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Abstract. Generalized algebraic data types (GADTs) extend ordinary
algebraic data types by refining the types of constructors with syntactic
equality constraints. This is highly useful and allows for novel applica-
tions such as strongly-typed evaluators, typed LR parsing etc. To trans-
late GADTs we need to enrich the System F style typed intermediate
languages of modern language implementations to capture these equality
constraints. We show that GADTs can be translated to a minor exten-
sion of System F where type equality proofs are compiled into System
F typable proof terms. At run-time proof terms evaluate to the identity.
Hence, they can be safely erased before execution of the program. We
provide evidence that our approach scales to deal with extensions where
equality is not anymore syntactic. The benefit of our method is that type
checking of target programs remains as simple as type checking in Sys-
tem F. Thus, we can offer a light-weight approach to integrate GADTs
and extensions of it into existing implementations.

1 Introduction

Generalized algebraic data types (GADTs) are an extension of (boxed) existen-
tial types [17]. The novelty of GADTs is that we may include syntactic type
equality constraints, i.e. equality among Herbrand terms [16], to refine the types
of constructors. Thus, we can type more programs. The following is a classic
example and defines a strongly-typed evaluator for a simple language. Note that
we make use of Haskell style syntax [11] in examples.

Example 1. We first introduce a GADT to ensure that well-formed expressions
are well-typed.

data Exp a = (a=Int) => Zero | (a=Int) => Succ (Exp Int)
| forall b c. (a=(b,c)) => Pair (Exp b) (Exp c)

In contrast to algebraic data types we may refine the type of a GADT depending
on the particular constructor. Note that constructor Pair has type ∀a, b, c.(a =
(b, c)) ⇒ Exp b → Exp c → Exp a. Type variables b and c appear not in the
resulting type, hence, we consider these variables as “existentially” quantified.
In the source syntax these existentially quantified variables are introduced by
the forall keyword. For example, we find that Zero 0 has type Exp Int and
Pair (Succ (Zero 0) (Zero 0) has type Exp (Int, Int).

The real advantage of GADTs is that we may make use of type equality
constraints when pattern matching over a GADT. Here is a evaluator for our
expression language.
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eval :: Exp a -> a
eval Zero = 0
eval (Succ e) = (eval e) + 1
eval (Pair x y) = (eval x, eval y)

At first look it may be surprising that eval has type ∀a.Exp a → a. Consider the
first clause. We match Zero against type Exp a which gives rise to constraint a =
Int. We type the right-hand side of the function definition under the constraint
a = Int. Hence, we can convert 0’s type which is Int to the type a. Note that the
constraint a = Int does not affect other parts of the program. Similar reasoning
applies to the other clauses. Hence, eval’s annotation is correct.

The above is one of the many examples [20, 30, 24, 25] that show how to write
more expressive programs and transformations with GADTs. Hence, it is de-
sirable that GADTs become a standard feature supported by todays modern
programming languages such as ML [19] and Haskell [11]. An important ques-
tion is what impact GADTs have on existing language implementations such as
GHC [7] and FLINT/ML [27].

The widely adopted translation scheme for typed source languages is to main-
tain types by means of a sufficiently rich typed target language. It is well-known
how to translate Hindley/Milner to System F [10]. The advantage of System F [8,
26] is that type abstraction and application can be made explicit. Thus, the more
“complicated” Hindley/Milner type inference process can be turned into some
“simple” System F type checking. In case of GADTs we clearly need a richer
variant of System F. There is a huge variety of System F variants we can choose
from, e.g. consider [28] and the references therein. Previous work [14] suggests
to extend System F with GADTs itself. We believe that a simpler extension is
sufficient.

GADT type checking involves verifying statements such as C ⊃ t1 = t2 where
⊃ refers to Boolean implication, C contains a set of type constraints and t1 and t2
are types. Our idea is to apply the “proofs are programs” principle (a.k.a. Curry-
Howard isomorphism) and turn the proof for C ⊃ t1 = t2 into a System F typable
proof term (f, g) such that C ⊃ t1 = t2 iff Γ ⊢ (f, g) : (t1 → t2, t2 → t1) where Γ
is a type environment representing C. Thus, we can translate GADTs to System
Fs, a simple variant of System F with (boxed) existential types [18] where we
insert proof terms to represent type conversions.

Here is the translation of Example 1 to System Fs.

data Exp a = Zero <(a->Int,Int->a)> | Succ <(a->Int,Int->a)> (Exp Int)
| Pair b c <(a->(b,c),(b,c)->a)> (Exp b) (Exp c)

eval = Λ a. λ x:Exp a. case x of
Zero <(f,g)> -> <g> 0
Succ <(f,g)> e -> <g> ((eval [Int] e) + 1)
Pairbc <(f,g)> x y -> <g> (eval [b] x, eval [c] y)

Note that proof terms are marked via <>. Our choice of notation is deliberate
and resembles the staging operator found in the area of multi-stage program-
ming [35]. “Staged” proof terms do not interact with the “real” program text.
This is enforced by the System Fs typing rules and the only difference compared
to System F. Proof terms are only used for typing purposes. E.g., consider the
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first clause where proof term g, representing the GADT type conversion from
Int to a, is applied to 0. This guarantees that the resulting System Fs program
is well-typed. At run-time proof terms turn out to be equivalent to the identity
function. Hence, we can safely erase them before execution of the program (sim-
ilar to the way we erase types). Here is the above program after erasing types
and proof terms.

eval = λ x. case x of
Zero -> 0
Succ e -> (eval e) + 1
Pair x y -> (eval x, eval y)

Our translation scheme extends to systems with user-specifiable type constraints [29,
2]. Hence, we can identify a minimal extension of System F which is sufficiently
rich to host a variety of GADT style source languages.

In summary, our contributions are:

– We define an extension of System F with staged typing to which we refer to
as System Fs (Section 4.1).

– We introduce a proof system to represent type equations and their proofs.
We show that all derivable proof terms are well-typed in System F and their
evaluation cannot go wrong (Section 4.2).

– We give a type-directed translation from GADTs to System Fs where GADT
type equation proofs are represented by staged System F expressions. We
show that the resulting System Fs program preserves types and the semantic
meaning of the original GADT program. We also guarantee that the System
Fs program cannot go wrong. Thus, we obtain an alternative type soundness
result for GADTs (Section 4.3).

– We establish sufficient conditions under which GADT programs can be di-
rectly translated to (boxed) existential types (Section 5).

– We explore how to extend our translation method to variants of GADTS
where type equality is user-specifiable, i.e. not anymore syntactic (Section 6).

Section 2 spells out some basic assumptions and notations used throughout
the paper. Section 3 provides some background information on GADTs. We
conclude in Section 7. We discuss related work where appropriate.

Further details such as proofs will appear in a forthcoming technical report.
For the time being, we refer the interested reader to a preliminary technical
report [34].

2 Preliminaries

For the purpose of this paper, we neglect the issue of type inference for GADTs
which is known to be a hard problem [31, 32]. Hence, we assume that programs
are sufficiently type annotated.

We make use of System F extended with Odersky and Läufer style “boxed
existential types” [17, 18] (commonly referred to as “existential types” for short).
We assume familiarity with the standard methods and techniques to establish
syntactic type soundness [23, 38] which implies that “well-typed programs cannot
go wrong”.
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(Var)

(x : ∀ā.C′ ⇒ t′) ∈ Γ

C ⊃ [t/a]C′

C, Γ ⊢ x : [t/a]t′
(App)

C, Γ ⊢ e2 : t2
C, Γ ⊢ e1 : t2 → t

C, Γ ⊢ e1 e2 : t

(Abs)
C, Γ.x : t1 ⊢ e : t2

C, Γ ⊢ λx.e : t1 → t2

(∀Intro)

C1 ∧ C2, Γ ⊢ e : t

ā ∩ fv(C1, Γ ) = ∅

C1 ∧ ∃ā.C2, Γ ⊢ e : ∀ā.C2 ⇒ t

(Let)

C, Γ ⊢ e1 : σ

C, Γ ∪ {g : σ} ⊢ e2 : t2

C, Γ ⊢ let g = e1 in e2 : t2

(Eq)

C, Γ ⊢ e : t

C ⊃ t = t′

C, Γ ⊢ e : t′
(Case)

C, Γ ⊢ e : t1
C, Γ ⊢ pi → ei : t1 → t2 for i ∈ I

C, Γ ⊢ case e of [pi → ei]i∈I : t2

(Pat)

p : t1 ⊢ ∀b̄.(Cp Γp)

b̄ ∩ fv(C, Γ, t2) = ∅

C ∧ Cp, Γ ∪ Γp ⊢ e : t2

C, Γ ⊢ p → e : t1 → t2

(P-Var) x : t ⊢ (True {x : t})

(P-K)

K : ∀ā, b̄.C ⇒ t1 → ... → tn → F ā b̄ ∩ ā = ∅

pi : [t′/a]ti ⊢ ∀b′i.(C
′

i Γpi
) for i = 1, ..., n

K p1...pn : F t̄ ⊢ ∀b′1, ..., b
′
n, b̄.(C′

1 ∧ ... ∧ C′

n ∧ [t′/a]C Γp1
∪ ... ∪ Γpn

)

Fig. 1. GADT Typing Rules

We assume familiarity with the concepts of substitutions, unifiers etc [16].
We write ō as a short-hand for a sequence of objects o1, ..., on (e.g. expressions,

types etc). We write [o/a]o′ to denote applying substitution [o/a] on o′, i.e. simul-
tanously replacing all occurrences of variables ai by object oi in o′ for i = 1, ..., n.
We write o1 = o2 to specify equality among object o1 and o2 (a.k.a. unification
problem). Sometimes, we write o1 ≡ o2 to denote syntactic equivalence between
two objects o1 and o2 in order to avoid confusion with =. We write fv(o) to
denote the free variables in some object o.

3 Background: Generalized Algebraic Data Types

GADTs first appeared under the name guarded recursive data types [39] and
first-class phantom types [6]. Although, the idea of GADTs appears in some
even earlier work [40]. Here, we use the more popular becoming name general-
ized algebraic data types [14]. Our formulation of GADTs as an extension of
Hindley/Milner is closest to [31]. Note that all existing variations of GADTs are
largely equivalent.

The language of expressions, types and constraints is as follows.

Expressions e ::= K | x | λx.e | e e | let g = e in e | case e of [pi → ei]i∈I

Patterns p ::= x | K p̄
Types t ::= a | t → t | F t̄
Constraints C ::= t = t | C ∧ C
Type Schemes σ ::= t | ∀ᾱ.C ⇒ t

4



For simplicity, we leave out type annotations and recursive function definitions
but may make use of them in examples. Pattern matching syntax used in exam-
ples can be straightforwardly expressed in terms of case expressions. We assume
that K refers to constructors of user-defined data types F ā. Basic types such
as booleans, integers, tuples and lists are predefined and their constructors are
recorded in some initial environment Γinit. As usual patterns are assumed to be
linear, i.e., each variable occurs at most once. We use True as a short-hand for
some always satisfiable constraint, e.g. Int = Int.

We assume that GADT definitions are pre-processed and the types of their
constructors recorded in some initial environment Γinit. E.g., the GADT from
Example 1 implies constructors Zero : ∀a.(a = Int) ⇒ Exp a, Succ : ∀a.(a =
Int) ⇒ Exp Int → Exp a and Pair : ∀a, b, c.(a = (b, c)) ⇒ Exp b → Exp c →
Exp a. This explains the need for “constrained” type schemes of the form ∀ā.C ⇒
t.

The typing rules describing well-typing of expressions are in Figure 1. We
introduce judgments C, Γ ⊢ e : t to denote that expression e has type t under
constraint C and environment Γ which holds a set of type bindings of the form
x : σ. A judgment is valid if we find a derivation w.r.t. the typing rules.

In rule (Var), we build a type instance of a type scheme by demanding that
the instantiated constraint is entailed by the given constraint. This is formally

expressed by C ⊃ [t/a]C′. Note that C ⊃ t1 = t2 holds iff (1) C does not have
a unifier, or (2) for any unifier φ of C we have that φ(t1) = φ(t2) holds.

Rule (∀Intro) is the familiar HM(X) [21, 33] quantifier introduction rule. Note
that our constraint language does not support existential quantification explic-
itly. However, w.l.o.g. the constraint ∃ā.C2 is equivalent to some constraint C3

consisting of type equations only.
Rules (Abs), (App), (Case) and (Let) are standard. The only worth men-

tioning point is that we consider p → e as a (special purpose) expression only
appearing in intermediate steps.

Next, we consider the GADT specific rules. In rule (Eq) we are able to change
the type of an expression. 1 In rule (Pat) we make use of an auxiliary judgment
p : t ⊢ ∀b̄.(Cp Γp) which establishes a relation among pattern p of type t, the
constraint Cp arising out of p and the binding Γp of variables in p. Variables b̄
refer to all “existential” variables. Logically, these variables must be considered as
universally quantified. Hence, we write ∀b̄. The side condition b̄∩fv(C, Γ, t2) = ∅
prevents existential variables from escaping.

A common property for typing derivations involving constraints is that if the
constraint in the final judgment is satisfiable all constraints arising in interme-
diate judgments are satisfiable too. This property is lost here as the following
variation of Example 1 shows.

eval :: Exp Bool -> (Int->Int)
eval Zero = 0

Matching the pattern Zero against the type Exp Bool leads to the temporary
type constraint Bool = Int. This constraint is equivalent to False. Thus, we can

1 Some formulations allow to change the type of (sub)patterns [31]. This may mat-
ter if patterns are nested. For brevity, we neglect such an extension. Note that in
case patterns are evaluated in a certain order, say from left-to-right, we can simply
translate a nested pattern into a sequence of shallow patterns. This is done in GHC.
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give any type to 0 and therefore eval’s rather strange looking type is correct.
Note that False does not appear in the final judgment.

Cheney and Hinze [6] observed that such programs are “meaningless” because
there is no value of type Exp Bool. Hence, we can never apply eval (under its
new type) to a concrete value. We can rule out such meaningless programs by
demanding that all constraints in a typing derivation must be satisfiable, i.e. have
a unifier.

Assumption 1 W.l.o.g. we assume that for any GADT typing derivation we
have that all constraints in typing judgments have a unifier.

The important consequence is that the entailment test between constraints is
now constructive. We exploit this fact in the following section where we represent
type equation proofs via well-typed programs.

4 Translating Generalized Algebraic Data Types

We proceed in three steps. First, we introduce the syntax and static semantics
of System Fs. Typing in System Fs is staged whereas the dynamic semantics
remains essentially unchanged compared to System F. Then, we define a proof
system to represent GADT type equations by proof terms typable in System F.
Finally, we give a type-directed translation scheme from GADTs to System Fs

where we insert proof terms to mimic GADT type conversions. Proof terms are
staged and evaluate to the identity at run-time. Hence, we can safely remove
them without affecting the semantic meaning of the original GADT program.
Note that we could achieve our technical results using System F directly. How-
ever, we feel that System Fs helps to understand the separation between proof
terms representing type conversions and the real program text.

4.1 An Extension of System F with Staged Typing

System Fs inherits the syntax of expressions and types from System F.

Target E ::= x | E E | λx : T.E | E [T ] | Λā.E |< E >
let g : T = E in E | case (T )E of [Pi → Ei]i∈I

Patterns P ::= (x : T ) | Kb̄ P̄ |< P >
Types T ::= a | T → T |< T >| ∀ā.T

The only extension is the staging operator <> which allows us to form staged
expressions, patterns and types.

We assume that type bindings (x :l T ) and judgments Γ ⊢l
Fs

E : T carry
some stage information; a natural number l. The typing rules in Figure 2 guar-
antee that lower staged expressions/patterns cannot affect the type of higher
staged expressions/patterns and vice versa. See rules (Var), (<>↑) and (P-<>).
The only exception is rule (<>↓) where a staged expression has a unstaged
type. As we will see, via this rule we will mimic the GADT (Eq) rule. Note that
constructors are explicitly annotated with the set of existential variables. See
rule (P-K). The remaining rules contain no surprises as they leave the stage l
unchanged.

Commonly, we write {x1 : T1, ..., xn : Tn} ⊢Fs
E : T as a short-hand for

{x1 :1 T1, ..., xn :1 Tn} ⊢1

Fs
E : T . We write Γ ⊢F E : T to denote a System F
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(Abs)
Γ ∪ {x :l T1} ⊢l

Fs
E : T2

Γ ⊢l
Fs

λx : T1.E : T1 → T2

(App)
Γ ⊢l

Fs
E1 : T1 → T2 Γ ⊢l

Fs
E2 : T1

Γ ⊢l
Fs

E1 E2 : T2

(T-Abs)
Γ ⊢l

Fs
E : T ā ∩ fv(Γ ) = ∅

Γ ⊢l
Fs

Λā.E : ∀ā.T
(T-App)

Γ ⊢l
Fs

E : ∀ā.T ′

Γ ⊢l
Fs

E [T ] : [T/a]T ′

(Var)
(x :l ∀ā.T ) ∈ Γ

Γ ⊢l
Fs

x : ∀ā.T
(Let)

Γ ⊢l
Fs

E : ∀ā.T

Γ ∪ {g :l ∀ā.T} ⊢l
Fs

E′ : T ′

Γ ⊢l
Fs

let g : ∀ā.T = E in E′ : T ′

(Case)

Γ ⊢l
Fs

E : T ′

Γ ⊢l
Fs

Pi → Ei : T ′ → T for i ∈ I

Γ ⊢l
Fs

case (T ′)E of [Pi → Ei]i∈I : T

(Pat)

P : T1 ⊢l
Fs

∀b̄.ΓP b̄ ∩ fv(Γ, T2) = ∅

ΓP ∪ Γ ⊢l
Fs

E : T2

Γ ⊢l
Fs

P → E : T1 → T2

(<>↑)
Γ ⊢l+1

Fs
E : T

Γ ⊢l
Fs

< E >:< T >
(<>↓)

Γ ⊢l+1

Fs
E : T1 → T2

Γ ⊢l
Fs

< E >: T1 → T2

(P-Var) (x : T ) : T ⊢l
Fs

{x :l T}

(P-<>)
P : T ⊢l+1

Fs
∀b̄.Γ

< P >:< T >⊢l
Fs

∀b̄.Γ

(P-K)

Kb̄ : ∀ā, b̄.T1 → ... → Tn → F ā b̄ ∩ ā = ∅

Pi : [T ′/a]Ti ⊢l
Fs

∀b′i.ΓPi
for i = 1, ..., n

c̄ = b′1, ..., b
′
n, b̄ Γ = ΓP1

∪ ... ∪ ΓPn

Kb̄ b̄ P1...Pn : F [T ′/a] ⊢l
Fs

∀c̄.Γ

Fig. 2. System Fs Typing Rules

derivation where we do not make use of the “staged” rules (<>↑), (<>↓) and
(P-<>).

We explain the dynamic semantics of System Fs in terms of a standard
single-step rewriting semantics [38] written E  E′. This gives rise to a system
of reductions where each expression E either reduces (or evaluates) to a value
v, written E 

∗ v, or we encounter failure (this includes the case that the
reduction gets stuck). We assume that staged expressions and patterns follow
the same evaluation rules. That is, we simply replace < E > by E and < P >
by P before evaluation. The entire development is standard and can be found
elsewhere [38, 23]. Hence, we omit the details.

4.2 Proof Terms for Type Equations

We define a proof system for representing (syntactic) equality among types where
type equations carry proof terms. We write (f : g) : t1 = t2 to denote that (f, g)
is the proof for t1 = t2. Depending on the context, we may silently drop proof
terms if they do not matter.

The proof rules are formulated in terms of judgments C ⊢= (f, g) : t1 =
t2. They are directly derived from a constructive formulation of type equality.
Details are in Figure 3.

Rule (Var) looks up an equality constraint. For convenience, we interpret a
constraint as a set of type equations. Rules (Ref) and (Sym) describe reflexivity
and symmetry of equality. In rule (Trans), we write f · g as a short-hand for

7



(Var)
(f, g) : t1 = t2 ∈ C

C ⊢= (f, g) : t1 = t2
(Ref) C ⊢= (λx.x, λx.x) : t = t (Sym)

C ⊢= (f, g) : t1 = t2

C ⊢= (g, f) : t2 = t1

(Trans)
C ⊢= (f1, g1) : t1 = t2 C ⊢= (f2, g2) : t2 = t3

C ⊢= (f2 · f1, g1 · g2) : t1 = t3

(F ↓i)
C ⊢= (f, g) : F t1...tn = F t′1...t

′

n

C ⊢= (decompFf i [t̄ t′] (f, g),decompFg i [t̄ t′] (f, g)) : ti = t′i

(F ↑)
C ⊢= (fi, gi) : ti = t′i for i = 1, ..., n

C ⊢= (compFf [t̄ t′] (f1, g1)...(fn, gn), compFg [t̄ t′] (f1, g1)...(fn, gn)) : F t̄ = F t′

Fig. 3. Type Equation Proof System

λx.f (g x) to define a proof term representing transitivity. Rules (F ↑) and
(F ↓i) deal with user-defined types F ā (including the function type). Recall
that t̄ and t′ are short-hands for t1, ..., tn and t′1, ...., t

′

n. We have that F t1...tn =
F t′1...t

′

n iff ti = t′i for i = 1, ..., n. Our task is to associate appropriate proof
terms to each type equation. For this purpose, we assume the following set
of composition and decomposition functions whose types are recorded in some
initial proof environment Γproof ⊇














compFf : ∀a, b.(a1 → b1, b1 → a1) → ... → (an → bn, bn → an) → (F ā → F b̄)
compFg : ∀a, b.(a1 → b1, b1 → a1) → ... → (an → bn, bn → an) → (F b̄ → F ā)
decompFf i : ∀a, b.(F ā → F b̄, F b̄ → F ā) → (ai → bi)
decompFg i : ∀a, b.(F ā → F b̄, F b̄ → F ā) → (bi → ai)















It is straightforward to verify that proof terms are typable in System F. Let
C ≡ (f1, g1) : t1 = t′

1
∧ ... ∧ (fn, gn) : tn = t′n. We write C ; Γ to denote the

conversion of constraint C into a type environment Γ = {f1 : t1 → t′
1
, g1 : t′

1
→

t1, ..., fn : tn → t′n, gn : t′n → tn}.

Lemma 1 (Typability). Let C ⊢= (E1, E2) : t = t′ such that C ; Γ . Then,
Γ ∪ Γproof ⊢F E1 : t → t′ and Γ ∪ Γproof ⊢F E2 : t′ → t.

Next, we show that well-typed proof terms are sound. We follow [38] and
give meaning to primitive functions such as decompFf i,decompFg i ,compFf and
compFg in terms of a function δ : (Primitive ClosedVal ) → ClosedVal that
interprets the application of primitive functions to closed input values and yields
closed output values. Thus, we define the rewrite rule

primitive v1...vn  δ(c v1...vn) if δ(primitive v1...vn) is defined

For each composition and decomposition primitive for type F a1...an we
define

δ(compFf [t1...tn t′
1
...t′n] (v1, v

′

1
)...(vn, v′n)) = λx.x

δ(compFf [t1...tn t′
1
...t′n] (v1, v

′

1
)...(vn, v′n)) = λx.x

δ(decompFf i [t1...tn t′
1
...t′n] (v1, v2)) = λx.x

δ(decompFg i [t1...tn t′1...t
′

n] (v1, v2)) = λx.x
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if tj ≡ t′j (i.e. tj and t′j are syntactically equal) for j = 1, ..., n.

Note that the δ function is undefined in case tj and t′j are syntactically
different. Hence, there is the danger that the reduction of well-typed proof terms
gets stuck. The important observation is that ⊢= (E1, E2) : t1 = t2 implies that
t1 and t2 must be syntactically equal. Hence, during the reduction of proof
terms E1 and E2 we can guarantee that whenever one of the above primitives is
applied to a sequence of closed values [t1...tn t′1...t

′

n] v1...vn the condition tj ≡ t′j
for j = 1, ..., n is always satisfied. This observation is formalized in the following
result. For clarity, we enumerate the individual statements.

Lemma 2 (Subject Reduction). Let C ⊢= (E1, E2) : t1 = t2 such that (1)
for each (f, g) : t = t′ ∈ C we have that t ≡ t′, (2) E1 → E′

1, (3) E2 → E′

2 and
(4) C ; Γ for some E′

1, E′

2 and Γ . Then, (5) t1 ≡ t2, (6) Γ ∪ Γproof ⊢F E′

1 :
t1 → t2 and (7) Γ ∪ Γproof ⊢F E′

2
: t2 → t1.

In order to obtain type soundness, we yet need to verify that well-typed proof
terms do not get stuck. We omit the straightforward details. We summarize the
results of this section. Proof terms are well-typed and evaluate to the identity
function. 2

Theorem 1. Let ∅ ⊢= (E1, E2) : t1 = t2. Then, (1) t1 ≡ t2, (2) Γproof ⊢F

E1 : t1 → t2, (3) Γproof ⊢F E2 : t2 → t1, (4) E1 
∗ λx.x and (5) E2 

∗ λx.x.

Note that proof term construction is decidable. That is, given C and t1, t2
where C has a unifier, there is a decidable algorithm which either finds E1 and
E2 such that C ⊢= (E1, E2) : t1 = t2 or C ⊃ t1 = t2 does not hold. Due to
space limitations, we refer the interested reader to [34].

4.3 Type-Directed Translation Scheme

We are in the position to define the translation of GADTs to System Fs. For
translation purposes, we assume that type constraints t1 = t2 in GADT construc-
tors are annotated with proof terms (f, g) where f and g are distinct variables.
In a preprocessing step, we translate each GADT constructor

K : ∀ā, b̄.(f1, g1) : t′′
1

= t′′′
1
∧ ... ∧ (fn, gn) : t′′n = t′′′n ) ⇒ t1 → ... → tn → F ā

to a System Fs constructor

Kb̄ : ∀ā, b̄. < (t′′1 → t′′′1 , t′′′1 → t′′1 , ..., t′′n → t′′′n , t′′′n → t′′n) >→ t1 → ... → tn → F ā

where type constraints are turned into additional (staged) arguments.
The actual translation scheme is formulated in terms of judgments C, Γ ⊢

e : t ; E. For simplicity, we only consider the most interesting rules. Details are
in Figure 4.

In rule (Var), we must provide proof terms to satisfy the instantiated con-

straint [t/a]C′. For convenience, we assume that there is a fixed order among

2 Strictly speaking, when applied to a value proof terms behave like the identity func-
tion, see rule (Trans) in Figure 3. Though, we could introduce a transitivity primitive
which always evaluates to the identity similar to the composition and decomposition
primitives.
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(Var)

(x : ∀ā.C′ ⇒ t′) ∈ Γ C ≡ (f1, g1) : t1 = t′1 ∧ ... ∧ (fn, gn) : tn = t′n
for each t′′i = t′′′i ∈ [t/a]C′ we have that C ⊢= (Ei, E

′

i) : t′′i = t′′′′i

C, Γ ⊢ x : [t/a]t′ ; x [t] < (E1, E
′

1, ..., En, E′

n) >

(Eq)
C, Γ ⊢ e : t ; E C ⊢= (E′, E′′) : t = t′

C, Γ ⊢ e : t′ ;< E′ > E

(∀Intro)

C1 ∧ C2, Γ ⊢ e : t ; E ā ∩ fv(C1, Γ ) = ∅

C2 ≡ (f1, g1) : t1 = t′1 ∧ ... ∧ (fn, gn) : tn = t′n
C1 ∧ ∃ā.C2, Γ ⊢ e : ∀ā.C2 ⇒ t

;

Λā.λ < (f1, g1, ..., fn, gn) >:< (t1 → t′1, t
′

1 → t1, ..., tn → t′n, t′n → tn) > .E

(Pat)

p : t1 ⊢ ∀b̄.(Cp Γp) ; P

b̄ ∩ fv(C, Γ, t2) = ∅ C ∧ Cp, Γ ∪ Γp ⊢ e : t2 ; E

C, Γ ⊢ p → e : t1 → t2 ; P → E

(P-Var) x : t ⊢ (True {x : t}) ; x

(P-K)

K : ∀ā, b̄.C ⇒ t1 → ... → tn → F ā

C ≡ (f1, g1) : t′′1 = t′′′1 ∧ ... ∧ (fn, gn) : t′′n = t′′′n ) b̄ ∩ ā = ∅

pi : [t′/a]ti ⊢ ∀b′i.(C
′

i Γpi
) ; Pi for i = 1, ..., n

(
K p1...pn : F t̄ ⊢

∀b′1, ..., b
′
n, b̄.C′

1 ∧ ... ∧ C′

n ∧ [t′/a]C Γp1
∪ ... ∪ Γpn

) ;

Kb̄ < (f1, g1, ...., fn, gn) > P1...Pn

Fig. 4. Type-Directed Translation (interesting cases)

type equations t′′i = t′′′i in [t/a]C′. We are a bit sloppy here and simply drop
the proof terms associated to t′i = t′′i . Based on Assumption 1 we know that
C ⊢= Ei : t′i = t′′i holds iff C ⊃ t′i = t′′i . The same observations applies in case of
rule (Eq) where we apply proof term E′ to maintain well-typing of expressions.
In rule (∀Intro), we turn constraints in type schemes into additional proof term
parameters. For convenience, we use pattern syntax in λ-abstraction. The main
tasks of rules (Pat), (Pat-Var) and (Pat-K) are to translate patterns which now
may contain proof terms. The left out rules are the familiar ones for translating
Hindley/Milner to System F [10].

We can verify that resulting expressions are typable in System Fs. E.g.,
consider rule (Eq). Let C ; ΓC . We write Γ 2

C and Γ 2

proof to denote that the

type bindings are at stage 2. Then, Γ 2

C ∪ Γ 2

proof ⊢2

Fs
E′ : t → t′ (follows from

Lemma 1). Via the System Fs rules (<>↓) and (App), we can conclude that
Γ 2

C ∪ Γ 2

proof ∪ Γ ⊢1

Fs
< E′ > E : t′. Similar reasoning steps apply to the other

rules.

We can also verify that the evaluation of resulting expressions cannot go
wrong. System Fs inherits the System F type soundness result. By construction,

10



the evaluation of proof terms is independent of the surrounding program text
(this is explicitly enforced by the System Fs typing rules). Hence, Theorem 1
(proof terms cannot go wrong) is applicable and therefore the translated program
cannot go wrong.

We summarize.

Theorem 2 (Type Preservation and Soundness). Let True, ∅ ⊢ e : t ;

E. Then, Γ 2

proof ⊢1

Fs
E : t and E 

∗ v for some value v. 3

Theorem 1 (proof terms evaluate to the identity) also guarantees that proof
terms do not affect the semantic meaning of the GADT program. Hence, we
can safely erase them. Hence, the original GADT program is equivalent to the
resulting System Fs program after erasing proof terms and types.

Corollary 1. Let ∅ ⊢ e : t ; E. Then, E(E) = e.

The erasure function E() is defined following the structure of possible target
and pattern terms:

E(E [T ]) = E(E) E(Λā.E) = E(E) E(E1 E2) = E(E1) E(E2)
E(λx : T.E) = λx.E(E) E(< E1 > E2) = E(E2) E(x [T ] < E >) = x

E(let g : T = E in E′) = let g = E(E) in E(E′) E(x) = x
E(case (T )E of [Pi → Ei]i∈I) = case E(E) of [E(Pi) → E(Ei)]i∈I

E(K < E > P1...Pn) = K E(P1)...E(Pn) E(x : T ) = x

Another immediate consequence is the following result.

Corollary 2. Well-typed GADT programs cannot go wrong.

5 Direct Translation of GADTs to Existential Types

A number of authors [1, 4, 5, 22, 37] have shown by example that GADT style
behavior can often be directly encoded in terms of existing languages such as
Haskell [11]. The following (non-sensical) example shows that a source-level en-
coding is not always possible.

Example 2. Consider

data Erk a = (Int->Int=a->Int) => I a
f :: Erk a->a
f (I x) = 0

which is clearly type correct. Note that Int → Int = a → Int iff Int = a.
Our translation method yields

data Erk a = I <((Int->Int)->(a->Int),(a->Int)->(Int->Int))> a
f = Λ y:Erk a.case y of

I <(f,g)> x -> <decomp [a Int Int Int] (f,g)> 0

3 In case we extend the source language with recursive functions we need the additional
case that reduction of E may not terminate.
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where decomp : ∀a1, a2, a3, a4.((a1 → a2) → (a3 → a4), (a3 → a4) → (a1 →
a2)) → (a1 → a3) and δ(decomp [t1t2t3t4](v1, v2)) = λx.x if t1 ≡ t3 and t2 ≡ t4.

Assume we want to represent the System Fs program in Haskell. Then, we
need to find a “closed” definition of decomp. However, there seems to be no
Haskell expression of type ∀a1, a2, a3, a4.((a1 → a2) → (a3 → a4), (a3 → a4) →
(a1 → a2)) → (a1 → a3).

The “decomposition” issue has already been pointed out by Chen, Zhu and
Xi [4]. 4 The methods developed here allow us to establish sufficient conditions
under which a translation from GADT to existential types is possible.

Definition 1 (Decomposition). We say a GADT program satisfies the de-
composition condition if all proof terms arising in a GADT typing derivation
are well-typed in a system with existential types.

Immediately, we can derive the following result from Theorem 2.

Corollary 3. GADTs can be translated to existential types if the decomposition
condition is satisfied.

We have conducted a survey of all (sensible) GADT examples we found
in the literature. The surprising observation is that all examples satisfy the
decomposition condition. Hence, a translation to existential types is possible in
theory. A selection of GADT programs and their translation to existential types
can be found here [34].

Obviously, the direct encoding of GADTs in terms of existential types (if
possible at all) is not practical due to a high run-time overhead of proof terms.
We know that at run-time all proof terms evaluate to the identity. However, in
order to ensure that composition/decomposition functions are well-typed with
existential types, we have to traverse structured data (such as lists, trees etc)
and repeatedly apply (proof term) functions to each element to get the types
“right”. E.g., here is the closed definition of the composition function for lists.

(List↑)
C ⊢= (f, g) : a = b

C ⊢= (λx.map f x, λx.map g x) : [a] = [b]

On the other hand, the composition/decomposition primitives in System Fs

never inspect the structure of the input arguments. They immediately evaluate
to the identity.

In this context, it is interesting to point out that the type-preserving defunc-
tionalization transformation of polymorphic programs to System F extended
with GADTs by Pottier and Gauthier [24] always satisfies the decomposition
condition. This follows straightforwardly from their formal results (proofs of
Lemmas 4.1 and 4.2 in [24]). More details can be found here [34].

4 This is hardly surprising given that similar situations arise when translating type
class programs [9]. E.g., we cannot decompose the equality type class Eq [a] into
Eq a for any a.
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6 Extensions with User-Specifiable Type Equality

We provide evidence that our translation method scales to extensions where type
equality is user-specifiable. For concreteness, we use the associated types (AT)
formalism [2] to represent type equality definitions. Our task is to represent AT
type definitions by extending the proof system in Section 4.2.

As a simple example, we define a extended GADT to represent a while lan-
guage which satisfies a resource usage policy specified in terms of a DFA. The
DFA transitions are specified via AT type functions. In the extended GADT, we
make use of these type functions.

Example 3. Here is an excerpt of a possible specification.

-- states
type S0; type S1
-- alphabet
type Open; type Write; type Close
-- transition function
type Delta S0 Open = S1 -- (1)
type Delta S1 Close = S0 -- (2)
type Delta S1 Write = S1 -- (3)

-- Resource GADT
data Cmd p q =

forall r. Seq (Cmd p r) (Cmd r q)
| ITE Exp (Cmd p q) (Cmd p q)
| (p=q) => While Exp (Cmd p q)
-- while state is invariant

| (Delta p Open = q) => OpenF
| (Delta p Close = q) => CloseF
| (Delta p Write = q) => WriteF

We introduce type function Delta and some type constants to specify the re-
source DFA in terms of (type) function definitions (1-3). We make use of these
assumptions when defining the GADT Cmd p q where type parameters p and q
represent the input and output state, before and after execution of the command.

We can translate programs making use of such extended GADTs by appro-
priately extending our proof system in Section 4.2. For the above example, we
define

(D1) C ⊢= (f1, g1) : Delta S0 Open = S1

(D2) C ⊢= (f2, g2) : Delta S1 Close = S0

(D3) C ⊢= (f3, g3) : Delta S1 Write = S1

where f1 : Delta S0 Open → S1, g1 : S1 → Delta S0 Open etc are in Γproof , and
δ(f1 v) = λx.x if typeof (v) = S1, δ(g1 v) = λx.x if typeof (v) = Delta S0 Open
etc. Function typeof () retrieves the type of a value.

Let’s consider another (contrived) example. We define type F [a] = [F a],
i.e. for any a we have that F [a] and [F a] are equal. The corresponding proof
rule is as follows.

(F) C ⊢= (upF [t], downF [t]) : F [t] = [F t]

13



where upF : ∀a.F [a] → [F a], downF : ∀a.[F a] → F [a] ∈ Γproof and
δ(upF [t] v) = λx.x, δ(downF [t] v) = λx.x if F [t] = [F t].

Note that the additional primitives complicate the semantics of System Fs.
E.g., when executing primitive upF in context [t] v we need to test that F [t] =
[F t] holds. Depending on the set of AT definitions deciding type equality may be-
come undecidable (e.g. consider type F [a] = [F [a]]). The important point
to note is that the test for type equality is only necessary to verify soundness
of our (extended) translation scheme. At run-time proof terms evaluate to the
identity. They can be safely erased and therefore they do not incur any addi-
tional run-time cost. A second important point is that our target language can
host source programs with a in general undecidable equational theory. We only
require that when translating a specific source program we must provide a (type
equality) proof which can be translated into a proof term.

7 Conclusion

We have shown how to translate GADTs to System Fs, a minor extension of
System F with existential types and staged proof terms. The advantage of our
method is that type equality is only necessary to establish soundness of the
translation scheme. Type inference on the source program has already done
all the hard work for us, e.g. verifying type equality. There seems no point in
repeating such tests in the target language. Instead, we apply the “proofs are
programs” principle and compile type equation proofs into System F typable
proof terms. We could provide evidence that our methods extends to systems
where type equality is user-specifiable as long as we find a suitable System F
representation. Thus, type checking of target programs remains as simple as
type checking in System F. At run-time, proof terms evaluate to the identity,
therefore, they can be safely erased. Hence, our method does not impose any
additional run-time overhead.

In case of user-specifiable type equality we need to ensure that the additional
proof rules still satisfy Theorem 1 which is crucial to guarantee soundness of our
translation method. In this context, it may be worthwhile to consider extending
System F itself with some form of type equality. These are interesting topics
which deserve further studies in the future.

We also established sufficient conditions under which GADTs can be trans-
lated to existential types as found in Haskell (Section 5). This result is not of
high practical relevance, but confirms the observation made by a number of au-
thors [1, 4, 5, 22, 37] that the concepts of GADTs and existential types are fairly
close and often equivalent in terms of expressive power.

We note that System Fs is more general than necessary. To host GADT pro-
grams, we only need “two stage” expressions, patterns and types (see Section 4).
However, we envision extensions of GADTs where types are classified by kinds
(in the same way values are classified by types). Then, type equation proof terms
may contain (staged) kind proof terms. We believe that System Fs is already
equipped to deal with the translation of such cases.
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A Translating Type Classes in the Presence of Type
Improvement

User-specifiable type equations also arise in the context of type classes [36, 15]
with type improvement [12]. For concreteness, we consider the associated types
(ATs) [3, 2] (improvement) formalism. Similar observations apply to other for-
malisms such as functional dependencies [13].

Example 4. Consider the following AT program

class C a where
type F a -- (1)

class D a where
d :: C a => F a->F a

instance C Int where
type F Int = Bool -- (2)

instance D Int where
d x = x && True -- (3)

Type class C introduces a type function F (see (1)) whose concrete definitions
are provided by the instance declarations (see (2)). Effectively, we state that the
type F Int can be improved to Int and vice versa. Type class D introduces a
method which is locally constrained by the type class C. Note that the second
input and result type are constrained by the type F a.

We verify type correctness of instance definition (3). Let us assume that x has
type F Int. Based on (2) we can improve x’s type to Bool. Hence, expression x
&& True has type Bool. which can be improved to F Int. Hence, the definition
is correct.
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Existing translation schemes [3, 2] use System F as their target language.
For the above program, the only choice we have is to replace type F a by a
universally quantified variable b and add b as a parameter to type class C. Then,
the translation of definition (3) is as follows.

data C a b = ...
d = Λ b λ d:C b. λ x:b. x && True

However, the above translation is not type correct. Variable x has the universal
type b but is conjoined with True. Thus, x must have type Bool which leads to
a contradiction.

The above program is contrived, but similar examples crop up all the time
on the Haskell mailing list. The bottom line is this. Existing implementations [7]
rely on System F as their target language. Hence, some sensible programs are
rejected.

On the other hand, in a translation scheme based on System Fs we can
represent the type equation F Int=Bool via primitives f1:F Int->Bool and
g1:Bool->F Int. Thus, definition (3) can be translated as follows while pre-
serving well-typing.

d = λ d:C Int. λ x:F Int. <g1>((<f1> x) && Bool)

Here is another AT example.

Example 5. Consider

type F a
data G a = forall b. (F a=b) => K (b->b)
f (K h1) (K h2) = K (h1.h2)

translates to

data G a = forall b. (F a=b) => K (F a->b,b->F a) (b->b)
f (K <(f1,g1)> h1) (K <(f2,g2>) h2) =
K <(f2,g2)> (\x->(<f2> (<g1> (h1 (<f1> (<g2> (h2 x)))))))
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