and ai is adjacent to bj if and
only if V (ai) is complete to V (bj) in G. Apply 35 to H, u and v to obtain a partition A′0, A

′
1, . . . , A

′
k

of {a1, . . . , at} and a partition B′0, B
′
1, . . . , B

′
k of {b1, . . . , bt}. For i ∈ [k], let Ai =

⋃
aj∈Ai

V (aj) and

Bi =
⋃

bj∈Bi
V (bj).

It follows from the definition of H that in G,

• A0 is complete to B;

• B0 is complete to A; and

• for j = 1, . . . , k, Aj , Bj 6= ∅ and Aj is complete to B \Bj and Bj is complete to A \ Aj , and
Aj is anticomplete to Bj .

If R1
i = ∅, then A ⊆ Z̃Q, and so A ∩ Y ′ = ∅, and (20) follows. Thus R1

i 6= ∅. Suppose that
R2

i = ∅. Then one of the following holds:

• R1
i ⊆ A0, and so B ⊆ X̃Q; or

• R1
i ⊆ Aj for some j > 0, and so B \Bj ⊆ X̃Q and Bj ⊆ Ỹ Q.

It follows that N(v)∩Y ′2 = ∅, and (20) follows. Thus we may assume that R2
i 6= ∅, then there exists

a j > 0 such that R1
i ⊆ Aj and R2

i ⊆ Bj , and so (A \Aj) ∪ (B \Bj) ⊆ X̃Q, and again, (20) holds.

(21) There is no path z − a− b− c with z ∈ Y ′1, a, c ∈ Y ′2 and b ∈ Y ′3.
Suppose that z − a − b − c is such a path. Let i ∈ {1, . . . , r} such that N(z) ∩ S = Ti. Since

z 6∈ X ′0, it follows that S1
i 6= ∅. Write S1

i = {u}. Let s ∈ Ti; then f ′(s) ∈ L2 ∪ L3, and therefore s
is anticomplete to {a, b, c}.

Suppose that S2
i = ∅. Then f ′(u) ∈ L2 ∩ L3, and thus u is non-adjacent to z, a, b, c. Now

u − s − z − a − b − c is a P6 in G, a contradiction. Thus it follows that S2
i = {v}, and z is

non-adjacent to u and v. By construction, it follows that f ′(u) ∈ L2 \ L3, and f ′(v) ∈ L3 \ L2.
Since neither u− s− z − a− b− c nor v − s− z − a− b− c is a P6 in G, it follows that u, v each
have a neighbor in {a, b, c}. Since neighbors of u in Y2 are in X̃Q, it follows that u is non-adjacent
to a and c, and hence u is adjacent to b. Since neighbors of v in Y3 are in X̃Q, it follows that v is
non-adjacent to b, and v is adjacent to a or c. This contradicts (20), and thus (21) follows.

(22)
If the conditions of the last bullet hold for P , then there is no path z − a − b with
z ∈ Y ′1, a ∈ Y ′2 and b ∈ Y ′3.

Suppose not, and let z − a− b be such a path. Let i ∈ {1, . . . , r} such that N(z) ∩ S = Ti. Let
s ∈ Ti. Then f ′(s) ∈ L2 ∩ L3, since f ′(s) 6∈ L1, and hence s is anticomplete to a, b. Since z 6∈ X ′0,
it follows that S1

i 6= ∅, say S1
i = {u}. Suppose first that S2

i = ∅. Since z 6∈ X ′0, it follows that
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f ′(u) ∈ L2 ∩ L3, and thus u is non-adjacent to z, a, b. By construction, u has a neighbor y in Y2,
and since u is anticomplete to a, b, it follows that y 6= a, b. Since y − u− s− z − a− b is not a P6

in G, it follows that y has a neighbor in {z, a, b}. Since P satisfies (II), it follows that u− y − a is
not a path and so y is not adjacent to a. Since P satisfies the second-to-last bullet for L1, L2, L3,
it follows that u − y − b − a is not a path, and so u is not adjacent to b. But then u is adjacent
to z; and b − a − z − u is a path contrary to the second-to-last bullet for L3, L2, L1. This is a
contradiction, and hence S2

i 6= ∅, say S2
i = {u}.

By construction, it follows that f ′(u) ∈ L2 \ L3, and f ′(v) ∈ L3 \ L2. If one of u, v has no
neighbor in {a, b}, then we reach a contradiction as above. Since neighbors of u in Y2 are in X̃Q,
it follows that u is adjacent to b, but not a. Since neighbors of v in Y3 are in X̃Q, it follows that v
is adjacent to a, but not b. This contradicts (20), and proves (22).

We now replace every P ′ ∈ L by P ′′ satisfying (I) by moving vertices with lists of size less than
three from Y ′ to X ′. It follows that P ′′ still satisfies (II) and (21). This concludes the proof of the
lemma.

Lemma 37. There is a function q : N→ N such that the following holds. Let P = (G,S,X0, X, Y, Y ∗, f)
be a starred precoloring of a P6-free graph G with P satisfying (I) and (II). Then there is an algo-
rithm with running time O(|V (G)|q(|S|)) that outputs an equivalent collection L for P such that

• |L| ≤ |V (G)|q(|S|);

• every P ′ ∈ L is a starred precoloring of G;

• every P ′ ∈ L with seed S′ satisfies |S′| ≤ q(|S|); and

• every P ′ ∈ L satisfies (I), (II) and (III).

Moreover, for every P ′ ∈ L, given a precoloring extension of P ′, we can compute a precoloring
extension for P in polynomial time.

Proof. Let L = {P}. For every triple (L1, L2, L3) of distinct lists of size three included in [4]
we repeat the following. Apply Lemma 36 to every member of L; replace L by the union of the
collections thus obtained, and move to the next triple of lists. At the end of this process we have an
equivalent collection L for P , in which every starred precoloring satisfies the second-to-last bullet
of Lemma 36 for every (L1, L2, L3).

Repeat the procedure described in the previous paragraph. Since the second-to-last bullet of
the conclusion of Lemma 36 holds for each starred precoloring we input this time, it follows that the
last bullet of Lemma 36 holds for the output for every (L1, L2, L3). Thus (III) holds; this concludes
the proof.

Let P = (G,S,X0, X, Y, Y ∗, f) be a starred precoloring. For W ⊆ V (G) and L ⊆ [4], we say
that W meets L if LP (w) = L for some w ∈W . We now have the following convenient property.

Lemma 38. Let P = (G,S,X0, X, Y, Y ∗, f) be a starred precoloring of a P6-free graph G satisfying
(I), (II) and (III). Let L1, L2, L3, L4 be the subsets of [4] of size three. Let C be a component of G|Y
that meets at least three of the lists L1, L2, L3, L4. For i ∈ [4], let Ci = {v ∈ V (C) : LP (v) = Li}.
Then for every i 6= j, Ci is complete to Cj.

Proof. Let P = p1− . . .−pk be a path such that for some i 6= j p1 ∈ Ci, pk ∈ Cj , p1 is non-adjacent
to pk, and subject to that with k minimum. Since P satisfies (II), it follows that p2 6∈ Ci; say
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p2 ∈ Cl. Since P satisfies (II) and (III), it follows that p3 ∈ Ci. Similarly, p4 6∈ Ci. By the
minimality of k, we deduce that k = 4. By (III) applied to p2 − p3 − p4, we deduce that l = j.
Let C ′ be a component of C|(Ci ∪ Cj) with p1, . . . , p4 ∈ V (C ′). Since C is connected, and since
V (C) 6= Ci ∪Cj , there exists c ∈ Cl with l 6= i, j such that c has a neighbor in C ′. Since P satisfies
(II) and (III), it follows from Lemma 19 that c is complete to C ′. But now p1 − c− p4 contradicts
the fact that P satisfies (III). This proves Lemma 38.

Our next goal is to establish axiom (IV), which we restate.

(IV) Let L1 ⊆ {1, 2, 3, 4} with |L1| = 3. Then there is no path a− b− c with LP (b) = LP (c) = L1

and a ∈ X, b, c ∈ Y .

Lemma 39. There is a function q : N→ N such that the following holds. Let P = (G,S,X0, X, Y, Y ∗, f)
be a starred precoloring of a P6-free graph G with P satisfying (I). Then there is an algorithm with
running time O(|V (G)|q(|S|)) that outputs an equivalent collection L for P such that

• |L| ≤ |V (G)|q(|S|);

• every P ′ ∈ L is a starred precoloring of G;

• every P ′ ∈ L with seed S′ satisfies |S′| ≤ q(|S|); and

• every P ′ ∈ L satisfies (I), (II), (III) and (IV).

Moreover, for every P ′ ∈ L, given a precoloring extension of P ′, we can compute a precoloring
extension for P in polynomial time.

Proof. Let L = {P}. For every list L ⊆ {1, 2, 3, 4} of size three, apply Lemma 33 to every member
of L, replace L by the union of the equivalent collections thus obtained, and move to the next list.
At the end of the process we obtained the required equivalent collection for {P}.

We now begin to establish the following axiom, which we restate below.

(V) Let L1, L2 ⊆ {1, 2, 3, 4} with |L1| = |L2| = 3. Then there is no path a − b − c with LP (b) =
L1, LP (c) = L2 and a ∈ X with L3 = LP (a) 6= L1 ∩ L2.

We define the following auxiliary statement:

(23)
Let L1, L2 ⊆ {1, 2, 3, 4} with |L1| = |L2| = 3. Then there is no path a − b − c − d
with LP (b) = LP (d) = L1, LP (c) = L2 and a ∈ X with L3 = LP (a) 6= L1 ∩ L2.

Lemma 40. There is a function q : N→ N such that the following holds. Let L1, L2 ⊆ {1, 2, 3, 4}
with |L1| = |L2| = 3 and L1 6= L2, and let L3 ⊆ {1, 2, 3, 4} with |L3| = 2 and L3 6= L1 ∩ L2.
Let P = (G,S,X0, X, Y, Y ∗, f) be a starred precoloring of a P6-free graph G with P satisfying (I),
(II), (III) and (IV). Then there is an algorithm with running time O(|V (G)|q(|S|)) that outputs an
equivalent collection L for P such that

• |L| ≤ |V (G)|q(|S|);

• every P ′ ∈ L is a starred precoloring of G;

• every P ′ ∈ L with seed S′ satisfies |S′| ≤ q(|S|);

• every P ′ ∈ L satisfies (I), (II), (III) and (IV);
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• every P ′ ∈ L satisfies (23) for every three lists L′1, L
′
2, L

′
3 such that P satisfies (23) for

L′1, L
′
2, L

′
3;

• if P satisfies (23) for every three lists, then every P ′ ∈ L satisfies (V) for every three lists
L′1, L

′
2, L

′
3 such that P satisfies (V) for L′1, L

′
2, L

′
3;

• every P ′ ∈ L satisfies (23) for L1, L2, L3.

• if P satisfies (23) for every three lists L′1, L
′
2, L

′
3 such that |L′1| = |L′2| = 3, L′1 6= L′2, |L′3| =

2, L′3 6= L′1 ∩ L′2, then every P ′ = (G,S′, X ′0, X
′, Y ′, Y ∗, f ′) ∈ L satisfies that there is no path

a− b− c with LP ′(a) = L3, LP ′(b) = L1, LP ′(c) = L2 with a ∈ X, b, c ∈ Y ′.

Moreover, for every P ′ ∈ L, given a precoloring extension of P ′, we can compute a precoloring
extension for P in polynomial time.

Proof. Let L = ∅. Let Yi = {y ∈ Y : LP (y) = Li} for i = 1, 2, and let X3 be the set of vertices v in
X with list L3 such that v starts a path v − b− c− d (v − b− c if the condition of the last bullet
holds for P ) with v ∈ X, b, d ∈ Y1, c ∈ Y2. Let L4, L5 be the two three-element lists in {1, 2, 3, 4}
that are not L1, L2, and let Yi = {y ∈ Y : LP (y) = Li} for i = 4, 5. We call a component C of G|Y
bad if V (C) ∩ Y1 6= ∅, V (C) ∩ Y2 6= ∅ and V (C) ∩ Yi 6= ∅ for some i ∈ {4, 5}.

Let T = {T1, . . . , Tr} be the set of types T ⊆ S with f(T ) = {1, 2, 3, 4} \ L3. We let Q be the
set of all r-tuples (Q1, . . . , Qr), where for each i,

Qi = (S1
i , S

2
i , R

1
i , R

2
i , R

3
i , R

4
i , C

1
i , C

2
i , X

1,1
i , X1,2

i , X2,1
i , X2,2

i , fi, casei)

such that the following hold:

1. fi : S1
i ∪ S2

i ∪R1
i ∪R2

i ∪R3
i ∪R4

i ∪X1,1
i ∪X1,2

i ∪X2,1
i ∪X2,2

i → {1, 2, 3, 4}.

2. fi(S
1
i ∪ S2

i ) ⊆ L3.

3. 1 ≥ |S1
i | ≥ |S2

i | ≥ |R1
i | ≥ |R2

i | ≥ |R3
i | ≥ |R4

i |.

4. S1
i ∪ S2

i is a stable set and S1
i ∪ S2

i ⊆ X3(Ti).

5. If S1
i = ∅, then X3(Ti) = ∅.

6. If S2
i 6= ∅, then fi(S

1
i ∪ S2

i ) = L3 and L3 ∩ L1 ∩ L2 = ∅.

7. For j = 1, 2, if Sj
i =

{
sji

}
and sji is mixed on a bad component, then Cj

i is the vertex set of

a bad component on which sji is mixed; otherwise, Cj
i = ∅.

8. For j, k = 1, 2, |Xj,k
i | ≤ 1, and |Xj,k

i | = 1 if and only if Cj
i 6= ∅.

9. For j = 1, 2, if Cj
i 6= ∅, then there exist p 6= q such that Xj,1

i ∩C
j
i ∩Yp 6= ∅ and Xj,2

i ∩C
j
i ∩Yq 6= ∅.

10. For j = 1, 2, 3, 4, fi(R
j
i ) ⊆ L1 ∩ L2.

11. casei ∈ {∅, (a), (b), (c), (d), (e), (f)}.

12. casei ∈ {∅, (a), (b)} if and only if Rj
i = ∅ for all j ∈ {1, 2, 3, 4}.

13. casei ∈ {(c), (d), (e)} if and only if R3
i , R

4
i = ∅ and R1

i , R
2
i 6= ∅.
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14. casei = (f) if and only if Rj
i 6= ∅ for all j ∈ {1, 2, 3, 4}.

15. If S2
i = ∅, then casei = ∅.

16. If casei 6= ∅, then let {u, v} = S1
i ∪ S2

i such that u ∈ S1
i if and only if fi(u) ∈ L1; then

R1
i , R

3
i ⊆ N(u) ∩ (Y2 \N(v)) and R2

i , R
4
i ⊆ N(v) ∩ (Y1 \N(u)).

17. If casei = (c), R1
i is anticomplete to R2

i .

18. If casei ∈ {(d), (e)}, R1
i is complete to R2

i .

19. If casei = (f), then R1
i is complete to R2

i and anticomplete to R4
i , and R3

i is anticomplete to
R2

i and anticomplete to R4
i .

We let

S′Q =
⋃

i∈{1,...,r}

(S1
i ∪ S2

i ∪R3
i ∪R4

i ∪X1,1
i ∪X1,2

i ∪X2,1
i ∪X2,2

i ) ∪
⋃

i∈{1,...,r},casei 6=(c)

(R1
i ∪R2

i ),

and let f ′Q = f1 ∪ · · · ∪ fr.
For every i ∈ {1, . . . , r}, we let Ỹi =

⋃
j,k∈{1,2}

⋃
p∈{1,2,4,5},Xj,k

i ∩C
j
i ∩Yp 6=∅(C

j
i ∩ Yp), and we let

hi(C
j
i ∩Yp∩ Ỹi) ⊆ fi(X

j,k
i ). Let Z̃i = (C1

i ∪C2
i )\ Ỹi. Let Ỹ Q =

⋃
i∈{1,...,r} Ỹi and Z̃Q =

⋃
i∈{1,...,r} Z̃i

and hQ = h1 ∪ · · · ∪ hr.
Let S′1 be the set of v ∈ S′Q such that f ′(v) ∈ L1 ∩ L2; let S′2 be the set of v ∈ S′Q such that

f ′(v) ∈ L1 \ L2, and let S′3 be the set of v ∈ S′Q such that f ′(v) ∈ L2 \ L1. Let

X̃Q = (N(S′1) ∩ (Y1 ∪ Y2)) ∪ (N(S′2) ∩ (Y1)) ∪ (N(S′3) ∩ (Y2)).

Let W̃i = X3(Ti) if S1
i = {v} , S2

i = ∅ and f ′(v) 6∈ L1 ∩ L2 ∩ L3, and W̃i = ∅ otherwise. If
W̃i 6= ∅, we let g′′i : W̃i → L3 such that g′′(y) = f ′(v) is y if non-adjacent to v, and g′′(y) is the

unique color in L3 \ ({f ′(v)}) otherwise. Let W̃Q =
⋃

i∈{1,...,r} W̃i and let g′′Q = g′′Q1 ∪ · · · ∪ g′′Qr .

Let Ṽ Q be the set of vertices v in X with list L3 such that S′Q contains a neighbor s of v, and
let h′Q : Ṽ → L3 such that h′Q(v) ∈ L3 \ (f ′(s)).

Let Ũi be the set of all vertices x ∈ X3(Ti) such that S1
i = {v} and such that f ′(v) ∈ L1∩L2 and

N(v)∩Y1 ( N(x)∩Y1, and let gi : Ũi → L3\(L1∩L2). Let ŨQ =
⋃

i∈{1,...,r} Ũi and gQ = g1∪· · ·∪gr.
Let Ũ ′i be the set of all vertices x ∈ X3(Ti) such that S1

i = {u} , S2
i = {v} such that xu 6∈ E(G),

and N(v)∩Y1 ( N(x)∩Y1, and let g′i : Ũi → {f ′(u)}. Let Ũ ′
Q

=
⋃

i∈{1,...,r} Ũ
′
i and g′Q = g′1∪· · ·∪g′r.

Finally, we define T̃i as follows: If casei = ∅, then T̃i = ∅. Otherwise, let {u, v} = S1
i ∪ S2

i such
that f ′(u) ∈ L1, and let A = N(u) ∩ (Y2 \N(v)) and B = N(v) ∩ (Y1 \N(u)). If casei =

(a) then T̃i = A;

(b) then T̃i = B;

(c) then T̃i = (A ∩N(R2
i )) ∪ (B ∩N(R1

i ));

(d) then T̃i = B \N(R1
i );

(e) then T̃i = A \N(R2
i );

(f) then T̃i = ∅.
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We let T̃Q =
⋃

i∈{1,...,r} T̃i and let h′′Q : T̃Q → (L1 \L2)∪ (L2 \L1) be the unique function such

that h′′Q(v) ∈ LP (v) for all v ∈ T̃Q.
The following statement could be proved using Lemma 35, but we give a shorter proof here:

(24)
Let i such that {u, v} = S1

i ∪ S2
i and f(u) ∈ L1. Let R = R1

i ∪ R2
i ∪ R3

i ∪ R4
i

if casei 6= (c) and R = ∅ otherwise. Then (N(u) ∩ Y2) \ (N(v) ∪ T̃i ∪ N(R))) is
anticomplete to (N(v) ∩ Y1) \ (N(u) ∪ T̃i ∪N(R))).

Let A′ = A\ (T̃i∪N(R)), B′ = B \ (T̃i∪N(R)); then it suffices to prove that A′ is anticomplete
to B′. If casei = (a), (b), (d), (e), this follows since A′ or B′ is empty in each of these cases. In case
(f), we have that G|({u, v}∪R) is a six-cycle. Since the graph arising from a six-cycle by adding a
vertex with exactly one neighbor in the cycle contains a P6, it follows that A′, B′ = ∅. In case (c),
we let x′y′ be an edge from A′ to B′, and we let x ∈ A1

i , y ∈ A2
i . Then x− u− x′ − y′ − v − y is a

P6 in G, a contradiction. Again it follows that A′ is anticomplete to B′, and (24) follows.
Let P ′Q be the starred precoloring obtained from

(G,S ∪ S′Q

X0 ∪ Ỹ Q ∪ W̃Q ∪ Ṽ Q ∪ ŨQ ∪ Ũ ′
Q ∪ T̃Q

(X \ (W̃Q ∪ Ṽ Q ∪ ŨQ ∪ Ũ ′
Q

)) ∪ Z̃Q ∪ X̃Q

Y \ (Ỹ Q ∪ Z̃Q ∪ X̃Q ∪ T̃Q)

Y ∗, f ∪ f ′Q ∪ hQ ∪ h′Q ∪ h′′Q ∪ gQ ∪ g′Qi ∪ g′′Q)

by moving every vertex with a list of size at most two X, and every vertex with a list of size at
most one to X0. Since P satisfies (II) and (III), it follows that P ′Q satisfies (II) and (III) as well.
Moreover, P ′Q satisfies (I).

We let

L =
{
P ′Q : Q ∈ Q, f ∪ f ′Q ∪ hQ ∪ h′Q ∪ h′′Q ∪ gQ ∪ g′Qi ∪ g′′Q is a proper coloring

}
.

(25) L is an equivalent collection for P .
For every P ′Q ∈ L, every precoloring extension of P ′Q is a precoloring extension of P . Con-

versely, let c be a precoloring extension of P , and define Q = (Q1, . . . , Qr), where for each i,

Qi = (S1
i , S

2
i , R

1
i , R

2
i , R

3
i , R

4
i , C

1
i , C

2
i , X

1,1
i , X1,2

i , X2,1
i , X2,2

i , f ′i , casei)

is defined as follows:

• If X3(Ti) = ∅, then Qi = (∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, fi, ∅), where fi is the empty function.

• If X3(Ti) contains a vertex v with c(v) ∈ L1 ∩ L2, we choose v with N(v) ∩ Y1 maximal and
let S1

i = {v}, case = ∅. In this case, we let S2
i = ∅.

• If X3(Ti) contains no vertex v with c(v) ∈ L1∩L2, we let u ∈ X3(Ti) with N(u)∩Y1 maximal,
and set S1

i = {u}. If there is a vertex v ∈ X3(Ti) with c(v) 6= c(u) and uv 6∈ E(G), we choose
v with N(v) ∩ Y1 maximal and set S2

i = {v}; otherwise we let S2
i = ∅.

• If S2
i = ∅, we let casei = ∅ and Rj

i = ∅ for j = 1, 2, 3, 4. Otherwise, we let {u, v} = S1
i ∪ S2

i

such that c(u) ∈ L1. We let A = N(u)∩(Y2\N(v)) and B = N(v)∩(Y1\N(u)). Let a1, . . . , at
be the components of G|A, and let b1, . . . , bs be the components of G|B. Since P satisfies
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(II), it follows that for every i ∈ [t] and j ∈ [s], V (ai) is either complete or anticomplete to
V (bj).

Let H be the graph with vertex set {u, v} ∪ {a1, . . . , at} ∪ {b1, . . . bs}; where NH(u) =
{a1, . . . , at}, NH(v) = {b1, . . . , bs}, the sets {a1, . . . , at} and {b1, . . . , bs} are stable, and ai is
adjacent to bj if and only if V (ai) is complete to V (bj) in G. Apply 35 to H, u and v to
obtain a partition A′0, A

′
1, . . . , A

′
k of {a1, . . . , at} and a partition B′0, B

′
1, . . . , B

′
k of {b1, . . . , bt}.

For i ∈ [k], let Ai =
⋃

aj∈Ai
V (aj) and Bi =

⋃
bj∈Bi

V (bj).

It follows from the definition of H that in G,

– A0 is complete to N(v);

– B0 is complete to N(u); and

– for j = 1, . . . , k, Aj , Bj 6= ∅ and Aj is complete to N(v) \ Bj and Bj is complete to
N(u) \Aj , and Aj is anticomplete to Bj .

If A0 = B0 = ∅ and k = 1, then A is anticomplete to B, and we let casei = ∅. Otherwise, we
consider the following cases, setting casei =

(a) if c(A) ⊆ L2 \ L1;

(b) if c(B) ⊆ L1 \ L2;

(c) if there is an i ∈ {1, . . . , k} such that c(A \Ai) ⊆ L2 \ L1, and c(B \Bi) ⊆ L1 \ L2;

(d) if there exist x ∈ A, y ∈ B adjacent such that c(x), c(y) ∈ L2 ∩ L1 and c(B \ N(x)) ⊆
L1 \ L2;

(e) if there exist x ∈ A, y ∈ B adjacent such that c(x), c(y) ∈ L2 ∩ L1 and c(A \ N(y)) ⊆
L2 \ L1;

(f) if there exist x, x′ ∈ A, y, y′ ∈ B, with x, y adjacent, x′ non-adjacent to y, y′ non-adjacent
to x, and (consequently) x′ adjacent to y′, and c(x), c(y), c(x′), c(y′) ∈ L2 ∩ L1.

It is easy to verify that one of these cases occurs.

With the notation as above, if casei =

(a) then we let Rj
i = ∅ for j = 1, 2, 3, 4;

(b) then we let Rj
i = ∅ for j = 1, 2, 3, 4;

(c) then we let x ∈ Ai, y ∈ Bi and set R1
i = {x}, R2

i = {y}, R3
i = R4

i = ∅;
(d) then we let R1

i = {x}, R2
i = {y}, R3

i = R4
i = ∅;

(e) then we let R1
i = {x}, R2

i = {y}, R3
i = R4

i = ∅;
(f) then we let R1

i = {x}, R2
i = {y}, R3

i = {x′}, R4
i = {y′}.

• For j = 1, 2, we proceed as follows. If Sj
i = ∅ or the vertex v ∈ Sj

i is not mixed on a bad

component, then we let Xj,1
i = Xj,2

i = Cj
i = ∅. Otherwise, let v ∈ Sj

i and let C be a bad

component of G|Y on which v is mixed. We set Cj
i = V (C). By Lemma 38 applied to C, it

follows that for p 6= q, V (C) ∩ Yp is complete to V (C) ∩ Yq. Since Yp ∩ V (C) 6= ∅ for at least
three different p ∈ {1, 2, 4, 5}, it follows that there exist p, q ∈ {1, 2, 4, 5} with p 6= q such that
|c(V (C) ∩ Yp)| = 1 and |c(V (C) ∩ Yq)| = 1. Let Xj,1

i ⊆ V (C) ∩ Yp, X
j,2
i ⊆ V (C) ∩ Yq, such

that |Xj,k
i | = 1 for k = 1, 2.
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We let fi = c|
S1
i ∪S2

i ∪R1
i∪R2

i∪R3
i∪R4

i∪X
1,1
i ∪X

1,2
i ∪X

2,1
i ∪X

2,2
i

. It follows from the definition of Q that

Q ∈ Q. Moreover, c is a precoloring extension of P ′Q by the definition of Q and P ′Q. This proves
(25).

Let P ′ ∈ L with P ′ = (G,S′, X ′0, X
′, Y ′, Y ∗, f ′) such that P ′ = P ′Q for Q = (Q1, . . . , Qr), where

for each i,
Qi = (S1

i , S
2
i , R

1
i , R

2
i , R

3
i , R

4
i , C

1
i , C

2
i , X

1,1
i , X1,2

i , X2,1
i , X2,2

i , fi, casei).

Let Y ′i = {y ∈ Y ′ : LP ′(y) = Li} for i = 1, 2. We claim the following.

(26) P ′ satisfies (IV).
Suppose not; and let x− a− b be a path with x ∈ X ′ and a, b ∈ Y ′ with LP ′(a) = LP ′(b) = L.

Since P satisfies (II) and (IV), it follows that x 6∈ X, and so x ∈ Y and LP (x) = L. Moreover,
since x ∈ X ′ \ X, it follows that x has a neighbor s′ ∈ S′ \ S with f ′(s′) ∈ L. Since P satisfies
(II) and (IV), and since s′ is adjacent to x but not a, it follows that s′ ∈ Y and LP (s′) = L. Since
s′ has a neighbor x ∈ Y with a neighbor a ∈ Y ′, it follows that x 6∈ Ỹ Q ∪ Z̃Q. Since s′ 6∈ X,
it follows that s′ 6∈ S1

i ∪ S2
i , and hence there exists i ∈ {1, . . . , r} such that s′ ∈ Rj

i for some
j ∈ {1, 2, 3, 4}. Thus LP (s′) ∈ {L1, L2}. Let {u, v} = S1

i ∪ S2
i such that s′ ∈ N(u) \ N(v). It

follows that casei ∈ {(d), (e), (f)}, and hence there is a vertex t′ ∈ R1
i ∪R2

i ∪R3
i ∪R4

i such that t′ is
adjacent to s′ and v, but t′ is not adjacent to u, and LP (t′) ∈ {L1, L2} \ {L}, and f ′(t′) ∈ L1 ∩L2.
But then t′ − s′ − x or t′ − x − a is a path (since a ∈ Y ′ it follows that a is not adjacent to t′);
contrary to the fact that (II) holds for P . This is a contradiction, and (26) follows.

(27) If P satisfies (23) for lists L′1, L
′
2, L

′
3, then P ′ satisfies (23) for L′1, L

′
2, L

′
3.

Suppose not; and let x−a−b−c be a path such that LP ′(x) = L′3 with |L′3| = 2 and L′3 6= L′1∩L′2,
LP ′(a) = L′1 = LP ′(c), LP ′(b) = L′2. Since P satisfies (II), (23) for L′1, L

′
2, L

′
3, and (III), it follows

that LP (x) = L′2. Consequently, x has a neighbor s′ in S′ \S with f ′(s′) ∈ L′2. Since L′3 6= L′1 ∩L′2,
it follows that f ′(s′) ∈ L′1. Thus s′−x−a−b−c is a path. Suppose first that s′ ∈ Y . It follows that
s′ 6∈ S1

i ∪ S2
i . Since s′ has a neighbor x ∈ Y with a neighbor a ∈ Y ′, it follows that x 6∈ Ỹ Q ∪ Z̃Q.

This implies that there exist i ∈ {1, . . . , r} and j ∈ {1, 2, 3, 4} such that s′ ∈ Rj
i . Since P satisfies

(II) and (III), it follows that LP (s′) = L′1. Let {u, v} = S1
i ∪ S2

i such that u is adjacent to s′ and
v is not. It follows that casei ∈ {(d), (e), (f)}, and hence there is a vertex t′ ∈ R1

i ∪ R2
i ∪ R3

i ∪ R4
i

such that t′ is adjacent to s′ and v, but t′ is not adjacent to u, and f ′(t′) ∈ L′1 = LP (s′). Since
t′− s′−x−a− b− c is not a P6 in G, it follows that f ′(t′) 6∈ L′1 ∩L′2. Therefore, LP (t′) 6∈ {L′1, L′2}.
Since P satisfies (III), it follows that t′ is adjacent to x (since t′ − s′ − x is not a path). Since
f ′(t′) ∈ L′1, it follows that t′ is not adjacent to a. Now t′ − x − a is a path in G, contrary to the
fact that P satisfies (III). Thus, s′ ∈ X.

Suppose that LP (s′) 6= L′1 ∩ L′2. Then s′ has a neighbor s in S with f ′(s) ∈ L′1 ∩ L′2. Now
s−s′−x−a−b−c is a P6 in G, a contradiction. It follows that s′ ∈ X and LP (s′) = L′1∩L′2. Since
s′ ∈ S1

i ∪S2
i , it follows that there is a path s′− y− z with y ∈ L1, z ∈ L2, and LP (s′) 6= L1 ∩L2. It

follows that either L1 6∈ {L′1, L′2} or L2 6∈ {L′1, L′2}. Since z− y− s′−x− a− b− c is not a P7 in G,
it follows that G| {z, y, x, a, b, c} is connected. Let w ∈ {y, z} such that LP (w) 6∈ {L′1, L′2}. Since P
satisfies (III), it follows that w is complete to x, a, b, c. But then x − w − c is a path, contrary to
the fact that (III) holds for P . This implies (27).

(28)
If P satisfies (V) for lists L′1, L

′
2, L

′
3, and P satisfies (23) for all lists, then P ′ satisfies

(V) for L′1, L
′
2, L

′
3.

Suppose not; and let x−a− b be a path such that LP ′(x) = L′3 with |L′3| = 2 and L′3 6= L′1∩L′2,
LP ′(a) = L′1, LP ′(b) = L′2. Since P satisfies (II), (V) for L′1, L

′
2, L

′
3, and (III), it follows that

65



LP (x) = L′2. Consequently, x has a neighbor s′ in S′ \ S with f ′(s′) ∈ L′2. Since L′3 6= L′1 ∩ L′2, it
follows that f ′(s′) ∈ L′1. Thus s′ − x− a− b is a path. Suppose first that s′ ∈ X. Then there exist
i ∈ {1, . . . , r} and j ∈ {1, 2} such that s′ ∈ Sj

i . It follows that LP (s′) = L′1 ∩ L′2, since P satisfies
(23) for all lists. By construction, it follows that there is a path s′− y− z with y ∈ L1, z ∈ L2, and
LP (s′) 6= L1∩L2. We choose such y, z ∈ Cj

i if Cj
i 6= ∅. Since z−y−s′−x−a− b is not a six-vertex

path in G, it follows that G| {z, y, x, a, b} is connected. Since Cj
i ∩Y ′ = ∅ by construction, it follows

that Cj
i = ∅, and so s′ is not mixed on a bad component. Since L1 ∩ L2 6= L′1 ∩ L′2, it follows

that either L1 6∈ {L′1, L′2} or L2 6∈ {L′1, L′2}. Let w ∈ {y, z} such that LP (w) 6∈ {L′1, L′2}. Then
G| {z, y, x, a, b} is contained in a component of G|Y containing vertices with lists L′1, L

′
2 and LP (w),

hence a bad component. But since s′ − x − a − b is a path, s′ is mixed on this bad component, a
contradiction. It follows that s′ ∈ Y .

Since P satisfies (II) and (III), it follows that LP (s′) = L′1. Since s′ has a neighbor x ∈ Y with
a neighbor a ∈ Y ′, it follows that s′ 6∈ Ỹ Q ∪ Z̃Q. Thus, there exist i ∈ {1, . . . , r} and j ∈ {1, 2, 3, 4}
such that s′ ∈ Rj

i . By construction, it follows that LP (s′) ∈ {L1, L2}. Let {u, v} = S1
i ∪ S2

i such
that u is adjacent to s′ and v is not. It follows that casei ∈ {(d), (e), (f)}, and hence there is a
vertex t′ ∈ R1

i ∪ R2
i ∪ R3

i ∪ R4
i such that t′ is adjacent to s′ and v, but t′ is not adjacent to u, and

f ′(t′) ∈ L1 ∩ L2.
Suppose first that {L′1, L′2} = {L1, L2}. Then f ′(s′), f ′(t′) ∈ L′1 ∩ L′2. Let s ∈ S be a common

neighbor of u, v with f ′(s) ∈ L1 ∩ L2. Since s− u− s′ − x− a− b is not a P6 in G, it follows that
u is adjacent to a. Since t′ − v − s − u − a − b is not a P6 in G, it follows that v has a neighbor
in {u, a, b}. Since f ′(v) ∈ L1, it follows that v is non-adjacent to a. Thus v is adjacent to b. Since
a, b 6∈ T̃Q, it follows that casei = (f). By symmetry, we may assume that s′ ∈ R1

i , t
′ ∈ R2

i . Let
x′ ∈ R3

i , y
′ ∈ R4

i . Then x′, y′ are non-adjacent to a, b. But then x′ − u− a− b− v − y is a P6 in G,
a contradiction. It follows that {L′1, L′2} 6= {L1, L2}.

Consequently, LP (t′) 6∈ {L′1, L′2}. Since P satisfies (III), it follows that t′− s′− x is not a path,
and so t′ is adjacent to x. Since f ′(t′) ∈ L′1, it follows that t′ is not adjacent to a. Now t′ − x− a
is a path, contrary to the fact that (III) holds for P . This proves (28).

(29) P ′ satisfies (23) for L1, L2, L3.
Suppose not; and let z−a−b−c be a path with LP ′(z) = L3, LP ′(a) = LP ′(c) = L1, LP ′(b) = L2.

Suppose first that z ∈ X. Let i such that Ti = N(z) ∩ S. Then S1
i 6= ∅. Let s′ ∈ S1

i ∪ S2
i , and

let s be a common neighbor of s′ and z in S with f(s) ∈ L1 ∩ L2. Since s′ − s − z − a − b − c
is not a path, it follows that z, a, b, c contains a neighbor of s′ for every s′ ∈ S1

i ∪ S2
i . But z is

anticomplete to S1
i ∪ S2

i , for otherwise, z ∈ Ṽ Q. If S2
i = ∅, then, since z 6∈ X ′0, it follows that

f(s′) ∈ L1 ∩ L2 and so z is anticomplete to a, b, c, a contradiction. Therefore, S2
i 6= ∅. But then

S1
i ∪ S2

i = {u, v} with f ′(u) ∈ L2 \L1, say. Since a, b, c ∈ Y ′, it follows that u is adjacent to a or c,
and v is adjacent to b; and no other edges between u, v and a, b, c exist. Now, Y ′ contains an edge
between N(u) ∩ (Y1 \N(v)) and N(v) ∩ (Y2 \N(u)); but this contradicts (24).

Since P satisfies (II) and (III), it follows that LP (z) = L2. Then z has a neighbor s′ ∈ S′ \ S
with f ′(s′) ∈ L1 ∩ L2 (for if f ′(s′) 6∈ L1, then LP ′(z) = L1 ∩ L2 6= L3), and s′ − z − a − b − c is
a path. Suppose first that s′ ∈ Y . Since P satisfies (II) and (III), it follows that LP (s′) = L1.
Moreover, by construction, s′ has a neighbor t′ ∈ S′ with LP (t′) = L2 and f ′(t′) ∈ L1 ∩ L2. But
then t′ − s′ − z − a− b− c is a P6 in G, a contradiction. It follows that s′ ∈ X.

Since s′ ∈ X, it follows that L(s′) = L3, and so s′ has a neighbor s ∈ S with f(s) ∈ L1 ∩ L2.
But then s− s′ − z − a− b− c is a P6 in G, a contradiction. This proves (29).

(30) If P satisfies (23) for every three lists, then P ′ satisfies (V) for L1, L2, L3.
Suppose not; and let z − a− b be a path with LP ′(z) = L3, LP ′(a) = L1, LP ′(b) = L2.
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Suppose first that z ∈ X. Let i ∈ {1, . . . , r} such that Ti = N(z)∩S. By construction, it follows
that S1

i 6= ∅. Let s′ ∈ S1
i ∪S2

i , and let s be a common neighbor of s′ and z in S with f(s) ∈ L1∩L2.
Let c be a neighbor of s′ in Y1; by construction, we may choose c to be non-adjacent to z. Then
c 6= a, b (since b 6∈ Y1). Since c− s′ − s− z − a− b is not a path, it follows that either s′ or c has a
neighbor in {a, b}. Since P satisfies (IV), it follows that s′ − c− a is not a path. Since P satisfies
(23) for all lists, it follows that z−a− b− c is not a path. Consequently, s′ has a neighbor in {a, b}.
It follows that f ′(s′) 6∈ L1∩L2. Therefore, S1

i ∪S2
i = {u, v} and both u, v have a neighbor in {a, b}.

Since a, binY ′, it follows that both a, b have a non-neighbor in {u, v}. This is a contradiction by
(24).

Since z ∈ Y and P satisfies (II) and (III), it follows that LP (z) = L2. Consequently, z has
a neighbor s′ in S′ \ S with f ′(s′) ∈ L2. Since L3 6= L1 ∩ L2, it follows that f ′(s′) ∈ L1. Thus
s′ − z − a − b is a path. Since s′ has a neighbor z ∈ Y with a neighbor a ∈ Y ′, it follows that
s′ 6∈ Ỹ Q ∪ Z̃Q. Suppose first that s′ ∈ X. Then there exist i ∈ {1, . . . , r} and j ∈ {1, 2} such that
s′ ∈ Sj

i . It follows that LP (s′) = L1 ∩ L2 since P satisfies (23) for all lists. But Sj
i ⊆ X3 and so

LP (s′) 6= L1 ∩ L2, a contradiction. It follows that s′ ∈ Y .
Since P satisfies (II) and (III), it follows that LP (s′) = L1, and there exist i ∈ {1, . . . , r} and

j ∈ {1, 2, 3, 4} such that s′ ∈ Rj
i . Moreover, S1

i ∪ S2
i = {u, v}. By symmetry, we may assume

that u is adjacent to s′ and v is not. It follows that casei ∈ {(d), (e), (f)}, and hence there is a
vertex t′ ∈ R1

i ∪ R2
i ∪ R3

i ∪ R4
i such that t′ is adjacent to s′ and v, but t′ is not adjacent to u.

By construction, it follows that f ′(s′), f ′(t′) ∈ L1 ∩ L2. Let s ∈ Ti with f ′(s) ∈ L1 ∩ L2. Since
s − u − s′ − z − a − b is not a P6 in G, it follows that u is adjacent to a or to z. Note that if
uz ∈ E(G), then z is adjacent to both s′ and u, both of which are in S′ and f(s′, u) ⊆ L1. This
implies that z ∈ X ′0. It follows that u is adjacent to a. Since t′ − v − s − u − a − b is not a P6 in
G, it follows that v is adjacent to b. This contradicts (24) and concludes the proof of (30).

The statement of the lemma follows; we have proved every claim in (26), (27), (28), (29) and
(30).

Lemma 41. There is a function q : N→ N such that the following holds. Let P = (G,S,X0, X, Y, Y ∗, f)
be a starred precoloring of a P6-free graph G with P satisfying (I), (II), (III) and (IV). Then there
is an algorithm with running time O(|V (G)|q(|S|)) that outputs an equivalent collection L for P such
that

• |L| ≤ |V (G)|q(|S|);

• every P ′ ∈ L is a starred precoloring of G;

• every P ′ ∈ L with seed S′ satisfies |S′| ≤ q(|S|); and

• every P ′ ∈ L satisfies (I), (II), (III), (IV) and (V).

Moreover, for every P ′ ∈ L, given a precoloring extension of P ′, we can compute a precoloring
extension for P in polynomial time, if one exists.

Proof. Let L = {P}. For every triple (L1, L2, L3) of lists of size three, we repeat the following.
Apply Lemma 40 to every member of L, replace L with the union of the equivalent collections thus
obtained, and move to the next triple. At the end of thus process (23) holds for every P ′ ∈ L.

Now repeat the procedure of the previous paragraph. Since at this stage all inputs satisfy (23)
for every triple of lists, it follows that (V) holds for every starred precoloring of the output.

We now observe that the next axiom, which we restate, holds.
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(VI) For every component C of G|Y , for which there is a vertex of X is mixed on C, there exist
L1, L2 ⊆ {1, 2, 3, 4} with |L1| = |L2| = 3 such that C contains a vertex xi with LP (xi) = Li

for i = 1, 2, every vertex x in C satisfies LP (x) ∈ {L1, L2}, and every x ∈ X mixed on C
satisfies LP (x) = L1 ∩ L2.

Lemma 42. Let P = (G,S,X0, X, Y, Y ∗, f) of a P6-free graph G satisfying (I)-(V), and let C be
a component of G|Y such that some vertex x ∈ X is mixed on C. Then C meets exactly two lists
L1, L2, and LP (x) = L1 ∩ L2.

Proof. Since P satisfies (IV), Lemma 19 implies that C meets more than one list. By Lemma 19,
there exist a, b in C such that x − a − b is a path. By (IV) LP (a) 6= LP (b), and by (V) LP (x) =
LP (a) ∩ LP (b). Let c ∈ V (C) be such that LP (c) 6= LP (a), LP (b). By Lemma 38 c is complete to
{a, b}. But then x is mixed on one of {a, c}, {b, c}, contrary to (V). This proves Lemma 42.

The following lemma establishes that:

(VII) For every component C of G|Y such that some vertex of X is mixed on C, and for L1, L2 as
in (VI), LP (v) = L1 ∩ L2 for every vertex v ∈ X with a neighbor in C.

Lemma 43. There is a function q : N→ N such that the following holds. Let P = (G,S,X0, X, Y, Y ∗, f)
be a starred precoloring of a P6-free graph G with P satisfying (I), (II), (III), (IV), (V) and (VI).
Then there is an algorithm with running time O(|V (G)|q(|S|)) that outputs an equivalent collection
L for P such that

• |L| ≤ |V (G)|q(|S|);

• every P ′ ∈ L is a starred precoloring of G;

• every P ′ ∈ L with seed S′ satisfies |S′| ≤ q(|S|); and

• every P ′ ∈ L satisfies (I), (II), (III), (IV), (V), (VI) and (VII).

Moreover, for every P ′ ∈ L, given a precoloring extension of P ′, we can compute a precoloring
extension for P in polynomial time, if one exists.

Proof. Let R = {T1, . . . , Tr} be the set of all T ⊆ S with |f(T )| = 2, let S = {s1, . . . , ss}, and let
T =

{
(L1

1, L
1
2), . . . , (L

t
1, L

t
2)
}

be the set of all pairs (L1, L2) with |L1| = |L2| = 3 and L1 6= L2. We
let Q be the set of all (rst + 1)-tuples Q = (Q1,1,1, . . . , Qr,s,t, f

′), where i ∈ [r], j ∈ [s] and k ∈ [t],
and for each i, j, k the following statements hold:

• Qi,j,k ⊆ X(Ti) and |Qi,j,k| ≤ 1;

• Qi,j,k = ∅ if [4] \ f(Ti) = Lk
1 ∩ Lk

2 or f(sj) ∈ f(Ti);

• if Qi,j,k = {x}, then there is a component C of G|Y such that

– sj has a neighbor in V (C);

– some vertex of X is mixed on C, and C meets Lk
1, L

k
2 as in (VI);

– x has neighbors in V (C)

and x has the maximum number of such components C among all vertices in X(Ti);

• if Qi,j,k = ∅, then no vertex x ∈ X(Ti) and component C as above exist,
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• Let Q̃ =
⋃

i∈{1,...,r},j∈{1,...,s},k∈{1,...,t}Qi,j,k, then f ′ : Q̃ → {1, 2, 3, 4} satisfies that f ′ ∪ f is a

proper coloring of G|(S ∪X0 ∪ Q̃).

For Q ∈ Q, we construct a starred precoloring PQ from P as follows. We let Z̃Q be the
set of vertices z in X \ Q̃ such that Q̃ contains a neighbor x of z with f ′(x) ∈ LP (z), and let
gQ : Z̃Q → {1, 2, 3, 4} be the unique function such that gQ(z) ∈ LP (z) \ f ′(N(z) ∩ Q̃). We let X̃Q

be the set of vertices z in Y such that Q̃ contains a neighbor x of z with f ′(x) ∈ LP (z).
We let

PQ = (G,S ∪ Q̃,X0 ∪ Z̃Q, (X \ (Z̃Q ∪ Q̃)) ∪ X̃Q, Y \ X̃Q, Y ∗, f ∪ f ′ ∪ gQ),

and let L =
{
PQ : Q ∈ Q, f ∪ f ′ ∪ gQ is a proper coloring

}
. It is easy to check that L is an equiv-

alent collection for P .
Let Q ∈ Q, and let PQ = (G′, S′, X ′0, X

′, Y ′, Y ∗, f ′). By construction, PQ satisfies (I). Since P
satisfies (II), (III), so does PQ. Since P satisfies (II), it follows that PQ satisfies (IV).

(31) PQ satisfies (V).
Suppose not; and let a−b−c be a path with a ∈ X ′, b, c ∈ Y ′ such that LPQ(a) = L3, LPQ(b) =

L1, LPQ(c) = L2 and L1 6= L2, L3 6= L1 ∩ L2. Since P satisfies (V), it follows that a ∈ Y . Since
P satisfies (II) and (III), it follows that LP (a) = L2, and there is a vertex x ∈ Q̃, say x ∈ Qi,j,k

such that x is adjacent to a and f ′(x) ∈ LP (a). Since c ∈ Y ′, it follows that x is not adjacent to c.
Since x is mixed on a component of G|Y meeting L1 and L2, and since P satisfies (VI), it follows
that LP (x) = L1 ∩ L2. Thus x − a − b − c is a path, and there is a component C of G|Y such
that V (C) meets Lk

1, L
k
2 and x has a neighbor in C and Lk

1 ∩ Lk
2 6= LP (x) = L1 ∩ L2. It follows

that a, b, c 6∈ V (C), and so V (C) is anticomplete to a, b, c. By symmetry, we may assume that
Lk
1 6∈ {L1, L2}. Let d ∈ V (C) with LP (d) = Lk

1. Since P satisfies (V) and (IV), and since x has a
neighbor in C, it follows that x is complete to C and thus adjacent to d. Since LP (d) 6∈ {L1, L2},
it follows that there is a vertex s ∈ S with f(s) ∈ L1 ∩ L2 and s adjacent to d. But then
c− b− a− x− d− s is a P6 in G, a contradiction. This proves (31).

Now by Lemma 42, PQ satisfies (VI).

(32) PQ satisfies (VII).
Suppose not. Let C be a component of G′|Y ′ such that some vertex of X ′ is mixed on C, and

with L1, L2 as in (VI), and let v ∈ X ′ with N(v) ∩ C 6= ∅ such that LPQ(v) 6= L1 ∩ L2.
Since LPQ(v) 6= L1 ∩ L2, we may assume that [4] \ L1 ⊆ LP (v). Let s ∈ S with f(s) = [4] \ L1,

such that s has a neighbor in C. Since PQ satisfies (VI), it follows that v is complete to C.
We claim that every x ∈ X ′ ∩ Y is complete to C. Suppose that x ∈ Y ∩ X ′ is mixed on C.

Since PQ satisfies (VI), it follows that LPQ(x) = L1 ∩ L2. By symmetry, we may assume that
LP (x) = L1, and therefore, x has a neighbor s in Q̃ ∩X and f(s) = L1 \ L2. But then s is mixed
on the component C̃ of G|Y containing V (C) ∪ {x}, C̃ meets L1 and L2, and LP (s) 6= L1 ∩ L2,
contrary to the fact that P satisfies (VI). This proves the claim. Now since some vertex of X ′ is
mixed on C, it follows that some vertex of X is mixed on C.

Next we claim that v ∈ X. Suppose v ∈ Y . Then there is a component C̃ of G|Y such that
V (C) ∪ {v} ⊆ V (C̃). Since some x ∈ X is mixed on C, and since P satisfies (VI), we deduce that
LP (v) ∈ {L1, L2}. Consequently, v has a neighbor s in Q̃. Therefore q ∈ X. Since v is complete to
C, it follows that v has a neighbor n in C with LP (n) = LP (v). But then x is mixed on the edge
vn, contrary to the fact that P satisfies (IV). This proves that v ∈ X.
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By construction, Q contains an entry Qi,j,k with Ti = T (v), sj = s and (Lk
1, L

k
2) = (L1, L2),

and in view of the claims of the previous two paragraphs, Qi,j,k 6= ∅. Write Qi,j,k = {z}. Let C ′

be a component of G|Y meeting both L1 and L2, such that some vertex of X is mixed on C ′, and
both s and z have a neighbor in C ′. Since f ′(z) ∈ L1 ∪ L2, it follows that z is not complete to C.
Since LP (z) 6= L1 ∩ L2, it follows from the fact that P satisfies (VI) that z is not mixed on either
of C,C ′. Consequently, z is complete to C ′, and z is anticomplete to C. Now by the maximality of
z we may assume that v is anticomplete to C ′. Since [4] \ L1 ⊆ LP (z) = LP (v), it follows that s is
anticomplete to {z, v}.

Let a ∈ V (C) ∩N(s) and a′ ∈ V (C ′) ∩N(s). Since each of C,C ′ meets L2, we can also choose
b ∈ V (C) \N(s) and b′ ∈ V (C ′) \N(s). LP (z) 6= L1 ∩ L2, there exists t ∈ Ti with f(t) ∈ L1 ∩ L2.
Then t is anticomplete to V (C) ∪ V (C ′). It t is non-adjacent to s, then s− a− v − t− z − a′ is a
P6 in G, so t is adjacent to s. If a is non-adjacent to b, then b− v − a− s− a′ − z is a P6, so a is
adjacent to b. But now b− a− s− t− z − a′ is a P6, a contradiction. Thus, (32) follows.

This concludes the proof of the Lemma 43.

We are now ready to prove the final axiom.

(VIII) Y = ∅.

Lemma 44. There is a function q : N→ N such that the following holds. Let P = (G,S,X0, X, Y, Y ∗, f)
be a starred precoloring of a P6-free graph G with P satisfying (I), (II), (III), (IV), (V), (VI), (VII).
Then there is an algorithm with running time O(|V (G)|q(|S|)) that outputs collection L of starred
precolorings such that

• if we know for every P ′ ∈ L whether P ′ has a precoloring extension or not, then we can decide
if P has a precoloring extension in polynomial time;

• |L| ≤ |V (G)|q(|S|);

• every P ′ ∈ L is a starred precoloring of G;

• every P ′ ∈ L with seed S′ satisfies |S′| ≤ q(|S|); and

• every P ′ ∈ L satisfies (VIII).

Moreover, for every P ′ ∈ L, given a precoloring extension of P ′, we can compute a precoloring
extension for P in polynomial time, if one exists.

Proof. Let P = (G,S,X0, X, Y, Y ∗, f). For every component C of G \ (S ∪ X0), Let PC be the
starred precoloring

(G|(V (C) ∪ S ∪X0), S,X0, X ∩ V (C), Y ∩ V (C), Y ∗ ∩ V (C), f).

Then PC satisfies (I)–(VII). Let L0 be the collection of all such starred precolorings PC . Clearly
P has a precoloring extension if and only if every member of L0 does, so from now on we focus on
constructing an equivalent collection for each PC separately. To simplify notation, from now we
will simply assume that G \ (X0 ∪ S) is connected.

In the remainder of the proof we either find that P has no precoloring extension, output L = ∅
and stop, or construct two disjoint subsets U and W of Y , and a subset X̃0 of X such that

• U ∪W = Y ,
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• No vertex of X is mixed on a component of G|W ,

• For every component C of G|W , some vertex of X ∪X0 ∪ S is complete to C.

• There is a set F with |F | ≤ 26 of colorings of G|X̃0 that contains every coloring of G|X̃0 that
extends to a precoloring extension of P , and F can be computed in polynomial time.

• P has a precoloring extension if and only if for some f ′ ∈ F

(G \ U, S,X0 ∪ X̃0, X \ X̃0,W, Y ∗, f ∪ f ′)

has a precoloring extension.

Having constructed such U,W, X̃0 and F , for each f ′ ∈ F we set

Pf ′ = (G \ U, S,X0 ∪ X̃0, X \ X̃0, ∅, Y ∗ ∪W, f ∪ f ′)

and output the collection L = {Pf ′}f ′∈F , which has the desired properties.
Start with U = W = X̃0 = ∅. For v ∈ Y , let M(v) = LP (v)\f(N(v)∩(S∪X0)). For L ⊆ [4], we

denote by ML the list assignment ML(v) = M(v)∩L. To construct U,W and X̃0, we first examine
each component of G|Y separately. Every time we enlarge U , we will “restart” the algorithm with
(G,S,X0, X, Y, Y ∗, f) replaced by (G \ U, S,X0, X, Y \ U, Y ∗, f). Since we only do this when U
is enlarged, there will be at most |V (G)| such iterations, and so it is enough to ensure that each
iteration can be done in polynomial time.

Let C be a component of G|Y . If no vertex of X is mixed on C, and some vertex of S ∪X0 ∪X
is complete to C, we add V (C) to W . So we may assume that either some vertex of X is mixed on
C, or no vertex of X is complete to C. Let Ci = {v ∈ V (C) : LP (v) = [4] \ {i}}. Since P satisfies
(I), it follows that V (C) =

⋃4
i=1Ci,

Suppose first that C meets exactly one list L. Since P satisfies (VI), it follows that no vertex
of X is mixed on C, and so N(V (C)) ⊆ S ∪X0. By Theorem 2, we can test in polynomial time if
(C,M) is colorable. If not, then P has no precoloring extension, we set L = ∅ and stop. If (C,M)
is colorable, then deleting V (C) does not change the existence of a precoloring extension for P , and
we add V (C) to U .

Now suppose that C meets at least three lists. By Lemma 38 Ci is complete to Cj for every
i 6= j. Since P satisfies (VI), it follows that no vertex of X is mixed on C, and so N(V (C)) ⊆ S∪X0.
Since Ci is non-empty for at least three values of i, it follows that in every proper coloring of C, at
most two colors appear in Ci, and for i 6= j the sets of colors that appear in Ci and Cj are disjoint.
By Theorem 13, for every L ⊂ [4] with |L| ≤ 2 and for every i, we can test in polynomial time if
(C|Ci,ML) is colorable. If there exist disjoint lists L1, . . . , L4 such that (Gi,MLi) is colorable for
all i, then deleting V (C) does not change the existence of a precoloring extension for P , and we
add V (C) to U . If no such L1, . . . , Li exist, then P has no precoloring extension, we set L = ∅ and
stop.

Thus we may assume that C meets exactly two lists, say V (C) = C3 ∪ C4. Let A1, . . . , Ak

be the components of C|C3 and Ak+1, . . . , At be the components of C|C4. Since P satisfies (II),
for every i ∈ [k] and j ∈ {k + 1, . . . , t}, Ai is either complete or anticomplete to Aj , and since P
satisfies (IV), for every i ∈ [t] no vertex of X is mixed on Ai. Since P satisfies (VII), if x ∈ X
has a neighbor in C, then LP (x) = {1, 2}. By Theorem 2, for every Ai and for every L ⊆ [4] with
|L ∩ {1, 2}| ≤ 1, we can test in polynomial time if (Ai,ML) is colorable. If (Ai,ML) is colorable,
we say that the set ML ∩ {1, 2} works for Ai. Suppose that ∅ works for i. We may assume i = 1.
It follows that (A1,M) can be colored with color 3. Since N(V (A1)) ⊆ S ∪ X0 ∪ X{1,2} ∪ C4, it
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follows that deleting Ai does not change the existence of a precoloring extension for P , and so we
add V (Ai) to U . Thus we may assume that ∅ does not work for any i.

Since C is connected and both C3, C4 are non-empty, it follows that for every i there is j such
that Ai is complete to Aj , and so in every proper coloring of C, at most one of the colors 1, 2 appears
in each V (Ai). Since ∅ does not work for any i, it follows that in every precoloring extension of P ,
exactly one of the colors 1, 2 appears in each V (Ai), and both 1 and 2 appear in V (C). If some
x ∈ X is complete to C, then x ∈ X{1,2}, and so G has no precoloring extension; we set L = ∅, and
stop. Thus we may assume that no vertex of X is complete to V (C).

Let XC be the set of vertices of X that are mixed on V (C). Then XC ⊆ X{1,2}, and N(V (C)) ⊆
S ∪X0 ∪XC . Let AC = {a1, . . . , at}. Let HC be the graph with vertex set XC ∪AC , where

• aiaj ∈ E(HC) if and only if Ai is complete to Aj ,

• for x ∈ XC , xai ∈ E(HC) if and only if x is complete to Ai, and

• HC |(XC) = G|(XC).

Let TC(ai) be the the union of all the sets that work for i. Suppose first that XC = ∅. Then
N(V (C)) ⊆ S ∪ X0. By Theorem 13 we can test in polynomial time if (HC , TC) is colorable. If
(HC , TC) is not colorable, then P has no precoloring extension; we output L = ∅ and stop. Thus
we may assume that (HC , TC) is colorable. Since N(V (C)) ⊆ S ∪ X0, deleting V (C) does not
change the existence of a precoloring extension, and we add V (C) to U . Thus we may assume that
XC 6= ∅.

Now let C1, . . . , C l be all the components of G|Y for which V (Ci) = Ci
3 ∪Ci

4 and XC 6= ∅. Let
H be the graph with vertex set

⋃l
i=1 V (HCi) and such that uv ∈ E(H) if and only if either

• uv ∈ E(HCi) for some i, or

• u, v ∈ X and uv ∈ E(G).

Let T (v) = TC(v) if v ∈ V (H) \X, and let T (v) = M(v) if v ∈ V (H)∩X. By Theorem 13, we can
test in polynomial time if (H,T ) is colorable. If (H,T ) is not colorable, then P has no precoloring
extension; we output L = ∅ and stop. Thus we may assume that (H,T ) is colorable. Note that
T (v) ⊆ {1, 2} for every v ∈ V (H).

Next we will show H is connected, and therefore (H,T ) has at most two proper colorings, and
we can compute the set of all proper colorings of (H,T ) in polynomial time. Suppose that H is not
connected. Since each Ci is connected, it follows that H|ACi is connected for all i, and since for
every i, every vertex of XCi has a neighbor in ACi , it follows that H|V (HCi) is connected for every
i. Let D1, D2 be distinct components of H. Since G \ (S ∪X0) is connected, there is exist p, q ∈ [l]
such that V (HCp) ⊆ D1, V (HCq) ⊆ D2, and there is a path P = p1− . . .− pm in G \ (S ∪X0) with
p1 ∈ V (Cp)∪XCp , pm ∈ V (Cq)∪XCq , and P ∗ is disjoint from

⋃l
i=1(V (Ci)∪XCi). Since for every

i, N(V (Ci)) ⊆ S ∪X0 ∪XCi , it follows that p1 ∈ XCp and pm ∈ XCq , and P ∗ is anticomplete to
V (Cp) ∪ V (Cq). By Lemma 19, there exist ap, bp ∈ V (Cp) such that pm − ap − bp is a path, and
there exist aq, bq ∈ V (Cq) such that pm−aq− bq is a path. But now bp−ap− p1−P − pm−aq− bq
is a path of length at least six in G, a contradiction. This proves that H is connected.

Let X̃3,4
0 = V (H) ∩ X, and let F 3,4 be the set of all proper colorings of (G|X̃3,4

0 ,M) that
extend to a coloring of (H,T ). Then |F 3,4| ≤ 2, and we can compute F 3,4 in polynomial time. Let
U3,4 =

⋃l
i=1 V (Ci). Since for each i, N(Ci) ⊆ X̃3,4

0 ∪ S ∪X0, it follows that

(33)

P has a precoloring extension if and only if for some f ′ ∈ F 3,4

(G \ U3,4, S,X0 ∪ X̃3,4
0 , X \ X̃3,4

0 , Y \ U3,4, Y ∗, f ∪ f ′)

has a precoloring extension.
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For every i, j ∈ [4] with i 6= j define U i,j , F i,j and X̃i,j
0 similarly. Let X̃0 =

⋃
X̃i,j

0 . Let F be
the set of all functions f ′ : X̃0 → [4] such that f ′|

X̃0
i,j ∈ F i,j . Then |F | ≤ 26. Let U ′ =

⋃
U i,j .

If follows from (33) that P has a precoloring extension if and only if

(G \ U ′, S,X0 ∪ X̃,X \ X̃0, Y \ U ′, Y ∗, f ∪ f ′)

has a precoloring extension for some f ′ ∈ F . Now we add U ′ to U , and Lemma 44 follows.

We are now ready to prove our the main result, which we restate:

Theorem 18. There exists an integer C > 0 and a polynomial-time algorithm with the following
specifications.

Input: A 4-precoloring (G,X0, f) of a P6-free graph G.

Output: A collection L of excellent starred precolorings of G such that

1. |L| ≤ |V (G)|C ,

2. for every (G′, S′, X ′0, X
′, ∅, Y ∗, f ′) ∈ L

• |S′| ≤ C,

• X0 ⊆ S′ ∪X ′0,

• G′ is an induced subgraph of G, and

• f ′|X0 = f |X0.

3. if we know for every P ∈ L whether P has a precoloring extension, then we can decide in
polynomial time if (G,X0, f) has a 4-precoloring extension; and

4. given a precoloring extension for every P ∈ L such that P has a precoloring extension, we
can compute a 4-precoloring extension for (G,X0, f) in polynomial time, if one exists.

Proof. Let (G,X0, f) be a 4-precoloring of a P6-free graph G. We apply Theorem 17 to (G,X0, f)
to obtain a collection L0 of good seeded precolorings with the desired properties. Then we apply
Lemma 32 to each seeded precoloring in L0 to obtain a starred precoloring satisfying (I); let L1
be the collection thus obtained. Next, starting with L1, apply Lemma 34, Lemma 37, Lemma 39,
Lemma 41, Lemma 42, Lemma 43 and Lemma 44 to each element in the output of the previous
one, to finally obtain a collection L. Then L is an equivalent collection for P , and every element
of L satisfies (II), (III), (IV), (V), (VI), (VII) and (VIII). Finally, (VIII) implies that each starred
precoloring in L is excellent, as claimed.
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