51 research outputs found

    Forward Analysis and Model Checking for Trace Bounded WSTS

    Full text link
    We investigate a subclass of well-structured transition systems (WSTS), the bounded---in the sense of Ginsburg and Spanier (Trans. AMS 1964)---complete deterministic ones, which we claim provide an adequate basis for the study of forward analyses as developed by Finkel and Goubault-Larrecq (Logic. Meth. Comput. Sci. 2012). Indeed, we prove that, unlike other conditions considered previously for the termination of forward analysis, boundedness is decidable. Boundedness turns out to be a valuable restriction for WSTS verification, as we show that it further allows to decide all ω\omega-regular properties on the set of infinite traces of the system

    Forward Analysis for WSTS, Part III: Karp-Miller Trees

    Get PDF

    Incremental, Inductive Coverability

    Full text link
    We give an incremental, inductive (IC3) procedure to check coverability of well-structured transition systems. Our procedure generalizes the IC3 procedure for safety verification that has been successfully applied in finite-state hardware verification to infinite-state well-structured transition systems. We show that our procedure is sound, complete, and terminating for downward-finite well-structured transition systems---where each state has a finite number of states below it---a class that contains extensions of Petri nets, broadcast protocols, and lossy channel systems. We have implemented our algorithm for checking coverability of Petri nets. We describe how the algorithm can be efficiently implemented without the use of SMT solvers. Our experiments on standard Petri net benchmarks show that IC3 is competitive with state-of-the-art implementations for coverability based on symbolic backward analysis or expand-enlarge-and-check algorithms both in time taken and space usage.Comment: Non-reviewed version, original version submitted to CAV 2013; this is a revised version, containing more experimental results and some correction

    IST Austria Thesis

    Get PDF
    Motivated by the analysis of highly dynamic message-passing systems, i.e. unbounded thread creation, mobility, etc. we present a framework for the analysis of depth-bounded systems. Depth-bounded systems are one of the most expressive known fragment of the π-calculus for which interesting verification problems are still decidable. Even though they are infinite state systems depth-bounded systems are well-structured, thus can be analyzed algorithmically. We give an interpretation of depth-bounded systems as graph-rewriting systems. This gives more flexibility and ease of use to apply depth-bounded systems to other type of systems like shared memory concurrency. First, we develop an adequate domain of limits for depth-bounded systems, a prerequisite for the effective representation of downward-closed sets. Downward-closed sets are needed by forward saturation-based algorithms to represent potentially infinite sets of states. Then, we present an abstract interpretation framework to compute the covering set of well-structured transition systems. Because, in general, the covering set is not computable, our abstraction over-approximates the actual covering set. Our abstraction captures the essence of acceleration based-algorithms while giving up enough precision to ensure convergence. We have implemented the analysis in the PICASSO tool and show that it is accurate in practice. Finally, we build some further analyses like termination using the covering set as starting point

    Unboundedness Problems for Languages of Vector Addition Systems

    Get PDF
    A vector addition system (VAS) with an initial and a final marking and transition labels induces a language. In part because the reachability problem in VAS remains far from being well-understood, it is difficult to devise decision procedures for such languages. This is especially true for checking properties that state the existence of infinitely many words of a particular shape. Informally, we call these unboundedness properties. We present a simple set of axioms for predicates that can express unboundedness properties. Our main result is that such a predicate is decidable for VAS languages as soon as it is decidable for regular languages. Among other results, this allows us to show decidability of (i) separability by bounded regular languages, (ii) unboundedness of occurring factors from a language K with mild conditions on K, and (iii) universality of the set of factors

    Model checking with abstraction refinement for well-structured systems

    Get PDF
    Abstraction plays an important role in the verification of infinite-state systems. One of the most promising and popular abstraction techniques is predicate abstraction. The right abstraction, i.e. the one that is sufficiently precise to prove or disprove the property under consideration, is automatically constructed by iterative abstraction refinement. The abstract-check-refine loop is not guaranteed to terminate in general. This results in the construction of semi-algorithms that may not terminate on some inputs. For the class of well-structured transition systems, a large class of infinitestate systems, general decidability results hold. These are transition systems equipped with a well-quasi ordering on the set of states which is compatible with the transition relation. In particular coverability, i.e. reachability of an upward-closed set, is known to be decidable for this class of systems. In this work we study the verification of well-structured systems w.r.t. the coverability property by means of predicate abstraction and refinement. We investigate the conditions under which the abstract-check-refine loop is guaranteed to terminate on instances of this class, provide a model checking method based on predicate abstraction and abstraction refinement and prove its completeness for this class of systems.nicht vorhande

    Coverability for Parallel Programs

    Get PDF
    Tato diplomová práce se zabývá automatickou verifikací systémů s paralelně běžícími procesy. Práce diskutuje existující metody a možnosti jejich optimalizace. Stávající techniky jsou založeny na hledání induktivního invariantu (například pomocí techniky zjemňování abstrakce řízené protipříklady (CEGAR)). Efektivnost metod závisí na velikosti nalezeného invariantu. V rámci této diplomové práce jsme nalezli možnost zlepšení metod díky zaměření se na hledání invariantů minimální velikosti. Naimplementovali jsme nástroj, který zajišťuje prohledávání prostoru invariantů systému. Naše experimentální výsledky ukazují, že mnoho existujících systémů užívaných v praxi má skutečně mnohem menší invarianty než ty, které lze nalézt stávajícími metodami. Závěry a výsledky této práce budou sloužit jako základ budoucího výzkumu, jehož cílem bude navržení optimální metody pro vypočítání malých invariantů paralelních systémů.This work is focusing on automatic verification of systems with parallel running processes. We discuss the existing methods and certain possibilities of optimizing them. Existing techniques are essentially based on finding an inductive invariant (for instance using a variant of counterexample-guided abstract refinement (CEGAR)). The effectiveness of these methods depends on the size of the invariant. In this thesis, we explored the possibility of improving the methods by focusing on finding invariants of minimal size. We implemented a tool that facilitates exploring the space of invariants of the system under scrutiny. Our experimental results show that many practical existing systems indeed have invariants that are much smaller than what can be found by the existing methods. The conjectures and the results of the work will serve as a basis of future research of an efficient method for finding small invariants of parallel systems.
    corecore