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Abstract 

Primary sensory neurons in dorsal root ganglia (DRG) undergo a cell body response after 

injury, where the neurons activate genetic growth programs with the goal of regenerating new 

axons.  Transcriptional regulators are key to this response and the role of cell stress mediated 

transcription factors including FOXO3a, Luman and Zhangfei (ZF) are not fully understood. 

FOXO3a is proapoptotic and implicated in many neuronal pathologies. Recently, Luman, a 

regulator of the unfolded protein response, was identified as a retrograde injury signal essential 

for intrinsic regenerative axon growth, while ZF is a known inhibitor of Luman in other cell 

types. This thesis focused on the cell body response of DRG neurons to injury and whether 

expression patterns of these stress related transcription factors were affected by axotomy. A rat 

unilateral spinal nerve transection time course was employed and temporal protein and mRNA 

changes evaluated. Ipsilateral observations were as follows: FOXO3a protein decreased in 

injured neurons, while mRNA levels remained relatively constant, suggesting changes were 

secondary to post-translational modifications; while there was an initial decline in ZF expression 

post-injury, both ZF and Luman protein and mRNA were upregulated in ipsilateral neurons in a 

biphasic manner. Brain-derived neurotrophic factor (BDNF) is a known regulator of the 

regeneration response in DRG neurons. Its impact on these factors was determined by reducing 

endogenous BDNF with small interfering RNAs (siBDNF) or applying brief electrical 

stimulation to injured nerves, the latter upregulating BDNF. SiBDNF diminished injury triggered 

FOXO3a mRNA and ZF protein alterations, while stimulation enhanced the responses of somal 

FOXO3a and axonal Luman. A striking finding was that unilateral injury resulted in a mostly 

parallel, albeit lower biphasic response in contralateral DRG for all three transcription factors, 

with similar impacts on FOXO3a expression observed in cervical DRG remote from injury. Such 

dramatic contralateral biphasic changes are novel and support the existence of a systemic injury 

response. The findings of this thesis expand on the importance of transcription factors in the cell 

body response of DRG neurons, the impact of BDNF on regeneration and enforces the reality of 

contralateral and systemic effects to injury that cannot be ignored.         
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1. Introduction 

Traumatic nerve injury imposes a tremendous stress on the axotomized nerve cell as it 

attempts to survive the insult and repair. Effective peripheral nerve repair requires a coordinated 

series of cellular and molecular events many of which are largely driven by the nerve cell body 

response to injury, where the transcriptional and translational changes contributing to repair are 

induced. Understanding how gene expression patterns are temporally altered in response to the 

stress induced by axotomy and under conditions that optimize regeneration will hopefully 

identify novel pathways that can be therapeutically targeted and manipulated to optimize 

recovery. 

 

1.1. Primary sensory neuron biology 

The cell type focused on in this thesis is the primary sensory neuron. These neurons are 

located in dorsal root ganglia lateral to the dorsal horn of the spinal cord and are ideal models to 

explore neurobiology, as they stand up well to harvesting, sectioning and staining under standard 

protocols. Further, the spinal and peripheral nerves containing their axons are easily accessible 

for multiple surgical manipulations with high experimental reproducibility.  

Our group has extensive documented experience in utilizing sensory neurons to answer 

pivotal neurobiological questions and test novel hypotheses. Past studies have garnered excellent 

results and laid the foundation upon which the current hypotheses were formulated and tested, 

yielding the findings presented in this thesis.  

 

1.1.1. Anatomical organization 

The nervous system is comprised of a group of specialized cells, tissue types, and organs 

responsible for an organism’s ability to sustain life and respond to the external environment. This 

includes the regulation of physiologically required cardiac and pulmonary mechanisms, sensory 

and motor output, cognition, and the ability to communicate with the surroundings. This system 

is functionally and anatomically divided into the central nervous system (CNS) and the 

peripheral nervous system (PNS) both with specific cell types, including neurons and glial 

support cells. The CNS contains the brain and the central spinal cord which are responsible for 

receiving sensory input, integration, appropriation and finally formalizing an organized, 

purposeful motor output in response to a stimulus. The PNS includes sensory, motor, 
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sympathetic and parasympathetic neurons as well as associated peripheral nerve fibres. This 

system works in tandem with the CNS, detecting changes in the environment and relaying motor 

signals from the CNS to target tissues and organs. Although the cellular types and processing are 

similar in both, there are distinct differences resulting in obvious physiological consequences; 

particularly with regards to regrowth, response to injury, and repair.  

As stated, sensory neurons are a major component of the PNS, responsible for input and 

signal transduction. These pseudounipolar neurons project a single axon from the cell body that 

bifurcates into a peripheral branch innervating peripheral tissues, and a central branch which 

sends electrophysiological signals to the spinal cord for further processing. DRG neurons detect 

a variety of specialized stimuli which include tactile mechanical sensation, proprioception of 

limbs in space and nociception from either thermal, chemical or mechanical triggers. These 

sensations are transmitted distally from target tissues by electro-chemical signal transduction 

through long axons which have their own unique intercellular relationships. Primary sensory 

neurons are a heterogeneous population with highly specialized cell types differing in function, 

physiology, and growth factor responsiveness.  

 

1.1.2. Axon diameter and physiology 

As a heterogeneous collection of cell types, DRG neurons have distinct subpopulations that 

govern specific sensory modalities and are largely biochemically unique.  These neurons are 

typically classified by a number of criterion including axon or cell body diameter, conduction 

velocity and growth factor responsiveness [reviewed in(Lindsay 1996)]. Arguably the most 

common subdivision of these cells is based on neuronal diameter where size most often 

associates with function; however, a precise correlation may not exist in all instances. Small 

diameter sensory neurons with unmyelinated axons are termed C-fibres, which are slow-

conducting nerves and transmit nociceptive information including dull pain, heat and chemical 

stimuli [reviewed in (Millan 1999)].  Ad-fibers are medium sized, thinly myelinated neurons that 

also sense a certain degree of nociception such as sharp or pricking pain. A subset of Ad-fibers 

also are triggered by low threshold mechanosensation. The largest of these neurons are the 

heavily myelinated, rapidly conducting Ab-fibers, whose medium to large diameter cell bodies 

process crude touch, proprioception and vibratory sensation [reviewed in (Lewin and Mendell 

1993)].  
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Besides physiological function, these neurons have unique protein and membrane receptor 

profiles with infinite overlap. Numerous biochemical markers can identify distinct subsets of 

these sensory neurons; however, the function of many of these markers is not known (Carr and 

Nagy 1993).  Nevertheless, the expression of these biomarkers is altered when the cell body 

changes from an intact/native phenotype to an injured phenotype. The consequence of this 

genetic switch will be discussed further in this chapter.  

 

1.1.3. Neurotrophins 

The growth factor family of neurotrophins have been widely described as essential regulators 

of differentiation, maintenance and survival of a variety of neuronal cell types. Their role in 

primary sensory neuron and motoneuron biology has been further documented; these include the 

neurotrophins nerve growth factor (NGF) (Levi-Montalcini and Hamburger 1951, Levi-

Montalcini, Meyer et al. 1954, Cohen 1960), brain-derived neurotrophic factor (BDNF) (Barde, 

Edgar et al. 1982, Leibrock, Lottspeich et al. 1989) Neurotrophin-3 (NT3) (Maisonpierre, 

Belluscio et al. 1990, Verge, Gratto et al. 1996) and Neurotrophin-4/5 (NT4/5) (Funakoshi, 

Belluardo et al. 1995). These peptide ligands generated by neurons, glia and peripheral target 

tissues as proneurotrophin molecules, can undergo proteolytic cleavage to its mature isoform and 

bind to either p75NTR (the common neurotrophin receptor) or to the tropomyosin related kinase 

(trk) family of receptors [reviewed in (Reichardt 2006)]. There is specific affinity of the trk 

receptor types to each neurotrophin; NGF preferentially binds to trkA, BDNF to trkB, NT-3 to 

trkC and with less affinity to both trkA and trkB, and NT4/5 to trkB. The trk receptors, as 

intrinsic receptor tyrosine kinases whose dimerization leads to the activation of a host of signal 

transduction pathways, are shown to regulate many cellular processes including axonal growth 

and guidance, synapse formation and assembly of the neuronal cytoskeleton [reviewed in (Huang 

and Reichardt 2003)]. While activation of trks occurs primarily through the binding of ligands 

and homodimerization, secondarily each receptor can heterodimerize to the low affinity p75NTR , 

demonstrating the multivalent mechanisms neurotrophins can utilize to influence neurons (Chao 

and Hempstead 1995). Intracellular pathways that are downstream of neurotrophin/trk signaling 

include but are not limited to PLCg, the kinase pathways extracellular related-kinase (Wilson-

Gerwing, Dmyterko et al.), PI3K, p38 mitogen-activated protein kinase and others (Segal 2003). 
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Our lab has done extensive analysis of the expression pattern of trk receptors within the DRG 

neuron population (Karchewski, Kim et al. 1999). Approximately 40% of primary sensory 

neurons express mRNA for TrkA, 33% for TrkB, 43% for TrkC and 79% of the total population 

express p75NTR. There is marked overlap with neurons responsive to multiple neurotrophins and 

number of neurons showing no detectable expression of any trk receptor. Further work has 

shown TrkA and TrkC co-localization in 20%, TrkA with TrkB in 10% and TrkB with TrkC in 

15% of DRG neurons.  

The p75NTR is the common receptor with lower affinity to the mature neurotrophin molecules 

but higher affinity to the unprocessed proneurotrophin protein. It is expressed in up to 80% of 

DRG neurons (Zhou, Gai et al. 1993, Wetmore and Olson 1995, Zhou, Rush et al. 1996, 

Karchewski, Kim et al. 1999). Signaling through this receptor has been shown to augment axonal 

growth (Bentley and Lee 2000) and significantly influence cell survival and apoptosis 

(Rabizadeh, Oh et al. 1993, Soilu-Hanninen, Ekert et al. 1999, Roux and Barker 2002). p75NTR 

does not possess a catalytic domain to initiate downstream events; therefore, its activity depends 

on docking of proteins with kinase activity or its heterodimerization with trk receptors 

(Dobrowsky and Carter 2000, Wang, Bauer et al. 2001). Regardless, the receptor is significant in 

sensory neuron neurotropic signaling as its presence enhances the activity of trk receptors for 

their native ligands (Hempstead, Martin-Zanca et al. 1991, Urra, Escudero et al. 2007). 

 

1.1.3.1. Nerve growth factor 

The discovery of the neurotrophin family of growth factors has been an important 

contribution to cellular neurobiology in the last half century. Initially, Levi-Montalcini and 

Hamburg found that sarcoma extracts had growth stimulating properties for sympathetic and 

sensory embryonic neurons (Levi-Montalcini and Hamburger 1951, Levi-Montalcini, Meyer et 

al. 1954). The critical growth molecule in these isolates was identified and termed nerve growth 

factor (NGF) due to its dramatic effects on axon outgrowth in both in vitro and in vivo CNS and 

PNS neurons (Levi-Montalcini and Calissano 1979). Further studies with genetic knockout mice 

reveled the important role of this target-derived neurotrophin in development, particularly in the 

survival of small diameter nociceptive DRG neurons. Deletion of NGF or anti-NGF antibody 

administration in utero prevents the development of small diameter primary sensory neurons 

(Ruit, Elliott et al. 1992, Crowley, Spencer et al. 1994). Their importance to this subpopulation 
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was further shown when NGF treatment rescued small nociceptive neurons in axotomized 

neonatal DRG but did not improve survival of larger presumed proprioceptive neurons (Miyata, 

Kashihara et al. 1986). 

Despite the shown dependency of embryonic and early postnatal nociceptive neurons on 

NGF, adult small diameter DRG neurons do not require NGF for survival (Lewin, Ritter et al. 

1992). However, their native physiologic and molecular functioning appears to rely heavily on 

proper NGF signaling (Lewin and Mendell 1993) which maintains the phenotype of these small 

diameter primary nociceptive neurons (Verge, Richardson et al. 1989, Verge, Riopelle et al. 

1989, Mandelzys, Cooper et al. 1990, Verge, Tetzlaff et al. 1990, Verge, Tetzlaff et al. 1990, 

Verge, Richardson et al. 1995). For example, nearly all NGF-responsive neurons express 

calcitonin-gene related peptide (CGRP), a protein shown to play a role in pain transmission 

(Verge, Richardson et al. 1989, Averill, McMahon et al. 1995). Expression of CGRP and the 

neuropeptide substance P (SP) are markedly elevated with exogenous NGF infusion in intact 

DRG neurons (Inaishi, Kashihara et al. 1992, Verge, Richardson et al. 1995), while these and 

other neuropeptide levels are decreased with infusion of NGF antibody (Schwartz, Pearson et al. 

1982). Even though only 40-45% of adult DRG neurons, primarily nociceptors, are responsive to 

NGF (Karchewski, Kim et al. 1999), the identified role of this neurotrophin in this subpopulation 

revealed the potential of these molecules as therapeutic targets for peripheral nerve pathologies.  

 

1.1.3.2. Brain-derived neurotrophic factor 

Brain derived neurotrophic factor (BDNF) stands out in the family of neurotrophins as it is 

produced not only by axonal tissue targets but also at appreciable levels by the neurons 

themselves (Barde, Edgar et al. 1982). BDNF knockout mice have a reduced amount of DRG 

neurons compared to wildtypes, but not the degree of loss seen in those mice lacking NGF or 

NT3 (Ernfors, Lee et al. 1994, Ernfors, Lee et al. 1994). The role governed by BDNF in primary 

sensory neuron biology is not clear cut as subpopulations that are BDNF-responsive also respond 

to other neurotrophins (McMahon, Armanini et al. 1994, Farinas, Wilkinson et al. 1998, 

Karchewski, Kim et al. 1999). A subset of medium-large sized mechanoceptive neurons 

(approximately 33% of DRG neurons) depend on BDNF for maturation and functional 

performance but not for survival (Mu, Silos-Santiago et al. 1993, Carroll, Lewin et al. 1998). 

However, early studies demonstrated that adult sensory neurons in vitro can survive without 
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exogenous NGF support which suggests neuron viability is somewhat independent of target-

derived factors (Lindsay 1988). In theory, peripheral trophic support is less reliable, as skin or 

organ derived sources are exposed to the external environment and are at risk of damage. 

Therefore, alternative neurotrophic factors must exist so neuronal death does not ensue when 

there is separation from its target (Lindsay 1996). The capability of these neurons to grow 

isolated from their targets pointed to BDNF and possibly other neuronal produced trophic factors 

as autocrine and paracrine modulators of cell function and survival (Acheson and Lindsay 1996, 

Lindsay 1996). In fact, disruption of BDNF with antisense oligonucleotide causes neuronal death 

in ~33% of single cell isolates of adult DRG neurons in vitro which supports the above claim 

(Acheson and Lindsay 1996).  

In the naïve DRG, BDNF mRNA is expressed most highly in small to medium sized neurons 

(Ernfors, Wetmore et al. 1990, Wetmore and Olson 1995, Verge, Gratto et al. 1996). However, 

the populations that express the neurotrophin are distinctly separate from those expressing the 

high affinity TrkB BDNF receptor (Kashiba, Ueda et al. 1997). Regardless, BDNFs ability to act 

through the p75 common neurotrophin receptor which is present on ~80% of neurons of all 

sensory modalities points to its significant role in intracellular DRG neuron regulation.  

For the purpose of this work, the role for BDNF in growth and regeneration of injured axons 

is of great interest. Peripheral nerve transection leads in essence to the loss of target derived 

BDNF; however, there is noted upregulation of BDNF in the nerve stump distal to injury and the 

denervated muscle (Funakoshi, Frisen et al. 1993) suggesting that its signaling may be necessary 

for newly growing axons. As stated, in the intact state, BDNF is predominantly synthesized in 

small to medium sized TrkA-positive neurons and at lower levels in TrkB positive neurons 

(Karchewski, Gratto et al. 2002). After nerve injury, there is a transient increase in anterograde 

transport of BDNF to the periphery (Tonra, Curtis et al. 1998). At the cell body, sciatic nerve 

transection results in a biphasic response in BDNF expression where levels are universally up-

regulated in all size ranges of neurons at 1-day post-injury, then decline in small-medium size 

neurons but remains high only in medium-large size neurons after 1 week (Michael, Averill et al. 

1999, Zhou, Chie et al. 1999, Karchewski, Gratto et al. 2002). The incidence of BDNF co-

expression with TrkB is low in intact neurons, but increases dramatically following injury, 

signifying a phenotypic shift where those producing BDNF are now more sensitive to its action 

(Karchewski, Gratto et al. 2002). The increased production of BDNF in injured DRG neurons 
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could be neuroprotective (Murphy, Borthwick et al. 2000) but evidence from the Verge lab 

suggests that the upregulation is critical for induction of regeneration associated gene (RAG) 

expression and the intrinsic ability of an axon to regenerate.  

Brain-derived neurotrophic factor is the only neurotrophin whose expression is significantly 

increased in peripheral neurons after injury. In both motoneurons and primary sensory neurons, 

peripheral nerve injury increases expression of neuronal BDNF and TrkB as well as peripheral 

sources of the neurotrophin. (Funakoshi, Frisen et al. 1993, Koliatsos, Clatterbuck et al. 1993, 

Karchewski, Gratto et al. 2002) Delivery of BDNF into the proximal nerve end post-injury was 

shown to improve functional recovery after sciatic nerve transection suggesting a growth-

promoting role. (Utley, Lewin et al. 1996, Lewin, Utley et al. 1997). Furthermore, therapies 

known to enhance regeneration of injured neurons, specifically electrical stimulation, has been 

shown to augment BDNF expression (Al-Majed, Brushart et al. 2000, Geremia, Gordon et al. 

2007). Extensive work by Geremia and colleagues showed that brief electrical stimulation of 

femoral nerves after transection resulted in elevated levels of BDNF, TrkB and regenerated 

associated genes in all DRG neurons, particularly in small-medium sized neurons (Geremia, 

Gordon et al. 2007). This initial work, lead to the hypothesis that BDNF acted as an important 

induction signal for the regenerative and cell body injury response. Disruption of BDNF action 

by delivery of either anti-BDNF antibody or targeted small-interfering RNA suppressed the 

intrinsic activation of growth associated genes in injured sensory neurons in vivo and in vitro 

(Geremia, Pettersson et al. 2010). Additionally, injury-induced increases of pituitary adenylate 

cyclase activating polypeptide (PACAP), a modulator of nerve repair and survival, were reduced 

using the same immunoneutralization or downregulation of endogenous BDNF approaches 

(Pettersson, Geremia et al. 2014); while administration of exogenous BDNF enhanced the 

expression of growth associated genes in injured but not intact sensory neurons, suggesting the 

neurotrophin can amplify regeneration (Geremia 2005). This collective evidence of the 

neurotrophin’s role in augmenting injured sensory neurons’ regeneration-associated gene (RAG) 

expression and their intrinsic ability to regrow an axon infers that therapies used to alter BDNF 

action would likely affect transcriptional regulators of regeneration.  
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1.2. Peripheral nerve injury and regeneration 

The neurons of the PNS are significantly unique as they are able to regrow injured axons 

following injury; a characteristic not shared by their CNS counterparts. This growth capacity of 

the PNS has long been recognized and appreciated; however, repair is slow and often incomplete 

resulting in poor clinical outcomes for patients afflicted with nerve pathologies. 

The propensity for these neurons to regenerate have been studies since the 2nd century where 

Galen of Pergamon (131-201 AD) first studied severed nerves and noticed the incredible 

findings in his experiments [reviewed in (Terzis, Sun et al. 1997)]. Throughout the scientific 

revolution; other academics and philosophers continued to examine the anatomical, 

physiological biochemical action of these growing nerves. In the 1600s, animal studies revealed 

that bilateral severance of the vagus nerves lead to death after a delay period (Willis T 1681, 

reprinted in 1966). Interestingly, the British chemist William Cumberland Cruikshank, sometime 

later observed that unilateral vagus nerve transection did not lead to animal death; furthermore, 

dissection of experimental tissue showed that the proximal and distal stumps were “firmly 

united; having their extremities covered with a kind of callous substance” (Cruickshank 1795). 

This and other findings lead to a period of discovery, where our understanding of the nervous 

system, brain and nerve pathologies and therapeutics grew exponentially. Despite the expanding 

discipline, it was not clear whether regeneration of the injured axons was facilitated solely by the 

rejoining of the severed nerve ends and/or if the neurons had an intrinsic ability for outgrowth of 

new fibres.  

Augustus Waller in 1850, published his findings that injury to the frog hypoglossal nerve 

resulted in the loss or “resorption” of the distal nerve and Schwann cells but a mass of 

“amorphous medulla” or new axons appeared to develop (Waller 1850).  The events he described 

have been termed Wallerian degeneration, which refers to the cellular processes proceeding a 

PNS injury event, where an inflammatory mediated process leads to the degradation of the distal 

nerve and the formation of a permissive growth environment for new axons [reviewed in 

(Burnett and Zager 2004, Rotshenker 2011)].  Surrounding myelin is broken down, mast cell 

degranulation and phagocytosis clears nerve tissue leaving rows of Schwann cells known as 

bands of Büngner. These remaining Schwann cells act as a guiding platform for newly 

synthesized axons to their previous targets (Snell 2005). Waller’s observations were a window 

into the potential for injured nerves to recover from damage. However, this regrowth and regain 
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of function is frequently imperfect and clinical evidence shows the frequent failure of injured 

nerves to reinnervate target tissue after surgical repair (Noble, Munro et al. 1998).  

Injury of nerves results in drastic morphological, molecular and physiologic changes at the 

level of the neuron cell body, proximal stump and the distal nerve. These changes are numerous 

and are governed by extracellular and intracellular mechanisms leading to clear genetic and 

phenotypical changes. Many neuronal and glial gene products including growth factors, signal 

transduction proteins and transcription factors have been extensively studied in the hopes their 

action after injury (or lack thereof) is the answer to improving nerve regeneration and functional 

outcomes. This essential cellular factor has yet to be identified.  

 

1.2.1. Multiphasic injury signal and cell body response in peripheral neurons 

Severance of the axon generates early signaling events which communicates to the cell body 

that injury has occurred.  Firstly, the integrity of the plasma membrane is lost, causing a 

disruption in the ionic concentration gradient between the axon and the extracellular matrix and 

an influx of cations (Yoo, Nguyen et al. 2003). This causes depolarization and the transmission 

of injury-mediated action potentials, known as injury discharge, which leads to increases in 

intracellular second messenger molecules, including calcium and cAMP and activation of  

downstream signaling pathways (Berdan, Easaw et al. 1993). These early events can also drive 

activation of enzymes and transcription critical to induction of a robust regenerative state. 

Secondly, there is interference with retrograde trophic (i.e. NGF) signaling from the periphery 

within 12-24 hours following injury, disinhibiting the suppressed regeneration response (Raivich, 

Hellweg et al. 1991). Notably, injury-induced increases in neuronal BDNF expression observed 

in over 80% of sensory neurons is one of these early changes in gene expression. This elevated 

BDNF expression has been shown to be critically linked to induction of robust RAG expression 

and the intrinsic ability of injured sensory neurons to regenerate an axon (Geremia, Petterssen et 

al. 2010; Petterssen, Geremia et al. 2014).  While a major inductive signal for regeneration, in 

these studies BDNF did not appear to be responsible for maintaining RAG expression one week 

after injury expression as 3-day neutralization of endogenous BDNF initiated at this time point as 

opposed to immediately at the time of injury had no discernible impact on RAG expression.  

Thirdly, the proximal injured nerve tip is exposed to the intracellular content of other axons and 

Schwann cells that express multiple growth factors including CNTF, NGF, FGF and BDNF 
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(Elde, Cao et al. 1991, Sendtner, Gotz et al. 1997, Karchewski, Gratto et al. 2002, Kirsch, 

Terheggen et al. 2003), that can have dramatic impacts on axonal guidance (Webber, Xu et al. 

2008). Subsequently, the trophic and cytokine levels are altered locally due to the developing 

inflammatory environment (Lindholm, Heumann et al. 1987).  

Logically, one of the primary responses of the injured sensory neuron must be linked to 

neuronal survival.  The chance of neuronal death following peripheral nerve axotomy is directly 

related to the proximity of the cut site to the perikaryon (Gordon, Gillespie et al. 1991, Xu, 

Forden et al. 2010). No motoneurons are lost unless the injury is very proximal to the cell body 

(Vanden Noven, Wallace et al. 1993); however, peripheral sciatic nerve transection can result in 

elevation of pro-apoptotic markers in primary sensory neurons as soon as 1-day post-axotomy 

(McKay Hart, Brannstrom et al. 2002). Nevertheless, significant neuronal loss is only seen after 

approximately 4 weeks after injury, effecting at most 35% of the DRG neuron population with 

the small to medium size sensory neurons being most vulnerable (Otto, Unsicker et al. 1987). 

This tendency of prolonged survival is likely attributed to the robust trophic support for primary 

sensory neurons and their high-responsiveness to these signaling pathways (Verge, Gratto et al. 

1996). 

Axon injury also results in a process of morphological changes at the level of the cell body 

collectively known as chromatolysis [(Lieberman 1971), reviewed in (Gordon, Sulaiman et al. 

2009)]. The gross histological changes include the shifting of the nucleus to a decentralized 

location within the soma, increased size of the nucleolus, swelling of the cell and partial loss of 

the distinctive Nissl body staining of the rough endoplasmic reticulum. These alterations are 

likely due to the molecular sequelae of the injury response and changes to the expression of 

countless genes including neuropeptides, transcription factors, and structural proteins (Fu and 

Gordon 1997, Stam, MacGillavry et al. 2007, Patodia and Raivich 2012). The surviving neuron 

undergoes a phenotypic shift from a “transmitting” or intact cell connected to its peripheral 

targets; to the genetic profile of a “growing” or regenerating one (Watson 1974). The genes 

whose expression levels are altered after injury have been collectively referred to as regeneration 

associated genes (RAGs) and include cytoskeletal proteins such as tubulin and actin, which are 

transported down to the growing axon tip where they provide support and create the 

ultrastructure of the newly synthesized nerve (Tetzlaff, Bisby et al. 1988, Tetzlaff and Bisby 

1990, Tetzlaff, Alexander et al. 1991, Dent, Gupton et al. 2011).  Other scaffolding protein levels 
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such as neurofilament are reduced in response to injury (Verge, Tetzlaff et al. 1990).  Expression 

of synaptic-transmission proteins such as acetylcholine, acetylcholine esterase and choline 

acetyltransferase are also downregulated (Friedman, Kleinfeld et al. 1995). Other categories of 

RAGs that are upregulated include the immediate early genes such as the transcription factor c-

jun (Leah, Herdegen et al. 1991), neurotrophins including BDNF in both sensory and motor 

neurons and their respective trk and p75 receptors in motor neurons (Friedman, Kleinfeld et al. 

1995, Al-Majed, Brushart et al. 2000, Karchewski, Gratto et al. 2002), and growth associated 

proteins including GAP-43 (Verge, Tetzlaff et al. 1990, Schreyer and Skene 1993), CAP-23 and 

SCG10 (Mason, Lieberman et al. 2002). A number of other transcription factors are also known 

RAGs and will be discussed later in this chapter.  

Elevations in neuronal RAGs expression following axotomy peak at around 1-week after 

injury (Gordon and English 2016). This RAG increase eventually dissipates, falling back to 

baseline levels after approximately 6 months in chronically axotomized motoneurons (Gordon 

and Tetzlaff 2015, Gordon, You et al. 2015). Interestingly, a re-injury of these chronically 

injured neurons proximal to the original cut site results in another up-regulation of RAGs but to a 

lesser extent than seen in acutely injured states (Gordon and Tetzlaff 2015, Gordon, You et al. 

2015). This second RAGs increase is not triggered by loss of retrograde target trophic support, 

suggesting that signals emanating from the transection site itself are sufficient enough to produce 

a regeneration response. 

 

1.3. Axonal mechanisms: transport 

The ultrastructure of the neuron is complex. No other cells require such an extensive 

cytoskeletal intracellular network, with cellular compartments and axons often placed a great 

distance from the cell body. Axonal transport allows for delivery of newly synthesized protein, 

RNA, lipids or organelles to distal regions such as synapses to maintain active cell-to-cell 

connections [reviewed in (Perlson, Maday et al. 2010)]. Undoubtedly, with regards to 

regeneration, necessary cell products including cell membrane must be sent to the growth cone to 

build new axons. Conversely, axonal misfolded proteins or aggregates must be shuttled back to 

the cell body for better degradation and clearance (Chevalier-Larsen and Holzbaur 2006). To 

meet the demand of energy needs, mitochondria are also bi-directionally transported (Sheng 

2014). Finally, axonal trafficking between the axon and the soma allows for retrograde 
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intracellular communication whereby the neuron can respond to changes in the environment. 

Transport along the axon occurs by both fast and slow speeds and is achieved with anterograde, 

retrograde, bi-directional machinery requiring multiple protein components (Maday, Twelvetrees 

et al. 2014). 

Cytoskeletal filaments including microtubules, actin and intermediate filaments all play roles 

in neuron morphology; however, fast transport down the axon is dependent on the microtubules 

which act at tracks for motor proteins. Microtubules are rigid polymers formed by multiple 

tubulin molecules arranged in a polarized direction where the fast growing, dynamic plus end 

extend down the axon center while the stable minus end is anchored at the soma (Burton and 

Paige 1981, Stepanova, Slemmer et al. 2003). Dendritic microtubule organization is more 

complicated as these cytoskeletal tracks are arranged in mixed polarity directions (Baas, Deitch 

et al. 1988). Multiple microtubule-associated proteins, (MAPs) are bound to the structure along 

the length of the axon and promote microtubule polymerization and stabilization. The high 

expression level of MAPs in neurons suggests that neuronal microtubules are more stable than in 

other cell types and the interaction of MAPs with protein motors in vitro points to the possible 

involvement with transport (Vershinin, Carter et al. 2007, Dixit, Ross et al. 2008). 

The two main motor protein types that transverse the axonal microtubules are kinesins and 

dynein. These motors interact with other associated proteins and are responsible for the travel of 

cargo along the axon.  The kinesin superfamily contains 38 neuron gene products with kinesis-1, 

kinesis-2 and kinesis-3 families known to contribute to axonal transport (Miki, Setou et al. 2001, 

Lawrence, Dawe et al. 2004). Kinesin homo or heterodimers are the main drivers of anterograde 

transport; carrying a wide range of cargo including vesicles, organelles, RNA and proteins at 

velocities of ~1 um/s (Hirokawa, Niwa et al. 2010). Cytoplasmic dynein is the primary 

microtubule motor responsible for minus-end directed or retrograde transportation. This large 

protein complex consists of two heavy chains forming the motor domains and other intermediate 

and light chains responsible for cargo recognition and binding.  Dynein is a fast motor, with 

velocities from 0.5 to 1 um/s. Contrary to the great diversity seen with the kinesin motors, the 

dynein motor domain is encoded by a single gene while there are two genes encoding for dynein 

light intermediate-cargo associated chains suggesting some variability [reviewed in (Roberts, 

Kon et al. 2013). The activity of this motor requires the dynein activator dynactin, a multiprotein 

complex essential both tubulin and cargo binding, whose disruption impairs normal neuron 
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function (Waterman-Storer, Karki et al. 1995, Schroer 2004, Moughamian and Holzbaur 2012, 

Yeh, Quintyne et al. 2012). Kinesin and dynein are the major motors which drive axonal 

transport; however, multiple MAPs, motor adaptors, regulators and components of cytoskeleton 

are required for efficient binding, proper cargo attachment and are essential components of the 

transport machinery [reviewed in (Maday, Twelvetrees et al. 2014). While these highly 

conserved mechanisms are utilized in many neuronal cell types, the role of axonal transport in 

sensory neurons is well established and plays a significant part in neuronal development, 

neurotrophin signaling and nerve regeneration.  

 

1.3.1. Axonal mechanisms: local protein synthesis 

The historical view has been that the soma provides distal axons with all the proteins and 

cellular structures necessary for maintenance and plasticity. The paradigm shift began to occur in 

the 1960s when large amounts mRNA were found localized to vertebrate axons, implying that 

these transcripts are independently translated away from the cell body (Edstrom, Eichner et al. 

1962). Further justifying this hypothesis, it was discovered that axons possess ribosomal RNA 

(Rapallino, Cupello et al. 1988), ribosomal subunits (Tcherkezian, Brittis et al. 2010) and can 

translate endogenous and exogenous mRNA without interacting with the cell body (Van Minnen, 

Bergman et al. 1997, Eng, Lund et al. 1999). Not only does local translation occur in axoplasm, 

but local protein processing and trafficking takes place as ER and Golgi equivalents and 

associated proteins are present in axons (Jung, Yoon et al. 2012, Gonzalez and Couve 2014). 

Furthermore, isolated axons must have a high functioning protein trafficking network as locally 

synthesized proteins are readily deposited in plasma membranes (Merianda, Lin et al. 2009).   

Axonal protein synthesis allows for rapid intracellular alterations in response to the 

extracellular milieu. Axons separated from the soma can still grow towards targets and respond 

to guidance cues (Harris, Holt et al. 1987, Campbell and Holt 2001, Ming, Wong et al. 2002). 

These and other studies have implied the potential involvement of axonal protein translation in 

regeneration following injury. In fact, blocking protein synthesis in axons inhibits regeneration 

(Verma, Chierzi et al. 2005) and there is an association of decreased axonal protein synthesis 

with reduced axon outgrowth in mature neurons (Jung, Yoon et al. 2012). Nerve injury increases 

axon protein translation in in vitro and in vivo sensory neuron models (Zheng, Kelly et al. 2001, 

Verma, Chierzi et al. 2005) and blocking axonal mRNA localization inhibits regeneration after 
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injury (Donnelly, Willis et al. 2011). The pattern of axon growth is also affected by axonally 

synthesized proteins and specific axon mRNA content. Increased translation of beta-actin leads 

to highly branched axons, while increased GAP-43 production causes the growth of more 

elongated and lesser branched axons (Donnelly, Park et al. 2013). The role of local axon protein 

synthesis in regeneration is shown by this collective evidence, where injury appears to up-

regulate certain axonal transcripts associated with the growth response. It also leads to increased 

levels of transcriptional regulators that may serve to further regulate RAG expression (Ying, 

Misra et al. 2014). Thus, when examining alterations in somal protein levels following injury in 

DRG neurons, one must always consider that dynamic axonal synthesis and transport after injury 

may alter cell body protein quantity, in absence of increased translation at the somal level. 

 

1.3.2. Axonal mechanisms: the injury signal 

Proper anterograde and retrograde transport mechanisms are utilized for intracellular neuron 

signal transduction pathways. Neurotrophins from peripheral targets bind trk or p75 receptors 

causing internalization of the ligand-receptor complex forming the signaling endosome 

(Bronfman, Escudero et al. 2007). The neurotrophin containing vesicles are retrogradely 

transported by dynein-mediated processes [Reviewed in  (Chowdary, Che et al. 2012, Cosker and 

Segal 2014).  Studies show that disruption of the trk-dynein transport system leads to lost 

neuronal viability and that dynein based transport is required for retrograde survival of DRG 

neurons (Heerssen, Pazyra et al. 2004). NGF action on nerve terminals leads to NGF-TrkA 

endosome signaling which has been shown to increase axonal translation of the transcription 

factor cAMP response-element binding protein (CREB) in developing neurons (Cox, Hengst et 

al. 2008). Endosomes associated with activated CREB are retrogradely shuttled to the cell body 

where CREB activates target genes promoting survival.  

While loss of trophic signaling endosomes transported by the microtubule-dynein mechanism 

occurs following injury of the axon, further positive injury signals from the site of damage are 

sent via axonal transport, inducing transcriptional change (Murphy, Borthwick et al. 1999; Ying, 

Misra and Verge 2014; Ying, Zhai et al. 2015). Some injury stimuli are rapid, such as calcium 

influx at the site of injury and soma (Cho and Cavalli 2012) and depolarization propagation 

causing direct genetic alterations including nuclear export of histone deacetylase 5 (HDAC5) in a 

protein kinase C-dependent manner, leading to enhanced histone acetylation (Cho, Sloutsky et al. 
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2013). Conversely, dynein associated retrograde signals initiated at the injury site are slower at 

effecting cell body changes. Their impact on axon growth take hours to days after injury but 

there is an emerging understanding of their importance in the induction and maintenance of the 

injury response (Ying, Misra and Verge 2014).  

 

1.3.3. Transcriptional regulators of the cell body response to injury 

Transection of peripheral nerves causes an injury signal that leads to the activation of various 

intracellular pathways with downstream targets that include many transcription factors whose 

post-translational state, cellular localization and activity are affected (reviewed in (Patodia and 

Raivich 2012)). These transcriptional regulators alter the genotype of sensory neurons including 

the expression of RAG; thus initiating and maintaining the axon outgrowth of injured neurons. 

While the injury-induced expression and activity levels have been described for multiple 

transcription factors, many regulators that are expressed in DRG neurons have yet to have their 

response to injury characterized.  

Of particular interest to this thesis are transcription factors linked to how the sensory neuron 

responds to the stress induced by the nerve injury and to the demands of regeneration.  To gain 

insight into how expression and nuclear translocation of these transcription factors might be 

temporally altered following injury, I chose to focus on regulation of transcription factors 

implicated in neuronal survival (FOXO3A) and regulation of the unfolded protein response 

(UPR; Luman/CREB3 and Zhangfei/CREBZF), the UPR being involved in the neuron’s ability 

to meet the protein and sterol demands of regeneration and also linked to apoptosis.  

 

1.3.3.1. Forkhead-transcription factors 

Members of the forkhead box transcription factors class O (FOXO) family of proteins 

modulate the cellular processes of survival, differentiation, proliferation and stress resistance 

(reviewed in (van der Horst and Burgering 2007).  These evolutionarily conserved transcription 

factors were first identified as essential to Drosophila development (Weigel, Jurgens et al. 1989).  

Since that time, our knowledge of FOXOs has grown exponentially with a protein catalogue of 

over 100 subtypes that are implicated in a variety of mammalian and non-mammalian cellular 

processes. They are heavily regulated by epigenetic (Peng, Zhao et al. 2015) and various post-

translational modifications including phosphorylation, acetylation and poly- and 
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monoubiquitination (Huang and Tindall 2007, Chong, Hou et al. 2011, Wang, Yan et al. 2013). 

Nucleocytoplasmic shuttling of FOXOs is primarily controlled by an Akt/protein kinase B 

dependent phosphorylation mechanism, where phosphorylated protein remains cytoplasmic and 

dephosphorylation of serine-threonine residues facilitates nuclear localization. In the mammalian 

adult nervous system, FOXO1, FOXO3/FOXO3a, FOXO4 and FOXO6 proteins have been 

identified and are generally characterized as stress-related, pro-apoptotic transcription factors 

significant in neuronal survival (Maiese 2015). 

 

1.3.3.1.1. FOXO3a 

Of all the forkheads, FOXO3a (FOXO3/FKHRL1 (forkhead in rhabdomyosarcoma like 1)) 

has emerged as a target in multiple disease states, particularly neurodegenerative disorders 

(reviewed in (Maiese, Chong et al. 2007)). The sequence of the FOXO3a gene contains 3 exons 

and produces a 673 amino acid protein with the well conserved and defining forkhead domain 

(Anderson, Viars et al. 1998). FOXO3a protein is present in a variety of human and other 

mammalian cell types, including those in the nervous system, such as hippocampal and cortical 

neurons, the cerebellum and motor, sympathetic and primary sensory neurons (Gilley, Coffer et 

al. 2003, Barthelemy, Henderson et al. 2004, Hoekman, Jacobs et al. 2006, Wang, Liu et al. 

2009).  FOXO3a knockout mice (Foxo3a-/-) are viable but the development of certain organs are 

impaired (Hosaka, Biggs et al. 2004). Absence of FOXO3a leads to lymphoproliferative disease, 

organ inflammation and increased activity of helper T-cells, suggesting a role for FOXO3a in the 

Immune response (Lin, Hron et al. 2004). These FOXO3a deficient mice are also noted to have 

elevated levels of reactive oxygen species and altered expression in genes which regulate the 

REDOX cycle, pointing to its involvement in the oxidative stress response (Tothova and 

Gilliland 2007). 

As stated, FOXO proteins are tightly regulated at the post-translational level and these are 

primarily mediated through the Akt/PKB pathway, a known downstream target of the insulin 

pathway and neurotrophins (Brunet, Bonni et al. 1999, Zheng, Kar et al. 2000, Kawano, Morioka 

et al. 2002, Zheng, Kar et al. 2002, Gilley, Coffer et al. 2003, Zhu, Bijur et al. 2004, Fukunaga, 

Ishigami et al. 2005). However, the regulation of FOXO in the nervous system is mediated 

through multiple intracellular pathways and is present in all tissue types (reviewed in (Maiese 

2015). The main transcriptional outputs for FOXO activity are associated with stabilizing the cell 
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during times of homeostatic compromise and then determination of cell fate. These outputs 

include regulators of the cell cycle and apoptosis, glucose metabolism and oxidative stress 

resistance. As the information on the forkheads spans every mammalian cell type and multiple 

pathological states, this review will focus on the finding pertinent to FOXO3a, the nervous 

system and sensory neurons in particular. 

 

1.3.3.1.2. Apoptosis and the cell cycle 

Neuronal FOXO3a has classically been considered a pro-apoptotic transcription factor, 

which is accredited to its close relationship with the PI3K/Akt survival pathway.  

Phosphorylation by Akt inhibits its activity as phosphorylated FOXO3a associates with 14-3-3 

scaffolding proteins, which leads to cytoplasmic sequestering (reviewed in Maiese 2015).  

Decreased Akt signaling or increased dephosphorylation by phosphatases results in nuclear 

translocation and the activation of forkhead-responsive genes, including the apoptotic genes fas-

ligand (FasL) (Brunet, Bonni et al. 1999) and bim (Dijkers, Medema et al. 2000).  Many growth 

factor signal transduction mechanisms are mediated through Akt and trophic availability can 

modulate FOXO3a activity.  Insulin-like growth factor-1 treatment increases Akt 

phosphorylation of the transcription factor in PC12 cells (Zheng, Kar et al. 2000), while 

neurotrophin deprivation induces nuclear localization of FOXO3a, FasL gene expression and 

death of cultured motoneurons (Barthelemy, Henderson et al. 2004). In general, any conditions 

associated with neuronal loss; such as development (Srinivasan, Anitha et al. 2005) aging 

(Jackson, Rani et al. 2009) or pathological ischemic events, (Kawano, Morioka et al. 2002, 

Fukunaga, Ishigami et al. 2005, Maiese, Chong et al. 2007) have a connection to decreased Akt 

activity and FOXO3a activation.  

FOXOs are transcriptional activators of genes involved in cell cycle inhibition, including 

p27kip1 (Medema, Kops et al. 2000) and cyclin G2 (Martinez-Gac, Marques et al. 2004), as well 

as suppressors of the cycle progression protein cyclin D (Schmidt, Fernandez de Mattos et al. 

2002).  Insulin and other growth factors promote cell proliferation by inhibiting FOXO activation 

of cell-cycle arrest genes in both Alzheimer’s and diabetic models (Sajan, Hansen et al. 2016). 

Depletion of cellular regulators including Cdc2-like kinase 2 (CLK2) lead to dephosphorylation 

of AKT and decreased phosphorylation of FOXO3a, which in turn increases p27 expression and 

slows glioblastoma growth (Park, Piao et al. 2016).  
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1.3.3.1.3. Glucose metabolism 

Insulin is the main regulator of glucose uptake, glycolysis and glycogen synthesis. The 

forkheads regulate enzymes associated with the insulin pathway, glucose metabolism and 

gluconeogenesis such as phosphoenolpyruvate carboxykinase and glucose-6-phosphate (Barthel, 

Schmoll et al. 2001, Nakae, Kitamura et al. 2001, Nakae, Kitamura et al. 2001). FOXO1 was 

also shown to suppress genes involved in glycolysis (Zhang, Patil et al. 2006), suggesting that 

FOXO activity may induce a metabolic switch in low glucose conditions. However, this family 

of transcription factors has been implicated in diabetes mellitus onset and diabetic complications; 

for example, a prospective population based study indicated that patient carrying a specific 

FOXO1a haplotype had higher HbA1C levels and likely impaired glucose tolerance (Kuningas, 

Magi et al. 2007). With regards to FOXO3a, experimental animals models showed that high-fat 

diet induced hyperinsulinemic resistant obesity showed increased FOXO3a in cardiac myocytes 

(Relling, Esberg et al. 2006).  It has also been linked to diabetic nephropathy as renal cortical 

tissue in diabetic rats has increased levels of phosphorylated FOXO3a (Kato, Yuan et al. 2006). 

Furthermore, enteric neurons are protected from hyperglycemia by glial-derived neurotrophic 

factor and signaling through the Akt/PKB pathway which decreased FOXO3a nuclear 

localization (Anitha, Gondha et al. 2006).  FOXOs conserved relationship with glucose 

metabolism offers clues to FOXO3a’s potential role in sensory neurons.  Small neurons of the 

DRG have high levels of hexokinase, which initially phosphorylates glucose prior to the start of 

glycolysis (Gardiner, Wang et al. 2007). The elevated amounts of this kinase suggest higher 

concentrations of glucose in this population and the necessity for rigorous metabolic 

management.  Small-medium neurons also express high levels of the insulin receptor (IR) 

(Sugimoto, Murakawa et al. 2002), insulin-like growth factor-1 receptor (IGF-1R) and insulin-

like growth factor 1 (IGF-1) (Craner, Klein et al. 2002). As stated above, FOXO3a activation is 

induced in a low-glucose situation and activates genes associated with glucose conservation, 

such as glucose-6-phosphatase (Onuma, Vander Kooi et al. 2006).  It also increases sensitivity to 

insulin by up-regulating IR and insulin receptor substrate proteins (Puig and Tjian 2005). 

 

1.3.3.1.4. Ischemia and oxidative stress 

There is a well-established connection between the forkheads and oxidative stress, where 

increased levels of cellular reactive oxygen species (Storlazzi, Mertens et al.) regulate FOXO 
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post-translational modification and thus regulate oxidative stress resistance (reviewed in  (van 

der Horst and Burgering 2007).To mitigate the ROS-induced injury to cellular organelles, 

FOXO3a in particular, has been shown to have a protective tendency against oxidative damage 

where it upregulates several antioxidant enzymes such as catalase (Nemoto and Finkel 2002) and 

Manganese superoxide dismutase (MnSOD) (Kops, Dansen et al. 2002). However, a body of 

evidence suggests that FOXO3a might play an important role in oxidative stress-mediated 

damage and apoptosis of neuronal cells in models of cerebral ischemic stroke (Chong, Kang et 

al. 2003, Chong, Lin et al. 2003, Chong, Kang et al. 2004, Chong, Li et al. 2005, Chong, Li et al. 

2005). In animal studies, increased FOXO3a activity is associated with altered c-jun N-terminal 

kinase 3 signaling and stroke promotion effects (Pirianov, Brywe et al. 2007). Other ischemic 

models show that inhibitory phosphorylation of FOXO3a may be associated with the 

neuroprotective effects of estradiol after stroke (Won, Ji et al. 2006). Inhibition or knockdown of 

FOXO3a in neuronal culture cells can assist in the ischemic protective effects of metabotropic 

glutamate receptors and improve neuronal survival through NAD+ precursor treatment (Chong, 

Lin et al. 2004, Chong, Li et al. 2006).  Furthermore, inhibited FOXO3a activity increases 

trophic protection of neurons during oxidative stress via insulin-like growth factor-1 and 

neurotrophins (Zheng, Kar et al. 2000, Zheng, Kar et al. 2002, Zheng, Kar et al. 2002). 

In clinical work, vitiligo patients with a polymorphism for FOXO3a had decreased levels of 

catalase enzyme activity suggesting a possible protective role of FOXO3a activity (Ozel Turkcu, 

Solak Tekin et al. 2014). However, examination of endometrial decidua showed that 

constitutively active FOXO3a conferred a tendency to oxidative stress mediated apoptosis 

(Kajihara, Jones et al. 2006) and patients with two FOXO3a haplotypes have increased risk of 

stroke (Kuningas, Magi et al. 2007). FOXO3a action in certain cell types appears to decrease 

levels of ROS; however, in neuronal cells its activity is associated with oxidative stress mediated 

cell death and decreased FOXO3a levels or increased degradation may be a survival mechanism 

and thus be desirable.  

 

1.3.3.2. FOXO3a in primary sensory neurons 

DRG neurons and associated glial cells express FOXO3a, and neuronal proteins levels are 

decreased following sciatic nerve transection (Wang, Liu et al. 2009). As previously stated, 

FOXOs are transcriptional activators of genes involved in cell cycle inhibition, including p27kip1 
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(Medema, Kops et al. 2000) and cyclin G2 (Martinez-Gac, Marques et al. 2004), as well as 

suppressors of the cycle progression protein cyclin D (Schmidt, Fernandez de Mattos et al. 

2002).  The role of cell cycle proteins in post-mitotic neurons is under investigation and results 

indicate that induction of the cell cycle precedes neuronal apoptosis (Freeman, Estus et al. 1994, 

Park, Levine et al. 1997, Shirvan, Ziv et al. 1997, Liu and Greene 2001, Becker and Bonni 2004, 

Herrup, Neve et al. 2004).  Nerve regeneration and axon outgrowth is associated with cell cycle 

inhibition events such as the up-regulation of cyclin G (Morita, Kiryu et al. 1996) and p21 [the 

cyclin dependent kinase (cdk) inhibitor](Tanaka, Yamashita et al. 2004), and the suppression of 

the anaphase promoting complex (Konishi, Stegmuller et al. 2004).  Recently, the cdk inhibitor 

p27kip1 has been implicated in the regenerative response as the protein is down-regulated in 

motoneurons, axons and associated glia in response to peripheral nerve injury (Shi, Cheng et al. 

2007, Shen, Shi et al. 2008).  In these instances, the loss of p27kip1 is accredited to the 

upregulation of the ubiquitin ligase SKP2 and the ensuing proteasomal degradation.  DRG 

neurons and satellite cells also have diminished levels of the protein after injury but this follows 

an initial reduction in FOXO3a, suggesting p27kip1 transcription is altered in these cell types 

(Wang, Liu et al. 2009).  As FOXO3a activates the p27kip1 gene (Dijkers, Medema et al. 2000, 

Hu, Wang et al. 2005), the transcription factor’s degradation and the decreased expression of the 

cdk inhibitor may play a key role in either axon growth or satellite cell proliferation.  Although 

commencement of the cell cycle is typically linked to neuronal apoptosis, perhaps events that 

advance the cycle, such as the suppression of cdk inhibitors, are critical to the regeneration of 

postmitotic neurons (Krishnan, Duraikannu et al. 2016) .  

 

1.4. ER stress 

There is established significance of protein misfolding in the ER as it relates to human 

disease (Wang and Kaufman 2016). The regenerative process of the growing axon requires a 

multitude of newly made proteins, utilizing highly conserved protein synthesis and processing 

mechanics of the mammalian cell.  A significant amount of cellular protein is processed through 

the secretory pathway where genome products are translated and transported to intracellular and 

extracellular locations. The endoplasmic reticulum serves as a quality control organelle of this 

pathway where proper protein maturation and folding takes place [Reviewed in (Pluquet, 

Pourtier et al. 2015)]. Synthesized polypeptides enter the lumen of the ER where they undergo 
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folding, posttranslational modification and oligomerization which is facilitated by many 

chaperones including binding immunoglobulin protein/78 k-Da glucose regulated protein 

(Bip/GRP78) or GRP94 (Tu and Weissman 2004). During times of altered cellular activity, such 

as mutations, increases in production of nascent proteins, nutrient deprivation, hypoxia, or 

oxidative stress; an imbalance of misfolded or unfolded proteins accumulate in the ER leading to 

a toxic and detrimental cellular environment. This state, known as ER stress, requires cells to 

adjust their capacity for protein management, triggering mechanisms to eliminate and avoid 

further accumulation of misfolded products. A mechanism to eliminate misfolded proteins is via 

ER-associated protein degradation (ERAD), where proteins are retrotranslocated to the cytosol 

and further degraded by the proteasome (Hetz, Chevet et al. 2013). The intracellular signalling 

pathway that mediates the overall process is known as the unfolded protein response (UPR). The 

products of this response attempt to increase the proper folding of proteins, decrease the rate of 

protein synthesis and reduce translocation to the ER lumen. If executed appropriately, this will 

stabilize protein processing, establish homeostasis and suppress the UPR; however, failure will 

lead to programmed cell death, thus protecting tissues from a myriad of pathological states that 

occur with excessive amounts of malfolded proteins. 

 

1.4.1. Transcriptional regulator pathways of the UPR 

Unfolded protein response activation is primarily mediated via three extensively studied 

signal pathways with unique transmembrane proteins whose ER luminal domains sense the ER 

environment. These transducers include inositol-requiring protein-1 (IRE1), protein kinase RNA-

like ER kinase (PERK), and activating transcription factor 6 (ATF6). 

 

1.4.1.1. IRE-1 

Inositol-requiring protein-1 (IRE1) was the first signal transducer discovered in yeast and 

found to play a significant role in the UPR (Cox, Shamu et al. 1993). This type 1 ER- resident 

transmembrane protein cytoplasmic region contains both a protein kinase and an RNase domain, 

while its ER-lumenal region binds to a molecular chaperone protein, BiP/GRP78 and directly to 

misfolded proteins.  The IRE1 is activated by the direct binding of unfolded proteins to its ER 

lumenal domain in the yeast model (Gardner and Walter 2011); however, in mammalian cell 

lines, IRE1 activation is triggered by the dissociation of GRP78 as these chaperones are called 



	 22 

upon to cope with the unfolded protein load (Zhou, Liu et al. 2006).  Activated IRE-1 

oligomerizes and the cytoplasmic kinase domain undergoes auto-phosphorylation, enabling the 

RNAse domain to cleave and decay a specific number of cytoplasmic mRNA (Hollien and 

Weissman 2006). This leads to a reduction in overall cellular protein synthesis and attempts to 

decrease the protein load within the ER.  

The RNAse activity of IRE-1 specifically targets and cleaves X-box binding protein 1 

(XBP1) precursor mRNA. The spliced XBP1 mRNA (XBP1s) product is an activator of the UPR 

and its translation is increased when IRE-1 is activated (Calfon, Zeng et al. 2002). Conversely, 

the unspliced XBP1 mRNA (XBP1u) product silences the UPR and its translation occurs when 

IRE-1 is suppressed (Yoshida, Oku et al. 2006). XBP1u readily binds to XBP1s and the complex 

is degraded. Furthermore, XBP1u interferes with the transcription of XBP1s target UPR genes 

during the recovery phase of the UPR (Yoshida, Oku et al. 2006). The transcriptional regulator 

XBP1s is a basic leucine zipper protein (bZIP) which binds and regulates genes containing either 

the UPR element (UPRE) or the ER stress response element (Cox and Walter 1996, Yoshida, 

Haze et al. 1998). These genes include SRP54 which facilitates entry of proteins into the ER 

(Rapiejko and Gilmore 1997), those which regulate ER and phospholipid biosynthesis (Sriburi, 

Jackowski et al. 2004), and gene products which assist in degradation of misfolded proteins 

including ERdj4 and EDEM (Hosokawa, Wada et al. 2001, Lai, Otero et al. 2012). 

 

1.4.1.2. PERK 

Another well described pathway is that mediated by PERK, a type I ER transmembrane 

protein similar in structure to IRE-1, and one that contains an ER localized domain with stress 

sensing capability and a cytoplasmic protein kinase catalytic domain (Harding, Zhang et al. 

1999).   PERK activation is triggered by the release of binding immunoglobulin protein (BiP or 

78 kDa glucose-regulated protein (GRP-78) or heat shock 70 kDa protein 5 (HSPA5) chaperone 

protein from the ER-lumen domain during increased protein malfolding; leading to PERK 

dimerization, autophosphorylation and signal transduction (Bertolotti, Zhang et al. 2000). 

Downstream, activated PERK phosphorylates eukaryotic translation initiation factor 2 (eIF2) 

(Harding, Zhang et al. 1999), a regulator of protein translation. Phosphorylated eIF2 inhibits 

protein translation initiation, decreases total cellular protein production, thus mitigating the 

misfolded protein load. 
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Even though protein production is suppressed through PERK/eIF2 pathway, a number of 

proteins tasked with maintaining cell homeostasis continue to be translated. These include the 

key bZIP transcription factor ATF4, whose mRNA translation can occur even when eIF2 is 

phosphorylated (Lu, Harding et al. 2004). Two target genes for ATF4 are CCAAT/enhancer-

binding protein homologous protein (CHOP) (Fawcett, Martindale et al. 1999) and the growth 

arrest and DNA damage-inducible protein 34 (GADD34) (Ma and Hendershot 2003). CHOP is a 

transcriptional regulator of pro-apoptotic genes (Sano and Reed 2013), suggesting PERK 

signaling is protective in slowing general protein production and further activating organized 

cell-death when the ER stress is not overcome. GADD34 binds to type I protein phosphatase 

(PP1) (Connor, Weiser et al. 2001) and induces dephosphorylation of eIF2 (Novoa, Zeng et al. 

2001), leading to increase protein synthesis, counteracting the initial effects of the PERK 

pathway when cellular processing is able to recover. 

 

1.4.1.3. ATF6 

ATF-6 is a transcription factor integral to the third branch of the known UPR regulatory 

pathways. This type II ER located protein contains the bZIP transcription regulator element on 

the cytosolic domain and an ER-lumenal domain which binds to the GRP78 chaperone (Hai, Liu 

et al. 1989, Haze, Yoshida et al. 1999). When ER stress is sensed, ATF6 dissociates from 

GRP78, revealing the Golgi localization signal and translocates to the Golgi complex (Shen, 

Chen et al. 2002). Further processing occurs within the Golgi where cleavage by site-1 protease 

(S1P) and site-2 protease (S2P) releases the cytosolic/catalytic transcriptional activator (Ye, 

Rawson et al. 2000). 

ATF6 regulates expression of genes in the ERAD pathway (Lee, Tirasophon et al. 2002) and 

other target genes containing the ERSE (Yoshida, Okada et al. 2000). These UPR associated 

genes include GRP78, Derlin-3 (an ER-associated degradation system-associated protein) 

(Adachi, Yamamoto et al. 2008), CHOP and XBP1 (Yoshida, Okada et al. 2000).  ATF6 has also 

been shown to regulate ER component synthesis and phospholipid production (Bommiasamy, 

Back et al. 2009) (Maiuolo, Bulotta et al. 2011). 

Other ER bound transcription factors appear to have structural similarities and the same 

processing as ATF6; furthermore, they also appear to be involved in the UPR in some capacity 

(Asada, Kanemoto et al. 2011). These include OASIS/CREB3L1 (Honma, Kanazawa et al. 
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1999), CREB3L2 (Storlazzi, Mertens et al. 2003), CREB3L4 (Nagamori, Yabuta et al. 2005), 

CREBH (Zhang, Shen et al. 2006) and Luman/CREB3 (Lu, Yang et al. 1997). 

 

1.4.1.4. Luman/CREB3 

A more recently discovered ER-stress transducer is Luman (CREB3/ Human LZIP), a 

member of the CREB/ATF family, homologous to the herpes simplex virus (HSV) protein VP16 

(Lu, Yang et al. 1998) and identified as the first cellular ligand for host cell factor-1 (HCF-1) 

(Lu, Yang et al. 1997).  Its association with HSV machinery suggests an involvement in viral 

latency and reactivation (Freiman and Herr 1997, Lu, Yang et al. 1997, Lu, Yang et al. 1998, Lu 

and Misra 2000).  Protein processing resembles that of ATF6, where Luman bound to the ER 

contains an S1P and partial S2P cleavage sequence (Raggo, Rapin et al. 2002). The ER-domain 

undergoes regulated intracellular proteolysis (RIP) and the bZIP domain is then free to activate 

target genes (Raggo, Rapin et al. 2002). Despite the fact that the cleaved form of the 

transcription factor is extremely unstable and in vitro detection of the activated protein requires 

proteasomal inhibitors, studies have shown the protein to be an activator of transcription (Misra, 

Rapin et al. 2005). The bZIP proteins Zhangfei (Misra, Rapin et al. 2005) and Luman 

recruitment factor (LRF) (Audas, Li et al. 2008) potently and specifically inhibit Luman 

transactivation by possibly affecting protein stability. The Luman transcription activation domain 

has 3 motifs; two LxxLL areas that are highly conserved on many transcription factors and 

mediate protein-protein interactions, while the third binds HCF (Luciano and Wilson 2000, 

Luciano and Wilson 2002) .   

Once translocated to the nucleus, Luman can bind cAMP response elements (CRE), 

including CRE promoter regions of HSV immediate early genes (Lu and Misra 2000), and the 

UPRE in a similar capacity to XBP1 (DenBoer, Hardy-Smith et al. 2005). As mentioned above, 

this transcription factor is inhibited by Luman recruitment factor (Audas, Li et al. 2008) and Jun 

activation domain-binding protein 1, which promote its degradation (DenBoer, Iyer et al. 2013).  

Artificial overexpression of Luman is cytoprotective against ER-stress, reducing the amount of 

ER-induced apoptosis (Liang, Audas et al. 2006). Induction of Luman expression and proteolytic 

cleavage in response to ER stress results in the transcriptional activation of the ERAD-related 

Herp (homocysteine-induced ER protein) (Kim, Kim et al. 2008) protein via the ER stress 

response element II (ERSR-II) (Liang, Audas et al. 2006). It also activates the promoter region 
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for the ER-degradation enhancing mannosidase (Kops, Dansen et al.), another participant in the 

ERAD pathway (DenBoer, Hardy-Smith et al. 2005).  

Even though the bulk of the evidence points to Luman as a potent regulator of the UPR and 

protective action against ER-stress through its target genes, it has been connected to other 

cellular processes in a variety of cell types. Induction of monocytes migration is facilitated 

through Luman-mediated increased expression of C-chemokine receptor 1 and 2 (Sung, Kim et 

al. 2008), enhancing activity of NF-kB (Jang, Kim et al. 2007, Jang, Kim et al. 2007). 

Furthermore, Luman has been linked to dendritic cell (DC) maturation through its interaction 

with a DC-specific transmembrane protein (Eleveld-Trancikova, Sanecka et al. 2010) and 

interplay between Luman and ADP ribosylation factor 4 is required for the Golgi stress response 

(Reiling, Olive et al. 2013). While these findings open the possibility of Luman as a potential 

target to many pathologies and cell types outside of the nervous system, its importance to the 

UPR/ER stress response and impact on nerve regeneration has been our focus.  

 

1.4.1.5. ER stress and peripheral nerve damage 

Proper protein folding, chaperone function and mitigation of ER-stress are critical cellular 

processes that have been implicated in a variety of neurodegenerative and traumatic nervous 

system diseases (Garcia-Huerta, Bargsted et al. 2016, Valenzuela, Onate et al. 2016). 

Dysregulation of ER-stress and protein misfolding will eventually lead to activation of cell death 

pathways, irreparable neural tissue damage and poor recovery (Ogen-Shtern, Ben David et al. 

2016, Valenzuela, Martinez et al. 2016). Injury to peripheral nerves by either traumatic, toxic or 

metabolic causes leads to a sequelae of events in the neuron cell body, distal and proximal nerve 

stumps and associated glia requiring increased protein loading and alterations to the ER network. 

Earlier studies show a correlation between PNS disease states and elevated levels of ER stress 

markers, as damage to sciatic nerves increased expression of BiP/GRP78 chaperone protein in 

the soma of non-degenerating neurons and the transcription factors XBP1s and ATF4 in 

degenerating motoneurons (Saxena, Cabuy et al. 2009, Penas, Font-Nieves et al. 2011). There 

are also reports of peripheral nerve damage upregulating other chaperone proteins and ER 

foldases, which assist in protein folding via forming non-covalent bonds and include calreticulin, 

endoplasmic reticulum protein-29 (ERp29) and ERp57 (also known as GRp58 or PDIA3) (Noel, 

Frost et al. 1995, Willis, Li et al. 2005, Castillo, Onate et al. 2015).  Our lab described how 
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injury leads to upregulation of the UPR in the DRG cell body and axonal localized UPR 

elements including BiP/GRP78 and CHOP, which are retrogradely transported to the cell body of 

injured DRG neurons (Ying, Zhai et al. 2015). However, the need for a coordinated and 

controlled UPR/ER stress response for axon regeneration had not been proven. Onate et al, with 

a sciatic nerve injury model found that ablation of the ER stress regulator XBP1, but not ATF4, 

delayed motor recovery, decreased macrophage recruitment, reduced myelin removal and axonal 

regeneration (Onate, Catenaccio et al. 2016).  Conversely, transgenic mice overexpressing XBP1 

have enhanced regenerative events after nerve crush injuries. They assessed the therapeutic 

advantage of altering the UPR in vivo by local gene transfer experiments with XBP1s into DRG 

neurons which increased axon regeneration post-injury (Onate, Catenaccio et al. 2016). The 

response of associated glia is key to regeneration and they appear to initiate a UPR as there is 

activation of ER stress markers in dedifferentiated Schwann cells following nerve damage and in 

perineuronal presumably satellite glial cells in the DRG (Mantuano, Henry et al. 2011). These 

glial cells and the distal nerve segment showed elevated levels of the protein chaperone 

BiP/GRP78 and XBP1s after a crush injury; however, there appeared to be no upregulation of the 

PERK pathway with no induction of the proapoptotic ATF4 or its targets CHOP or GADD43 

(Onate, Catenaccio et al. 2016). These correlated to injured neuronal cell body findings as CHOP 

was not elevated in DRG neurons or motoneurons of the ventral horn as far as 8-days post injury. 

These findings pointed to a more predominating role of the IREa/XBP1 pathway in the ER stress 

reaction of injured neuronal and Schwann cells in nerve degeneration and regeneration.  

As stated above, the therapeutic potential of either inhibiting or enhancing components of the 

UPR has been explored. Besides the pro-regeneration effect of XBP1s adenoviral vectors in 

DRG neurons, ERp57 overexpression in transgenic mice showed similar results with increases in 

myelin clearance, macrophage infiltration and axonal regeneration (Castillo, Onate et al. 2015). 

Furthermore, the adenoviral vector mediated overexpression of BiP/GRP78 appears to increase 

motoneuron survival in spinal root avulsion models (Penas, Font-Nieves et al. 2011). However, 

while PERK/ATF4 pathway is a known regulator of the UPR, ATF4 knockouts had no 

difference in axonal outgrowth following injury compared to wildtypes (Onate, Catenaccio et al. 

2016). These results show that some UPR elements maybe essential to the events of regeneration 

and others not, and their manipulation is a potential target to improve functional recovery. 

Another pathological state where ER stress is likely to cause deleterious effects is diabetic 
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peripheral neuropathy, where progressive degeneration of peripheral axons leads to decreased 

tactile sensation and altered pain states (Wu, Li et al. 2013, O'Brien, Hinder et al. 2014). In 

streptozotocin diabetic rat models, elevated CHOP expression is found in nerve tissue, with the 

levels correlating with severity of disease (Wu, Li et al. 2013). These and pre-diabetic models 

also exhibit higher levels of ER stress markers including Phosphorylated PERK, eIF2a, IRE1a 

and BiP/GRP78 in sciatic nerve (Lupachyk, Watcho et al. 2013, Lupachyk, Watcho et al. 2013). 

These studies looking at injury and other disease states demonstrate the wide implication of ER 

stress and its likely involvement in all sensory neuron pathologies.  

 

1.4.1.6. Luman: A regulator of the UPR and regeneration 

As stated above, Luman is a known transcriptional regulator of the UPR, binding 

promoter regions containing CRE and UPRE (Lu, Yang et al. 1997, Lu and Misra 2000) and is 

expressed by a variety of rat tissue types (Ying, Zhang et al. 2015).  The highest levels seen in 

nervous tissue and DRG in particular. The participation of Luman in the ER stress response led 

to the hypothesis that it and UPR components are up-regulated in axotomized DRG neuron. 

Previous work has shown that injured neurons necessitate a coordinated UPR to enhanced axonal 

regeneration (Onate, Catenaccio et al. 2016). Studies from our lab demonstrated increased 

expression of ER stress markers including CHOP and BiP/GRP78 in both DRG soma, the axon, 

and non-neuronal components, where axonal elements were retrogradely transported back to the 

cell body (Ying, Zhai et al. 2015). Further seminal work by Ying et al identified Luman as an 

axonally localized transcription factor that co-localized and interacted with the transport 

molecule Importin (Ying, Misra et al. 2014). Axon-derived Luman is rapidly synthesized from 

axonally confined transcripts in response to axotomy and serves as an injury signal where the 

transcriptional activation domain is retrogradely transported back to the DRG soma nuclei by an 

importin-dynein mediated mechanism. Remarkably, reduction of Luman using small interfering 

RNAs (siRNA) impaired neurite outgrowth of injured sensory neurons. This implies that Luman 

can modulate the capacity for sensory neurons to regenerate by either its action on UPR or other 

growth-related targets. Such targets include components of the cholesterol biosynthesis pathway 

and the UPR as Luman knockdown reduces both free and total cholesterol levels in injured 

sensory neurons and downregulates a number of genes involved in the regulation of cholesterol 

synthesis and the UPR (Ying, Zhai et al. 2015). Cholesterol is an essential component of plasma 



	 28 

membrane, that is required in abundance for the growth of regenerating axons. The potential 

importance of Luman in the regulation of the regeneration response via cholesterol biosynthesis 

or induction of the UPR was supported by enhanced neurite outgrowth in Luman knockdown 

neurons with cholesterol supplementation or addition of tunicamycin which induces the UPR in 

the absence of a notable impact on Luman expression (Ying, Zhai et al. 2015). The identification 

of Luman as an axon-localized sensor of injury was a principal finding, where loss of axon 

integrity leads to an elegant signaling loop, where injury-induced Luman is transported back to 

the soma where it regulates regeneration-associated events. However, all these studies were done 

employing one or 2-day injury time points, with a major focus on the importance of the axon-

derived Luman signal. What is not known, is whether an intrinsic upregulation of Luman occurs 

at the level of soma as part of the very early inductive and more protracted maintenance phases 

of the cell body response to injury associated with regenerative axon growth.  

 

1.4.1.7. Zhangfei/CREBZF 

As stated, Luman was initially recognized as the first host ligand for host cell factor-1 (HCF-

1) (Lu, Yang et al. 1997) and was associated with reactivation of latent herpes virus. Only later 

was its importance with regards to the UPR identified (DenBoer, Hardy-Smith et al. 2005) . 

Further elucidation of the function and inherent role of this neuronal transcription factor lead to 

the discovery of Zhangfei, a potent and efficient inhibitor of Luman activity (Lu and Misra 2000, 

Misra, Rapin et al. 2005). First experiments revealed that Zhangfei (ZF aka CREBZF/SMILE), 

another basic leucine zipper transcription factor, when co-expressed with Luman in Vero (kidney 

epithelial cells) and Hep2 cells could potently and effectively inhibit the host cell factor (HCF)-

dependent transactivation function by the Gal4-Luman fusion protein of a UPR element 

containing promoter in a dose dependent manner (Misra et al., 2005). Zhangfei, like Luman was 

discovered due to its interaction with the Herpes Simplex Virus (HSV) -1 related HCF-1, binding 

to HCF in a similar manner to HSV viral protein – 16 (VP16) (Lu, Yang et al. 1997, Lu and 

Misra 2000). ZF is expressed in sensory neurons and its overexpression in vitro competitively 

inhibits the VP16 associated transactivation complexes on HSV-1 immediate-early genes and 

disrupts viral replication (Akhova, Bainbridge et al. 2005).  The fact that Luman facilitates the 

reactivation of latent HSV and ZF acts as a suppressant, further argues that their roles in native 

cells are likely in opposition to each other.   
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More recent work has revealed ZF as a potential regulator of the UPR, where its ectopic 

expression in osteosarcoma cell lines lead to decreased levels of Xbp1, HERP, CHOP and Bip, 

thus suppressing the UPR (Bergeron, Zhang et al. 2013). ZF appears to specifically suppress the 

action of the Xbp1 by a leucine zipper (LZIP) mediated interaction, where XPB1 transcriptional 

activity is inhibited and the protein is rapidly degraded (Zhang, Rapin et al. 2013).  Even though 

ZF is a LZIP regulator of transcription, its basic LZIP domain lacks a specific amino acid residue 

that is critical to protein-gene promoter interaction; therefore, a ZF homodimer is unable to bind 

response elements known to recognize other LZIP proteins (i.e. Luman) (Lu and Misra 2000). 

The transactivation function of ZF is accomplished through its interaction with intermediary 

proteins including the tumor suppressor protein p53 (Lopez-Mateo, Villaronga et al. 2012) and 

ATF4 (Hogan, Cockram et al. 2006), where ZF binding or heterodimerization promotes their 

transcriptional activity and enhances binding to their target promoters, including cAMP response 

elements (Hogan, Cockram et al. 2006). Contrary to this, ZF has suppressive properties as it 

inhibits the action of many transcription factors including Luman (Misra, Rapin et al. 2005), 

nuclear estrogen receptors (Xie, Lee et al. 2008), CREBH (Misra, Chanda et al. 2011), the UPR 

regulator XBP1 (Zhang, Rapin et al. 2013) and members of the SMAD family (Lee, Lee et al. 

2012). The specific inhibitory mechanism appears to combine decreasing the transcription 

factors affinity to known promoter regions and increasing its proteasomal degradation. 

 ZF interaction with p53 is of particular interest, as ZF overexpression in both human and 

canine osteosarcoma cells inhibits growth and triggers apoptosis through p53 (Zhang and Misra 

2014, Zhang, Thamm et al. 2015). ZF co-localizes and stabilizes nuclear p53 by displacing a 

ubiqutin ligase, thus protecting from proteasomal degradation (Zhang and Misra 2014). 

Suppression of the UPR by ZF is also dependent on p53, as siRNA disruption of p53 prevents 

the ZF-mediated UPR response and ectopic expression of both the proteins shows synergistic 

UPR upregulation (Zhang and Misra 2014). The action of ZF exerted through the tumor 

suppressor protein p53 has multiple consequences not only for tumor cell biology, but also nerve 

regeneration, as p53 is also clearly implicated in this process (reviewed in (Krishnan, 

Duraikannu et al. 2016).  

Other stress pathways are also associated with ZF, including the amino acid response (AAR), 

a cellular mechanism that protects cells from amino acid deprivation which is associated with 

multiple pathologies including malnutrition, sepsis and trauma (Kilberg, Pan et al. 2005). ATF4 
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is known regulator of AAR, whose activity is enhanced by ZF, with downstream targets of 

ATF4, such as CHOP, being induced by amino acid deprivation (Averous, Bruhat et al. 2004, 

Hogan, Cockram et al. 2006).  Zhang et al discovered that amino acid deprivation upregulated 

ZF in Madin-Darby canine kidney epithelial cells (MDCK) cells though an AAR Element -like 

gene in the ZF promoter region, which is also found in the CHOP promoter (Zhang, Jin et al. 

2010).  The loss of this AARE promoter region in the ZF gene resulted in complete loss of ZF 

AAR activation. These results point to ZF as a stress sensor and a possible regulator of AAR 

pathways and suggests that pathological states may alter ZF activity at the gene level.  

Interestingly, ZF has also been implicated in nerve growth factor (NGF) signaling through its 

regulation of expression of the NGF receptor TrkA signaling (Valderrama, Rapin et al. 2008) . 

The role of ZF in TrkA regulation is complex.   During development, TrkA triggers pathways for 

differentiation and in an undifferentiated cell ZF can activate the expression of the receptor, thus 

facilitating NGF mediated maturation or apoptosis (Valderrama, Rapin et al. 2009).  But ZF also 

has a suppressive action on TrkA, as its interaction with Brn3a  (Valderrama and Misra 2008) 

inhibits transcription of the receptor in non-neuronal cells (Valderrama, Rapin et al. 2008). As 

stated, DRG neurons are highly regulated by neurotrophins though trk signaling and peripheral 

nerve injury alters TrkA expression in adult sensory neurons (Verge, Merlio et al. 1992). With 

the knowledge that ZF regulates TrkA expression, it’s plausible that the injury associated 

expression changes of trk receptors may be facilitated via a ZF related process.  

 ZF appears to suppress the UPR and likely is a counter to Luman activation, by inhibiting 

Luman and perhaps turning off the UPR through this route.  With the importance of the UPR in 

nerve injury noted and with ZF’s known involvement with the regeneration related tumor 

suppressor p53 and TrkA, the expression of ZF is presumably important in injured neurons. 

However, the expression pattern of ZF in sensory neurons has not been characterized and its 

response to injury is not known. 
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1.5. Hypothesis and specific aims 

Peripheral nerve injury induces a complex series of cellular events in sensory neurons, many 

of which are linked to the stress induced by axotomy. Successful regeneration of these sensory 

neurons can be bolstered by an understanding of how sensory neurons are sensing and 

responding to stress at the various stages of the cell body response and whether this aids the 

neuron to survive axotomy and mount a strong regeneration response.  One way to gain insight is 

to examine how expression of known stress-associated transcription factors are altered by 

axotomy.  Thus, I chose to examine one transcription factor linked to neuronal survival and 

stabilizing the cell during times of homeostatic compromise, FOXO3A; and two transcription 

factors which we and others have shown to be involved in regulation of one of the earliest 

responses to cellular stress, the unfolded protein response, Luman/CREB3 and 

Zhangfei/CREBZF, the former of which has also been shown to be an important axon-derived 

retrograde signal linked to the intrinsic ability of an injured neuron to intrinsically regenerate an 

axon; while the latter has been shown to be a repressor of Luman transcriptional activity.  More 

specifically, I set out to test the hypothesis “Sensory neurons respond to peripheral axotomy by 

mounting a cell body response involving a coordinated regulation of stress-associated 

transcription factors linked to distinct phases of regeneration”.  My doctoral research was 

designed to test this hypothesis by addressing the following aims: 

(i) to gain insight into the temporal expression patterns of transcriptional regulators 

associated with cellular stress responses of axotomized sensory neurons; 

(ii)  to ascertain whether the responses of these transcription factors are coordinately 

regulated; and finally 

(iii) to gain insight into whether BDNF, a known regulator of the inductive signal of 

regeneration responses of sensory neurons is involved in this regulation.   
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2. Materials and Methods 

2.1. Nerve injury animal model 

Male Wistar Rats (Charles River Laboratories, Willmington, MA) weighing between 200-

300g housed at room temperature on a 12-h light-dark cycle with access to food and water were 

used in all experiments. Animal procedures were conducted in accordance with the Canadian 

Council on Animal Care and approved by the University of Saskatchewan Animal Research 

Ethics Board.  

Animals were given buprenorphine (Temgesic; 0.05- 0.1 mg/kg) analgesic subcutaneously 

pre- and postoperatively. For peripheral nerve axotomy, animals were deeply anesthetized with 

inhalational isoflurane (2% delivered at a rate of 2L/min). A dorsal incision was made exposing 

the lumbar and sacral spinal column followed by careful dissection of surrounding bone and 

muscle to reveal the Lumbar segment spinal nerves. The right sciatic nerve was transected at its 

origins from the lumbar 4-6 (L4-6) spinal nerves and a small 5mm segment resected to prevent 

regeneration. This anatomical injury site was selected as it ensures nearly 100% injury of the L4-

6 DRG neurons. Axotomized animals were sutured closed in layers and placed in individual 

cages until tissue harvesting.  

The injury time course was conducted by sacrificing the animals after the pre-determined 

post-injury time points of 1 hour, 1 day, 2 days, 4 days and 1 week. Naïve animals underwent 

anesthetic procedures but had no surgical intervention. Sham animals were surgically exposed 

and tissues were dissected out as with the experimental models with the exception that no spinal 

nerve was handled or injured. The sham time course was conducted as described and the animals 

were sacrificed after the post-surgical time points of 1 hour, 1 day, 2 days, 4 days and 1 week. 

Each time point/time course had an N=3 minimum. A total of 7 time courses were generated 

during the course of this thesis and included naïve animals for direct comparison and to rule out 

confounders such as anesthetic technique and animal batch variability. Three time courses were 

analyzed for quantitative data and the others showed qualitative reproducibility that matched the 

quantitative results. 

Prior to tissue harvesting, animals were anesthetized with a Euthanyl Forte overdose 

(Bimeda-MTC, Cambridge, ON). The internal thorax was exposed each subject was perfused via 

the left ventricle with 100 ml of warm phosphate buffered saline then 500 ml of ice cold 4% 

paraformaldehyde with 0.2% picric acid for tissue fixation. The L4-L6 ipsilateral and 
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contralateral DRGs, corresponding spinal cord segments and nerve tissue was dissected out 

promptly and stored in the same fixation solution until further processing.  

 

2.2. Nerve crush and electrical stimulation model 

A nerve crush injury was performed in conjunction with the electrical stimulation 

experiments. Prior to brief stimulation, the exposed mid-thigh sciatic sustained a crush injury by 

applying closed fine 5.0 forceps (at the same scored level on the forceps) for 10 seconds. In some 

animals one hour of brief electrical stimulation was applied proximal to the crush site (Fig. 2.1) 

immediately following the crush injury.  Electrical stimulation experiments were done similar to 

published protocols (McLean, Popescu et al. 2014). The distal sciatic nerve of male Wistar rats 

were exposed at the mid-thigh level. Two insulated stainless steel wires (Cooner A5632) free of 

insulation at the ends for 2-3mm and twisted to from a loop were used; the cathode end was 

looped around the sciatic nerve proximal to the crush injury site and sutured in place. The anode 

was inserted between skin and muscle distal from the exposed nerve. The wires were connected 

to an external Grass (Quincy, MA) SD-9 stimulator. Brief electrical stimulation was delivered at 

a continuous 20 Hz train of supramaximal pulses (100 msec; 3V) for one hour. Epineural 10-0 

suture marked the stimulation site. These stimulation parameters employed in this study were 

selected as they closely mimic neuronal firing patterns.  

 
Figure 2.1 Nerve injury model and stimulation.  For electrical nerve stimulation experiments, 
nerves were first crushed followed by immediate electrical stimulation at 20 Hz proximal to the 
crush site for one hour continuous. 
 

2.3. siRNA infusion treatments 

In order to suppress endogenous BDNF levels in vivo, an siRNA infusion specific for BDNF 

was used in a similar manner to previous published methods (Baker-Herman et al., 2004; 
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Geremia, Pettersson et al. 2010 ). Small interfering RNAs (siRNA) directed against rat BDNF 

mRNA (accession number – M012513), a control non-targeting scrambled sequence 

(siCONTROL Non-targeting siRNA Pool #D-001206-13-20; 5′-AUGUAUUGGCC 

UGUAUUAG-3′; 5′UAGC- GACUAAACACACAUCAA-3′) or a fluorescently labeled control 

scrambled siRNA (siGLO – RISC-free siRNA #D-001206-13-20; proprietary sequences) were 

obtained from Dharmacon, Inc. BDNF siRNA consisted of four pooled 21-nucleotide duplexes 

with symmetrical 3′ over-hangs and a 5 phosphate on the antisense strand (SMARTpool – #M-

080046-00):1) 5′-PUCAUCCAGCAGCUCUUCGAUU, 2) 5′- PUUAAUGGUCAGUG 

UACAUAUU 3) 5′-PAAUACUGUCACACGCUCUU and 4) 5′-PACAUACGAUUG 

GGUAGUUCUU. Scrambled siRNA and BDNF siRNA and siRNA GLO were suspended in 

siRNA Universal Buffer (Dharmacon) to yield a concentration of 100 µM. siRNA stocks were 

aliquoted and stored at − 80 °C. 

On the day of injection, 15 µl of siRNA (100 µM stock) was combined with 2 µl of 

Oligofectamine (Invitrogen) and incubated for 15 min at room temperature. A laminectomy was 

performed and a sterile indwelling catheter was inserted into the subarachnoid space at the 

lumbar/sacral junction so the end of the catheter lay at the level of the L5 DRG. 17 µl (∼20 µg) of 

siRNA/Oligofectamine solution is injected over 5 min followed by 3 µl of sterile PBS into the 

indwelling catheter to push the remaining siRNA through. Three days later a second injection of 

BDNF siRNA (n=3 at 3 days) or control non-targeting siRNA (n = 3 at 3 days) was administered 

via the catheter and immediately followed by unilateral transection of the L4,5,6 spinal nerves. 

An additional 4 control animals received unilateral transection of the L4,5,6 spinal nerves alone. 

Animals were perfused 3 days later and L4,5,6 DRG removed and processed for 

immunohistochemistry to detect changes in BDNF and GAP-43 expression and BDNF mRNA 

levels or in situ hybridization to assess the effectiveness of BDNF silencing and impact on RAG 

protein and mRNA expression [shown previously by (Geremia, Pettersson et al. 2010)]. Prior to 

conducting the BDNF siRNA experiments, fluorescently labeled control scrambled siRNA–

siGLO was delivered intrathecally in the same manner and concentration to first ensure that the 

siRNA was effectively reaching the neuronal cell bodies in the L5 DRG.  
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2.4. Tissue processing 

Animals were deeply anesthetized and perfused via the left ventricle with cold phosphate 

buffered saline (PBS, 0.1M, pH 7.4) followed by 4% paraformaldehyde (Apfel, Wright et al.) 

and 0.2% picric acid in phosphate buffer (PB, 0.1 M, pH 7.4). Dissected tissues (L4, 5,6 DRGs, 

sciatic nerve, C4 ganglia) were postfixed (1–1.5 hours) and cryoprotected in 20% sucrose. 

Control and experimental tissues were embedded in the same cryomolds to ensure processing 

under identical conditions, covered in OCT and frozen in cooled isopentane prior to storing at     

-80°C until processing. 

 

2.5. Western blot 

Proteins were extracted from tissue and cell samples with RIPA buffer containing protease 

inhibitor cocktail (Sigma-Aldrich). These samples included DRG from naïve and spinal nerve 

injured animals as stated and other tissue samples to assess the specificity of the antibodies 

employed in the studies. For FOXO3a, samples from a BrCA cell line and rat liver were used as 

positive controls with known expression of FOXO3a. For Luman and ZF, antibody specificity 

controls Vero cells were maintained in Dulbecco’s modified Eagle’s medium (Invitrogen, 

Carlsbad, CA, USA), with 10% newborn calf serum, 100 unit/ml penicillin, and 100 mg/ml 

streptomycin at 37 °C in a humidified incubator with 5 % CO2. The day prior to transfection, 

Vero cells were seeded into six-well plates at a density of 5X105cells/collagen-coated well. Cells 

were transfected with one microgram of pcDNA3.1, pcLuman or pcZhangfei, using 

Lipofectamine (Canadian Life Technologies) in six-well plates as per the manufacturer’s 

instructions.  

For DRG samples, 20 µg of protein were electrophoresed on a 12% SDS polyacrylamide gel, 

along with a protein molecular size marker (Licor, #928-40000) and then transferred onto a 

polyvinylidene fluoride membrane (Bio-rad) by semi-dry electroblotting for 15 minutes in cold 

transfer buffer (25mM Tris, 192 mM Glycine, 20% methanol) at 15V using a Bio-Rad Trans-

Blot apparatus. Membranes were blocked with blocking buffer (LI-COR Biosciences) at room 

temperature for 1 h. Membranes were then incubated with primary antibodies (Foxo3A 1:2,000 

(Cell Signaling #9467) in 5% BSA; Luman 1:4,000; Zhangfei 1:4,000) in LI-COR Odyssey 

blocking buffer with 0.1% Tween 20 overnight at 4 °C, followed by incubation with Goat Anti-

Rabbit LI-COR IRDye 680 (1:10,000) and Goat anti-Mouse LI-COR IRDye 680 (1:10,000) 
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secondary antibodies for 1 h at room temperature. Proteins were visualized by the Odyssey 

Infrared Imaging System (LI-COR Biosciences). Mouse anti-GAPDH (1:10,000) was used to 

detect GAPDH loading control. Membranes were then rinsed in distilled water and scanned on 

the Licor Odyssey 9120 infrared scanning system. For quantification, the density of each band on 

the immunoblot was estimated by densitometry and normalized to the density of the loading 

control band in the sample. Samples contained an N=3 animals per set condition and each sample 

was analyzed in triplicate.  

 

2.6. Immunohistochemistry 

Injured neurons in DRG sections were identified using an antibody against activating 

transcription factor 3 (ATF-3), a specific marker induced in injured DRG neurons (figure 2.2) 

(Tsujino, Kondo et al. 2000).  The tissues were sectioned serially at 6 µm (DRG) or 10 µm 

(nerves) in a cryostat and thaw mounted onto cooled ProbeOn Plus slides (Fisher Scientific). 

Immunohistochemistry slides were air-dried, washed in phosphate buffered saline (PBS, 3 x 10 

minutes) and blocked with 10% donkey serum in 0.25% Triton-X in PBS for 1 hour at room 

temperature. After blocking, tissues were incubated with primary antibody, either rabbit anti-

Luman (diluted 1:400 in 2% donkey serum+0.25% Triton X-100, Misra Lab), rabbit anti-ZF 

(1:400, Misra Lab), rabbit anti-FOXO3a (1:200, Cell Signaling, Cat# - 24975) or rabbit anti-

ATF-3 (1:2,000 Santa Cruz Biotech Inc, sc-188) overnight in air sealed, humidified containers at 

4°C. All slides were also incubated with goat anti-LaminB (1:50, Santa Cruz) and were DAPI 

stained with mounting medium (Prolong Gold with DAPI; Life technologies) to ensure accurate 

nuclear localization. For nerve sections, mouse anti-bIII tubulin (1:100, Millipore) was applied 

as a marker of axons. The following day, slides were washed in PBS (3 x 10 minutes) and 

incubated with secondary antibodies, donkey anti- rabbit Cy3 (1:600, Jackson ImmunoResearch) 

donkey anti-rabbit Alexa Fluor 350 (1:500, Life Technologies), donkey anti-goat Alexa Fluor 

680 (1:10000, Life Technologies) and donkey anti-mouse Alexa Fluor 488 (1:100, Jackson 

ImmunoResearch), for 1 hour in the dark at room temperature. Finally, slides were washed in 

PBS (3 x 10 minutes) and coverslipped with Prolong Gold with DAPI (Life technologies). To 

establish the specificity of the immunostaining, additional slides were incubated with the 

omission of primary antibody and processed as above. Specificity of the Luman and ZF 
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antibodies were assessed with antibody aliquots pre-absorbed with cell protein isolates from 

Vero cells transfected with either Luman or Zhangfei.  

 

 
 

Figure 2.2.  Effective injury of DRG neurons confirmed with ATF-3 staining. 
Immunofluorescence photomicrographs of L5 DRG sections (6 µm) processed to detect ATF3 
protein. Ipsilateral DRG from L4-L6 spinal nerve transected rats were collected after the 
predetermined time points of 1hr, 1day, 2day, 4day and 1week. Scale bar = 100 µm. All injured 
animals used in these studies had positive ATF-3 staining detectable by the 1-day post-injury 
time point.  
 

2.7. In situ hybridization  

Oligodeoxyribonucleotide (OligoDNA) 48mer probes were synthesized complementary to 

and selective for mRNA for FOXO3a (5’CCAACAACGTTCTGTGTGGAGATGAGGGAGTC 

AAAGTTAAAATCCAAC-3’, University of Calgary DNA services, Alberta, Canada) ZF (5’-

CGCCGAGCAGAACTCCACCGACACGTTATCCTTGTCCACATGGAGACA-3’, University 

of Calgary DNA services, Alberta, Canada) and Luman (5’-TATCTCAATCACCATGGCTTGA 

AGCTTCCTCAGTTGATCTAGAAGGGA-3’, University of Calgary DNA services, Alberta, 

Canada).  All cDNA regions used were checked against the Genbank database (NIH, at the 

Internet site www.ncbi.nlm. nih.gov); no greater than 60% homology were found to sequences 

other than the selected transcript. Labeling of probe with 35S–dATP (Perkin Elmer, USA) and 

terminal transferase enzyme (Amersham, Canada) was performed in a terminal transferase 
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buffer, containing sodium cacaodylate 500 mM, CoCl2 (pH 7.2) 10 mM, mercaptoethanol 1 mM, 

for 1.5–2 hours at 37uC. The reaction was stalled by adding 500 µl, 0.1 M Tris HCl (pH 8.0), 

after which probe was purified through a NENSORB-20 column (New England Nuclear, USA), 

and dithiothreitol added to a final concentration of 10 mM. The radioactivity was measured and 

the labeled probe was stored at 4°C. 

All steps prior to hybridization were performed under RNase free conditions, and all 

dilutions were performed in autoclaved double distilled water. The slides were air-dried and 

postfixed in 4% PF (20 minutes), washed in PBS (3x5 minutes), treated with proteinase K at 

37°C (20 µg/ml; 7–8 minutes), rinsed in PBS (5 minutes), fixed in 4% PF (5 minutes), rinsed in 

PBS (2x 5 minutes), rinsed in diethyl pyrocarbonate (0.1%) -H2O (5 minutes), and dehydrated in 

increasing ethanol concentrations (70%, 90%, 100%; approximately 1 minute in each). Sections 

were hybridized with radiolabeled probe at a concentration of 107 cpm/ ml in a hybridization 

solution consisting of 50% formamide, 4x saline sodium citrate (SSC; 1xSSC = 0.15 M NaCl, 

0.015 M sodium citrate), 1xDenhardts solution (0.02% bovine serum albumin (BSA), 0.02% 

Ficoll and 0.02% polyvinylpyrrolidone), 10% dextran sulphate, 0.5 mg/ml salmon sperm DNA, 

1% sarcosyl and 0.2 M DTT. Hybridization, with approximately 100 µl hybridization 

solution/slide, was conducted over night at 43°C in air sealed, humidified chambers to prevent 

evaporation. Following hybridization, the slides were washed in 1xSSC (4x15 minutes, 55°C, 

and an additional 30 minutes, room temperature), dipped twice in distilled water, dehydrated in 

ascending ethanols and air dried. Slides were dipped in Kodak NTB2 photoemulsion (diluted 1:1 

in distilled water), to generate autoradiograms. After 4–8 weeks exposure the slides were 

developed in Kodak D19 (3–5 minutes), rinsed in water, fixed in Kodak rapid fix (5 minutes) and 

rinsed in water (20 minutes). For darkfield viewing and photography slides were left unstained, 

whereas slides for brightfield examination were counterstained with 0.5 % toluidine blue (in an 

acetate buffer; pH 4–4.5), and mounted with Permount (Fisher, Canada). The specificity of 

hybridization signal for the individual probes was determined by hybridization of adjacent 6 

micron sections with labeled probe with the addition of either 1000-fold excess corresponding 

unlabeled probe which abolished the signal, or 1000-fold excess of a dissimilar unlabeled probe 

of the same length and similar G-C content which left the signal unchanged from that observed 

with labelled probe alone. 
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2.8. Quantification and analysis 

Fluorescence photographs of prepared tissue samples were taken using Zeiss Axio Imager 

M.1 fluorescence microscope. Digital images were taken under identical exposure conditions 

using Northern Eclipse v7.0 software (EMPIX Imaging Inc) for all experimental groups in the 

same imaging session.  Intensity of the immunofluorescence signal (average grey/micron2) for 

each neuron and neuronal diameter was measured using Northern Eclipse v7.0 software (EMPIX 

Imaging Inc.). Scatter plots and line graphs were made with Graphpad Prism v5.0 and statistical 

significance between time points and conditions were assessed using the Kruskal-Wallis one-

way ANOVA with Dunn’s post-test analysis or the Mann-Whitney t-test, with statistical 

significance at p values <0.05. 
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3. FOXO3a as a BDNF-regulated systemic sensor of nerve injury in dorsal root ganglion 

neurons 

 

3.1. Abstract 

The regulation of neuronal transcription factors is critically important during pathological 

events, as their activation or repression may benefit or hinder a successful recovery. Forkhead 

class box O3a (FOXO3a)’s functional reaction to stress events has been characterized in a 

variety of neuronal cell types, where induction of this transcription factor leads to the activation 

of apoptotic genes and cell death. Recent studies however suggest a more involved role for 

FOXO3a in the cellular stress and injury response of sensory neurons.  Thus, this study 

examined the temporal impact of chronic nerve transection on FOXO3a expression and nuclear 

localization in dorsal root ganglion (DRG) neurons. L4-L6 spinal nerves of male Wistar rats 

were unilaterally axotomized and corresponding ipsilateral and contralateral DRGs from 1-hour, 

1-day, 2-day, 4-day and 1-week injured male Wistar rats were processed for 

immunofluorescence analysis, with naïve animals serving as controls. Immunohistochemical 

protein analysis revealed that in naive neurons, cytoplasmic and nuclear FOXO3a levels were 

higher in small to medium sized neurons representing the presumably nociceptive subpopulation, 

as compared to large size neurons. At just 1-hour post-injury significantly increased FOXO3a 

nuclear localization was observed in small size injured neurons. This trend however rapidly 

reversed, with significant declines in ipsilateral FOXO3a protein levels and nuclear localization 

occurring by 1-day post injury and at subsequent time points examined relative to 1-hour post-

injury.  By 1-week, while sensory neurons ipsilateral to injury now displayed slightly elevated 

cytoplasmic levels compared to earlier injury time points, the levels still did not approach the 1-

hour injury levels.  Interestingly, FOXO3a levels and sub-cellular localization in DRG neurons 

directly contralateral to injury were dramatically altered, as nuclear levels showed a biphasic 

response; peaking at both the 1-day and 1-week post-injury, with a dramatic decline at 4 days.  

Furthermore, L4-L6 spinal nerve transection also altered FOXO3a protein levels and nuclear 

localization in uninjured C4 DRG neurons, in a manner consistent with the neurons contralateral 

to injury. These findings in contralateral L4-L6 DRG and C4 DRG remote from the injury 

support that unilateral nerve injury exerts a systemic impact on regulation of FOXO3a 

expression and its nuclear translocation. Brief 1-hour electrical stimulation (20Hz) of the sciatic 
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nerve at the time of crush injury, a treatment known to enhance BDNF expression and 

regeneration responses, further reduced FOXO3a protein levels in the injured sensory neurons. 

Investigations utilizing intrathecal siBDNF treatment resulted in increased FOXO3a mRNA 

levels both ipsilateral and contralateral to a 3d L4-6 spinal nerve lesion implicating endogenous 

BDNF in FOXO3a regulation. Collectively, suppression of FOXO3a after injury and further 

decline with electrical stimulation indicates that inhibition of the protein maybe required for a 

proper injury repair response. By identifying a suppressive action of BDNF on FOXO3a 

expression, this further signifies the important role of this neurotrophin in induction of the injury 

phenotype. Finally, the observed systemic changes support the existence of stress/injury-induced 

humeral factor(s) influencing transcriptional events in uninjured DRG neurons. 

 

3.2. Introduction 

Injury of the peripheral branch of primary sensory neurons induces a myriad of molecular 

changes as the cell attempts to stay viable with the loss of axoplasm integrity and without 

connection to its target tissue.  Furthermore, as neurons of the peripheral nervous system have 

the propensity to regenerate severed fibres, axotomy leads to the induction of repair/regeneration 

programs with the main goals being survival, growth of injured axons and reestablishment of the 

homeostatic state.  The phenotype of an injured sensory neuron differs greatly from an intact 

one.  A regenerating neuron has elevated expression of regenerative associated genes (RAGs), 

neuropeptides such as galanin and neuropeptide Y (Verge, Richardson et al. 1995), brain-derived 

neurotrophic factor (BDNF) (Karchewski, Gratto et al. 2002) and cell stress proteins  including 

heat shock protein-27 (Costigan, Mannion et al. 1998, Benn, Perrelet et al. 2002, Willis, Li et al. 

2005, Williams and Mearow 2011).  In contrast, spinal nerve injury leads to the down regulation 

of markers associated with the homeostatic state such as neurofilament proteins, the peptides 

calcitonin gene-related peptide and substance P, and the neurotrophin receptors tropomyosin-

related kinase (trk) A, B and C and the common neurotrophin receptor p75 (Verge, Tetzlaff et al. 

1990, Verge, Merlio et al. 1992, Verge, Richardson et al. 1995, Verge, Gratto et al. 1996, 

Karchewski, Kim et al. 1999). Stress and injury associated transcription factors also undergo 

expressional and post-translational changes as many transcription factors such as activating 

transcription factor 3 (ATF-3) (Tsujino, Kondo et al. 2000, Seijffers, Mills et al. 2007), c-jun 

(Ruff, Staak et al. 2012), STAT3 (Sheu, Kulhanek et al. 2000, Miao, Wu et al. 2006, Quarta, 
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Baeumer et al. 2014) and Luman/CREB3 (Ying, Misra et al. 2014) are up-regulated, have 

increased nuclear localization in sensory neurons following axotomy and are linked to axon 

regeneration. The induction and maintenance of regrowth and repair mechanisms depends on the 

modification of certain transcription factors; therefore, the characterization of novel regulators 

and their response to stress and injury has the potential to critically impact our understanding of 

peripheral neuron disorders and their repair. 

Members of the forkhead box transcription factors class O (FOXO) family of proteins 

modulate the cellular processes of survival, differentiation, proliferation and stress resistance 

(reviewed in (van der Horst and Burgering 2007).  These evolutionarily conserved transcription 

factors were first identified as essential to Drosophila development (reviewed in (Wang, Karpac 

et al. 2014).  Since that time, our knowledge of FOXOs has grown exponentially with a protein 

catalogue of over 100 subtypes, implicated in a variety of mammalian and non-mammalian 

cellular processes. They are heavily regulated by various post-translational modifications 

including phosphorylation, and poly- and monoubiquitination (reviewed in (Xie, Chen et al. 

2012). Nucleocytoplasmic shuttling of FOXOs is primarily controlled by an Akt/protein kinase B 

dependent phosphorylation mechanism, whereby the phosphorylated protein remains 

cytoplasmic and dephosphorylation of serine-threonine residues facilitates nuclear localization. 

In the mammalian adult nervous system, only the FOXO1, FOXO3/FOXO3a and FOXO4 

species have been identified and are generally characterized as stress-sensing, pro-apoptotic 

transcription factors (Barthelemy, Henderson et al. 2004, Wen, Wang et al. 2012).  FOXO3a has 

traditionally fit this description in a variety of neuronal cell types; however, studies suggest its 

function in dorsal root ganglion neurons is not restricted to cell death.  In recently published 

work, peripheral nerve crush injuries appeared to down-regulate FOXO3a levels in both sensory 

neurons and associated glial cells, which coincided with the ensuing axonal regeneration and 

satellite cell proliferation that accompanies the pathology (Wang, Liu et al. 2009).  This suggests 

the protein plays a stronger role in the transcriptional events of intact neurons, and its 

suppression may be a result of the injury response. 

The initial trigger of the injury/regeneration response of sensory neurons is not fully known 

but strong evidence implicates altered neurotrophin signaling as a candidate for the inducing 

signal.  Severing of the neural axon removes DRG neurons from their primary source of the 

peripherally derived neurotrophins nerve growth factor (NGF) and Neurotrophin-3 (NT-3); 
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(reviewed in (Verge, Gratto et al. 1996).  Brain-derived neurotrophic factor (BDNF) is expressed 

in small diameter c-fibre neurons at moderate levels under normal conditions.  After injury, 

BDNF is rapidly elevated in this population followed by up-regulation in medium-large diameter 

neurons and down-regulation in small neurons at later time points (Karchewski, Gratto et al. 

2002).  Geremia et al (Geremia, Pettersson et al. 2010) found that antagonizing endogenous 

BDNF signaling immediately at the time of injury, but not one week after injury lead to 

diminished RAG expression in injured neurons and decreased neurite outgrowth, implicating 

BDNF in the induction but not maintenance of the regeneration response. Neurotrophins are 

known regulators of FOXOs in neurons, including FOXO3a (Zhu, Bijur et al. 2004, Gan, Zheng 

et al. 2005, Biswas, Shi et al. 2007, Wen, Duan et al. 2011).  Therefore, the changes in BDNF or 

other trophin levels during nerve injury events may be responsible for FOXO3a down-regulation 

in injured sensory neurons. 

The objectives of this study were to gain further insight into injury-associated alterations in 

FOXO3a expression in sensory neurons and determine whether injury-associated changes in 

BDNF expression are implicated in this regulation. The data reveal a temporal decrease in 

FOXO3a protein in acutely injured lumbar DRG neurons in response to sciatic nerve transection, 

confirming work by Wang et al (Wang, Liu et al. 2009), including a slight resurgence of 

FOXO3a expression at the more protracted 1 week time point examined.  Brief electrical 

stimulation of the sciatic nerve at the time of injury, an experimental design that leads to rapid 

up-regulation of BDNF and increased axonal regeneration (Geremia, Gordon et al. 2007), led to 

a further reduction of FOXO3a mRNA expression than the crush only controls.  A role for 

endogenous BDNF in the FOXO3a injury response was confirmed by knocking down BDNF 

expression through the intrathecal delivery of BDNF specific siRNAs, leading to increased 

FOX3a mRNA expression.  

Finally, because unilateral peripheral nerve injury can result in molecular and physiological 

alteration to uninjured contralateral neurons  (reviewed in (Koltzenburg, Wall et al. 1999), close 

examination of FOXO3a expression in ganglia contralateral and remote to nerve injury was 

performed revealing distinct expression patterns, implicating FOXO3a in both local and global 

responses to injury.  
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3.3. Results 

To address the effect of peripheral nerve injury on the spatial and temporal expression pattern 

of FOXO3a in DRG neurons, the right L4-L6 spinal nerves were unilaterally transected. Nerve 

transection at this high level results in almost 100% axotomy of L4 and L5 DRG neurons (Swett, 

Torigoe et al. 1991). Furthermore, regenerating axons are unlikely to fully reinnervate the distal 

nerve stump, thus prolonging the injury response.  This contrasts a nerve crush model where the 

nerve epineurium remains intact and the injured axons can better regenerate across the lesioned 

area.  Assessment of FOXO3a protein levels was accomplished using immunofluorescence 

histochemistry with the specificity of the antibody employed to recognize FOXO3a confirmed by 

Western blot analysis (Fig. 3.1).  The histological examination and quantitative computer-

assisted analysis of injury-induced alterations in FOXO3a expression in DRG neurons allows for 

both quantification of shifts in subcellular compartment localization (i.e. nucleus versus 

cytoplasm) and shifts expression within distinct size ranges of neurons, generally associated with 

specific sensory modalities. 

 

         
Figure 3.1 Anti-FOXO3a monoclonal antibody specifically recognizes protein band at the 
expected molecular weight of FOXO3a. Western blot analysis of monoclonal anti-FOXO3a 
treated membrane of electrophoresed protein extracts from 2d-injured ipsilateral L4-L6 DRG 
(lane 1), 2d-injured contralateral L4-L6 DRG (lane 2), control BrCA cell line (lane 3), and 
control rat liver (lane 5). Lane 4 empty. Western blots were performed in triplicate. Note: The 
FOXO3a antibody recognizes a band of approximately 85-90 kDa, consistent with the expected 
molecular weight for FOXO3a and nerve injury results in reduced levels of FOXO3a. 
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3.3.1. FOXO3a expression in naïve DRG neurons and DRG neurons ipsilateral to 

injury 

Immunofluorescence analysis of tissue sections from naïve L5 DRG revealed 

immunostaining throughout the cell bodies of the neurons (Fig. 3.2) as well as staining within 

neuronal fibre tracts (data not shown). Quantitative fluorescence analysis and scatter-plot 

representation of the naïve ganglia indicated FOXO3a staining to be the highest in small to 

medium-sized, presumably nociceptive neurons with perikaryal diameters between 20-40 µm.  

Furthermore, a number of these smaller diameter neurons had highly stained neuronal nuclei 

whereas nuclear FOXO3a staining in larger diameter neurons was less prevalent.   

To examine the effect of nerve transection on FOXO3a expression, the L4-L6 spinal nerves 

of male Wistar rats were unilaterally transected and both the ipsilateral and contralateral DRGs 

were collected at predetermined time points.  Nerve injury was verified by ATF3 positive 

staining (Fig 2.2, methods chapter). Immunofluorescence analysis of ipsilateral DRGs 1-hour 

after injury showed increased FOXO3a nuclear staining in the small-med diameter neuron 

population relative to naïve (Fig. 3.2).  Changes in cellular localization at this early time point 

implies rapid protein alterations in response to acute injury. 

At later time points, axotomy of the peripheral branch lead to further changes in FOXO3a.  

After 1-day, the intensity of FOXO3a immunofluorescence decreased in DRG neurons ipsilateral 

to lesion, especially in the small to medium-sized neurons where staining was usually high.  Both 

nuclear and cytoplasmic labelling intensities at 1-day post-injury were significantly lower 

compared to those at 1-hour and naïve (Fig. 3.2). Western blot analysis performed from 2-day 

post injured DRG confirms the immunofluorescence results of this time point (Fig. 3.1). This 

lower level of FOXO3a expression in the small to medium-sized was evident in 1-day and 

continued in 4-day injured DRG neurons (Fig. 3.2). These observations confirm the previously 

documented results that FOXO3a is down-regulated in response to semi-acute peripheral nerve 

injury (Wang et al., 2009). 

To assess the effect of a more chronic injury state, the DRG from 1-week injured animals 

were also examined and the down-regulation of FOXO3a protein was less significant in these 

injured DRG neurons, as levels appeared slightly higher than the 4 day time point (Fig. 3.2), also 

consistent with the findings of Wang et al (Wang, Liu et al. 2009).  The impact of nerve injury 
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on the expression pattern of FOXO3a appears to depend on the type of peripheral nerve lesion 

and the duration of the injury and are summarized in Figure 3.4.  

Sections of both the ipsilateral injured and contralateral uninjured DRG tissue was processed 

for in situ hybridization with 35S-labelled oligoDNA probes specific for FOXO3a mRNA (Fig 

3.9) to visualize whether changes observed at the protein level were seen at the level of 

transcription. No appreciable qualitative difference in neuronal FOXO3a mRNA is noticed 

between the DRG neurons ipsilateral and contralateral to injury at each individual time point. 

While subtle differences between time points are noted, these do not correlate to the significant 

changes seen with neuronal FOXO3a protein levels in response to injury. This finding suggests 

that alterations in FOXO3a protein are likely secondary to post-translational modifications. 
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Figure 3.2. Peripheral nerve injury alters FOXO3a protein levels in DRG neurons 
ipsilateral to axotomy. Left Column. Immunofluorescence photomicrographs of L5 DRG 
sections (6 µm) processed to detect FOXO3a protein. Ipsilateral DRG from L4-L6 spinal nerve 
transected rats were collected after the predetermined time points of 1hr, 1day, 2day, 4day and 
1week. Scale bar = 50 µm. Naïve animals served as controls. Right Column. Representative 
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scatterplots depicting relative changes in FOXO3a immunofluorescence signal over individual 
cytoplasmic and nuclear regions as related to cell size from sections all processed under identical 
conditions in parallel. Experimental states as indicated. Dashed lines divide the plots into low 
versus heavily labelled populations. N= 217 to 294 neurons analyzed per condition. 
 

3.3.2. FOXO3a protein expression pattern in uninjured DRG neurons contralateral 

to injury 

Immunofluorescence analysis on sections from DRG contralateral to the injury indicate 

that unilateral nerve injury has an effect on FOXO3a protein expression in contralateral 

uninjured DRG.  By 1-day, nuclear and cytoplasmic intensity levels were elevated compared to 

the contralateral 1-hr and naïve neurons (Fig. 3.3).  At 2 and 4-days post-injury, staining 

intensities were decreased and nuclear and cytoplasmic intensity reached the lowest levels (Fig 

3.3).  However, 1-week following unilateral injury, contralateral neurons had elevated FOXO3a 

staining to levels similar to those seen in small to medium size neurons at 1-day and exceeding 

levels in seen at 1 day in large neurons (Fig. 3.3).  Summary line plots clearly reveal this 

biphasic cytoplasmic and nuclear response in the contralateral uninjured neurons (Fig. 3.4). 
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Figure 3.3. Peripheral nerve injury alters FOXO3a protein levels in DRG neurons 
contralateral to axotomy. Left Column. Fluorescence photomicrographs of L5 DRG sections (6 
µm) processed for immunohistochemistry to detect cell FOXO3a protein. Contralateral DRG 
from L4-L6 spinal nerve transected rats were collected after the predetermined time points of 
1hr, 1day, 2day, 4day and 1week. Scale bar = 50 µm. Naïve animals served as controls. Right 
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Column. Representative scatterplots depicting relative changes in FOXO3a immunofluorescence 
signal over individual cytoplasmic and nuclear regions as related to cell size from sections all 
processed under identical conditions in parallel. Experimental states as indicated. Dashed lines 
divide the plots into low versus moderate to heavily labelled populations. N= 178 to 294 neurons 
analyzed per condition. 
 

 
 

Figure 3.4 Summary line graphs of alterations in the mean labeling index of FOXO3a. 
Cytoplasmic (A) and nuclear (B) FOXO3a immunofluorescence relative mean intensity levels ± 
S.E.M. observed in DRG neurons ipsilateral and contralateral to injury at time points as 
indicated. Each graph point represents a quantitative analysis of N=600 or more neurons from 3 
animals in total per condition. ***p value<0.001 ANOVA with Dunn’s post-test analysis 
signifies significant difference from the naïve state. 
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3.3.3. Brief electrical nerve stimulation and experimental knockdown of BDNF 

regulate neuronal FOXO3a levels in injured neurons. 

Electrical stimulation (ES) just proximal to nerve injury heightens the regenerative capacity 

of sensory neurons following injury, increases expression of RAGs and elevates somal levels of 

BDNF (Geremia, Gordon et al. 2007). In order to assess the effect of this therapy on FOXO3a 

protein levels in injured primary sensory neurons, sciatic nerves sustained a crush injury at the 

mid-thigh level. Immediately after crush injury, brief 1 hr 20 Hz continuous (alternating) 

electrical stimulation was applied to the nerve proximal to the crush site in one half of the 

animals. Tissue was collected 1-hour, 1 day and 4 days post injury +/- ES. The midthigh sciatic 

nerve crush injury paradigm, unlike the spinal nerve transection injury, results in only ~80% of 

L4,5 DRG neurons being injured as opposed to virtually all neurons in the latter spinal nerve 

transection model.  

 Confirming previously data (Geremia, Gordon et al. 2007), nerve injury plus ES increased 

BDNF mRNA expression in DRG neurons ipsilateral to injury at the 4 day time point (Fig. 

3.5A). Crush injury alone caused a decrease in FOXO3a levels at the 1-day time point; however, 

this decrease appears to reverse slightly at 4-days post crush. Brief ES further reduces FOXO3a 

levels in 4-day post lesion animals compared to 4-day injury alone controls (Fig. 3.5B,C). This 

suggests the ES treatment further suppresses FOXO3a in the 4-day ipsilaterally injured neurons. 

Implying that inhibition of the transcription factor in the injured/regenerating phenotype of DRG 

neurons may improve growth and that the mechanism of this inhibition is either electrical or 

neurotrophin-based, potentially BDNF mediated.  

To investigate whether endogenous neuronal BDNF is implicated in the suppression of 

FOXO3a expression in injured sensory neurons, BDNF specific siRNA intrathecally delivered at 

the level of the L4 and L5 DRG was employed to selectively knock down neuronal BDNF levels. 

Sections processed for in situ hybridization to detect FOXO3a mRNA expression were taken 

from the same tissue generated for experiments in Geremia et al (Geremia, Pettersson et al. 

2010), where the intrathecally delivered siRNA was shown to target DRG neurons (Fig. 8 in 

(Geremia, Pettersson et al. 2010)). In addition, the BDNF siRNA effectively knocked down 

BDNF mRNA and protein expression, leading to reduced regeneration–associated gene 

expression (Fig. 8 in (Geremia, Pettersson et al. 2010)).    
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Sections from this tissue processed for FOXO3a mRNA in situ hybridization revealed that 

siRNA knockdown of BDNF neuronal expression resulted in increased FOXO3a mRNA in L5 

DRG both ipsilateral and contralateral to a 3d L4-6 spinal nerve injury, supporting a role for 

endogenous BDNF in suppression of FOXO3a expression (Fig. 3.6C,D) in both intact and 

injured neurons.  In situ hybridization control experiments confirmed that addition of 100X 

excess cold (unlabeled) FOXO3a to the hybridization solution containing 35S-labeled FOXO3a 

effectively competed away the radio-labelled hybridization signal (Fig. 3.6E,F). In siRNA 

control experiments, infusion of nontargeting control siRNAs resulted in FOXO3a expression 

levels that were not discernibly different from non-infused control 3 day injured animals (Fig. 

3.6A, B). 

 

 
 
Figure. 3.5. Brief electrical stimulation elevates BDNF expression in DRG neurons and 
reduces FOXO3a levels in DRG ipsilateral to injury. A. Dark field photomicrographs of L5 
DRG sections (6 microns) processed for in situ hybridization to detect BDNF mRNA expression. 
Scale bar = 100 microns. The sciatic nerve of animals was crushed at the mid-thigh level and 
brief electrical stimulation of 20Hz was applied for 1hr proximal to the crush site. Crush only 
animals served as controls. Experimental groups are indicated. B. Ipsilateral L5 DRG sections 
processed for FOXO3a immunohistochemistry from crush injured (left column) or crush + stim 
treated (right column) animals after the stated time points of 1 hour, 1 day and 4 days post-
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cessed for immunohistochemistry with a FOXO3a specific antibody. Scale bars = 50 microns.

4d Crush 

4d Stim
+ Crush

Contralateral

4d Crush

4d Stim
+ Crush

IpsilateralA. BDNF

FOXO3a Ipsilateral

1hr 
Crush

Ipsilateral

1hr Stim
+ Crush

1d 
Crush

1d Stim
+ Crush

4d
Crush

4d Stim
+ Crush

B.

Fig. 2.5. Brief electrical stimulation elevates BDNF expression in DRG neurons and this can 
attribute to reduced levels of FOXO3a protein. A.  Darkfield photomicrographs of L5 DRG (6 
microns) processed for in situ hybridization to detect BDNF mRNA expression.  The sciatic nerve 
of animals was crushed at the mid-thigh level and brief electrical stimulation of 20Hz was applied 
for 1hr proximal to the crush site. Crush only animals served as controls. Experimental groups are 
indicated. Scale bar = 100 microns B. Fluorescence photomicrographs of L5 DRG (6 microns) pro-
cessed for immunohistochemistry with a FOXO3a specific antibody. Scale bars = 50 microns.

1d
 C

r

1d
 C

r +
 S

t

4d
 C

r

4d
 C

r +
 S

t
0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 IF
 (A

U
)

*

FO
XO

3a
No

rm
al

ize
d 

IF
 (A

U)

A
B

C

Figure 2.5. Brief electrical stimulation elevates BDNF expression in 
DRG neurons and this can attribute to reduced levels of FOXO3a 
protein. A. Dark field photomicrographs of L5 DRG (6 microns) 
processed for in situ hybridization to detect BDNF mRNA expression. The 
sciatic nerve of animals was crushed at the mid-thigh level and brief 
electrical stimulation of 20Hz was applied for 1hr proximal to the crush 
site. Crush only animals served as controls. Experimental groups are 
indicated. Scale bar = 100 microns B. Fluorescence photomicrographs of 
L5 DRG (6 microns) processed for immunohistochemistry for FOXO3a in 
1hour, 1-day and 4day post injury animals with and without electrical 
stimulation.  Scale bars = 50 microns. C. Quantitative immunofloruresence 
protein analysis with arbitrary units (AU) of mean +/- SEM of total DRG 
protein samples from FOXO3a Western blots normalized to individual 
GAPDH levels (N=3 for each group). *p-value<0.05. 
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injury.  Scale bars = 50 microns. C. Bar graph from analysis of DRG protein extracts from the 
stated conditions (N=3, repeated in triplicate) processed by Western blot representing FOXO3a 
IF densitometry (arbitrary units) normalized to the GAPDH loading controls.  *p value<0.05 
(Mann-Whitney, t-test). 
 

                    
Figure. 3.6. Endogenous BDNF suppresses FOXO3a expression. Representative darkfield 
photomicrographs of 6 micron L5 DRG sections processed for in situ hybridization to detect 
FOXO3a mRNA. Bolus intrathecal delivery of 20 µg BDNF siRNA 3 days prior to injury and 
again at time of injury results in increased levels of FOXO3a mRNA both ipsilateral (D) and 
contralateral (C) to 3 day L4-6 spinal nerve lesion relative to non-targeting control siRNA (A,B). 
In situ hybridization probe specificity control experiments reveal addition of 100X excess 
unlabeled FOXO3a oligonucleotide probe effectively competes away the 35S-labelled FOXO3a 
probe. Scale bar = 100 microns (N= 3 animals per experimental group). 
 

3.3.4. FOXO3a protein levels are altered in uninjured cervical DRG neurons 

The interesting impacts of nerve injury on FOXO3a expression in L4,5 DRG neurons 

contralateral to injury might be attributed to either a systemic, likely humoral response to the 
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injury, or to a response mediated contralaterally through the spinal cord.  To test for the 

involvement of a systemic factor, cervical ganglia remote from the injury site, were taken from 

1-day L4-L6 spinal nerve transected and naïve rats and assessed for FOXO3a expression.  

Qualitative immunofluorescence analysis of 6 animals per condition revealed that C4 DRG 

neurons from 1-day sciatic injury animals had elevated nuclear and cytoplasmic staining relative 

to naïve C4 DRG, especially in the small-med diameter neurons (Fig. 3.7A).  Quantitative 

analysis of neurons from 3 animals confirmed the qualitative observations, revealing significant 

differences between the two conditions (Fig. 3.7,B,C). Although a humoral mechanism best 

explains the effect seen in the cervical ganglia, a neuronal signal through the spinal cord that 

affects contralateral FOXO3a processing may still exist.  

To discern whether the systemic impacts on FOXO3a protein levels were a result of the 

spinal nerve injury itself and/or as a result of the surgical exposure to perform the injury, sham 

surgeries were performed on 3 animals for each injury time point.  The L4-L6 spinal nerves of 

these anesthetized rats were exposed but not transected and the animals were left to recover after 

1-hour, 1-day, 2-days, 4-days and 1-week. FOXO3a protein levels and cellular localization 

appeared unchanged (Fig. 3.8).  The sham experiments verify that the contralateral effect 

observed at the protein level is due to injury of the nerve and not a byproduct of the surgical 

exposure. 
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Figure 3.7 L4-L6 spinal nerve transection alters DRG neuronal FOXO3a expression and 
localization in uninjured C4 ganglia remote from the injury site. A. Fluorescence 
photomicrographs of FOXO3a immunostained C4 DRG sections collected from naïve and rats 
that underwent 1 day unilateral L4-L6 spinal nerve injury. Scale bar = 50µm. Note: L4-L6 spinal 
nerve injury results in elevated nuclear and cytoplasmic FOXO3a staining in small to medium 
sized neurons of the uninjured C4 DRG. B. Scatterplots whereby each point represents the 
relationship between the FOXO3a nuclear (top) and cytoplasmic (bottom) labelling index and 
cell body diameter. Solid lines divide the plots into least labelled and moderately labelled 
populations; dotted lines separate moderately labelled from heavily labelled populations of 
FOXO3a expressing neurons. C. Bar graphs representing normalized nuclear (left) and 
cytoplasmic (right) FOXO3a mean labeling index ± SEM. (***p-value < 0.0001, Mann-Whitney 
t-test). Each graph bar represents a quantitative analysis of N=600 or more neurons from 3 
animals in total per condition. Qualitative analysis of N=6 animals processed per condition was 
performed and quantitative analysis confirmed qualitative observations. 
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Figure 3.8. Sham surgery time course did not result in discernibly altered FOXO3a 
immunostaining. Representative fluorescence photomicrographs of right and left L5 DRG (6 
µm sections) from sham animals with intact peripheral spinal nerves 1-hour, 1day, 2days, 4days 
and 1-week post sham surgeries processed for immunohistochemistry to detect cell FOXO3a 
protein. Scale bar = 100 µm.  Note: Sham procedures involved exposure and handling of the 
spinal nerves without transection. 
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Figure 3.9 Unilateral sciatic nerve injury did not cause dramatic changes is FOXO3a 
mRNA levels between ipsilateral and contralateral DRG. Darkfield (A-C, E-L) and lightfield 
(D) photomicrographs of L5 DRG (6 micron sections) ipsilateral (C,F,H,J,L) and contralateral 
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(B,E,G,I,K) to injury from L4-L6 unilateral spinal nerve transected rats processed for in situ 
hybridization with an 35S-labelled oligonucleotide 48mer probe specific for FOXO3a mRNA. 
DRGs were harvested after the predetermines time points of 1-hout (B,C), 1-day (E,F), 2-days 
(G,H), 4days (I,J), and 1-week (K,L) post-injury. Naïve animals served as controls (A, D). D. 
FOXO3a mRNA were highly expressed in DRG cell bodies but not so in nerve fibres. N = 3 for 
each group. Scale bars = 100 microns. Note: no appreciable qualitative difference in neuronal 
FOXO3a mRNA is noticed between the DRGs ipsilateral and contralateral to injury at each 
individual time point. While subtle differences between time points are noted, these do not 
correlate to the significant changes seen with neuronal FOXO3a protein levels in response to 
injury.  
 

3.4. Discussion 

These experiments shed novel insights into the regulation of FOXO3a expression in DRG 

neurons.  The early initial rapid up-regulation and then profound down-regulation in response to 

peripheral nerve injury implies a connection to both the induction and maintenance phases of the 

regeneration process that may include protection from injury-associated cell death.  In addition, 

the initial increase in nuclear localization observed at one hour after nerve transection suggest it 

is capable of sensing alterations from the homeostatic state.  Although this scenario is plausible, 

constitutive expression in the naïve animal supports a role for this transcription factor outside of 

the realms of neuronal death and injury, with its high level of protein expression in small to 

medium size uninjured neurons implicating it in the nociception.  Nevertheless, our study also 

supports that the decrease in FOXO3a in injured neurons as a result of nerve transection might be 

partly due to the elevation in BDNF, a molecule critical to the induction of the 

injury/regeneration response in sensory neurons (Geremia, Pettersson et al. 2010) and also linked 

to their survival (Acheson and Lindsay 1996; Murphy, Borthwick et al. 2000) .  Finally, the 

alterations of FOXO3a protein expression in sensory neurons contralateral and remote to injury 

raises questions we cannot yet answer, but supports an ability of this molecule to sense very 

subtle alterations in systemic states associated with nerve injury.  Further examination of this 

phenomenon is essential to the understanding of the sensory neurons response to stress and 

disease. 
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3.4.1. Role of FOXO3a in the nervous system and DRG neurons 

The FOXO proteins are a highly conserved family of transcriptional regulators and are 

homologues to DAF-16 (abnormal DAuer Formation-16) in C. elegans (Lin, Dorman et al. 

1997).  This invertebrate transcription factor primarily regulates metabolic processes as well as 

survival and lifespan (Ogg, Paradis et al. 1997, Clancy, Gems et al. 2001). In mammals, their 

involvement with multiple cellular pathways is centered on maintaining homeostasis under 

stressful conditions and directing the cell towards survival or controlled cell death.  FOXOs are 

associated with insulin-mediated events via the insulin-PI3K-Akt pathway, where loss of insulin 

signaling leads to nuclear translocation of the protein (reviewed in (Gross, van den Heuvel et al. 

2008) and altered glucose metabolism (Zhang, Patil et al. 2006).  Insulin and other growth 

factors promote cell proliferation by inhibiting FOXO activation of cell-cycle arrest genes, 

including p27kip1.  To protect cells from oxidant production associated with the loss of metabolic 

integrity, antioxidant enzymes catalase and manganese superoxide dismutase (MnSOD) are up-

regulated by FOXOs to assist in radical scavenging (Yun, Park et al. 2014, Maiese 2015, 

Rangarajan, Karthikeyan et al. 2015). Although FOXO-mediated stress resistance and cell 

stabilization are well documented, the transcription factors are closely linked to apoptosis. 

Indeed, the regulation of cellular events can be complex with recent evidence describing an 

initial protective role for FOXO3a in nervous system tissue that switches to neurodegenerative 

with prolonged exposure to oxidative stress (Shi, Viccaro et al. 2016). 

As previously stated, neuronal FOXO3a (FOXO3, FKHR-L1) has classically been 

considered a pro-apoptotic transcription factor, which is accredited to its close relationship with 

the PI3K/Akt survival pathway.  Phosphorylation by Akt inhibits its activity as phosphorylated 

FOXO3a associates with 14-3-3 proteins, which leads to cytoplasmic sequestering (Maiese 

2015).  Decreased Akt signaling or increased dephosphorylation by phosphatases results in 

nuclear translocation and the activation of forkhead-responsive genes, including the apoptotic 

genes fas-ligand (FasL) (Brunet, Bonni et al. 1999) and bim (Dijkers, Medema et al. 2000).  

Many growth factor signal transduction mechanisms are mediated through Akt, and trophic 

availability modulates FOXO3a activity.  Insulin-like growth factor-1 treatment increases Akt 

phosphorylation of the transcription factor in PC12 cells (Zheng, Kar et al. 2000), while 

neurotrophin deprivation induces nuclear localization of FOXO3a, FasL gene expression and 

death of cultured motoneurons (Barthelemy, Henderson et al. 2004). In general, any conditions 
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associated with neuronal loss; such as development (Srinivasan, Anitha et al. 2005) aging 

(Jackson, Rani et al. 2009) or pathological ischemic events, (Kawano, Morioka et al. 2002, 

Fukunaga, Ishigami et al. 2005, Maiese, Chong et al. 2007) have a connection to decreased Akt 

activity and FOXO3a activation. In spite of this evidence, FOXO3a’s functional importance in 

naïve intact DRG neurons does not appear to be cell death related.  Furthermore, peripheral 

nerve injury does not overtly lead to apoptosis.  Long-term sciatic transection studies suggest 

that retrograde loss of L4-L5 sensory neurons is only detectable 1-month post-axotomy (Groves, 

Schanzer et al. 2003, Kuo, Simpson et al. 2005).  This resistance to death is attributed to the high 

level of autocrine/paracrine trophic support from associated glia and the neurons themselves 

(Acheson and Lindsay 1996, Xian and Zhou 1999, Karchewski, Gratto et al. 2002, Vigneswara, 

Berry et al. 2013, Nadeau, Wilson-Gerwing et al. 2014). As the current study does not examine 

injury events past the 1-week time point, FOXO3a’s influence on apoptosis in this instance is 

debatable. 

Primary sensory neurons of the DRG are heterogeneous in both structure and function.  

Distinct populations exist with specific sensory modalities (proprioception, mechanoception, 

nociception, etc.) and common morphological, biochemical, and physiological characteristics 

(Carr and Nagy 1993). Nociceptor neurons with unmyelinated c-fibres or thinly myelinated Ad-

fibres generally have smaller cell bodies.  It is these small-diameter presumably nociceptive 

DRG neurons that exhibit the highest levels of FOXO3a protein in the naïve animal and undergo 

FOXO3a down-regulation in response to injury.  This high expression and nuclear localization in 

small-medium diameter naïve neurons is perplexing, as activity of this protein coincides with 

cellular stress states.  However, FOXOs conserved relationship with glucose metabolism offers 

clues to FOXO3a’s potential role in these nociceptors.  Small neurons of the DRG have high 

levels of hexokinase, which initially phosphorylates glucose prior to the start of glycolysis 

(Gardiner, Wang et al. 2007). Elevated amounts of this kinase suggest higher concentrations of 

glucose in this population and the necessity for rigorous metabolic management.  Small-medium 

neurons also express high levels of the insulin receptor (IR) (Sugimoto, Murakawa et al. 2002), 

insulin-like growth factor-1 receptor (IGF-1R) and insulin-like growth factor 1 (IGF-1) (Craner, 

Klein et al. 2002). As stated above, FOXO3a activation is induced in a low-glucose situation and 

activates genes associated with glucose conservation, such as glucose-6-phosphatase (Onuma, 

Vander Kooi et al. 2006).  It also increases sensitivity to insulin by up-regulating IR and insulin 
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receptor substrate proteins (Puig and Tjian 2005). Although naïve sensory neurons are not 

glucose deprived, they appear to be highly sensitive to alterations in insulin circulation. In injury 

experiments, axotomy caused the down-regulation of IGF-1, whereas a diabetic neuropathic state 

significantly reduced both IGF-1 and its receptor in smaller neurons (Craner, Klein et al. 2002).  

Interestingly, the Drosophila FOXO3a homolog (dFOXO) suppresses transcription of the IGF-1 

homologue insulin-like peptide dilp-2 in neurons (Hwangbo, Gershman et al. 2004).  Our 

findings do not support this scenario, as injury appears to effect downregulation both the 

transcription factor and the insulin-like molecule.  The extent of FOXO3a’s involvement in the 

glucose regulation of these small DRG neurons before or after injury is unknown and requires 

further study.  

Mitochondrial dysfunction and reactive oxygen species production are consequences of 

elevated glucose concentrations (Nishikawa, Edelstein et al. 2000).  The antioxidant properties of 

FOXOs are well understood and the overexpression of FOXO3a can protect mammalian cells 

from oxidative stress through the upregulation of MnSOD (Kops, Dansen et al. 2002, Li, Chiu et 

al. 2006).  Oxidant regulation of FOXO nuclear localization is not Akt-dependent, rather the 

process is mediated through the oxidative-stress-regulated mammalian sterile 20-like kinase-1 

(MST-1) (Lehtinen, Yuan et al. 2006) or the c-Jun N-terminal kinase (JNK) (Essers, Weijzen et 

al. 2004) pathways where phosphorylation activates the protein by an unknown mechanism.  

This processing is consistent with the FOXO-Akt regulation, as JNK has been shown to 

phosphorylate 14-3-3, which leads to decreased 14-3-3 binding to FOXOs and increased nuclear 

localization of FOXOs (Sunayama, Tsuruta et al. 2005).  This information taken together with 

glucose and insulin regulation of DRG neurons suggests that naïve small sensory neurons may be 

susceptible to oxidative stress, thus resulting in elevated nuclear levels of FOXO3a. 

 

3.4.2. FOXO3a response to unilateral nerve injury 

Axotomy of the sciatic nerve resulted in down-regulation of FOXO3a protein, supporting 

observations seen in previous finding (Wang, Liu et al. 2009). There is no convincing data 

suggesting that injury suppresses FOXO3a at the gene level, and our studies show that mRNA 

expression appeared relatively similar throughout the injury time course. With presumed little 

change in FOXO3a gene transcription, any observed changes in protein levels are likely a 

consequence of post-translational events.  FOXOs are heavily controlled by post-translational 
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modifications with a number of studies highlighting the importance of FOXO polyubiqutination 

and protein degradation (Matsuzaki, Daitoku et al. 2003, Plas and Thompson 2003, Huang, 

Regan et al. 2005, Fu, Ma et al. 2009).  FOXO1 and FOXO3a are ubiquitinated and targeted to 

the proteasome in response to insulin or growth factor treatment, which is accredited to 

activation of the PI3K/Akt pathway and phosphorylation of the FOXOs at known Akt sites 

(Matsuzaki, Daitoku et al. 2003, Plas and Thompson 2003). Genetic transfection of active PI3K 

or Akt leads to phosphorylation-dependent, proteasome mediated FOXO1 degradation (Aoki, 

Jiang et al. 2004).  SKP2 and MDM2 have been identified as E3 ubiquitin ligases that 

polyubiquitinate FOXO1 and FOXO3a respectively (Huang, Regan et al. 2005, Fu, Ma et al. 

2009).  Increased PI3K signaling and Akt phosphorylation results in FOXO nuclear exclusion as 

well as ubiquitination and degradation of the cytoplasmic protein.  Therefore, fluctuations in the 

Akt activity is likely responsible for FOXO3a’s suppression in injured DRG neurons.   

The significance of Akt in adult sensory neurons has been explored through a variety of 

neuropathic pain models where elevated amounts of activated or phosphorylated Akt (p-Akt) are 

associated with certain pain states (Zhuang, Xu et al. 2004, Sun, Tu et al. 2006, Xu, Tu et al. 

2007).  Recently, peripheral nerve axotomy was shown to dramatically increase p-Akt in both 

mouse spinal cord and DRG neurons (Shi, Huang et al. 2009).  Furthermore, phosphorylation of 

Akt is activity-dependent as electrical stimulation of the sciatic nerve also increases p-Akt levels 

(Pezet, Spyropoulos et al. 2005).  These observations strengthen the argument that a rise in p-Akt 

and subsequent substrate phosphorylation and ubiquitination may underlie the axotomy and 

electrical stimulation induced changes in FOXO3a expression.  However, in naïve animal p-Akt 

immunoreactivity is highest in small and medium sized nociceptive neurons (Pezet, Spyropoulos 

et al. 2005), a population we show to have the highest constitutive expression of the transcription 

factor.  This suggests a cell specific threshold whereby heightened Akt activity can exist without 

inducing proteasomal degradation of the protein. 

A distinctive feature of primary sensory neurons is their ability to regenerate in response to 

injury.  The spatial loss of the FOXO3a transcription factor and changes in forkhead responsive 

gene expression during the injured state may be crucial to the regenerative process.  As 

previously stated, FOXOs are transcriptional activators of genes involved in cell cycle inhibition, 

including p27kip1 (Medema, Kops et al. 2000) and cyclin G2 (Martinez-Gac, Marques et al. 

2004), as well as suppressors of the cycle progression protein cyclin D (Schmidt, Fernandez de 
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Mattos et al. 2002).  The role of cell cycle proteins in post-mitotic neurons is under investigation 

and results indicate that induction of the cell cycle precedes neuronal apoptosis (Freeman, Estus 

et al. 1994, Park, Levine et al. 1997, Shirvan, Ziv et al. 1997, Liu and Greene 2001, Becker and 

Bonni 2004, Herrup, Neve et al. 2004).  Nerve regeneration and axon outgrowth is associated 

with cell cycle inhibition events such as the up-regulation of cyclin G (Morita, Kiryu et al. 1996) 

and p21 [the cyclin dependent kinase (cdk) inhibitor](Tanaka, Yamashita et al. 2004), and the 

suppression of the anaphase promoting complex (Konishi, Stegmuller et al. 2004).  Recently, the 

cdk inhibitor p27kip1 has been implicated in the regenerative response as the protein is down-

regulated in motoneurons, axons and associated glia in response to peripheral nerve injury (Shi, 

Cheng et al. 2007, Shen, Shi et al. 2008).  In these instances, the loss of p27kip1 is accredited to 

the upregulation of the ubiquitin ligase SKP2 and the ensuing proteasomal degradation.  DRG 

neurons and satellite cells also have diminished levels of the protein after injury but this follows 

an initial reduction in FOXO3a, suggesting p27kip1 transcription is altered in these cell types 

(Wang, Liu et al. 2009).  As FOXO3a activates the p27kip1 gene (Dijkers, Medema et al. 2000, 

Hu, Wang et al. 2005), the transcription factors degradation and the decreased expression of the 

cdk inhibitor may play a key role in either axon growth or satellite cell proliferation.  Although 

commencement of the cell cycle is typically linked to neuronal apoptosis, perhaps events that 

advance the cycle, such as the suppression of cdk inhibitors, are critical to the regeneration of 

postmitotic neurons.  
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Figure 3.10. Potential mechanism for growth factor mediated FOXO3a degradation in 
injured DRG neurons. Diagrammatic representation of a potential mechanism whereby 
peripheral nerve axotomy results in the elevated production of local growth factors (including 
BDNF) in DRG which in turn trigger well established intracellular conduction cascades 
including the PI3k/Akt pathway. Activation of this pathway would lead to hyperphosphorylation 
of intranuclear FOXO3a, enhanced nuclear export and subsequent ubiquitination and 
proteasomal degradation. This process could eventually lead to the decreased protein levels seen 
in injured DRG neurons, described in this study.  

 

An interesting aspect of this study was the effect of unilateral axotomy on neuronal 

FOXO3a expression in contralateral L4,5 DRG and cervical ganglia located far from the injury 

level. Contralateral neurons showed a biphasic response where nuclear and cytoplasmic staining 

was increased by 1-day post injury, reduced by 2 and 4-days and elevated again by 1-week.  

Neurons of cervical DRG from 1-day sciatic nerve transected rats had higher FOXO3a 

immunostaining in small to medium neurons as compared to naïve controls.  Few connections 

exist between neurons that innervate opposite sides of the body; however, a collection of clinical 

evidence confirms contralateral deficits in patients with one-sided injuries (Kozin, Genant et al. 
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1976, Oaklander, Romans et al. 1998).  The bilateral impact of nerve injury has been reported in 

a number of animal models where sensory, sympathetic or motoneurons opposite to the lesion 

site differ morphologically and/or biochemically from naïve controls (Koltzenburg, Wall et al. 

1999).  In addition to these changes, neurons of intact DRG contralateral or segmentally adjacent 

to the injured ganglia have altered nerve sprouting in unaffected limb areas (Devor, Schonfeld et 

al. 1979, Navarro, Verdu et al. 1997, Oaklander and Brown 2004).  In general, these observations 

are considered a result of a neural mechanism with a propagating signal through the spinal cord 

and not due to a global effect.  However, our results support the existence of a humeral response 

to peripheral nerve axotomy whereby injury signals originating from the lesion site and/or 

systemically released may circulate via spinal fluid or bloodstream and influence uninjured sites.  

Systemic administration of glucocorticoids and adrenalectomy was shown to affect neuropeptide 

levels in DRG neurons (Smith, Seckl et al. 1991, Covenas, DeLeon et al. 1994), which express 

the glucocorticoid receptor (DeLeon, Covenas et al. 1994).  The changes seen in FOXO3a of 

uninjured DRG neurons might be caused by such circulating factors, but a relationship between 

nerve injury and steroidal hormone release has not been identified.  As FOXO3a appears 

primarily regulated by post-translational modifications, its plausible a global stress event in the 

nervous system such as trauma could extrinsically lead to altered protein degradation or nuclear 

shuttling.  The reality of contralateral and humeral effects of nerve injury illustrates the 

importance of using naïve animals and not uninjured tissue as controls. 

 

3.4.3. Potential neurotrophin regulated mechanism 

Neurotrophins are known to influence the phosphorylation and cellular localization of FOXO 

transcription factors in vitro (Gan, Zheng et al. 2005).  NGF action through the high affinity trkA 

receptor induces Akt-mediated phosphorylation of FOXO3a (Zheng, Kar et al. 2002).  

Withdrawal of NGF results in FOXO3a nuclear translocation in cultured sympathetic neurons 

leading to bim gene expression and apoptosis (Gilley, Coffer et al. 2003).  BDNF can also 

regulate the FOXO3a transcription factor, as trophin treatment causes a rapid decrease in nuclear 

levels with a corresponding increase in cytosolic protein (Zhu, Bijur et al. 2004).  The PI3K/Akt 

cascade is again responsible for this response but whether BDNF is acting through the high-

affinity trkB receptor or the common neurotrophin receptor p75 is unknown.  Each can modulate 
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the Akt pathway (Lachyankar, Condon et al. 2003) and are suitable receptor candidates for the 

BNDF mediated phosphorylation of FOXO3a. 

For adult sensory neurons, BDNF stands alone in the neurotrophin family as both a target-

derived and a neuron-derived trophic factor.  In the naïve ganglia, small to medium sized 

nociceptive neurons express BDNF (Wetmore and Olson 1995, Verge, Gratto et al. 1996, 

Karchewski, Gratto et al. 2002); however, in the intact state this subpopulation is not highly 

responsive to the neurotrophin (Kashiba, Ueda et al. 1997).  These nociceptors are responsive to 

NGF as they exhibit high levels of trkA (McMahon, Armanini et al. 1994). Consequently, BDNF 

gene expression is strongly stimulated by NGF/trkA signaling (Apfel, Wright et al. 1996, Verge, 

Gratto et al. 1996).  The low affinity neurotrophin receptor p75 is present in the majority of DRG 

neurons, including all trkA and trkB positive neurons and those expressing trkC (Verge, Merlio 

et al. 1992, Wright and Snider 1995, Karchewski, Kim et al. 1999).  Upon injury to the 

peripheral branch of sensory neurons, there is a marked shift in neurotrophin content and 

neurotrophin receptor expression. Although an initial increase in glia-derived NGF occurs in the 

proximal nerve stump immediately following axotomy (Abrahamson, Bridges et al. 1987), 

retrograde axonal transport of the target derived neurotrophin decreases dramatically ((Raivich, 

Hellweg et al. 1991).  Conversely, ~80% of injured neurons up-regulate BDNF 1-day post-

injury, including all small nociceptors and a number of trkB neurons (Karchewski, Gratto et al. 

2002).  The transient increase in NGF in the proximal nerve stump may account for this BDNF 

upregulation in the trkA responsive neurons.  After 1-week, BDNF levels are reduced in this 

small diameter population (Michael, Averill et al. 1999, Zhou, Chie et al. 1999) and elevated in 

larger trkB and trkC positive, medium to large sized neurons (Karchewski, Gratto et al. 2002).  

Another consequence of sciatic nerve transection is down-regulation of the trk and p75 receptors 

(Verge, Riopelle et al. 1989, Verge, Merlio et al. 1992, Zhou, Rush et al. 1996, Karchewski, 

Gratto et al. 2002), further compounding an already altered trophin environment.  

Neuroprotection is the putative role of increased BDNF (Murphy, Borthwick et al. 2000) but the 

neurotrophin also serves as the induction signal for the regenerative response (Geremia, 

Pettersson et al. 2010). 

FOXO3a amounts declined in lumbar DRG neurons after transection of the sciatic nerve.  

Injury amplifies BDNF expression, and lead to the theory that elevated trophin signaling 

contributes to the protein loss.  One drawback to this notion is the already robust levels of 
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FOXO3a in small diameter nociceptive neurons, which produce the highest quantities of BDNF 

in the intact DRG.  This quandary is similar to the p-Akt pattern seen in DRG, where 

constitutively high activity of the kinase in small naïve neurons does not induce significant 

FOXO3a degradation.  These situations suggest that moderate BDNF signaling or Akt activity 

can occur in these neurons without interfering with the protein’s stability.  However, in the event 

of injury or stimulation, BDNF and p-Akt levels may rise past this threshold such that their 

effects on FOXO3a cannot be inhibited.    

We speculate, that during the injury response of sensory neurons, increased production of 

BDNF and heightened signaling through p75 results in elevated activity of Akt (Lachyankar, 

Condon et al. 2003).  As a result, FOXO3a is persistently phosphorylated at key serine/threonine 

residues, leading to nuclear exclusion, polyubiquitination and proteasomal degradation.  Low 

FOXO3a expression in larger neurons might be a consequence of higher trkB levels in this 

population and an increased sensitivity to BDNF.  While other factors are most certainly 

involved, the unique role BDNF in injured neurons designates the neurotrophin as the possible 

signaling molecule of this mechanism. This line of thinking is further supported by our 

observations that modulating BDNF expression in sensory neurons through electrical stimulation 

which upregulates neuronal BDNF expression or knocking down sensory neuron BDNF with 

selective siRNAs led to reduced or increased levels of FOXO3a expression respectively. 

 

3.4.4. Conclusion and significance 

Cellular stress and trauma has a profound effect on cell phenotype, as epitomized by DRG 

neurons that regenerate after injury. Transcription factor regulation during this compromised 

state is essential to the activation of repair and regeneration programs.  The likely impact of 

peripheral nerve axotomy on FOXO3a and its post-translational state emphasizes the importance 

of these modification events, which are critical to injury pathophysiology and a promising target 

area for therapeutics.  The apparent systemic response of the protein begs questioning as to 

whether a global response to injury exists and if so, can DRG neurons sense these subtle 

changes?  The identity of the underlying mechanisms responsible for contralateral alterations is 

still in question. 
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4. Biphasic expression of the ER stress/UPR-associated transcription factor 

Luman/CREB3 in sensory neurons ipsilateral and contralateral to nerve injury 

 

4.1. Abstract 

Peripheral nerve injury induces dorsal root ganglion neurons to regenerate severed axons, 

thus requiring increased protein production.  The elevated protein load leads to a high incidence 

of misfolding and ER stress. Proper activation of the unfolded protein response during this state, 

via specific transcription factors and their gene products, assists in stress alleviation and is 

essential to regeneration following injury.  Luman has been identified as an ER localized 

transcriptional regulator of the UPR and ER stress and is constitutively expressed in sensory 

neurons. Previously, we have shown nerve injury induces axonal Luman mRNA translation.  

These new proteins along with Luman already present in the axonal ER equivalent are activated, 

then retrogradely transported to the cell body as an injury signal necessary for neurite outgrowth 

at very early time points following crush injury. However, it is not known whether somal 

production of Luman is similarly altered following complete spinal nerve transection injuries 

quite proximal to the cell bodies over a more protracted time course, nor whether there is 

evidence of systemic responses manifested by altered expression in DRG neurons contralateral to 

injury.  To investigate this, a peripheral axotomy time course model was employed where the 

L4-L6 spinal nerves are fully transected.  The corresponding ipsilateral and contralateral DRGs 

were examined after the predetermined time points of 1-hr, 1-day, 2-days, 4-days and 1-week.  

Injury resulted in the time dependent biphasic up- and down-regulation of Luman protein in 

injured sensory neuron cell bodies and perineuronal satellite glial cells, while mRNA levels 

peaked at 2-days post-lesion then remained relatively unchanged for the remainder of the time 

course.  Immunofluorescence histochemistry showed highest levels to be localized in the 

cytoplasm with nuclear staining appearing less intense.  This increase was initially observed in 

all size ranges of neurons, albeit highest in small to medium sized neurons, peaking in the latter 

at the 2-day time point, declining in all size ranges by 4 days to pre-injury levels and then 

followed by greatly elevated levels at 1-week post-injury. Notably, there a was a largely parallel 

response in the DRG neurons contralateral to injury, albeit generally at lower levels suggesting a 

global or trans-spinal component to the response which was not discernible in the sham surgery 

time course. Axonal Luman levels were also elevated after a crush injury detectable just 
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proximal to the injury site as early as 3-hours post-injury, peaking at 1-day and then decreasing; 

supporting previous work that the protein is retrogradely transported. Electrical stimulation 

appeared to augment axonal levels and retrograde transport as stimulated nerves beyond the 3-

hour time point showed less Luman staining. These findings support a role for Luman in distinct 

phases of the regeneration/cell body response including protective mechanisms utilized by these 

cells as they attempt to regenerate injured axons and also respond to systemic changes. 

 

4.2. Introduction 

A characteristic of peripheral nervous system neurons is their capacity for regeneration and 

self-repair.  This property is essential to survival following injury; however, deleterious sequelae 

can occur that may hinder a successful recovery.  Severance of the axon alters neuron phenotype 

as the priority changes from signal transmission to the creation of new fibre tracts.  Regenerating 

axons require lipid membrane replenishment (Vance, Campenot et al. 2000) and cytoskeletal 

proteins (Galbraith and Gallant 2000), which can originate from cell body or axoplasmic 

endoplasmic reticulum (ER) (Koenig, Martin et al. 2000).  Furthermore, nerve growth cones 

have a high metabolic demand as they explore the extracellular environment in search of trophic 

support and guidance cues.  Necessary proteins and lipids are packaged in vesicles and sent to 

the distal axon tip via slow (Hoffman, Lopata et al. 1992) or fast (Ochs 1972) anterograde axonal 

transport.  Augmented ER protein production and vesicular trafficking during regeneration can 

result in elevated levels of unfolded or misfolded proteins and ER stress can ensue (Saxena, 

Cabuy et al. 2009).  Cellular mechanisms associated with an unfolded protein response (UPR) 

ameliorate this stress state and reestablish ER homeostasis (Schroder and Kaufman 2005). ER 

stress is linked to a number of neurological diseases where prolonged stress due to protein 

misfolding or an insufficient UPR leads to neuronal loss (Naidoo 2009). 

ER localized processes regulate protein conformation and ensure proper folding.  Excessive 

misfolding and accumulation triggers the UPR or ER stress response, which involves 

translational attenuation and the recruitment of molecular chaperones to assist with ER 

management (Ron 2002, Schroder and Kaufman 2005).  ER-associated degradation (ERAD) can 

also alleviate this load, as malformed proteins are translocated to the cytoplasm and undergo 

ubiquitination and proteasomal degradation (Kopito 1997).  These mechanisms are not mutually 

exclusive events, as gene products of the UPR are involved in the protein degradation pathway 
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(Schroder and Kaufman 2005); however, ERAD is the ideal route as apoptosis is a consequence 

of the UPR (Rao, Peel et al. 2002, Oyadomari and Mori 2004). 

Three distinct ER signaling cascades are triggered during the UPR and all result in the 

downstream modulation of transcription factors.  Each pathway involves a specific ER-

membrane bound protein: pancreatic eukaryotic initiation factor subunit 2a (eIF2a) kinase 

(PERK), inositol requiring 1 (IRE1), or activating transcription factor 6 (ATF6).  ER stress 

induced PERK phosphorylation of eIF2a leads to the translational activation of ATF4 (Harding, 

Novoa et al. 2000, Scheuner, Song et al. 2001), an activator for the pro-apoptotic gene CHOP 

(Ma, Brewer et al. 2002).  The kinase endoribonuclease IRE1 is activated during the UPR and 

mediates the alternative splicing of the XBP1 mRNA (Yoshida, Matsui et al. 2001, Calfon, Zeng 

et al. 2002).  The XBP1 transcript encodes a transcription factor with gene target specificity for 

ER chaperone molecules containing the unfolded protein response element (UPRE) (Yoshida, 

Matsui et al. 2001).  ATF6 is bound to the ER and in response to ER stress undergoes regulated 

intramembrane proteolysis (RIP) (Haze, Yoshida et al. 1999), a process first identified with 

SREBP (Eberle, Hegarty et al. 2004).  After two separate cleavage events, the released ATF6 

catalytic domain translocates to the nucleus where it primarily activates ER chaperone genes 

(Yoshida, Okada et al. 2000).  These are well-characterized ER stress response pathways; 

however, other mechanisms exist and evidence points to the involvement of additional 

transcription factors. 

Luman (CREB3/LZIP), a member of the CREB/ATF family, is homologous to the herpes 

simplex virus (HSV) protein VP16 (Lu, Yang et al. 1998) and was identified as the first cellular 

ligand for host cell factor-1 (HCF-1) (Lu, Yang et al. 1997).  Its association with HSV machinery 

suggests an involvement in viral latency and reactivation (Freiman and Herr 1997, Lu, Yang et 

al. 1997, Lu, Yang et al. 1998, Lu and Misra 2000).  Protein processing resembles that of ATF6, 

where Luman bound to the ER undergoes RIP and the basic leucine zipper (bZIP) domain is free 

to activate target genes (Raggo, Rapin et al. 2002). The cleaved form of the transcription factor is 

extremely unstable and in vitro detection of the activated protein requires proteasomal inhibitors; 

however, studies have shown the protein to be an activator of transcription (Misra, Rapin et al. 

2005). The bZIP proteins Zhangfei (Misra, Rapin et al. 2005) and Luman recruitment factor 

(LRF) (Audas, Li et al. 2008) potently and specifically inhibit Luman transactivation by possibly 

affecting protein stability.  Once translocated to the nucleus, Luman can bind cAMP response 
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elements (CRE), including CRE promoter regions of HSV immediate early genes (Lu and Misra 

2000), and the UPRE in a similar capacity to XBP1 (DenBoer, Hardy-Smith et al. 2005).  

Induction of Luman expression and proteolytic cleavage in response to ER stress results in the 

transcriptional activation of the ERAD-related Herp (homocysteine-induced ER protein) (Kim, 

Kim et al. 2008) protein via the ER stress response element II (ERSR-II) (Liang, Audas et al. 

2006).  The transcription factor is expressed in multiple rat tissue types, the highest levels seen in 

nervous tissue and DRG in particular (Ying, Zhang et al. 2015). The participation of Luman in 

the ER stress response led to the hypothesis that these cellular proteins are UPR components and 

are up-regulated in axotomized in vivo DRG neuron cell bodies. Previous work has shown that 

injured neurons necessitate a coordinated UPR and improving the response by increasing levels 

of certain ER stress regulators; in particular XPB1s, leads to increased myelin degradation, 

macrophage infiltration and enhanced axonal regeneration (Onate, Catenaccio et al. 2016). 

Studies from our lab demonstrated increased expression of ER stress markers including CHOP 

and BiP in both DRG soma and the axon in response to one day injury, with axonal elements 

being retrogradely transported back to the cell body (Ying, Zhai et al. 2015). Further seminal 

work by Ying et al identified Luman as an axonally localized transcription factor that co-

localized and interacted with the transport molecule Importin-a (Ying, Misra et al. 2014). Axon-

derived Luman is rapidly synthesized from axonally confined transcripts in response to axotomy 

and serves as an injury signal where the transcriptional activation domain is translocated 

retrogradely back to the DRG soma nuclei by an importin-dynein mediated mechanism. 

Remarkably, reduction of Luman with the use of small interfering RNA impaired neurite 

outgrowth of injured sensory neurons. This implies that the transcription factor can modulate the 

capacity for sensory neurons to regenerate, either by its action on the UPR or on other growth-

related targets. Such targets include components of the cholesterol biosynthesis pathway as 

Luman knockdown reduces free and total cholesterol levels in injured sensory neurons and 

downregulates a number of genes involved in the regulation of cholesterol synthesis (Ying, Zhai 

et al. 2015). Cholesterol is an essential component of plasma membrane that is acquired in 

abundance for the growth of regenerating axons. The potential importance of Luman in the 

regulation of the regeneration response via cholesterol biosynthesis was supported by enhanced 

neurite outgrowth in Luman knockdown neurons with cholesterol supplementation (Ying, Zhai et 

al. 2015). 
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Our initial studies focused on early (one and two day) alterations in Luman expression, its 

subcellular localization in neurons and axons ipsilateral to crush injury and its role in the 

inductive phase of the cell body response to injury. Recent work has revealed there to be distinct 

transcriptional phases to the cell body response that include an early stress response phase that is 

over by 6-hours post-injury, followed by a pre-regeneration phase that lasts until 4 days post-

injury and finally a regeneration phase that is clearly on by 7 days (Li, Xue et al. 2015).  This 

coupled with my findings that the transcription factors FOXO3a and Zhangfei also appear to 

have distinct phasic cell body responses to the injury that extend beyond those observed in 

ipsilateral neurons to include phasic impacts on neurons contralateral and remote to the injury 

(Thesis chapters 3&5), lead me to hypothesize that Luman expression also undergoes distinct 

phasic responses to nerve injury. Thus, this study examined the effect of nerve transection on the 

spatial and temporal expression patterns of Luman, primarily at the level of the sensory neuron 

cell body in DRG ipsilateral and contralateral to injury.  The findings reveal distinct biphasic 

responses for Luman in both ipsilateral and contralateral DRG neurons, supporting a role for 

Luman not only as a sensor of injury but also one implicated in all transcriptional phases of the 

cell body response associated with axon regeneration.  Furthermore, the apparent involvement of 

this regulator of the UPR in the injured state highlights the significance of ER stress in this 

pathology.  
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4.3. Results 

 

4.3.1. Luman expression pattern in DRG neurons 

The specificity of the anti-Luman antibody employed in my studies was assessed 

immunohistochemically on frozen sectioned DRG tissue samples incubated with anti-Luman or 

anti-Luman serum absorbed with cell protein isolates from Luman transfected Vero cells (Fig. 

4.1A). Absorption of the antibody resulted in near elimination of immunostaining as compared to 

tissue samples processed with anti-Luman alone.  Western blot analysis was performed to further 

characterize the specificity of the anti-serum, where membranes of electrophoresed lysates of 

cells transfected with Luman (lane 2, Fig 4.1B) and Zhangfei (lane 3, Fig. 4.1B) were treated 

with anti-Luman serum. In the Luman transfected cell extract, Anti-Luman recognizes a single 

band of approximately 60 kDa, the suspected molecular weight of unprocessed Luman; while 

unable to detect any identifiable antigen in the Zhangfei transfected cell extract at its expected 

molecular weight of ~30 kDa. Luman anti-serum also recognized 2 identifiable bands in rat DRG 

extract of approximately 37 and 15 kDa, which are predicted molecular weights of Luman 

protein cleavage products (Fig. 4.1C).  
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Figure 4.1 Luman antibody specificity controls. A. Fluorescence photomicrographs of L5 
DRG (6µm sections) processed for immunohistochemistry detect Luman protein with anti-
Luman rabbit serum (left) and anti-Luman absorbed with cell protein isolates from Luman 
transfected vero cells. Scale bar = 100 µm. Note: Absorption of anti-Luman abolishes 
immunofluorescence staining. B. Western blot analysis of anti-Luman rabbit serum treated 
membrane of electrophoresed protein extracts from Vero cells transfected with Luman (lane 2) 
and Zhangfei (lane 3). Molecular weight marker (lane 1). Note: In the Luman transfected cell 
extract, Anti-Luman recognizes a single band of approximately 60 kDa, the suspected molecular 
weight of unprocessed Luman; while unable to detect any identifiable antigen in the Zhangfei 
transfected cell extract at its expected molecular weight of ~30 kDa C. Western blot analysis of 
anti-Luman serum treated membrane of electrophoreses protein extracts from normal L4-L5 
DRG (lane 2). Molecular weight marker (lane 1) Note: Anti-Luman rabbit serum recognizes 2 
additional bands of approximately 37 and 15 kDa, the predicted molecular weights of Luman 
protein cleavage products. 

 

As the unstable catalytic domain of Luman is cleaved and translocates to the nucleus in 

response to stress events, the nuclear envelope protein Lamin B was used to assure accurate 
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visualization of the nucleus to allow for quantification of alterations in Luman nuclear levels.  

Only neurons with complete and distinct Lamin B staining around the nucleus were considered 

for further analysis (Fig. 4.2). 

 

 

Figure 4.2. Double staining for Luman and the nuclear envelope cytoskeletal protein Lamin 
B allows for accurate analysis of nucleus-associated immunofluorescence. Fluorescence 
photomicrographs of L5 DRG (6 µm sections) processed for immunohistochemistry with a Lu- 
man and Lamin B specific antibody. Scale bar = 100 microns. To ensure proper cellular 
localization, all tissue was dually processed for Luman (red) and LaminB (green) 
immunofluorescence for more accurate differentiation of nuclear and cytoplasmic staining.  

 

4.3.2. Sciatic spinal nerve transection induces biphasic changes in DRG Luman 

expression 

The effect of nerve transection on Luman sensory neuron expression was investigated by 

axotomizing the sciatic nerve of male Wistar rats at the level of the L4-6 spinal nerves to assure 

complete transection of virtually all axons within the ganglion.  In situ hybridization and 

immunofluorescence histochemistry of sectioned DRG were used to assess alterations in mRNA 

and protein levels respectively.  Luman protein levels in naïve ganglia were higher in small-

medium diameter neurons, with low-moderate nuclear staining in a small fraction of these cells 

and in perineuronal cell nuclei. At 1-day post axotomy (Figs. 4.3; 4.5), ipsilateral neurons had 

slightly higher protein and mRNA (Fig. 4.6) levels compared to naïve controls.  Peak Luman 

protein expression was seen at 2-days post-injury, where high cytoplasmic and nuclear 

immunoreactivity was clearly evident in the subset of small-medium sized neurons, with larger 

neurons demonstrating only slightly increased levels (Figs. 4.3; 4.5).  Parallel changes were also 

observed for nuclear Luman levels in the perineuronal, presumably satellite glial cells. 

At 4 days, protein levels were dramatically decreased in all size ranges of neurons and the 

perineuronal cell nuclei with only a few neurons appearing moderately labelled, similar to the 
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naïve state in both cytoplasmic and nuclear staining (Figs. 4.3; 4.5); however, Luman mRNA 

remained high in DRG ipsilateral to 4-day spinal nerve lesion (Fig. 4.6). Thus, the decrease in 

protein levels at 4-days are then likely attributed to regulation at the post transcriptional level.  

By 1week after injury, neuronal protein levels had risen dramatically, with elevated protein 

expression in both neurons and perineuronal cell nuclei (Fig. 4.3; 4.5). These observations 

suggest that as result of injury and/or regeneration, ER stress may be initially higher in small 

presumably nociceptive neurons and only rise to higher levels in larger proprioceptive or 

mechanoreceptive cells at later time-points.  

Our previous studies focused primarily on increases in axonal Luman synthesis, retrograde 

transport of the activated Luman signal back to the cell body following injury, and the 

significance of this retrograde signal in regulation of early axon regeneration through its 

regulation of the UPR and cholesterol (Ying, Misra et al. 2014, Ying, Zhai et al. 2015).  Present 

data using temporal analysis of the axotomy response reveals clear biphasic changes in Luman 

expression at the neuronal and perineuronal cell levels, both ipsilateral and contralateral to 

injury. This suggests that in addition to axonal Luman “sensing” an injured state and encoding a 

retrograde signal, alterations in neuronal and perineuronal Luman expression likely serve as part 

of an adaptive response to help mitigate regeneration-associated ER-stress or UPR challenges.  
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Figure 4.3. Peripheral nerve injury alters Luman protein levels in DRG neurons ipsilateral 
to axotomy. Left Column. Fluorescence photomicrographs of L5 DRG (6 µm sections) processed 
for immunohistochemistry to detect cell Luman protein. Ipsilateral DRG from L4-L6 spinal 
nerve transected rats were collected after the predetermined time points of 1hr, 1day, 2day, 4day 
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and 1week. Scale bar = 50 µm. Naïve animals served as controls. Right Column. Representative 
scatterplots depicting relative changes in Luman immunofluorescence signal over individual 
cytoplasmic and nuclear regions as related to cell size from sections all processed under identical 
conditions in parallel. Experimental states as indicated. Dashed lines divide the plots into low 
versus moderate to heavily labelled populations. N= 181 to 206 neurons analyzed per condition. 
 

4.3.3. Unilateral nerve transection has contralateral effects on Luman protein 

expression 

Phenomena of altered protein expression occurring on the uninjured/contralateral side are 

well documented.  Here, severance of the right sciatic spinal nerves caused changes to left-side 

(contralateral) Luman protein concentrations (Figs. 4.4; 4.5), whereas mRNA expression was 

relatively stable (Fig. 4.6).  While the first peak in Luman expression ipsilateral to lesion 

occurred at 2-days post-lesion, the first peak in Luman expression contralateral to lesion was 

evident at the 1-hour time point, with elevated neuronal cytoplasmic and nuclear Luman 

immunoreactivity. In addition, there was elevated Luman in the nuclei of perineuronal satellite 

glial cells at this early time point. This heightened expression pattern was still evident at 1-day 

(Figs. 4.4; 4.5). By 2 days a slight decline in Luman levels was discernible with once again 

significantly lower levels found in the 4-day injured DRGs with levels similar to that in naïve 

neurons (Figs. 4.4; 4.5).  However, unlike the ganglia ipsilateral to lesion, the Luman detected in 

the perineuronal presumably satellite cell nuclei at 4-days post-injury were still quite elevated, 

albeit lower than 2-days post-injury (Fig. 4.4).  

Evidence exists claiming “unstressed” cells undergo a UPR (Schroder and Kaufman 2005); 

therefore, as contralateral neurons are not injured, the source appearing to trigger an ER stress 

response likely originates either systemically or from the site of injury. The increased 

immunofluorescence at 1 hour is not mirrored in mRNA levels (Fig. 4.6), as expression of 

Luman mRNA does not appear to change contralaterally, although one cannot rule out an impact 

on mRNA stability. The elevated Luman levels in the neuronal cell bodies may arise from 

increases in Luman retrogradely transported from distal axons in the periphery or from the 

central axon branch, which might be sensing trans-spinal disturbances from the ipsilateral injured 

side, although the former is unlikely in the contralateral neurons. However, repression of Luman 

protein at 4-days both ipsilaterally and contralaterally suggests that the systemic response also 
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has distinct phases of transcriptional regulation as that recently described for DRG ipsilateral to 

lesion (Li, Xue et al. 2015).  
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Figure 4.4. Peripheral nerve injury alters Luman protein levels in DRG neurons 
contralateral to axotomy. Left Column. Fluorescence photomicrographs of L5 DRG sections (6 
µm) processed for immunohistochemistry to detect Luman protein. Contralateral DRG from L4-
L6 spinal nerve transected rats were collected after the predetermined time points of 1hr, 1day, 
2day, 4day and 1week. Scale bar = 50 µm. Naïve animals served as controls. Right Column. 
Representative scatterplots depicting relative changes in individual neuronal Luman 
immunofluorescence signal over cytoplasmic and nuclear regions as related to cell size from 
sections processed under identical conditions and in parallel. Experimental states as indicated. 
Dashed lines divide the plots into low versus moderate to heavily labelled populations. N= 181 
to 204 neurons analyzed per condition. 
 

 
 

Figure 4.5. Peripheral unilateral axotomy causes bilateral biphasic alterations in Luman 
protein immunoreactivity in both injured and contralateral uninjured DRG neurons.    
Luman summary line graphs of alterations in the mean + s.e.m. cytoplasmic (A, blue) and 
nuclear (B, black) immunofluorescence intensity levels observed in small-medium sized (< 35 
µm, column 1) and medium-large sized (>35 µm, column 2) DRG neurons ipsilateral (solid line) 
and contralateral (dashed line) to injury at time-points as indicated. N=3 animals for each data 
point.  ***p value<0.001 ANOVA with Dunn’s post-test analysis. Note: relative changes in 
nuclear localization parallel that observed for the cytoplasmic staining.  
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Figure. 4.6. Unilateral peripheral axotomy alters Luman mRNA expression levels in cell 
bodies of DRG neurons ipsilateral to injury.  Representative darkfield photomicrographs of 
L5 DRG sections (6µm) processed for in situ hybridization with a 48mer oligonucleotide 
radiolabeled probe specific for Luman mRNA in order to visualize transcript localization and 
expression following injury.  Ipsilateral (Left column) and contralateral (Right column) DRG 
sections from L4-L6 unilateral spinal nerve transected rats harvested 1-hour, 1-day, 2-days, 4-
days and 1-week after injury. Naïve animals served as controls (image not shown). Scale bar = 
100 µm. N =3 for each condition. Note; Peripheral nerve axotomy causes a relative increase in 
Luman mRNA levels in DRG neuron cell bodies ipsilateral to injury gradually throughout the 
time course, peaking around the 2-day – 4-day post lesion time point. Luman oligonucleotide 
probe specificity controls were previously published (Ying, Zhang et al. 2015). 
 

4.3.4. Luman levels are not discernibly altered by sham surgery 

Because there is a robust increase in Luman detected in the nuclei and cytoplasm of 

neurons and perineuronal cells in contralateral ganglia across all size ranges of neurons, we had 

to ascertain whether these contralateral changes in expression were due to systemic stress 

response associated with the surgical exposure or the actual spinal nerve lesions.  Thus, sham 

surgeries were performed for the entire time course and qualitatively assessed for marked 

responses in L4,5 DRG ipsilateral or contralateral to the surgical exposure site.  Qualitative 

analysis of ipsilateral or contralateral L5 DRG sections processed for Luman 

immunofluorescence (N= 3 animals/time point), did not reveal any significant changes from 

naïve controls, suggesting that the changes observed in the axotomy time course were due to the 

nerve injury imposed and not the surgical stress-state (Fig. 4.7). 

 

4.3.5. Sciatic nerve crush injury and brief electrical nerve stimulation result in 

altered Luman levels in nerve fibres proximal to crush site 

Previous work by our group showed that Luman protein and mRNA resides in axons of DRG 

neurons, the former in the axonal ER equivalent, while the latter can be  translated locally from 

axonal Luman mRNA (Ying, Misra et al. 2014). Indeed, axonal synthesis of the transcription 

factor is upregulated following injury in in vitro models where the neurons were injury-

conditioned for 1 day prior to assay. ER-resident axonal Luman is cleaved upon axon injury and 

the N-terminal active portion is then retrogradely transported back to the cell body in an importin 

mediated manner with increased levels of the N-terminal seen at the level of the cell body and 

nucleus (Ying, Misra et al. 2014).  Further, axonal siRNA knockdown of Luman expression 
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greatly diminishes neurite outgrowth following injury. The results from Ying et al. advocate the 

role of Luman as a retrograde injury signal and an inducer of the injury response. The current 

work has shown that axotomy causes a rapid upregulation of Luman protein and mRNA at the 

cell body level with modulation of Luman expression over a week time course being biphasic in 

nature.  While we speculated that the neuronal increases in Luman protein levels could 

potentially reflect increased retrograde delivery of the injury signal from the axon, it is also 

possible that the decrease observed 4-days post-lesion represents increased anterograde delivery 

to the axon or potentially enhanced degradation. To assess the potential impacts of axonal 

Luman in the injury-associated changes observed at the cell body level, we temporally examined 

changes in Luman levels in injured axons using an in vivo time course model to determine if the 

axonal changes also exhibited a biphasic expression pattern. Further, we also examined whether 

brief electrical nerve just proximal to the injury site, a therapeutic intervention shown to improve 

axon regeneration (Al-Majed, Neumann et al. 2000, Geremia, Gordon et al. 2007) might alter the 

nerve-derived Luman signal, as Luman is recognized as a pro-regeneration retrograde signal.  

Thus, the sciatic nerves of rats sustained a crush injury at the mid-thigh level and nerve 

samples immediately proximal to the crush site were examined for Luman immunostaining at 3-

hours, 1-day, 3-days and 7-days post-injury with naïve animals serving as control (Fig 4.8). 

Axonal localization of Luman was accomplished by bIII-tubulin co-staining, a nerve cytoskeletal 

marker (Fig 4.8 A). After only 3-hours of the crush injured state, protein levels are markedly 

increased in proximal nerve fibres compared to naïve tissue (Figure 4.8 A, B). As Luman is 

readily synthesized in injured axons, these protein products are likely rapidly produced from 

already present axonal transcripts. Nerve protein levels continue to rise at the 1-day time point 

and retrograde transport of its activated/cleaved N-terminal likely contributes to elevated Luman 

observed at the neuronal cell body level (Fig 4.8, D; Fig. 4.3).  This time point correlates to 

increases in protein and mRNA at the cell body that was seen in the axotomy model. After crush 

injury alone this rise is transient as Luman axonal immunofluorescence is decreased by the 3-day 

time point. (Fig 4.8, F). This decreased immunostaining is due to either increased retrograde 

transport back to the cell body, but is rather most likely secondary to a degradation process as 

protein levels begin to lower in ipsilateral injured DRG neuron cell bodies around the 3 to 4 

days. At 7-days, axonal Luman levels are again elevated, possible coinciding with a delayed 

growth phase taking place post injury after the initial regeneration response (Fig 4.8. H). One 
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hour of electrical stimulation (ES) proximal to the crush site immediately after injury results in 

initially increased levels at 3 hours post crush+ES, even relative to crush alone (Fig 4.8, C,B) 

followed by decreased levels at 1-day and 3-days postlesion (Fig 4.8, C, E, G). ES is known to 

augment the injury/regeneration response for injured sensory neurons; upregulating RAGs and 

increasing axon outgrowth. Stimulation appears to decrease levels of axonal Luman possibly by 

inducing increased retrograde transport of the injury signal. At 7 days (Fig 4.8, H, I) crush and 

crush plus ES groups have very similar Luman staining, as the impact of the one hour ES at the 

time of crush is likely dissipated with respect to augmenting the cell body response.  
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Figure 4.7 Sham surgeries did not change Luman immunofluorescence levels in DRG 
neurons.  Fluorescence photomicrographs of L5 DRG (6 µm sections) processed for 
immunohistochemistry to detect cell Luman protein from animals that underwent sham surgeries 
where the right L4-L6 spinal nerves were exposed but not injured. Right and left dorsal root 
ganglia were harvested from each animal at post-surgical times 1-hour, 1-day, 2-days, 4-days and 
1-week (as indicated). Scale bar = 100 µM. Note: Luman immunostaining does not discernibly 
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change between each time point and the right versus left side examined. Naïve animals served as 
controls and did not differ from that observed at the different sham time points examined (data 
not shown). N=3 animals/time point.  
 

 
Figure 4.8 Axonal Luman levels are altered by crush injury and brief electrical stimulation. 
A. Representative fluorescence photomicrographs of ipsilateral sciatic nerves just proximal to the 
crush injury site (located at the far right of each photomicrograph; 10 µm sections) processed for 
immunohistochemistry to detect axonal Luman (green),  the axon marker bIII tubulin (red) and 
their co-localization (yellow) from animals that underwent sciatic nerve crush injuries at the mid-
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thigh level 3-hours, 1-day, 3-days, and 7-days post injury (B,D,F,H). Immediately following 
injury, brief 1-hour 20 Hz electrical stimulation (ES) was applied proximal to the crush site 
(C,E,G,I). N= 3 for each time point; naïve animals served as controls. Scale bar = 100 µm.  Note: 
Crush alone appeared to increase Luman axonal staining as early as 3 hours post injury and 
peaking at 1 day. By 3 days this is decreased, however slightly elevated again at 7 days. ES 
initially increased (3 hour), then decreased Luman staining as early as 1 day post-injury, 
suggesting possibility of increased cleavage and clearance of the protein by increased retrograde 
transport of the injury signal. By 7 days post-injury Luman levels are again detectable at 
comparable levels in axons from both experimental groups. 
 

4.4. Discussion  

These studies on Luman expand previous work by our group, where we discovered it to be an 

early injury-associated and axon-localized UPR and axon regeneration regulator.  My focus was 

on expanding our understanding of its potential role in the cell body response of DRG neurons to 

acute and prolonged axotomy. I sought to determine whether Luman protein and mRNA were 

coordinately altered in the injured sensory neurons at the somal level by employing the same 

temporal injury paradigm, utilized previously to study expression of another stress-associated 

transcription factor, FOXO3a, after injury. In addition, given ours and others’ findings that brief 

electrical stimulation (ES) of injured peripheral nerves can be employed as an adjunct therapy to 

positively modulate the injury response, increase regeneration of axons and improve function in 

both animal and human models (Gordon 2016), I sought to determine whether alterations in 

Luman expression correlate with these events.  My findings indicate that spinal nerve axotomy 

causes a marked upregulation of Luman mRNA and protein in the cell bodies of DRG neurons.  

Luman protein levels show a biphasic response with temporarily heightened levels early after 

injury peaking at 2-days post-lesion, decreasing to below baseline levels by 4 days and then 

increasing at the later time points. These levels were most robustly elevated in small to medium 

sized, presumably nociceptive, neurons initially but with parallel biphasic albeit lower increases 

in large diameter neurons which were most notable by one week. Similar to the cell body 

findings, nerves showed marked axonal Luman expression as soon as 3-hours post crush, 

confirming previous findings at the one day time point (Ying, Misra et al. 2014). Axonal 

increases were also biphasic in nature; treatment with brief electrical stimulation led to an initial 

increase at the 3 hours followed by a decreased axonal levels at 1 and 3 days relative to crush 

alone until one-week post-injury, when they were elevated and detectable at levels comparable to 
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crush injury alone. The most surprising finding was the dramatic impact of injury on Luman 

protein in neurons contralateral to injury that mirrored the injury response to some degree and 

paralleled that which we observed for FOXO3A and Zhangfei (Chapter 5). This response was 

not seen in sham animals, suggesting that surgical stress in itself was not a cause of the alteration 

but rather was due to responses to the injured state. 

 

4.4.1. Luman expression in sensory neurons and its role in the nerve injury 

response 

Luman is a known regulator of the UPR (Liang, Audas et al. 2006, Audas, Li et al. 2008), a 

role recently described for injured sensory neurons and one that was linked to the intrinsic ability 

of an injured axon to regrow (Ying, Zhai et al. 2015). Further, this association with ER stress is 

the likely explanation for the robust expression changes seen in injured neurons. Peripheral nerve 

damage causes a phenotypic shift in sensory neurons, from a “transmitting” cell to one of 

“regeneration” with goal of producing new fibres and growth back to previously innervated areas 

(Watson 1974). Sensory neurons upregulate a myriad of regenerative associated genes (RAGs) 

critical to axon growth including other transcription factors such as activating transcription 

factor-3 (ATF-3) (Tsujino, Kondo et al. 2000, Seijffers, Allchorne et al. 2006) c-Jun (Raivich, 

Bohatschek et al. 2004) and growth associated proteins (Bomze, Bulsara et al. 2001). This 

regeneration response causes a significant protein burden to the cell and evidence suggests that 

proper protein processing, ER stress and the UPR are critical especially during this growth phase. 

Studies show a correlation between PNS disease states and elevated levels of ER stress markers. 

For example damage to sciatic nerves increased expression of the chaperone protein BiP/GRP78 

in the soma of non-degenerating neurons and the transcription factors XBP1s and ATF4 in 

degenerating motoneurons (Saxena, Cabuy et al. 2009, Penas, Font-Nieves et al. 2011). There 

are also reports of peripheral nerve damage upregulating other chaperone proteins and ER 

foldases, types of chaperones that assist in protein folding via forming non-covalent bonds, 

including calreticulin, endoplasmic reticulum protein-29 (ERp29) and ERp57 (also known as 

GRp58 or PDIA3) (Noel, Frost et al. 1995, Willis, Li et al. 2005, Castillo, Onate et al. 2015).  

Our lab described how injury leads to upregulation of DRG cell body and axonal UPR elements 

including BiP/GRP78 and CHOP, which are retrogradely transported to the cell body of injured 

DRG neurons (Ying, Zhai et al. 2015). However, the need for a coordinated and controlled 
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UPR/ER stress response for axon regeneration had not been proven. Onate et al, with a sciatic 

nerve injury model found that ablation of the ER stress regulator XBP1, but not ATF4, delayed 

motor recovery, decreased macrophage recruitment, reduced myelin removal and axonal 

regeneration (Onate, Catenaccio et al. 2016).  Conversely, transgenic mice overexpressing XBP1 

have enhanced regenerative events after nerve crush injuries. They assessed the therapeutic 

advantage of altering the UPR in vivo by local gene transfer experiments with XBP1s into DRG 

neurons which increased axon regeneration post-injury (Onate, Catenaccio et al. 2016). These 

and other findings are evidence that certain aspects of the UPR are necessary for the injury 

response of sensory neurons and our findings, along with the axonal Luman response, support 

the theory that the primary importance of upregulating Luman in injured neurons is to mitigate 

ER stress. However, with the discovery that Luman is pro-regeneration through transcriptional 

activation of the cholesterol biosynthesis pathway widens its potential as a sentinel regulator of 

other injury associated genes, including RAGs. 

Primary sensory neurons of the DRG are heterogeneous in both structure and function.  

Distinct populations exist with specific sensory modalities (proprioception, mechanoception, 

nociception, etc.) and common morphological, biochemical, and physiological characteristics 

(Lindsay 1996).  Nociceptor neurons with unmyelinated c-fibres or thinly myelinated Ad-fibres 

generally have smaller cell bodies.  It is these small diameters presumably nociceptive DRG 

neurons that exhibited the highest upregulation of Luman after spinal axotomy. Small to medium 

neurons are highly metabolically active with regards to glucose metabolism (Gardiner, Wang et 

al. 2007) and growth potential, as these nerve growth factor (NGF) responsive neurons have high 

baseline levels of growth associated protein (Verge, Tetzlaff et al. 1990). They also produce the 

highest amounts of brain-derived neurotrophic factor (BDNF) in the intact state and this 

production is upregulated very early post injury, playing a key role in the induction of the 

regeneration response (Karchewski, Gratto et al. 2002, Geremia, Pettersson et al. 2010), perhaps 

due to the enhanced ability to respond to local cues (Webber, Xu et al. 2008). Evidence suggests 

that small-medium sized neurons are more primed for growth compared to their larger diameter 

counterparts (Andersen and Schreyer 1999) and the rise in Luman levels predominantly in these 

cell types correlates to a greater amount of ER stress they may face. Peripheral nerve injury 

causes a phenotypic switch in DRG sensory neurons, dramatically evidenced with BDNF 

expression, whereby BDNF levels in smaller neurons gradually declines over time and 
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expression increases in larger sized neurons (Cho, Kim et al. 1998, Tonra, Curtis et al. 1998, 

Karchewski, Gratto et al. 2002). This shift in neurotrophin production and change in phenotype 

likely signifies increased growth capability of these larger neurons at later time points when 

Luman levels were increased. As with the small diameter neurons, higher levels in medium-large 

sized DRG neurons at 1-week corresponds to the need for a heightened UPR with the change in 

phenotype.  

A temporal biphasic response to injury was seen with Luman with protein immunoreactivity 

peaking 2 days after injury, falling by 4 days and elevated again in all neuron populations by 1 

week. Multiple transcriptional changes take place as a homeostatic DRG neuron transitions to a 

regenerating one (Costigan, Befort et al. 2002, Christie, Webber et al. 2010) . A recent study 

used cDNA micro array analysis to identify the different genes expressed by DRG neurons after 

sciatic nerve transection over time (Li, Xue et al. 2015). These expressed genes belonged to 

multiple biological processing including the detection of stimulus, signaling transduction, the 

response to stimulus, transcription mechanics, regeneration and growth and various others. 

Interestingly, they found 3 distinct transcriptional phases throughout the injury time course 

where the upregulation or down-regulation of genes serve a common purpose. These phases 

included (Li, Xue et al. 2015); the “stress-response” phase occurring at 0.5 hrs to 6 hrs post-

injury and was enriched with transcription events associated with detection of stimulus and 

signal transduction, the “pre-generation phase” at approximately 9hrs to 1 day corresponded to 

increased regulation of DNA replication and transcription and elevated molecular functions such 

as “transcription factor activity”, and finally a “regeneration phase” beginning at 4-days showed 

processed related to cell proliferation, growth and growth factor activity. The groups’ molecular 

function analysis showed a multiphasic trend with regards to transcription factor activity post 

injury with a peak during the early phase (~9hour mark) and a marked decrease at the 4-day time 

point, the transition point from a “pre-regeneration” to a regeneration phase, and a gradual 

increase thereafter. This trend shows a close similarity to the finding with Luman as levels are 

significantly shut down in both the ipsilateral and contralateral neurons at 4 days and this trend 

has been noted by our group with other transcription factors (FOXO3A, Zhangfei) which we 

have shown to also be injury regulated (Hasmatali, Noyan-Ashraf et al. 2009, Hasmatali, De 

Guzman et al. 2012).  
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What drives the downregulation in Luman expression, evident at 4 days, especially in light of 

no discernible decline in mRNA expression is not yet known.  However, the Luman protein 

transactivation domain is very unstable upon cleavage, rapidly degraded and only readily 

visualized in vitro with the use of protease inhibitors (Lu, Yang et al. 1997). Recently, Jun 

activation domain-binding protein 1 (JAB1) was identified as a specific inhibitor of Luman by 

increasing its degradation (DenBoer, Iyer et al. 2013) which builds an argument that a primary 

regulatory mechanism for Luman occurs at the protein level. Thus at 4-days, the possibility 

exists that there is elevation of its degradation, a cellular event that needs to be further 

elucidated. Regardless, the temporal pattern of Luman immunoreactivity in injured neurons 

appears to coordinate nicely with the transition point of the identified transcriptional phases 

where there is likely a protein burden and increased ER stress.  

Examination of Luman in nerves ipsilateral to crush injury also showed a biphasic response 

similar to what was seen in the cell body. In preliminary studies we have observed a similar 

biphasic regulation of two ER stress-associated target genes of Luman immediately proximal to 

the crush injury site, CHOP and BiP/GRP78 in axons (data not shown). This suggests that there 

are downstream consequences to the observed injury-associated regulation of Luman expression, 

the relevance of which also needs to be determined.  In addition to reduced levels of Luman 

protein potentially contributing to the similar impacts on expression of target genes, the 

downregulation of UPR gene expression at 4 days may be due to increased expression of 

proteins known to negatively repress Luman-mediated activation of genes with UPR element-

containing promoters, such as Luman/CREB3 recruitment factor which interacts with Luman and 

recruits it to discrete nuclear foci, repressing Luman transactivation activity (Audas, Li et al. 

2008).   

The very early post-injury increases in Luman corroborate findings that axotomy induces a 

rapid translation of already present axon-localized Luman transcripts that along with existing 

Luman protein can be activated and retrogradely transported to the neuronal cell body (Ying, 

Misra et al. 2014). To assess the effect of a pro-regenerating therapy, brief electrical stimulation 

(ES) was applied proximal to the crush site. Injured neurons undergo a latent period with no 

axon regeneration of approximately 1-3 days that proceeds outgrowth; however, afterwards the 

axons extend from the proximal nerve stump into the distal site at a rate of 1-3mm/day in both rat 

and human model (Danielsen, Lundborg et al. 1986, Gordon 2016, Gordon and English 2016). 
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One hour of brief ES of transected nerves that have been surgically repaired, reduces this latent 

period and increases axon growth across the repair site (Al-Majed, Neumann et al. 2000).  This 

also leads to increase pro-growth neurotrophin signaling, increasing neuronal production of 

BDNF which is a likely inducer of the enhanced injury response (Al-Majed, Brushart et al. 2000, 

Geremia, Gordon et al. 2007, Geremia, Pettersson et al. 2010). However, the boost in 

regeneration appears to be due to both enhanced neurotrophin signaling and ES dependent rise in 

cAMP levels (Udina, Ladak et al. 2010), leading to increased expression of RAGs. With the 

findings that the growth capacity of DRG neurons are regulated by axon-derived increases in 

retrogradely delivered Luman (Ying, Misra et al. 2014, Ying, Zhai et al. 2015), we hypothesized 

that ES would alter Luman expression and/or protein processing. Furthermore, ES is a known 

reactivation trigger of latent HSV in sensory neurons (Chan, Beck et al. 1989) and Luman’s 

known transcriptional regulation of latent HSV may point to a possible link between stimulation 

and the proteins’ activity. Following a very early rise in Luman axonal expression, treatment 

with stimulation lead to decreased Luman staining in nerves proximal to the crush site. Altered 

levels could be due to enhanced protein transport mechanisms, but evidence suggests that 

electrical stimulation does not affect the rate of axonal transport in injured motoneuron models 

with the use of radiolabeled tracers (Brushart, Hoffman et al. 2002). Nevertheless, a study 

examining the effect of stimulation on trigeminal ganglia found no change to the rate of axonal 

transport but did increase the amount of protein undergoing transport (Chan, Beck et al. 1989). 

Thus, the decreased amount of axonal Luman post stimulation could be attributed to increased 

protein packaging and augmentation of the retrograde transport mechanics while the rate of 

transport was unchanged at the one and 3-day post-injury time points. This finding still suggests 

a possibility that Luman action is intensified by electrical stimulation, contributing to the 

alteration of growth programs and UPR induction. Indeed, at the level of the cell body, 

preliminary data reveals increased cytoplasmic and nuclear Luman levels at one-day post crush + 

ES (YZ, JCDH, data not shown) which may be attributable to increased delivery of axonally-

derived Luman and/or increased synthesis of Luman. These results also beg the question of 

whether injury/stimulation rises in BDNF signaling in response to ES influences Luman activity, 

particularly after the 1-day time point when endogenous BDNF begins to rise in DRG neurons 

(Karchewski, Gratto et al. 2002). Experiments manipulating the neurotrophin’s activity would 

assist in answering this question, but it’s expected that any anti-growth state such as BDNF 
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disruption would decrease the regenerative response, lessening the need for UPR and 

suppressing injury induced Luman expression. 

 

4.4.2. Implication of the contralateral effect 

An interesting aspect of this study was the effect of unilateral axotomy on neuronal 

Luman expression in uninjured contralateral DRG whereby contralateral neurons showed a 

similar biphasic, but less robust response without the excessive 2-day increase in Luman 

expression seen in the ipsilateral injured state. Few connections exist between neurons that 

innervate opposite sides of the body; however, a collection of clinical evidence confirms 

contralateral deficits in patients with one-sided injuries (Kozin, Genant et al. 1976, Oaklander, 

Romans et al. 1998).  The bilateral impact of nerve injury has been reported in a number of 

animal models where sensory, sympathetic or motoneurons opposite to the lesion site differ 

morphologically and/or biochemically from naïve controls (Koltzenburg, Wall et al. 1999).  In 

addition to these changes, neurons of intact DRG contralateral or segmentally adjacent to the 

injured ganglia have altered nerve sprouting in unaffected limb areas (Devor, Schonfeld et al. 

1979, Navarro, Verdu et al. 1997, Oaklander and Brown 2004). Furthermore, contralateral DRG 

neurons may have altered neurotrophin signaling as sciatic nerve injury causes increased p75 

receptor expression in perineuronal glial cells in contralateral DRGs (Zhou, Rush et al. 1996).  In 

general, these observations are considered a result of a neural mechanism with a propagating 

signal through the spinal cord and not due to a global effect.  However, preliminary results with 

other possible injury associated transcription factors shows support of the existence of a humeral 

response to peripheral nerve axotomy, whereby injury signals originating from the lesion site 

and/or systemically released may circulate via spinal fluid or bloodstream and influence 

uninjured sites (Hasmatali, Noyan-Ashraf et al. 2009).  Systemic administration of 

glucocorticoids and adrenalectomy was shown to affect neuropeptide levels in DRG neurons 

(Smith, Seckl et al. 1991, Covenas, DeLeon et al. 1994), which express the glucocorticoid 

receptor (DeLeon, Covenas et al. 1994).  The changes seen in Luman of uninjured DRG neurons 

might be caused by such circulating factors, but a relationship between nerve injury and steroidal 

hormone release has not been identified.  There are findings showing that “unstressed” 

motoneurons do have elevated ER-stress markers (Saxena, Cabuy et al. 2009) therefore, its 

plausible a global stress event in the nervous system such as trauma could extrinsically lead to 



	 94 

altered protein misfolding and the need for UPR at distal sites.  The reality of contralateral and 

humeral effects of nerve injury illustrates the importance of using naïve animals and not 

uninjured tissue as controls. 

 

4.4.3. Conclusion 

While peripheral neurons do grow axons after nerve injury, repair is often slow and 

functional recovery is poor. Evidence supports the necessity of a coordinated UPR and the 

induction of certain UPR regulators for optimal regeneration to occur. We had previous 

identified axonal Luman as a sensor of injury, regulating the UPR in DRG neurons and 

impacting their growth capacity. Here, we show Luman as part of the injury cell body response 

where it is markedly upregulated following axotomy. Its upregulation coordinates with recently 

identified time points of increased transcriptional activity in injured neurons. Increased Luman at 

these points and in general is likely associated with increased ER stress and UPR activation. The 

upstream signaling pathway responsible for both the cell body response and axonal alteration are 

not known. A neurotrophin mediated mechanism is likely involved, more so in somal Luman 

responses as our previous work suggests more rapid injury mediated signaling may contribute to 

changes in the axon. Results from the nerve crush and electrical stimulation experiments 

confirms previous findings and further explores the likely impact of stimulation on intracellular 

protein processing, transcription factor activation and regeneration programs.  
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5. Nerve injury induces multiphasic alterations in Zhangfei/CREBZF expression in 

sensory neurons ipsilateral and contralateral to injury. 

 

5.1. Abstract 

Nerve transection imposes intracellular stress in DRG neurons that leads to adaptive changes 

driving the alterations in phenotype required for the injured axons to regenerate.  These include 

mounting the unfolded protein response (UPR), which we have shown is regulated by injury-

associated changes in the ER-resident transcription factor Luman/CREB3/LZIP expression and 

activity (Ying, Misra et al. 2014, Ying, Zhai et al. 2015).  Because the transactivation properties 

of Luman and the UPR have been shown to be regulated by the transcription factor Zhangfei 

(ZF) in other cell types, we sought to see if it too might be involved in the injury response of 

sensory neurons.  Thus, the impact of injury on the sensory neuron ZF expression and nuclear 

localization was temporally evaluated using a sciatic spinal nerve transection model and 

histological techniques.  Immunostaining of naïve ganglia revealed ZF to have possible 

transcriptional significance in intact large diameter neurons, as nuclear levels were high in this 

population.  Axotomy led to an acute bilateral reduction of nuclear ZF localization in this 

neuronal subset; followed by a biphasic response with elevated expression by 2-days post injury 

of both mRNA and protein levels, most evident in small to medium size neurons followed by a 

decline at 4 days and a second increase by 1week post injury. The fluctuating responses in 

contralateral neurons at the different time points were not evident in sham experiments 

suggesting potential systemic effects resulting from the contralateral spinal nerve transections. 

Finally, the involvement of the neurotrophin BDNF (a molecule critical to induction of the 

regeneration response in sensory neurons) in the regulation of ZF was examined with the use of 

small interfering (si) RNA.  Intrathecal administration of siRNA targeted to BDNF attenuated 

ZF’s early response to injury.  Collectively, the early response of ZF to injury and its regulation 

by BDNF supports that it may play a role in induction of the regeneration response in sensory 

neurons.  Further, its bilateral biphasic response from two days post-injury on, similar to that 

observed for two additional stress-associated transcription factors, Luman and FOXO3a, 

suggests an emerging complex pattern of transcriptional stress responses in sensory neurons that 

includes a systemic component in addition to those on the injured neuron. 
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5.2. Introduction 

The consequences of peripheral nerve injury are dramatic as affected neurons attempt to 

survive and regrow lost axons.  During episodes of stress and axonal injury, sensory neurons can 

undergo rapid alterations in gene expression due to their highly plastic nature.  Modulation of 

transcription factor expression and activity are some of the early events by which cells mount 

adaptive responses to cope with the pathological event and set up effective repair programs.  The 

Verge lab has recently revealed that the ER-resident stress-related transcription factor, 

Luman/CREB-3/LZIP (herein called Luman) plays a pivotal role in early regenerative events 

such as the intrinsic ability of sensory neurons to regenerate an axon through its regulation of the 

unfolded protein response (UPR) and cholesterol biosynthesis (Ying, Misra et al. 2014, Ying, 

Zhai et al. 2015).  In the previous chapter we examined temporal alterations in Luman expression 

to better predict beyond the one-day injury time point assessed in Ying et al., (2014; 2015), when 

cells are mounting adaptive responses in the acute versus chronic phases of regeneration and 

whether these responses are also indicative of a more global systemic stress response.  

Little is known about regulators of Luman function and elucidating this could have important 

implications for modulating regenerative responses.  However, in vitro studies have revealed that 

another basic leucine zipper transcription factor (bLZip), Zhangfei (ZF aka CREBZF/SMILE) 

when co-expressed with Luman in Vero and Hep2 cells could potently and effectively inhibit the 

host cell factor (HCF)-dependent transactivation function by the Gal4-Luman fusion protein of a 

UPR element containing promoter in a dose dependent manner (Misra, Rapin et al. 2005).  

Interestingly, Zhangfei, like Luman was discovered due to its interaction with the Herpes 

Simplex Virus-1 related HCF protein and like Luman, is also expressed in trigeminal sensory 

neurons (Lu and Misra 2000).  More recent work has revealed a role for ZF in the UPR exerted 

through the tumor suppressor protein p53 (Zhang, Rapin et al. 2013, Zhang and Misra 2014, 

Zhang, Thamm et al. 2015), a molecular pathway implicated in peripheral nerve regeneration 

(reviewed in (Krishnan, Duraikannu et al. 2016)).   

An additional regulator of repair programs is the neurotrophin family of growth factors 

which has a longstanding relationship with PNS neurons and their regenerative action (Verge, 

Gratto et al. 1996). Neurotrophins are mostly target derived; however, BDNF is found in 

innervated tissue and produced by neurons themselves. In the naïve DRG, small to medium sized 

nociceptive neurons express BDNF (Wetmore and Olson 1995, Verge, Gratto et al. 1996), and as 
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these neurons have high amounts of the TrkA receptor, their BDNF levels are regulated by NGF 

signaling (Apfel, Wright et al. 1996).  BDNF stands alone as the sole neurotrophin up-regulated 

in sensory neurons in response to injury.  This characteristic has made it the candidate molecule 

for the induction of the injury response (Geremia and Verge 2001, Geremia, Gordon et al. 2007). 

The distinct trophin environment in the injured state accounts for the altered expression and 

activation of transcription factors in DRG neurons.  Activating transcription factor 3 (ATF-3), c-

jun, and STAT3 are up-regulated in sensory neurons following axotomy and their expression and 

post-translational process are mediated through neurotrophin governed pathways (Averill, 

Michael et al. 2004, Lindwall and Kanje 2005, Hyatt Sachs, Schreiber et al. 2007).  Interestingly, 

ZF has also been implicated in nerve growth factor (NGF) signaling through its regulation of 

expression of the NGF receptor trkA signaling (Valderrama, Rapin et al. 2008). The role of ZF in 

trkA regulation is complex.  During development, trkA triggers pathways for differentiation and 

in an undifferentiated cell ZF can activate the expression of the receptor, thus facilitating NGF 

mediated maturation or apoptosis (Valderrama, Rapin et al. 2009).  But ZF also has a suppressive 

action on TrkA, as its interaction with Brn3a  inhibits transcription of the receptor in non-

neuronal cells (Valderrama, Rapin et al. 2008).   In NGF-differentiated PC-12 cells, stress events 

can cause down-regulation of ZF and its target gene trkA (Valderrama, Rapin et al. 2008), 

paralleling a response seen in injured sensory neurons where neurotrophin trk and p75 receptor 

expression at the level of the cell body is reduced (Verge, Riopelle et al. 1989, Zhou, Rush et al. 

1996).  

Established links between ZF and the NGF receptor trkA, Luman’s actions and the UPR 

cellular stress response suggests that it may play a role in regeneration of sensory neurons 

following axotomy.  Thus, we hypothesize that transection of the sciatic nerve will impact ZF 

expression and/or cellular localization in DRG neurons.  Our results demonstrate a neuron 

population-dependent response where nuclear ZF initially rapidly decreases in large neurons, 

then undergoes a biphasic response that parallels other stress-associated transcription factors 

analyzed in this thesis.  Additional experiments utilizing siRNA for BDNF suggests the trophin 

plays a role in regulation of injury-associated changes in ZF expression.  
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5.3. Results 

 

5.3.1. Peripheral nerve injury results in bilateral alterations in ZF expression and 

nuclear localization  

Prior to beginning studies examining the temporal changes in Zhangfei expression in 

response to peripheral nerve lesion the validity of the antibody and oligonucleotide probes 

employed were examined using several specificity controls. First, the rabbit ZF antibody was 

preabsorbed with ZF protein prior to processing tissue with anti-ZF, and anti-ZF preabsorbed 

with protein isolates from Vero cells transfected with ZF expression plasmids. Processing of 

naïve L5 DRG sections for immunofluorescence revealed that pre-absorbed anti-Zhangfei results 

in near abolishment of the immunofluorescence staining discerned with anti-ZF alone (Fig. 

5.1A). Further, Western blot analysis of electrophoresed protein extracts from Vero cells 

transfected with Luman or Zhangfei was conducted employing anti-ZF. In the lane running 

protein isolate extract from Zhangfei transfected cells, anti-Zhangfei recognized a single band of 

approximately 37 kDa, the predicted molecular weight of Zhangfei protein; while unable to 

detect any identifiable antigen in the lane where protein isolates from Luman transfected cells 

were run (Fig. 5.1.1B3). Finally, Western blot analysis of anti-Zhangfei rabbit serum treated 

membrane of electrophoresed protein extracts from naïve L4-L5 DRG (lane 2) revealed that anti-

Zhangfei recognized only a single band of approximately 37 kDa (Fig. 5.1.1C). For in situ 

hybridization experiments, the specificity of the radiolabelled oligonucleotide probe to 

selectively detect ZF mRNA was examined by hybridizing tissue sections with a hybridization 

cocktail containing the radiolabelled probe with or without the addition of a 100X excess 

unlabeled cold ZF probe.  Addition of the excess cold probe was effective in competing away the 

ability of the radiolabelled probe to hybridize to the mRNA (Fig. 5.2). 

Immunohistochemical analysis of section L5 DRG from naïve animals shows ZF to be 

expressed in all sensory neurons with high nuclear localization in a number of small neurons and 

medium-large diameter population (> 35 µm; Fig. 5.2).  The ratio of nuclear to cytoplasmic 

staining appears slightly higher in these medium-large diameter neurons compared to the small-

medium diameter cells (1.04 vs. 1.01, based on cumulative naïve DRG N=3) implying a possible 

greater transcriptional significance.  
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Figure 5.1   Zhangfei antibody specificity controls. Fluorescence photomicrographs of    DRG 
(6µm sections) processed for immunohistochemistry to detect cell Zhangfei protein with anti-
Zhangfei rabbits serum (A) and anti-Zhangfei absorbed with cell protein isolates from vero cells 
transfected with Zhangfei (B) . Scale bar = 100µm. Note: absorption of anti-Zhangfei results in 
near abolishment of immunofluorescence staining. C. Western blot analysis of anti-Zhangfei 
rabbit serum treated membrane of electrophoresed protein extracts from vero cells transfected 
with Luman (lane 2) and Zhangfei (lane 3). Lane 1, Molecular weight marker. Note: In the 
Zhangfei transfected cell extract, Anti-Zhangfei recognizes a single band of approximately 37 
kDa, the predicted molecular weight of Zhangfei protein; while unable to detect any identifiable 
antigen in the Luman transfected cell extract. D. Western blot analysis of anti-Zhangfei rabbit 
serum treated membrane of electrophoreses protein extracts from normal DRG (Lane 2). Lane 1 
-Molecular weight marker. Note: anti-Zhangfei recognizes band of approximately 37 kDa. 
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Figure 5.2.  Zhangfei oligonucleotide probe specificity controls. Representative darkfield 
photomicrographs of 6 µm L5 DRG cryosections contralateral (Contra) or ipsilateral (Ipsi) to 3 
day L4-6 spinal nerve transection (as indicated) and  processed for in situ hybridization with a 
48mer oligonucleotide radiolabeled probe specific for Zhangfei mRNA reveals a diffuse level of 
hybridization signal that is competed away when 100X unlabelled ZF oligonucleotide probe is 
added to mixture containing the radiolabeled probe. Scale bar = 100 µm.  

 

To examine the repercussions of injury on ZF expression in sensory neurons, an injury 

time course model was used where the L4-L6 spinal nerves are unilaterally transected.  In an 

identical manner to that utilized to determine nuclear levels of Luman and FOXO3a, nuclear ZF 

staining was assessed using dually immunostained sections that localized ZF and Lamin B, the 

latter a component of the nuclear envelope (Fig. 4.2). Only neurons with complete and distinct 

Lamin B staining around the nucleus were considered for analysis. Quantitative 

immunofluorescence protein analysis reveals an initial bilateral loss in high ZF nuclear staining 

as early as 1-hour following acute injury with a further decline by 1day post-lesion.  This 

decrease in nucleus-localized protein is observed primarily in the medium-large size neuron 

subpopulation (Figs. 5.3, 5.4, 5.7).  However, by 2-days post injury, ZF protein and mRNA 

(Figs. 5.3; 5.5) staining has risen significantly across all size ranges of neurons, with the small-

medium sized population having stronger immunoreactivity in the cytoplasm and nucleus of 

neurons ipsilateral to injury (Figs 5.3,5.5, 5.7).  This increase peaks at the 2-day time point. 
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However, by 4-days, ipsilateral levels have decreased to pre injury levels in all size ranges of 

neurons, followed by a significant rise in expression 1-week post injury in all size ranges of 

neurons, but most evident in the small-medium size neurons (Figs. 5.4 and 5.7).  In agreement 

with the multiphasic changes in neuronal nuclear ZF levels following injury, the nuclear ZF 

levels in perineuronal, presumably satellite glial cells undergo similar changes, dramatically 

decreasing 1 hour after injury rising thereafter to high levels at 2 days, declining at 4 days, then 

rising again to high levels one week after injury (Fig. 5.3). 
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Figure 5.3. Peripheral nerve injury alters Zhangfei protein levels in DRG neurons 
ipsilateral to axotomy. Left Column. Fluorescence photomicrographs of L5 DRG (6 µm 
sections) processed for immunohistochemistry to detect cell Zhangfei protein. Ipsilateral DRG 
from L4-L6 spinal nerve transected rats were collected after the predetermined time points of 
1hr, 1day, 2day, 4day and 1week (as indicated). Scale bar = 50 µm. Naïve animals served as 
controls. Right Column. Representative scatterplots depicting relative changes in Zhangfei 
immunofluorescence signal over individual cytoplasmic and nuclear regions as related to cell 
size from sections all processed under identical conditions in parallel. Experimental states as 
indicated. Dashed lines divide the plots into low versus moderate to heavily labelled populations. 
N= 181 to 206 neurons analyzed per condition.  
 

Nerve injury also impacts ZF expression and localization in uninjured contralateral neurons.  

Besides the initial bilateral loss of nuclear ZF immunostaining in medium to large size neurons at 

1 hour to 1-day post injury, cytoplasmic levels remain relatively stable in the medium to large 

size contralateral neurons, while rising slightly in the contralateral small to medium size neurons 

(Fig.5.4). Contralateral neuronal cytoplasmic ZF levels then remain stable in the medium to large 

size neurons at 2 days, followed by a decline across all size ranges of neurons to levels lower 

than pre-injury levels by 4 days, with a subsequent rise by 7 days.  In contrast to the early 

general downward trend in the cytoplasm, nuclear intensity undergoes a clear biphasic response 

across all size ranges of intact contralateral neurons following the initial decline in nuclear levels 

at 1-hour post-injury (Fig.5.4).  Two-day post injury, contralateral ganglia have elevated nuclear 

levels most notable in small-medium size neurons. This strong signal diminishes significantly 

across all size ranges of neurons by 4 days, to just above pre-injury levels in the small-medium 

size neurons, while decreasing dramatically to below pre-injury, practically undetectable levels 

in the medium to large size neurons. There is however, a significant rise back to pre-injury levels 

in this latter population of neurons by 7 days, while overall levels in the small to medium size 

neurons remain stable.  ZF mRNA (Fig. 5.5) expression remains relatively unchanged in 

contralateral neurons throughout the time course, suggesting that regulation of some aspects of 

the ZF injury response occur at the post-transcriptional level.  
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Figure 5.4. Peripheral nerve injury alters Zhangfei protein levels in DRG neurons 
contralateral to axotomy. Left Column. Fluorescence photomicrographs of L5 DRG (6 µm 
sections) processed for immunohistochemistry to detect cell Zhangfei protein. Contralateral 
DRG from L4-L6 spinal nerve transected rats were collected after the predetermined time points 
of 1hr, 1day, 2day, 4day and 1week. Scale bar = 50 µm. Naïve animals served as controls. Right 
Column. Representative scatterplots depicting relative changes in Zhangfei immunofluorescence 
signal over individual cytoplasmic and nuclear regions as related to cell size from sections all 
processed under identical conditions in parallel. Experimental states as indicated. Dashed and 
solid lines divide the plots into low versus moderate to heavily labelled populations. N= 185 to 
206 neurons analyzed per condition.  

5.3.2. Zhangfei levels are not discernibly altered by sham surgery 

Because there was such a robust increase in ZF detected in the nuclei of small to medium 

size neurons in contralateral ganglia and a decline in cytoplasmic levels across all size ranges 

and nuclear levels in medium to large size neurons, we had to ascertain whether these 

contralateral changes in expression were due to systemic stress response associated with the 

surgical exposure or the actual lesion of the nerve.  Thus, sham surgeries were performed for the 

entire time course and qualitatively assessed for marked responses in L4,5 DRG ipsilateral or 

contralateral to the surgical exposure site.  Qualitative analysis of ipsilateral or contralateral L5 

DRG sections processed for ZF immunofluorescence (N=3 animals/time point), did not reveal 

any significant changes from naïve controls, suggesting that the changes observed in the 

axotomy time course were due to the nerve injury imposed (Fig. 5.6). 

 

5.3.3. Knockdown of BDNF suppresses injury-associated ZF up-regulation 

Injury drives changes in BDNF expression in peripherally axotomized DRG that play a 

critical role in the induction of the injury response in sensory neurons (Geremia, Pettersson et al. 

2010).  What is not known however, is whether this also includes regulation of injury-associated 

changes in ZF expression. Thus, to test the role of endogenous BDNF in regulation of the ZF, 

tissue generated for the Geremia et al., (2010) study was employed to examine alterations in 

injury-associated changes in neuronal ZF expression in response to reductions in neuronal BDNF 

effected by intrathecal infusion of BDNF selective small interfering RNA (siRNA). The strategy 

employed involved delivering an intrathecal bolus injection of siRNA into the spinal cord at the  
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Figure. 5.5. Unilateral peripheral axotomy alters Zhangfei (ZF) mRNA expression levels in 
DRG bilaterally.  Representative darkfield photomicrographs of L5 DRG sections (6µm) 
processed for in situ hybridization with a 48mer oligonucleotide radiolabeled probe specific for 
ZF mRNA in order to visualize transcript localization and expression following injury. Ipsilateral 
(left column) and contralateral (right column) DRG sections from L4-L6 unilateral spinal nerve 
transected rats harvested 1-hour, 1-day, 2-days, 4-days and 1-week after injury (as indicated). 
Scale bar = 100 µm. Note: Peripheral nerve axotomy results in a modest decline in ZF mRNA 
expression by 1 hr and 1 day, followed by a bilateral increase mRNA levels that is higher in the 
DRG ipsilateral to injury and peaking at the 2-day post lesion.  

 

 
 

Figure 5.6. Summary line graphs of Zhangfei (ZF) labelling index of grouped DRG neuron 
populations. Summary line graphs of alterations in the mean labeling index ± s.e.m. of 
cytoplasmic (A) and nuclear (B) ZF immunofluorescence intensity levels observed in DRG 
neurons ipsilateral and contralateral to injury at time points as indicated. Each graph point 
represents a quantitative analysis of N=600 or more neurons from 3 animals in total per 
condition.  ***p value<0.001 ANOVA with Dunn’s post-test analysis. 
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Figure 5.7. Summary line graphs of Zhangfei (ZF) labelling index of DRG neurons 
subdivided into the small-medium and medium-large subpopulations. ZF summary line 
graphs of alterations in the mean + s.e.m. cytoplasmic (A; blue) and nuclear (B; black) 
immunofluorescence intensity levels normalized to the naïve control and as a function of 
neuronal size.  Data is summarized for small-medium sized (< 35 µm, column 1) and medium-
large sized (>35 µm, column 2) DRG neurons ipsilateral (solid lines) and contralateral (dashed 
lines) to injury at time points as indicated. N=3 animals for each data point. Note: relative 
changes in nuclear localization parallel that observed for the cytoplasmic staining. Small to 
medium sized ipsilateral neurons show elevated levels of ZF particularly at the 2-day time point. 
This response is transient as staining is decreasing by 4-days. Interestingly, ZF immunostaining 
in medium to large size neurons is transiently decreased at the 1-day time point and then elevated 
again by 2 days. ***p value<0.001 ANOVA with Dunn’s post-test analysis. 
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Figure 5.8.  Temporal study of the impact of sham surgery on neuronal Zhangfei (ZF) 
expression Fluorescence photomicrographs of L5 DRG (6 µm sections) processed for 
immunohistochemistry to detect cell ZF protein from animals that underwent sham surgeries 
where the right L4-L6 spinal nerves were exposed but not injured. Right and left dorsal root 
ganglia were harvested at post-surgical times 1-hour, 1-day, 2-days, 4-days and 1-week (as 
indicated). Scale bar = 100 µm. Note: ZF immunostaining does not discernibly change between 
each injury time point nor between the right versus left sides. Naïve animals served as controls 
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and did not differ from that observed at the different sham time points examined (data not 
shown). N=3 animals/time point.  

 

 
 

Figure 5.9. Role of endogenous BDNF in regulation of early Zhangfei (ZF) injury responses 
in sensory neurons. L5 DRG sections processed for ZF immunofluorescence reveal that 
siBDNF treatment results in reduced expression of ZF protein in 3d injured neurons relative to 
3d injury alone. Note: ZF expression in the 3d injury + non-targeting siRNA control is not 
discernibly different from that of 3d injury alone. Scale bars=100 µm. 

 

level of the L5 DRG 1 or 3 days prior to nerve injury to reduce endogenous stores prior to injury, 

and thus reduce the amount released at the time of injury.  This was followed by an additional 

infusion at the time of the 3 day spinal nerve transection.  Infusion of fluorescently tagged non-

targeting control siRNA demonstrated that the infused siRNA accumulated in L5 DRG neurons 

both ipsilateral and contralateral to lesion, but did not alter BDNF expression, while infusion of 
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BDNF selective siRNA effectively reduced expression of neuronal BDNF mRNA and protein in 

intact and injured L5 DRG neurons (Fig. 8 in (Geremia, Pettersson et al. 2010)).  

Administration of the siBDNF muted the ZF injury response, as immunofluorescence 

staining of the transcription factor in treatment DRGs was lower than those given non-targeting 

control siRNA (Fig. 5.7).  This result suggests a BDNF-mediated mechanism, whereby increased 

production of the neurotrophin in response to injury may regulate corresponding injury-

associated changes in ZF protein levels.  

 

5.4. Discussion  

In this study I sought to determine whether ZF expression is coordinately regulated with 

Luman in the injured sensory neurons by employing the same temporal injury paradigm utilized 

to study Luman expression after injury and also examined whether endogenous BDNF is 

implicated in regulation of this response.  The role of ZF in cellular responses has not been 

extensively elucidated, with our study the first to link it to the cell body response of adult sensory 

neurons to injury. My findings indicate that this response is multiphasic ipsilateral to injury. 

There is an initial decline in ZF expression most evident in the nuclei of medium to large size 

injured neurons 1-hour and 1 day after injury, followed by a biphasic response largely paralleling 

that observed for Luman, with a rise in all size ranges of neurons at 2 days, a decline at 4 days 

and then another rise at 7 days in both cytoplasmic and nuclear ZF levels, with endogenous 

BDNF implicated in its increased expression observed after injury. These changes are also 

accompanied by biphasic changes in ZF expression in contralateral neurons that largely parallel 

those observed for Luman and FOXO3a in this thesis, once again supporting a global stress 

response to nerve injury.  

 

5.4.1. ZF is implicated in homeostasis and the cell body response to injury 

 The strong nuclear presence of ZF primarily in medium to large intact neurons, typically 

mechanosensitive/proprioceptive in function and trkA negative, suggests that ZF serves a role in 

regulating genes associated with homeostasis or proteostasis in this subpopulation. Alternatively, 

ZF could be active repressing an injury/plasticity-associated phenotype with the decrease in both 

cytoplasmic nuclear levels, evident as early as 1-hour post-injury, supporting that its rapid 

removal may be involved in the switching neurons to a regenerating state. The low levels of 
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plasticity associated markers such as GAP43 in this subpopulation before injury suggests that a 

plasticity state may be actively repressed in the intact state, and stands in contrast to the NGF-

responsive nociceptive trkA expressing subpopulation of primarily small to medium size 

uninjured neurons which are nociceptive in function, appear to have relatively high basal rates of 

GAP43 synthesis and are highly plastic (Verge, Tetzlaff et al. 1990, Sommervaille, Reynolds et 

al. 1991, Diamond, Holmes et al. 1992, Karchewski, Kim et al. 1999).  

ZF plays a complex role in regulating expression of the NGF receptor tyrosine kinase 

trkA (Valderrama, Rapin et al. 2008). In undifferentiated medulloblastoma cells or NGF-

differentiated sympathetic neuron-like PC12 cells, ectopic expression of ZF can activate trkA 

expression, facilitating NGF-mediated maturation or apoptosis in the former while promoting 

differentiation in the latter (Valderrama, Rapin et al. 2009).  But ZF also have a dose dependent 

suppressive action on Brn3a activity and its ability to activate the trkA promoter in non-neuronal 

Vero cells (Valderrama, Rapin et al. 2008).  The precise role that ZF plays in expression or 

repression of trkA and other properties of sensory neurons remains to be investigated in 

experiments that manipulate endogenous levels of ZF. 

 

5.4.2. Cellular stress and regulation of ZF expression 

A link between ZF expression and stress responses exists in other cell types. Twenty four 

hour exposure of NGF-differentiated PC12 cells to the cellular stressor capsaicin caused down-

regulation of ZF and its target gene trkA (Valderrama, Rapin et al. 2008).  The latter is in 

agreement with what we and others observe in regards to trkA expression in sensory neurons in 

response to another stressor, nerve injury (Verge, Riopelle et al. 1989, Zhou, Rush et al. 1996). 

In the present study, using the same injury model as the aforementioned Verge et al., and 

Karchewski et al., I have also observed a decrease in ZF expression across all size ranges of 

neurons by one day, with expression in the nuclei of medium to large size neurons already 

decreased by one hour. There was also a marked reduction in the levels of ZF detected in the 

perineuronal cells at one hour post-injury that appears to recover by one day and then parallels 

the changes observed here in neuronal ZF and Luman expression (Chapter 4), once again 

highlighting the robust axis of communication between these glial cells and intraganglionic 

neurons and/or in response to systemic influences (Lu and Richardson 1993, Nadeau, Wilson-

Gerwing et al. 2014, Christie, Koshy et al. 2015).  It is possible that these rapidly induced 
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alterations in ZF expression, especially those observed in the nuclei are part of a response to the 

initial acute stress that axotomy imposes.    

With the exception of the very early decline in ZF expression observed up to one-day post-

injury, the subsequent biphasic changes parallel those observed for Luman ipsilateral and 

contralateral to injury.  These multiphasic responses, observed both ipsilaterally and 

contralaterally to injury for ZF align closely with the recently described distinct transcriptional 

phases associated with cell body response to peripheral nerve injury examined in DRG ipsilateral 

to injury (Li, Xue et al. 2015).  In particular, the initial early decline seen in ZF expression 

corresponds well with the “stress-response” phase occurring within hours of the insult.  The next 

phase, the “pre-regeneration phase” is in place by 1-day post-injury and represents a time of 

great transcriptional activity, such as I observed with increasing levels of ZF expression until the 

DRG transition into the “regeneration phase” at 4 days post-injury, a time where I see an abrupt 

decline in stress transcription factor ZF expression both ipsilaterally and contralateral to injury.  

Finally, I observe an increase in expression at 7-days post-injury, a time point when regeneration 

is well underway. 

 

5.4.3. Potential mechanisms of how ZF might participate in nerve regeneration 

Successful regeneration depends on a robust intrinsic neuronal cell body response that 

involves the coordinated expression of regeneration-associated genes regulated by a host of 

transcription factors.   ZF belongs to the CREB (cAMP-response-element-binding protein)/ATF 

(activating transcription factor) family of basic region-leucine zipper (b-LZIP) transcription 

factors (Lu and Misra 2000) that are implicated in the regeneration response of sensory neurons.  

The actions of ZF are complex.  At a transcriptional level ZF is not like other members of the 

bLZip family in that it appears to be incapable of binding to bLZip response elements as a 

homodimer, but it can heterodimerize with or modulate other transcription factors, some of 

which have been directly implicated in axon/nerve degeneration or regeneration, mostly through 

the ER stress induced as a result of nerve injury(Penas, Font-Nieves et al. 2011, Quadrato and Di 

Giovanni 2012, Ying, Zhai et al. 2015, Krishnan, Duraikannu et al. 2016, Onate, Catenaccio et 

al. 2016, Onate, Court et al. 2016).  This includes heterodimerization with Luman (Misra, Rapin 

et al. 2005), ATF4 (Hogan, Cockram et al. 2006) , Xbp1 (Zhang, Rapin et al. 2013) and p53 

(Lopez-Mateo, Villaronga et al. 2012). Like many of these transcription factors, the alterations in 
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ZF expression in sensory neurons following nerve injury supports that it likely serves as a 

multifunctional sensor of a number of cellular events and through heterodimerization with 

multiple transcription factors is poised to integrate a number of extracellular signals that 

ultimately may have pathogenic or regenerative functions.   

As mentioned above, ZF may heterodimerize with other transcription factors to impact 

peripheral nerve repair. Two potential stress-associated transcriptional partners for ZF that come 

to the forefront are p53 and Luman. With respect to p53, in a yeast two-hybrid screen using 

HEY1, an indirect activator of the tumor suppressor p53 as bait, ZF was shown to interact with 

both Hey1 and the transcription factor p53.  ZF was also shown to stabilize p53 and to cooperate 

synergistically with Hey1 to enhance p53 transcriptional activity (Lopez-Mateo, Villaronga et al. 

2012).  Interestingly, part of this effect may include induction of posttranslational modifications 

in p53 that prevents its degradation, thereby potentiating its actions. Whether such an interaction 

occurs in sensory neurons is not yet known, but it is known that acetylated p53 is a positive 

regulator of peripheral nerve regeneration-associated gene expression (Tedeschi, Nguyen et al. 

2009) and neurite outgrowth (reviewed in (Krishnan, Duraikannu et al. 2016)). It  likely does so 

via post-translational modifications as there were no changes in p53 transcript levels in response 

to 3,7 or 14 day sciatic nerve injury (Renno, Al-Maghrebi et al. 2013).   

In contrast to p53’s positive links to regeneration, when it interacts with two E3 ubiquitin 

ligases, MDM2 and MDM4 to form a triad, it can impede regeneration in the CNS. If this 

interaction between the ubiquitin ligases and p53 is interrupted, then p53 becomes activated and 

it can promote axonal growth through the IGF1 signaling pathway (Joshi, Soria et al. 2015).  Of 

interest, Zhang and Misra (Zhang and Misra 2014) revealed that ZF can displace MDM2 from its 

association with p53 in U2OS cells, a potential mechanism for its role in injured sensory 

neurons. Whether an interaction between ZF and p53 occurs in sensory neurons and whether it 

serves to promote regeneration needs to be explored.    

Peripheral nerve repair necessitates tremendous protein production and correct protein 

folding.  Thus, it is not surprising that induction of an UPR in sensory neurons following injury 

has recently been described and shown to be critically linked to the ability of axons to regenerate 

(Onate, Catenaccio et al. 2016) and which we have shown to be regulated by Luman (Ying, 

Misra et al. 2014, Ying, Zhai et al. 2015). Recent work in the Misra lab supports a potential role 

for injury-induced changes in ZF expression in the positive impact that the UPR has on nerve 
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repair.  They reveal an interaction between p53 and ZF in regulation of the unfolded protein 

response (UPR) in osteosarcoma cells, a response which is lost in the absence of p53 (Zhang, 

Thamm et al. 2015).  Furthermore, amino acid deprivation, another ER stressor and a situation 

that likely arises in sensory neurons as they attempt to meet the protein synthesis demands of 

regeneration has been shown to induce ZF expression (Zhang, Jin et al. 2010).  

Finally, we also observed an association between injury-induced changes in endogenous 

BDNF expression and ZF expression. We have shown that injury-associated changes in BDNF 

expression in sensory neurons are critical for induction of regeneration-associated gene 

expression and the intrinsic ability of a sensory neuron to regenerate an axon (Geremia, 

Pettersson et al. 2010).  I have shown that intrathecal delivery of BDNF-specific siRNAs can 

attenuate ZF’s early response to injury. Thus, collectively, the early response of ZF to injury, 

namely its initial decreased expression, coupled with its regulation by BDNF supports that it may 

play a role in induction of the regeneration response in sensory neurons by potentially de-

repressing gene expression.  Further, its bilateral biphasic response from two days post-injury on, 

similar to that observed for two additional stress-associated transcription factors, Luman and 

FOXO3a, suggests an emerging complex pattern of transcriptional stress responses in sensory 

neurons that includes a systemic component in addition to those on the injured neuron. 
In conclusion, it is clear that a deeper understanding of the complex regulation of ZF and its 

transcriptional partners in homeostasis and cellular stress responses of injured sensory neurons is 

needed. Future studies will explore direct interactions between ZF and nerve regeneration by 

preventing the upregulation in ZF expression at 2days using siRNA or by creating an adenoviral 

vector that will allow overexpression of ZF in the one day injured neurons to see how this 

impacts induction of regeneration programs in sensory neurons. Learning how to exploit and 

manipulate the transcriptional programs driving effective nerve regeneration will benefit many. 
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6. General Discussion 

6.1. Summary of findings 

The regrowth potential of the peripheral nervous system has been extensively studied. Upon 

injury, DRG neurons undergo a sequelae of genetic events resulting in a phenotypic shift from a 

quiescent cell to a regenerating one. This shift is accomplished by distinct transcriptional phases 

to first sense the stress event, then start the injury response and finally, to build and sustain 

newly constructed axons. The expression and post-translational state of multiple transcription 

factors is altered by the intracellular signaling cascades initiated after axotomy (Patodia and 

Raivich 2012). But, little is known about the how regulators of stress responses are altered in 

these different phases of the cell body response of sensory neurons.  Here, I investigated further, 

3 unique transcriptional regulators, all previously shown to respond to select cellular stress 

events in either sensory neurons or other cell types to determine how changes in their expression 

patterns correlate with the response to nerve injury. We further identified the possibility that the 

expression of these transcription factor might be regulated by either BDNF, a neurotrophin that 

we have shown regulates induction of the regeneration response or by brief electrical stimulation, 

a therapeutic intervention that enhances the regeneration response. Either modulation of 

endogenous BDNF signaling or brief electrical stimulation led to alterations in the expression of 

the three stress transcription factors examined, suggesting that these proteins are involved in the 

cell body response of sensory neurons to injury. The specific findings were: 

 

6.1.1. FOXO3a 

The family of forkhead box class O family are a group of highly conserved transcription 

factors responsible for a number of cellular processes including glucose metabolism dysfunction, 

cell cycle arrest, inflammation and apoptosis (van der Horst and Burgering 2007). Specifically, 

FOXO3a activation is the downstream target of these stress states in many neuronal cell types 

(Maiese, Chong et al. 2007). Furthermore, FOXO3a protein levels were shown to decrease in 

DRG neurons in response to sciatic nerve injury (Wang, Liu et al. 2009). However, despite being 

shown to be regulated by nerve injury by Western blot analysis in the Wang, Lui et al. 2009 

study, this is a transcription factor that I found is heterogeneously expressed in both the 

cytoplasmic and nuclear neuronal compartments and how this expression is altered temporally in 

distinct subpopulations and neuronal compartments has never been characterized.  
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To further examine the temporal impact of injury on FOXO3a expression, a unilateral spinal 

nerve transection model was used and both ipsilateral and contralateral DRGs were harvested 

after the predetermined time points. Immunohistochemical analysis showed that FOXO3a is 

most highly expressed in small-medium presumed nociceptive neurons in intact DRG and that 

axotomy leads to a significant time dependent decrease in transcription factor protein levels 

ipsilateral to lesion beginning at 1 day with a further decline by 2days. This change was most 

obvious in the small to medium sized population; however, levels began to rise by 4 days and 1 

week in all DRG neurons including the medium to large sized. While there were definitive 

changes in protein levels, FOXO3a mRNA levels between ipsilateral and contralateral DRG 

proceeds for in situ hybridization were relatively similar with only mild differences between time 

points. It is well established that FOXO transcription factors are heavily regulated at the post 

translational level (van der Horst and Burgering 2007) and therefore we hypothesized that the 

injury induced alterations might be secondary to alterations in neurotrophin signaling. DRG 

neurons are highly responsive to neurotrophin manipulation in both development and 

pathological states (Lindsay 1996, Verge, Gratto et al. 1996). Extensive work by our lab has 

suggested that BDNF is a candidate for the induction of the injury response as it is the only 

neurotrophin whose expression is upregulated in after injury, with its suppression of its 

expression or actions decreasing intrinsic axon growth capabilities and RAG levels (Karchewski, 

Kim et al. 1999, Karchewski, Gratto et al. 2002, Geremia 2005, Geremia, Pettersson et al. 2010). 

With this knowledge, we ascertained the effect of endogenous BDNF manipulation on FOXO3a 

activity in injured DRG neurons by using siBDNF and conversely brief electrical stimulation, 

which upregulates the neurotrophin and enhances the regeneration response (Geremia, Gordon et 

al. 2007). Disruption of BDNF with siBDNF intrathecal injections lead to increased expression 

of FOXO3a mRNA in ipsilateral and contralateral DRG neurons, suggesting that baseline 

endogenous levels of BDNF potentially regulate transcriptional changes of FOXO3a. Crush 

injury lead to a temporary decrease in FOXO3a immunoreactivity; however, electrical 

stimulation appeared to further suppress FOXO3a in crush plus stimulation animals compared to 

crush alone. It is suspected that increased BDNF signaling during this therapy was responsible 

for this observation.  

These results helped to theorize a potential mechanism of FOXO3a in injured DRG neurons 

where increased BDNF leads to hyperphosphorylation of nuclear FOXO3a through trk signaling; 
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thus facilitating its cytoplasmic translocation and subsequent ubiquitination and degradation, but 

this remains to be tested. The biological consequence of suppressed FOXO3a after injury is not 

clear; however, we theorized that its transcriptional regulation of cell cycle regulators, including 

p27kip1, is critical. Evidence suggests that peripheral nerve injury alters the activity of multiple 

tumor suppressor genes and that a trigger for regeneration might be unlocking cell cycle arrest 

(Krishnan, Duraikannu et al. 2016).  

In the past, it has been generally accepted that genetic observation seen in contralateral DRG 

were comparable to baseline expression patterns seen in naïve animals and contralateral samples 

were used as controls. However, there have been frequent reports of unilateral injury causing 

changes to “uninjured” neurons with various suspected mechanisms. This work was the first to 

examine the effect of unilateral nerve injury on FOXO3a expression in contralateral DRG 

neurons. We observed a biphasic response in neurons contralateral to injury where FOXO3a 

protein nuclear staining was up by 1 day, down at 4 days and up by 1 week with staining in 

medium to large neurons higher than naïves. Again, these changes were primarily seen at the 

protein level. It was unclear whether these changes were due to propagating signals through the 

spinal cord or from a systemic source. Uninjured C4 ganglia from L4-L6 spinal nerve transected 

rats showed elevated FOXO3a levels compared to naïves, suggesting an unknown humeral injury 

signal triggered by peripheral axotomy likely exists.  

 

6.1.2. Luman 

The injury response and subsequent regeneration of DRG neurons involves the upregulation 

of numerous RAGs, an increase in protein synthesis and packaging and undoubtedly elevated 

levels of ER stress as the cells attempt to regrow injured axons. The unfolded protein response is 

activated in times of ER stress where transcriptional regulators are employed and activate target 

genes to assist in protein folding, degradation and triggering apoptotic pathways if necessary 

(Ron and Walter 2007). The importance of a complete and coordinated UPR to peripheral nerve 

recovery after injury has been recently described where inhibition or knockout of certain UPR 

regulators leads to delayed motor recovery, reduced myelin removal and axonal regeneration 

(Onate, Catenaccio et al. 2016).  

Luman is a known transcriptional regulator of the UPR, binding promoter regions containing 

CRE and UPRE (Lu, Yang et al. 1997, Lu and Misra 2000) and is expressed by a variety of rat 
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tissue types (Ying, Zhang et al. 2015). Ying et al demonstrated that axonal Luman is rapidly 

activated in the axonal ER equivalent, translated from axon-derived transcripts and is 

retrogradely transported by an importin-dynein mediated mechanism to the sensory neuron soma 

(Ying, Misra et al. 2014). In addition, they established a link between Luman activation and the 

regenerative response as disruption with siRNA impaired neurite outgrowth (Ying, Misra et al. 

2014). This association with regeneration was further examined as the transcription factors was 

shown to regulate components of the cholesterol biosynthetic pathway, which is critical to the 

production of plasma membrane for growth axons (Ying, Zhai et al. 2015).  These finding were 

remarkable, as they pointed to Luman as not only a regulator of the UPR in sensory neurons but 

as a sensor of injury and potential modulator of the regenerative response.  

Even though early axonal Luman responses were characterized at 1 day after injury and also 

examined at the somal level, it was unknown how expression of the transcription factor was 

temporally regulated in response to injury at times outside the one-day point as part of the cell 

body response to injury. The spinal nerve transection model showed a temporal increase in cell 

body Luman protein and RNA levels in ipsilateral injured primary sensory neurons. This was a 

biphasic response where expression levels peaked at 2-days post injury, were decreased by 4 

days and up again by 1 week. Luman protein immunoreactivity was seen highest in small to 

medium sized neurons. Interestingly, we again saw a contralateral response to injury as uninjured 

DRG neurons also had a biphasic response minus the significant rise at 2 days seen in the injured 

group. The suppression of Luman at the 4-day time point was initially perplexing; however, 

recent seminal work by Li et al described the transcriptional landscape of DRG neurons post-

injury with three distinct transcriptional phases: The stress sensing, early regeneration and late 

regeneration phases (Li, Xue et al. 2015). The 4-day point is the transition point for the early to 

later regeneration phases and was shown to have a nadir in transcription factor activity; 

coinciding to the reduced expression seen with Luman at this post lesion time point. Finally, to 

further explore the impact of injury on axonal Luman, brief electrical stimulation proximal to a 

crush site caused decreased protein levels in nerve fibres proximal to the crush site. 

Administration of this pro-regenerative therapy likely heightens the injury response of the 

transcription factor, increasing Luman’s activation and association with the importin complex 

machinery for ease of retrograde transport.   
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6.1.3. Zhangfei 

The initial studies that elucidated the role of Luman as a neuronal transcription factor lead to 

the discovery of Zhangfei, a potent and efficient inhibitor of Luman activity (Lu and Misra 2000, 

Misra, Rapin et al. 2005). Experiments revealed that ZF was another basic leucine zipper 

transcriptional regulator expressed in sensory neurons (Akhova, Bainbridge et al. 2005). Its 

overexpression in vitro competitively inhibits the VP16 associated transactivation complexes on 

HSV-1 immediate-early genes and disrupts viral replication, in opposition to the actions of 

Luman (Akhova, Bainbridge et al. 2005). The transactivation function of ZF is accomplished 

through its interaction with intermediary proteins including the tumor suppressor protein p53 

(Lopez-Mateo, Villaronga et al. 2012) and ATF4 (Hogan, Cockram et al. 2006) where ZF 

binding or heterodimerization promotes their transcriptional activity and enhances binding to 

their target promoters, including cAMP response elements with the later (Hogan, Cockram et al. 

2006). While Luman is clearly an inducer of the UPR, ZF suppresses the UPR where its ectopic 

expression in osteosarcoma cell lines lead to decreased levels of Xbp1, HERP, CHOP and Bip 

(Bergeron, Zhang et al. 2013). With the work of Ying et al showcasing Luman as not only a 

regulator of the UPR and a role as an injury signal, I hypothesized that ZF expression would be 

altered in atomized DRG neurons with a potential role in the regenerative response.  

With the previously described L4-L6 spinal nerve transection time course model and 

immunohistochemistry, I observed that peripheral transection led to a multiphasic phasic 

response in ZF protein levels with an initial decrease at the 1-day, transient robust increase at 2-

days then another elevation in levels at 1-week. This was seen in both the small-medium and 

medium-large sized population with higher overall staining in the former. Again, a contralateral 

effect was observed in a biphasic pattern as well with a significant decline in staining seen at the 

4-day time point. This was a bilateral observation with both sides showing decreased 

immunofluorescence staining at 4-days compared to the prior time point. ZF mRNA levels were 

also bilaterally altered in a pattern similar to those seen at the protein level. As with the previous 

studies, a sham time course did not show any significant qualitative changes in ZF protein 

staining, suggesting that the contralateral changes were not secondary to the surgical stress 

related to the nerve exposure, but rather are associated with the actual injury response.   

To examine whether BDNF, as an inducer of the regenerative response, is a potential 

regulator of injury-associated changes in ZF expression, we downregulated endogenous levels of 
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BDNF in neurons after injury (Geremia, Pettersson et al. 2010). Infusion of siBDNF lead to 

dramatic decrease in both contralateral and ipsilateral ZF mRNA levels and prevented the injury 

responses seen in the controlled groups. This suggests two possible mechanisms; either the 

BDNF signaling pathway is directly responsible for ZF expression at either the gene or protein 

level or inhibiting the regeneration response secondarily mitigates the need for ZF upregulation. 

The second hypothesis is very plausible as a decreased regenerative response would lead to 

depressed axonal outgrowth and less need for UPR suppression via ZF.  

 

6.2. Contralateral effect of nerve injury 

The innervation of muscle, skin and other structures by peripheral nerves is largely distinct 

for each half of the body; where distal sensory afferents, motor axons and sympathetic fibres of 

the right are anatomically separated from the left.  Historically, this fact has allowed nerve injury 

researchers to compare observations in injured ipsilateral neurons to the contralateral “control” 

side. As the neurobiology of peripheral nerve injury advanced, there was a growing body of 

evidence that unilateral nerve damage led to bilateral changes in a wide variety of measured 

outcomes including gene expression and anatomical organization (reviewed in (Koltzenburg, 

Wall et al. 1999)). Clinically, “mirror-pain” or “mirror image pain” is a documented 

phenomenon where unilateral injury results in bilateral changes in pain sensation in certain 

patient populations (Huge, Lauchart et al. 2008, de la Llave-Rincon, Fernandez-de-las-Penas et 

al. 2009, Fernandez-de-las-Penas, de la Llave-Rincon et al. 2009, Konopka, Harbers et al. 2012, 

Werner, Ringsted et al. 2013); however, the incidence in humans is not known and there is no 

consensus on effective treatment strategies (Drinovac Vlah, Bach-Rojecky et al. 2016).  

The contralateral effect of injury has been demonstrated in motor neurons which includes; 

increased mRNA of neuropeptides including CGRP, cholecystokinin (CCK), and RAGs such as 

GAP43, and increased release of acetylcholine (Herrera and Grinnell 1981, Herrera, Grinnell et 

al. 1985, Piehl, Arvidsson et al. 1991, Linda, Piehl et al. 1992, Booth and Brown 1993, Verge, 

Wiesenfeld-Hallin et al. 1993). Similar findings are seen in autonomic neurons as injury to 

sympathetic nerves causes contralateral upregulation in the p75 neurotrophin receptor, increased 

sprouting into DRG and spinal roots and decreased acetylcholine (Viana and Kauffman 1984, 

Dornay, Gilad et al. 1985, Smith, Reddy et al. 1990, Kuchel and Zigmond 1991, Kuchel, 

Hellendall et al. 1992, McLachlan, Janig et al. 1993). However, the bulk and strongest evidence 
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suggesting the existence of a contralateral injury response are with DRG neurons and sciatic 

injury models, specifically the nociception subpopulation. Unmyelinated sensory neurons when 

electrically stimulated release neuropeptides SP and CGRP into peripheral tissues causing 

increased blood flow, vascular permeability and extravasation of plasma proteins which is 

reduced after injury (Lembeck and Holzer 1979, Lembeck and Gamse 1982, Brain and 

Cambridge 1996). Injury and subsequent regeneration of saphenous nerves significantly inhibits 

the ability for peripheral plasma extravasation in contralateral nerve muscle targets (Allnatt, 

Dickson et al. 1990). This suggests that a bilateral effect is not only isolated to the neuron itself 

but to innervated tissues with likely behavioral and clinical significance.  

Several of axotomy induced alteration in sensory neuron expression patterns have been 

observed in contralateral dorsal root and other sensory ganglia. There is bilateral change in 

mRNA for CCK and other neuropeptides including vasoactive interstitial polypeptide (VIP), 

neuropeptide Y and galanin (Verge, Wiesenfeld-Hallin et al. 1993, Zhang, Ji et al. 1996). There 

is a trend that many of these bilateral changes are observed in inflammatory and neuropathic pain 

models and with known potential pain mediating molecules; for instance, with the pain and 

injury models such as chronic constriction injury there is increased expression of bradykinin 

receptors B1 and B2, and decreases in tetrodotoxin-resistant Na+ channels which both are 

implicated in neuropathic hypersensitivity following injury (Oaklander and Belzberg 1997, 

Petersen, Eckert et al. 1998, Levy and Zochodne 2000) . Unilateral injury is observed to cause a 

bilateral activation of endogenous µ-opioid receptors which attenuates bilateral pain states in 

animal behavior models (Mansikka, Zhao et al. 2004). Sciatic nerve and spinal nerve transection 

also leads to increases TNF-alpha and TNF receptor immunoreactivity in L4-L5 DRG ipsilateral 

and contralateral to injury compared to sham and naïve animals, supporting this effect plays a 

role in inflammatory states (Dubovy, Jancalek et al. 2006). Neurotrophin signaling may also be 

altered in contralateral ganglia, as there is a significant increase in p75 neurotrophin receptor in 

DRG perineuronal satellite cells (Zhou, Rush et al. 1996). Furthermore, the neurotrophin NGF 

has been implicated as a signaling factor in these bilateral changes, such that unilateral injection 

of NGF increased the levels of substance P and CGRP in similar neuron subpopulations in both 

ipsilateral and contralateral DRG (Amann, Sirinathsinghji et al. 1996, Donnerer, Amann et al. 

1996). In addition, the involvement of neurotrophins is also implicated in p75 knockout mice 

which have decreased sprouting of contralateral sympathetic fibres (Ramer and Bisby 1997). 
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These finding taken together show that contralateral changes are frequently observed in 

multiple cell types but also with different experimental designs and outcome measures including 

immunohistochemistry and in situ hybridization. However, the interpretation of these results 

should be readily scrutinized as most are incidental findings where the original research question 

and design was not aimed at elucidating whether contralateral changes were different from 

controls. One commonality is that a vast majority of these positive contralateral effects are to a 

lesser degree than those seen ipsilaterally and have a more delayed time course. Despite this, 

published reports with multiple injury markers including RAGs, neuropeptides, the neurotrophin 

BDNF (Karchewski, Gratto et al. 2002) have shown no evidence to suggest that their 

contralateral expression patterns are affected in injured states.  In order to fully understand the 

bilateral implications of peripheral nerve transection, the researcher may need to augment 

experimental numbers to compensate for this less robust response.  

 

6.2.1. Potential mechanisms: neuronal versus humoral 

There are two main mechanisms that are hypothesized to contribute to the contralateral 

changes; firstly, that signals propagated from the injured neurons are transmitted through the 

spinal cord and effect the neurons directly. Secondly, this injury signal originates from the 

injured tissue or from a central source which is transmitted systemically by the blood to act on 

the opposite side. While I observed consistent largely biphasic contralateral responses for all 

three transcription factors examined in contralateral DRG, the fact that I also observed similar 

impacts on FOXO3A in DRG at the cervical level, remote from the site of lesion, supports a that 

a humoral source contributes to the observed response. There is little to no evidence in the 

literature for the existence of either of these mechanisms; however, there are some examples in 

the literature that can be used to support both (reviewed in (Koltzenburg, Wall et al. 1999). 

Regardless, the neuronal mediated process is generally the more accepted mechanism. 

 

6.2.2. Humoral/systemic mechanism 

Systemic inflammatory responses are well-defined clinical entities, where a severe insult to 

the organism results in a systemic cascade of inflammatory mediators causing hemodynamic 

instability, end organ damage and potentially multisystem organ failure (Balk 2014). This 

pathophysiologic response is most commonly associated with infection, severe sepsis, trauma 
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and a variety of other injuries (Angus and van der Poll 2013, Balk 2014, Binkowska, Michalak et 

al. 2015). Spinal cord injury (SCI) is one such case where evidence suggests pathological 

connections emanating from the injured spinal cord result in a profound and sustained intraspinal 

and systemic inflammatory response with increased circulation of immune cells and pro-

inflammatory mediators resulting in distal end organ dysfunction [reviewed in (Sun, Jones et al. 

2016)]. Following transection of a peripheral nerve, the severed distal segment undergoes 

Wallerian degeneration where an inflammatory driven process leads to macrophage invasion and 

clearance of the damaged axons and associated glia (Rotshenker 2011). While release of 

breakdown products and inflammatory markers from the lesion site into the circulation is likely 

to occur, studies investigating the impact of peripheral nerve injury on systemic inflammatory 

states is markedly absent in the literature. It is unknown whether these signals exist at a level to 

potentially contribute to a contralateral affect. Even though SCI and central nervous system 

trauma is a pathologically and biochemically distinct process as compared to PNS disease, the 

data pointing to the role of systemic inflammation post-SCI and its deleterious consequences 

implies that peripheral nerve injury or other neurotraumatic events may cause humoral 

inflammatory changes that are potentially significant.  

There is also dysregulation of the neuroendocrine system in SCI subjects with increased 

activation of the hypothalamic-pituitary-adrenal (HPA) axis, a potent endocrine regulator of 

stress and inflammation with elevated levels of glucocorticoids as the end result (Lerch, Puga et 

al. 2014). Glucocorticoids including corticosterone and cortisol are steroid hormones produced in 

the zona fasciculate of the adrenal cortex, which bind to glucocorticoid receptors (GR) that then 

translocate to the nucleus and regulate the transcription of genes containing the GR response 

element (Purves D 2001). Circulating levels of endogenous corticosterone (rodents) and cortisol 

(humans) increase after SCI (Cruse, Keith et al. 1996, Lucin, Sanders et al. 2007), undoubtedly 

affecting multiple GR-regulated cellular functions; however, specifics of GR signaling is not 

well defined in the context of nervous system injury. The impact of peripheral nerve damage on 

the HPA axis is not well understood but dorsal root ganglion neurons express GR and steroid or 

HPA axis manipulation has been shown to alter DRG neuron expression patterns (Smith, Seckl 

et al. 1991, Covenas, DeLeon et al. 1994, DeLeon, Covenas et al. 1994). Adrenalectomy and 

exogenous glucocorticoid administration leads to changes in DRG neuropeptide levels including 

SP, CGRP and somatostatin (Smith, Seckl et al. 1991, Covenas, DeLeon et al. 1994). As these 
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steroid hormones can directly affect DRG phenotype, its plausible to consider glucocorticoids as 

a potential contributor to either bilateral, contralateral or systemic sensory nerve injury changes 

but the response of the HPA in the injured state needs to be characterized.  

As stated above, altered neurotrophin signaling has been a suspected contributor to the 

contralateral effect. Most recently, Shakhbazau et al discovered that unilateral sciatic nerve 

transection resulted in elevation of NFG and NT3, but not GDNF or BDNF, in the uninjured 

contralateral nerve (Shakhbazau, Martinez et al. 2012). This evidence suggests that unilateral 

injury can regulate systemic neurotrophin levels and therefore enhance neurotrophin signaling in 

uninjured DRG neurons, a population highly sensitive to these growth factors.  

There have been problems with the humoral explanation for the contralateral effect. Firstly, 

contralateral findings have traditionally been very specific to the DRG or spinal segments 

corresponding to the levels effected by the ipsilateral injury. Its argued that a generalized non-

specific systemic mediated response could not cause the precise spatial distribution of findings in 

structures on the opposing side. Furthermore, no strong evidence exists to suggest that 

circulating factors have a role in ipsilateral regulation of the injury response in DRG neurons. 

This area of study requires better understanding of the systemic implications of PNS pathologies 

before they can be attributed to changes in contralateral neurons.  

 

6.2.3. Neuronal/trans-spinal mechanism 

The other possibility that is theorized is that damage to axons leads to generation of an 

anterograde signal into the spinal cord and ultimately acts upon contralateral homonymous 

neurons. Changes in electrical neuronal activity is a potential signaling candidate, but with 

regards to sensory neurons and the significance of electrical activity propagating into the spinal 

cord the data is conflicting. Severance of the axon does lead to retrograde electrical signaling to 

injured DRG neurons as calcium influx at the site of injury (Cho and Cavalli 2012) causes 

depolarization leading to  direct genetic alterations. One study utilizing peripheral administration 

of TTX showed that chronic depression of sensory neuron activity did not produce central 

changes in the dorsal horn of the spinal cord, particularly with neuropeptide levels which often 

exhibit contralateral changes (Wall, Mills et al. 1982). However, other data suggest dorsal horn 

neurons alter activity dependent enzyme levels following either physical (axotomy) or functional 

(TTX) disconnection (Carr, Haftel et al. 1998), which counters the above claim. 



	 126 

Spinal cord glia are now more recognized as important mediators in a variety of pathological 

conditions, particularly certain pain states, and have shown the propensity for intraspinal 

electrical signaling (Watkins, Milligan et al. 2001, DeLeo, Tanga et al. 2004). Inflammatory 

mediated neuropathic pain models can lead to increased allodynia (pain to nocuous stimuli that 

was previously benign) bilaterally or mirror image pain (Chacur, Milligan et al. 2001, Milligan, 

Twining et al. 2003). The ipsilateral and mirror image (contralateral) pain is blocked by 

preventing spinal glial activation and blocking the release of glial derived proinflammatory 

cytokines (Chacur, Milligan et al. 2001). These contralateral communications are thought to be 

mediated through gap junctions that connect spinal glia into widespread networks (Verkhratsky, 

Orkand et al. 1998). Activation of glia at one site leads to propagation of calcium waves via gap 

junctions, activating distant glia and releasing pain mediating substances (Newman 2001). 

Treatment with a gap junction decoupler, carbenoxolone, reversed mirror pain in inflammatory 

neuropathic pain models but left ipsilateral allodynia unaffected (Spataro, Sloane et al. 2004). 

Finally, commissural interneurons may have the capacity to convey signal messages to the 

contralateral side. It has long been known neurons convey axons from one dorsal horn to the 

other via the dorsal commissure (Ramón y Cajal 1895). Electrophysiological work showed that 

neurons in the superficial dorsal horn respond to electrical stimulus of unmyelinated c-fibres in 

the contralateral nerve (Fitzgerald 1982, Fitzgerald 1982, Fitzgerald 1983). This transmedian 

signaling through interneurons would require bidirectional signals across synapse and in theory 

electrical activity could accomplish this. Some have hypothesized that the trans-spinal mediators 

are neurotrophins, particularly BDNF and NT3, as their expression is upregulated after injury 

and could signal both anterogradely and retrogradely (Koltzenburg, Wall et al. 1999). While 

there is a lack of evidence supporting this mechanism, more recent data suggests that 

neurotrophin signaling is likely altered systemically and peripherally (Shakhbazau, Martinez et 

al. 2012) and this possibly leads to contralateral changes. While little research has been done in 

this area, the existence of both central and systemic influences is likely. The spinal mechanism is 

more strongly supported by the neuropathic pain data and the reality of mirror pain states.  

 

6.2.4. Significance of new contralateral findings 

This work was the first to show that unilateral sciatic nerve transection can cause 

contralateral changes in transcription factor expression and thereby potentially altering the 
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phenotype of the “uninjured” side. All three of the stress related transcriptional activators, 

FOXO3a, Luman and ZF, showed contralateral changes in expression and localization in the 

injury time course models but not in sham experiments, inferring that these changes are 

secondary to unilateral injury and not surgical stress. FOXO3a expression in contralateral DRG 

showed a biphasic response with an initial increase that was opposite to the ipsilateral response. 

This finding is not in keeping with previous documented bilateral responses, as the contralateral 

effect usually mirrors the ipsilateral but to a lesser degree. A significant finding for FOXO3a was 

that uninjured C4 ganglia from L4-L5 spinal nerve injured rates had increased levels of the 

protein, similar to what was seen contralaterally. As with the ipsilateral findings, these are 

possibly secondary to post-translational modifications of FOXO3a. This unexpected result builds 

the argument that a systemic response to peripheral injury likely exists in some capacity and may 

be biochemically significant.  

The effects on Luman and ZF were also biphasic with a significant drop in expression at the 

4-day time point. Any changes in these regulators of the UPR would imply that the contralateral 

DRG neurons are experiencing varying degrees of ER stress. As explained, the 4-day time point 

corresponds to a significant transition point in the injury response of sensory neurons when 

transcription factor activity and transcriptional activation is depressed and less need for a 

coordinated UPR. This contralateral effect could be attributed to both humoral or trans-spinal 

communication, but due to the close spatial and temporal relationship a neuronal mechanism is 

more plausible but still speculative.  That these findings potentially correlate with altered 

plasticity in the affected contralateral ganglia is supported by the Ryoke, Ochi et al. (Ryoke, 

Ochi et al. 2000) study showing that a lesion can serve to condition contralateral neurons to 

regenerate more robustly should they become injured.  

 

6.3. Potential therapeutics  

The work of Ying et al was significant in identifying the UPR associated transcription factor 

Luman as a retrograde injury signal essential for the regrowth of injured axons (Ying, Misra et 

al. 2014, Ying, Zhai et al. 2015, Ying, Zhang et al. 2015). In continuing that work, we showed 

that Luman and the UPR repressor ZF are upregulated in soma of DRG neurons after axotomy 

and associated with the cell body response of injured neurons. This further strengthens the 

argument that a coordinated UPR is essential for the regeneration process. Despite the years of 
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study and the development of multiple therapies that have shown biochemical and clinical 

evidence of repair, recovery from PNS injury is still slow and minimal. While Luman’s 

mechanism is better understood at this point, the importance of ZF with regards to either the 

hindrance or enhancement of repair is not known. If the UPR is essential to either the initiation 

or the maintenance of the regeneration response, its postulated that the action of this UPR 

suppressor may inhibit the early stages of axon growth. However, a prolonged UPR could 

eventually lead to apoptosis. Therefore, the timing of ZF expression appears critical and 

therapies that might streamline its response could lead to better functional recovery. These could 

include target direct therapy with a monoclonal antibody to ZF, administered early hours after 

injury to better enhance the UPR during the early regeneration phase. 

We continued to examine the role endogenous BDNF plays in the injury response of DRG 

neurons and saw that its disruption reversed the injury associated changes seen with ZF and 

FOXO3a. These finding continue to support the claim of BDNF as the candidate induction 

molecule of the regeneration response and the changes seen with these transcriptional regulators 

are likely secondary to blunted outgrowth of axons when BDNF is inhibited. The bulk of 

evidence from our lab points to importance of this neurotrophin in sensory neuron biology and 

its potential as a target to improve repair.  

Brief electrical stimulation has successfully moved from animal models to the clinical world 

and will soon be readily available to patients suffering from traumatic nerve injures as a first-line 

treatment. This therapy was shown to enhance the injury responses of FOXO3a and Luman in 

DRG cell bodies and nerves respectively. These results further advocate for the use of electrical 

stimulation in these pathologies and its mechanism of action may entail direct or indirect 

transcription factor regulation 

 

6.4. Future directions 

Expression of these stress related transcription factors in DRG neurons appears to be altered 

in by nerve injury as observed in the spinal nerve transection model.  Their role in sensory 

neurons likely exceeds the scope of regeneration and should be explored with other peripheral 

nerve pathology models, including chronic inflammation/neuropathic pain and demyelination. 

Recent data shows that ER stress is impaired in spinal cord neurons of neuropathic pain models 

(Zhang, Yi et al. 2015). Further exploration into the expression pattern of Luman and ZF during 
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neuropathic pain would lead to the hypothesis that endogenous disruption of these regulators 

with intrathecal injections of targeted small interfering RNAs (siRNAs) might significantly alter 

behavioral pain states.  

Ying et al demonstrated that treatment with siLuman decreased neurite outgrowth of injured 

DRG neurons in vitro (Ying, Misra et al. 2014). As I have demonstrated here, Luman expression 

is associated with the cell body injury response.  The next step is the intrathecal administration of 

siLuman in vivo to peripherally injured animals and observe whether regeneration is inhibited by 

examining the expression of RAGs and the use of behavioral studies assessing functional 

recovery. These experiments should be duplicated with siZF in vitro and in vivo with the 

hypothesis that axon growth will also be inhibited, arguing further for the need of a coordinated 

UPR for proper regeneration. ZF is also expressed in the axons of sensory neurons and it’s 

unknown whether it has axonal localized mRNA that undergoes local protein synthesis similar to 

Luman. The idea of ZF as potential retrograde injury signal to turn off the UPR initiated by 

Luman is an enticing theory.   

It was revealed that Luman potentially regulates axon growth not only through regulating the 

UPR but by activating mediators in the cholesterol biosynthesis pathway (Ying, Zhai et al. 

2015).  Whereby the inhibitory effect of Luman disruption with siLuman were partially rescued 

by the administration of cholesterol. Statins are one of the most frequently prescribed 

medications in the western world with retrospective and prospective evidenced showing that 

these lipid lowering agents decrease the incidence of cardiovascular and cerebrovascular events 

and improve outcomes after these events have occurred (Anderson, Gregoire et al. 2016). 

However, statins are noted for side effects such as myopathies that can lead to significant 

functional symptoms for patients (Collins, Reith et al. 2016). More recently, statins have been 

linked to sensory and autonomic ganglionopathies and small fibre neuropathies (Novak, Pimentel 

et al. 2015). This has led to the hypothesis that statin therapy might alter sensory neuron 

homeostasis in either native or nerve transected subjects and heighten Luman activity due to its 

association with cholesterol synthesis.  

 

6.5. Conclusion 

The findings of this thesis demonstrate that the expression of stress related transcription 

factors associated with either neuronal survival (FOXO3a) or the unfolded protein response 
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(Luman and ZF) is temporally altered in axotomized DRG neurons. These 3 regulators of 

transcription are now attributed as part of the cell body regeneration response. Furthermore, their 

activity and expression appears partly regulated by a BDNF-associated mechanism. The most 

striking discovery is the noticeable contralateral effect of these injury markers, and the first noted 

impact on contralateral transcription factors. While the ipsilateral findings were predictable due 

to the noted phenotypic switch of injured sensory neurons, the interesting and dramatic 

contralateral changes brings the topic of this effect to the forefront. Besides the further work 

needed to decipher which mechanisms are responsible, the question remains: Are these 

contralateral changes harmful or helpful? Experimentation with key questions pointing to the 

nature of the contralateral effect and not merely as an incidental finding is required.  
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