16,376 research outputs found

    Information flow and cooperative control of vehicle formations

    Get PDF
    We consider the problem of cooperation among a collection of vehicles performing a shared task using intervehicle communication to coordinate their actions. Tools from algebraic graph theory prove useful in modeling the communication network and relating its topology to formation stability. We prove a Nyquist criterion that uses the eigenvalues of the graph Laplacian matrix to determine the effect of the communication topology on formation stability. We also propose a method for decentralized information exchange between vehicles. This approach realizes a dynamical system that supplies each vehicle with a common reference to be used for cooperative motion. We prove a separation principle that decomposes formation stability into two components: Stability of this is achieved information flow for the given graph and stability of an individual vehicle for the given controller. The information flow can thus be rendered highly robust to changes in the graph, enabling tight formation control despite limitations in intervehicle communication capability

    Cognitive Vehicle Platooning in the Era of Automated Electric Transportation

    Get PDF
    Vehicle platooning is an important innovation in the automotive industry that aims at improving safety, mileage, efficiency, and the time needed to travel. This research focuses on the various aspects of vehicle platooning, one of the important aspects being analysis of different control strategies that lead to a stable and robust platoon. Safety of passengers being a very important consideration, the control design should be such that the controller remains robust under uncertain environments. As a part of the Department of Energy (DOE) project, this research also tries to show a demonstration of vehicle platooning using robots. In an automated highway scenario, a vehicle platoon can be thought of as a string of vehicles, following one another as a platoon. Being equipped by wireless communication capabilities, these vehicles communicate with one another to maintain their formation as a platoon, hence are cognitive. Autonomous capable vehicles in tightly spaced, computer-controlled platoons will lead to savings in energy due to reduced aerodynamic forces, as well as increased passenger comfort since there will be no sudden accelerations or decelerations. Impacts in the occurrence of collisions, if any, will be very low. The greatest benefit obtained is, however, an increase in highway capacity, along with reduction in traffic congestion, pollution, and energy consumption. Another aspect of this project is the automated electric transportation (AET). This aims at providing energy directly to vehicles from electric highways, thus reducing their energy consumption and CO2 emission. By eliminating the use of overhead wires, infrastructure can be upgraded by electrifying highways and providing energy on demand and in real time to moving vehicles via a wireless energy transfer phenomenon known as wireless inductive coupling. The work done in this research will help to gain an insight into vehicle platooning and the control system related to maintaining the vehicles in this formation

    A minimal sensing and communication control strategy for adaptive platooning

    Get PDF
    Several cooperative driving strategies proposed in literature, sometimes known as cooperative adaptive cruise control strategies, assume that both relative spacing and relative velocity with preceding vehicle are available from on-board sensors (laser or radar). Alternatively, these strategies assume communication of both velocity states and acceleration inputs from preceding vehicle. However, in practice, on-board sensors can only measure relative spacing with preceding vehicle (since getting relative velocity requires additional filtering algorithms); also, reducing the number of variables communicated from preceding vehicle is crucial to save bandwidth. In this work we show that, after framing the cooperative driving task as a distributed model reference adaptive control problem, the platooning task can be achieved in a minimal sensing and communication scenario, that is, by removing relative velocity measurements with preceding vehicle and by removing communication from preceding vehicle of velocity states. In the framework we propose, vehicle parametric uncertainty is taken into account by appropriately designed adaptive laws. The proposed framework is illustrated and shown to be flexible to several standard architectures used in cooperative driving (one-vehicle look-ahead topology, leader-to-all topology, multivehicle look-ahead topology)

    Analysis and design of controllers for cooperative and automated driving

    Get PDF

    RoboChain: A Secure Data-Sharing Framework for Human-Robot Interaction

    Full text link
    Robots have potential to revolutionize the way we interact with the world around us. One of their largest potentials is in the domain of mobile health where they can be used to facilitate clinical interventions. However, to accomplish this, robots need to have access to our private data in order to learn from these data and improve their interaction capabilities. Furthermore, to enhance this learning process, the knowledge sharing among multiple robot units is the natural step forward. However, to date, there is no well-established framework which allows for such data sharing while preserving the privacy of the users (e.g., the hospital patients). To this end, we introduce RoboChain - the first learning framework for secure, decentralized and computationally efficient data and model sharing among multiple robot units installed at multiple sites (e.g., hospitals). RoboChain builds upon and combines the latest advances in open data access and blockchain technologies, as well as machine learning. We illustrate this framework using the example of a clinical intervention conducted in a private network of hospitals. Specifically, we lay down the system architecture that allows multiple robot units, conducting the interventions at different hospitals, to perform efficient learning without compromising the data privacy.Comment: 7 pages, 6 figure
    corecore