53 research outputs found

    Formin3 Regulates Dendritic Architecture and is Required for Somatosensory Nociceptive Behavior

    Get PDF
    Cell-type specific dendritic morphologies emerge via complex growth mechanisms modulated by intrinsic and extrinsic signaling coupled with activity-dependent regulation. Combined, these processes converge on cytoskeletal effectors to direct dendritic arbor development, stabilize mature architecture, and facilitate structural plasticity. Transcription factors (TFs) function as essential cell intrinsic regulators of dendritogenesis involving both combinatorial and cell-type specific effects, however the molecular mechanisms via which these TFs govern arbor development and dynamics remain poorly understood. Studies in Drosophila dendritic arborization (da) sensory neurons have revealed combinatorial roles of the TFs Cut and Knot in modulating dendritic morphology, however putative convergent nodal points of Cut/Knot cytoskeletal regulation remain elusive. Here we use a combined neurogenomic, bioinformatic, and genetic approach to identify and molecularly characterize downstream effectors of these TFs. From these analyses, we identified Formin3 (Form3) as a convergent transcriptional target of both Cut and Knot. We demonstrate that Form3 functions cell-autonomously in class IV (CIV) da neurons to stabilize distal higher order branching along the proximal-distal axis of dendritic arbors. Furthermore, live confocal imaging of multi-fluor cytoskeletal reporters and IHC analyses reveal that form3 mutants exhibit a specific collapse of the dendritic microtubule (MT) cytoskeleton, the functional consequences of which include defective dendritic trafficking of mitochondria and satellite Golgi. Biochemical analyses reveal Form3 directly interacts with MTs via the FH1/FH2 domains. Form3 is predicted to interact with two alpha-tubulin N-acetyltransferases (ATAT1) suggesting it may promote MT stabilization via acetylation. Analyses of acetylated dendritic MTs supports this hypothesis as defects in form3 lead to reductions, whereas overexpression promotes increases in MT acetylation. Neurologically, mutations in Inverted Formin 2 (INF2; the human ortholog of form3) have been causally linked to dominant intermediate Charcot-Marie-Tooth (CMT) disease E. CMT sensory neuropathies lead to distal sensory loss resulting in a reduced ability to sense heat, cold, and pain. Intriguingly, disruption of form3 function in CIV nociceptive neurons results in a severe impairment in nocifensive behavior in response to noxious heat, which can be rescued by expression of INF2 revealing shared primordial functions in regulating nociception and providing novel mechanistic insights into the potential etiological bases of CMT sensory neuropathies

    Evolutionary conserved role of eukaryotic translation factor eIF5A in the regulation of actin-nucleating formins

    Get PDF
    Elongation factor eIF5A is required for the translation of consecutive prolines, and was shown in yeast to translate polyproline-containing Bni1, an actin-nucleating formin required for polarized growth during mating. Here we show that Drosophila eIF5A can functionally replace yeast eIF5A and is required for actin-rich cable assembly during embryonic dorsal closure (DC). Furthermore, Diaphanous, the formin involved in actin dynamics during DC, is regulated by and mediates eIF5A effects. Finally, eIF5A controls cell migration and regulates Diaphanous levels also in mammalian cells. Our results uncover an evolutionary conserved role of eIF5A regulating cytoskeleton-dependent processes through translation of formins in eukaryotes

    DAAM family members leading a novel path into formin research.

    Get PDF
    Formins are an important and evolutionarily well conserved class of actin binding proteins with essential biological functions. Although their molecular roles in actin regulation have been clearly demonstrated in vitro, their functions at the cellular or organism levels are still poorly understood. To illustrate this problem, but also to demonstrate potential ways forward, we focus here on the DAAM group of formins. In vertebrates, DAAM group members have been demonstrated to be important regulators of cellular and tissue morphogenesis but, as for all formins, the molecular mechanisms underlying these morphogenetic functions remain to be uncovered. The genome of the fruitfly Drosophila encodes a single DAAM gene that is evolutionarily highly conserved. Recent work on dDAAM has already provided a unique combination of observations and experimental opportunities unrivalled by any other Drosophila formin. These comprise in vitro actin polymerisation assays, subcellular studies in culture and in vivo, and a range of developmental phenotypes revealing a role in tracheal morphogenesis, axonal growth and muscle organization. At all these levels, future work on dDAAM will capitalize on the power of fly genetics, raising unique opportunities to advance our understanding of dDAAM at the systems level, with obvious implications for other formins

    The Role of Diaphanous in Ring Canal Development in Drosophila melanogaster

    Get PDF
    Infertility is a widespread condition that does not always have a known cause, and for which we often do not have a cure. One potential cause of infertility is defects in gametogenesis, or the formation of sperm and egg. During gametogenesis in most organisms, the developing sperm and egg are connected to each other or to supporting cells through intercellular bridges, allowing transfer of materials between cells. Defects in these connections can lead to infertility. The developing fruit fly egg is an excellent model system to study intercellular bridges, or ring canals. Rich in f-actin and actinbinding proteins, ring canals expand ~20 fold during oogenesis, and this expansion is accompanied by a 134-fold increase in the amount of actin in the structure. Ring canal expansion depends on the Arp2/3 complex; mutations in Arp2/3 complex members lead to decreased expansion and ring canal collapse. Interestingly, the Arp2/3 mutant phenotype has been reported to affect later stages of oogenesis (beginning at stage 5). This suggests that other actin nucleators could be involved in promoting ring canal growth prior to this point. I have characterized a role for the formin-family actin nucleator, Diaphanous (Dia), during oogenesis. Depletion of Dia leads to defects in normal ring canal structure and expansion, which are distinct from those observed following depletion of the Arp2/3 complex members. Future work will determine the mechanisms that promote the localization and activation of Arp2/3 and Diaphanous in the context of ring canal formation and expansion

    Polyglutamine repeat proteins disrupt actin structure in Drosophila photoreceptors.

    Get PDF
    Expansions of polygutamine-encoding stretches in several genes cause neurodegenerative disorders including Huntington\u27s Disease and Spinocerebellar Ataxia type 3. Expression of the human disease alleles in Drosophila melanogaster neurons recapitulates cellular features of these disorders, and has therefore been used to model the cell biology of these diseases. Here, we show that polyglutamine disease alleles expressed in Drosophila photoreceptors disrupt actin structure at rhabdomeres, as other groups have shown they do in Drosophila and mammalian dendrites. We show this actin regulatory pathway works through the small G protein Rac and the actin nucleating protein Form3. We also find that Form3 has additional functions in photoreceptors, and that loss of Form3 results in the specification of extra photoreceptors in the ey

    A formin-nucleated actin aster concentrates cell wall hydrolases for cell fusion in fission yeast.

    Get PDF
    Cell-cell fusion is essential for fertilization. For fusion of walled cells, the cell wall must be degraded at a precise location but maintained in surrounding regions to protect against lysis. In fission yeast cells, the formin Fus1, which nucleates linear actin filaments, is essential for this process. In this paper, we show that this formin organizes a specific actin structure-the actin fusion focus. Structured illumination microscopy and live-cell imaging of Fus1, actin, and type V myosins revealed an aster of actin filaments whose barbed ends are focalized near the plasma membrane. Focalization requires Fus1 and type V myosins and happens asynchronously always in the M cell first. Type V myosins are essential for fusion and concentrate cell wall hydrolases, but not cell wall synthases, at the fusion focus. Thus, the fusion focus focalizes cell wall dissolution within a broader cell wall synthesis zone to shift from cell growth to cell fusion
    • 

    corecore