129 research outputs found

    Foundations for structured programming with GADTs

    Get PDF
    GADTs are at the cutting edge of functional programming and become more widely used every day. Nevertheless, the semantic foundations underlying GADTs are not well understood. In this paper we solve this problem by showing that the standard theory of data types as carriers of initial algebras of functors can be extended from algebraic and nested data types to GADTs. We then use this observation to derive an initial algebra semantics for GADTs, thus ensuring that all of the accumulated knowledge about initial algebras can be brought to bear on them. Next, we use our initial algebra semantics for GADTs to derive expressive and principled tools — analogous to the well-known and widely-used ones for algebraic and nested data types — for reasoning about, programming with, and improving the performance of programs involving, GADTs; we christen such a collection of tools for a GADT an initial algebra package. Along the way, we give a constructive demonstration that every GADT can be reduced to one which uses only the equality GADT and existential quantification. Although other such reductions exist in the literature, ours is entirely local, is independent of any particular syntactic presentation of GADTs, and can be implemented in the host language, rather than existing solely as a metatheoretical artifact. The main technical ideas underlying our approach are (i) to modify the notion of a higher-order functor so that GADTs can be seen as carriers of initial algebras of higher-order functors, and (ii) to use left Kan extensions to trade arbitrary GADTs for simpler-but-equivalent ones for which initial algebra semantics can be derive

    Foundations For Structured Programming With GADTs

    Get PDF
    GADTs are at the cutting edge of functional programming and be-come more widely used every day. Nevertheless, the semantic foundations underlying GADTs are not well understood. In this paper we solve this problem by showing that the standard theory of data types as carriers of initial algebras of functors can be extended from algebraic and nested data types to GADTs. We then use this observation to derive an initial algebra semantics for GADTs, thus ensuring that all of the accumulated knowledge about initial algebras can be brought to bear on them. Next, we use our initial algebra semantics for GADTs to derive expressive and principled tools —analogous to the well-known and widely-used ones for algebraic and nested data types — for reasoning about, programming with, and improving the performance of programs involving, GADTs; we christen such a collection of tools for a GADT an initial algebra package. Along the way, we give a constructive demonstration that every GADT can be reduced to one which uses only the equality GADT and existential quanti?cation. Although other such reductions exist in the literature, ours is entirely local, is independent of any particular syntactic presentation of GADTs, and can be implemented in the host language, rather than existing solely as a met theoretical artifact. The main technical ideas underlying our approach are (i) to modify the notion of a higher-order functor so that GADTs can be seen as carriers of initial algebras of higher-order functors, and (ii) to use left Kan extensions to trade arbitrary GADTs for simpler-but-equivalent ones for which initial algebra semantics can be derived

    Initial Algebra Semantics for Cyclic Sharing Tree Structures

    Full text link
    Terms are a concise representation of tree structures. Since they can be naturally defined by an inductive type, they offer data structures in functional programming and mechanised reasoning with useful principles such as structural induction and structural recursion. However, for graphs or "tree-like" structures - trees involving cycles and sharing - it remains unclear what kind of inductive structures exists and how we can faithfully assign a term representation of them. In this paper we propose a simple term syntax for cyclic sharing structures that admits structural induction and recursion principles. We show that the obtained syntax is directly usable in the functional language Haskell and the proof assistant Agda, as well as ordinary data structures such as lists and trees. To achieve this goal, we use a categorical approach to initial algebra semantics in a presheaf category. That approach follows the line of Fiore, Plotkin and Turi's models of abstract syntax with variable binding

    Translating Generalized Algebraic Data Types to System F

    Get PDF
    Generalized algebraic data types (GADTs) extend ordinary algebraic data types by refining the types of constructors with syntactic equality constraints. This is highly useful and allows for novel applications such as strongly-typed evaluators, typed LR parsing etc. To translate GADTs we need to enrich the System F style typed intermediate languages of modern language implementations to capture these equality constraints. We show that GADTs can be translated to a minor extension of System F where type equality proofs are compiled into System F typable proof terms. At run-time proof terms evaluate to the identity. Hence, they can be safely erased before execution of the program. We provide evidence that our approach scales to deal with extensions where equality is not anymore syntactic. The benefit of our method is that type checking of target programs remains as simple as type checking in System F. Thus, we can offer a light-weight approach to integrate GADTs and extensions of it into existing implementations

    A principled approach to programming with nested types in Haskell

    Get PDF
    Initial algebra semantics is one of the cornerstones of the theory of modern functional programming languages. For each inductive data type, it provides a Church encoding for that type, a build combinator which constructs data of that type, a fold combinator which encapsulates structured recursion over data of that type, and a fold/build rule which optimises modular programs by eliminating from them data constructed using the buildcombinator, and immediately consumed using the foldcombinator, for that type. It has long been thought that initial algebra semantics is not expressive enough to provide a similar foundation for programming with nested types in Haskell. Specifically, the standard folds derived from initial algebra semantics have been considered too weak to capture commonly occurring patterns of recursion over data of nested types in Haskell, and no build combinators or fold/build rules have until now been defined for nested types. This paper shows that standard folds are, in fact, sufficiently expressive for programming with nested types in Haskell. It also defines buildcombinators and fold/build fusion rules for nested types. It thus shows how initial algebra semantics provides a principled, expressive, and elegant foundation for programming with nested types in Haskell

    Parametric Compositional Data Types

    Get PDF
    In previous work we have illustrated the benefits that compositional data types (CDTs) offer for implementing languages and in general for dealing with abstract syntax trees (ASTs). Based on Swierstra's data types \'a la carte, CDTs are implemented as a Haskell library that enables the definition of recursive data types and functions on them in a modular and extendable fashion. Although CDTs provide a powerful tool for analysing and manipulating ASTs, they lack a convenient representation of variable binders. In this paper we remedy this deficiency by combining the framework of CDTs with Chlipala's parametric higher-order abstract syntax (PHOAS). We show how a generalisation from functors to difunctors enables us to capture PHOAS while still maintaining the features of the original implementation of CDTs, in particular its modularity. Unlike previous approaches, we avoid so-called exotic terms without resorting to abstract types: this is crucial when we want to perform transformations on CDTs that inspect the recursively computed CDTs, e.g. constant folding.Comment: In Proceedings MSFP 2012, arXiv:1202.240

    Fibrational induction rules for initial algebras

    Get PDF
    This paper provides an induction rule that can be used to prove properties of data structures whose types are inductive, i.e., are carriers of initial algebras of functors. Our results are semantic in nature and are inspired by Hermida and Jacobs’ elegant algebraic formulation of induction for polynomial data types. Our contribution is to derive, under slightly different assumptions, an induction rule that is generic over all inductive types, polynomial or not. Our induction rule is generic over the kinds of properties to be proved as well: like Hermida and Jacobs, we work in a general fibrational setting and so can accommodate very general notions of properties on inductive types rather than just those of particular syntactic forms. We establish the correctness of our generic induction rule by reducing induction to iteration. We show how our rule can be instantiated to give induction rules for the data types of rose trees, finite hereditary sets, and hyperfunctions. The former lies outside the scope of Hermida and Jacobs’ work because it is not polynomial; as far as we are aware, no induction rules have been known to exist for the latter two in a general fibrational framework. Our instantiation for hyperfunctions underscores the value of working in the general fibrational setting since this data type cannot be interpreted as a set

    Relational parametricity for higher kinds

    Get PDF
    Reynolds’ notion of relational parametricity has been extremely influential and well studied for polymorphic programming languages and type theories based on System F. The extension of relational parametricity to higher kinded polymorphism, which allows quantification over type operators as well as types, has not received as much attention. We present a model of relational parametricity for System Fω, within the impredicative Calculus of Inductive Constructions, and show how it forms an instance of a general class of models defined by Hasegawa. We investigate some of the consequences of our model and show that it supports the definition of inductive types, indexed by an arbitrary kind, and with reasoning principles provided by initiality

    (Deep) Induction Rules For GADTs

    Get PDF
    Deep data types are those that are constructed from other data types, including, possibly, themselves. In this case, they are said to be truly nested. Deep induction is an extension of structural induction that traverses all of the structure in a deep data type, propagating predicates on its primitive data throughout the entire structure. Deep induction can be used to prove properties of nested types, including truly nested types, that cannot be proved via structural induction. In this paper we show how to extend deep induction to GADTs that are not truly nested GADTs. This opens the way to incorporating automatic generation of (deep) induction rules for them into proof assistants. We also show that the techniques developed in this paper do not suffice for extending deep induction to truly nested GADTs, so more sophisticated techniques are needed to derive deep induction rules for them

    System FC with Explicit Kind Equality

    Get PDF
    System FC, the core language of the Glasgow Haskell Compiler, is an explicitly-typed variant of System F with first-class type equality proofs called coercions. This extensible proof system forms the foundation for type system extensions such as type families (type- level functions) and Generalized Algebraic Datatypes (GADTs). Such features, in conjunction with kind polymorphism and datatype promotion, support expressive compile-time reasoning. However, the core language lacks explicit kind equality proofs. As a result, type-level computation does not have access to kind- level functions or promoted GADTs, the type-level analogues to expression-level features that have been so useful. In this paper, we eliminate such discrepancies by introducing kind equalities to System FC. Our approach is based on dependent type systems with heterogeneous equality and the “Type-in-Type” axiom, yet it preserves the metatheoretic properties of FC. In particular, type checking is simple, decidable and syntax directed. We prove the preservation and progress theorems for the extended language
    • …
    corecore