161 research outputs found

    GUBS, a Behavior-based Language for Open System Dedicated to Synthetic Biology

    Full text link
    In this article, we propose a domain specific language, GUBS (Genomic Unified Behavior Specification), dedicated to the behavioral specification of synthetic biological devices, viewed as discrete open dynamical systems. GUBS is a rule-based declarative language. By contrast to a closed system, a program is always a partial description of the behavior of the system. The semantics of the language accounts the existence of some hidden non-specified actions possibly altering the behavior of the programmed device. The compilation framework follows a scheme similar to automatic theorem proving, aiming at improving synthetic biological design safety.Comment: In Proceedings MeCBIC 2012, arXiv:1211.347

    Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses

    Get PDF
    The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined

    The insulin signalling pathway in skeletal muscle : in silico and in vitro

    Get PDF

    Unifying metabolic networks, regulatory constraints, and resource allocation

    Get PDF
    Metabolic and gene regulatory networks are two classic models of systems biology. Biologically, gene regulatory networks are the control system of protein expression while metabolic networks, especially the genome-scale reconstructions consist of thousands of enzymatic reactions breaking down nutrients into precursors and energy to support the cellular survival. Metabolic-genetic networks, in addition, include the translational processes as an integrated model of classical metabolic networks and the gene expression machinery. Conversely, genetic regulation is also affected by the metabolic activities that provide feedbacks and precursors to the regulatory system. Thus, the two systems are highly interactive and depend on each other. Up to now, various efforts have been made to bridge the two network types. Yet, the dynamic integration of metabolic networks and genetic regulation remains a major challenge in computational systems biology. This PhD thesis is a contribution to mathematical modeling approaches for studying metabolic-regulatory systems. Inspired by regulatory flux balance analysis (rFBA), we first propose an analytic pipeline to explore the optimal solution space in rFBA. Then, our efforts focus on the dynamic combination of metabolic networks together with enzyme production costs and genetic regulation. For this purpose, we first explore the intuitive idea that incorporates Boolean regulatory rules while iterating resource balance analysis. However, with the iterative strategy, the gene expression states are only updated in discrete time steps. Furthermore, formalizing the metabolic-regulatory networks (MRNs) by hybrid automata provides a new mathematical framework that allows the quantitative integration of the metabolic-genetic network with the genetic regulation in a hybrid discrete-continuous system. For the application of this theoretical formalization, we develop a constraint-based approach regulatory dynamic enzyme-cost flux balance analysis (r-deFBA) as an optimal control strategy for the hybrid automata representing MRNs. This allows the prediction of optimal regulatory state transitions, dynamics of metabolism, and resource allocation capable of achieving a maximal biomass production over a time interval. Finally, this PhD project ends with a chapter on perspectives; we apply the theory of product automata to model the dynamics at population-level, integrating continuous metabolism and discrete regulatory states

    HCC Architecture - Hormonal Communications and Control Architecture

    Get PDF
    This thesis aims to provide a novel framework for a multiagent system implementation. The major feature of the proposed architecture is the introduction of the biological concept of hormones. The hormones are passed via the communication network to convey limited global system state knowledge. The agents\u27 response to a hormone is interpreted depending on its own local agent state. The primary focus of this thesis is the development of the particulars of the architecture. Prior work of multiagent systems research is reviewed and studied for contributions. Biological studies of hormones are employed to draw out interaction rules and analyze control mechanisms in a biological organism. The hormonal communication and control architecture is constructed, with major components detailed by flowcharts. The proposal is tested with two simulations: A minesweeping problem that has been modeled by other models, and an application of the architecture to a hypothetical ant colony. Research on biological ants is presented to suggest the behavior and goals of a model configured to employ the HCC architecture. The model is fleshed out, and the decisions made by considerations to the architecture are explained. The implementation of the simulation programming with the SWARM programming libraries for the Objective-C language is discussed. The data from experimental runs are analyzed with attention to global action

    Temporal examination of novel transcription factors in the cell body response of sensory neurons to injury

    Get PDF
    Primary sensory neurons in dorsal root ganglia (DRG) undergo a cell body response after injury, where the neurons activate genetic growth programs with the goal of regenerating new axons. Transcriptional regulators are key to this response and the role of cell stress mediated transcription factors including FOXO3a, Luman and Zhangfei (ZF) are not fully understood. FOXO3a is proapoptotic and implicated in many neuronal pathologies. Recently, Luman, a regulator of the unfolded protein response, was identified as a retrograde injury signal essential for intrinsic regenerative axon growth, while ZF is a known inhibitor of Luman in other cell types. This thesis focused on the cell body response of DRG neurons to injury and whether expression patterns of these stress related transcription factors were affected by axotomy. A rat unilateral spinal nerve transection time course was employed and temporal protein and mRNA changes evaluated. Ipsilateral observations were as follows: FOXO3a protein decreased in injured neurons, while mRNA levels remained relatively constant, suggesting changes were secondary to post-translational modifications; while there was an initial decline in ZF expression post-injury, both ZF and Luman protein and mRNA were upregulated in ipsilateral neurons in a biphasic manner. Brain-derived neurotrophic factor (BDNF) is a known regulator of the regeneration response in DRG neurons. Its impact on these factors was determined by reducing endogenous BDNF with small interfering RNAs (siBDNF) or applying brief electrical stimulation to injured nerves, the latter upregulating BDNF. SiBDNF diminished injury triggered FOXO3a mRNA and ZF protein alterations, while stimulation enhanced the responses of somal FOXO3a and axonal Luman. A striking finding was that unilateral injury resulted in a mostly parallel, albeit lower biphasic response in contralateral DRG for all three transcription factors, with similar impacts on FOXO3a expression observed in cervical DRG remote from injury. Such dramatic contralateral biphasic changes are novel and support the existence of a systemic injury response. The findings of this thesis expand on the importance of transcription factors in the cell body response of DRG neurons, the impact of BDNF on regeneration and enforces the reality of contralateral and systemic effects to injury that cannot be ignored

    The evolution of brain architectures for predictive coding and active inference

    Get PDF
    This article considers the evolution of brain architectures for predictive processing. We argue that brain mechanisms for predictive perception and action are not late evolutionary additions of advanced creatures like us. Rather, they emerged gradually from simpler predictive loops (e.g. autonomic and motor reflexes) that were a legacy from our earlier evolutionary ancestors-and were key to solving their fundamental problems of adaptive regulation. We characterize simpler-to-more-complex brains formally, in terms of generative models that include predictive loops of increasing hierarchical breadth and depth. These may start from a simple homeostatic motif and be elaborated during evolution in four main ways: these include the multimodal expansion of predictive control into an allostatic loop; its duplication to form multiple sensorimotor loops that expand an animal's behavioural repertoire; and the gradual endowment of generative models with hierarchical depth (to deal with aspects of the world that unfold at different spatial scales) and temporal depth (to select plans in a future-oriented manner). In turn, these elaborations underwrite the solution to biological regulation problems faced by increasingly sophisticated animals. Our proposal aligns neuroscientific theorising-about predictive processing-with evolutionary and comparative data on brain architectures in different animal species. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'
    corecore