258 research outputs found

    Formalizing Termination Proofs under Polynomial Quasi-interpretations

    Full text link
    Usual termination proofs for a functional program require to check all the possible reduction paths. Due to an exponential gap between the height and size of such the reduction tree, no naive formalization of termination proofs yields a connection to the polynomial complexity of the given program. We solve this problem employing the notion of minimal function graph, a set of pairs of a term and its normal form, which is defined as the least fixed point of a monotone operator. We show that termination proofs for programs reducing under lexicographic path orders (LPOs for short) and polynomially quasi-interpretable can be optimally performed in a weak fragment of Peano arithmetic. This yields an alternative proof of the fact that every function computed by an LPO-terminating, polynomially quasi-interpretable program is computable in polynomial space. The formalization is indeed optimal since every polynomial-space computable function can be computed by such a program. The crucial observation is that inductive definitions of minimal function graphs under LPO-terminating programs can be approximated with transfinite induction along LPOs.Comment: In Proceedings FICS 2015, arXiv:1509.0282

    CoLoR: a Coq library on well-founded rewrite relations and its application to the automated verification of termination certificates

    Get PDF
    Termination is an important property of programs; notably required for programs formulated in proof assistants. It is a very active subject of research in the Turing-complete formalism of term rewriting systems, where many methods and tools have been developed over the years to address this problem. Ensuring reliability of those tools is therefore an important issue. In this paper we present a library formalizing important results of the theory of well-founded (rewrite) relations in the proof assistant Coq. We also present its application to the automated verification of termination certificates, as produced by termination tools

    Certifying Higher-Order Polynomial Interpretations

    Get PDF
    Higher-order rewriting is a framework in which one can write higher-order programs and study their properties. One such property is termination: the situation that for all inputs, the program eventually halts its execution and produces an output. Several tools have been developed to check whether higher-order rewriting systems are terminating. However, developing such tools is difficult and can be error-prone. In this paper, we present a way of certifying termination proofs of higher-order term rewriting systems. We formalize a specific method that is used to prove termination, namely the polynomial interpretation method. In addition, we give a program that processes proof traces containing a high-level description of a termination proof into a formal Coq proof script that can be checked by Coq. We demonstrate the usability of this approach by certifying higher-order polynomial interpretation proofs produced by Wanda, a termination analysis tool for higher-order rewriting

    Modular and Certified Semantic Labeling and Unlabeling

    Get PDF
    Semantic labeling is a powerful transformation technique to prove termination of term rewrite systems. The dual technique is unlabeling. For unlabeling it is essential to drop the so called decreasing rules which sometimes have to be added when applying semantic labeling. We indicate two problems concerning unlabeling and present our solutions. The first problem is that currently unlabeling cannot be applied as a modular step, since the decreasing rules are determined by a semantic labeling step which may have taken place much earlier. To this end, we give an implicit definition of decreasing rules that does not depend on any knowledge about preceding labelings. The second problem is that unlabeling is in general unsound. To solve this issue, we introduce the notion of extended termination problems. Moreover, we show how existing termination techniques can be lifted to operate on extended termination problems. All our proofs have been formalized in Isabelle/HOL as part of the IsaFoR/CeTA project

    The dependency pair framework: Combining techniques for automated termination proofs

    Get PDF
    Abstract. The dependency pair approach is one of the most powerful techniques for automated termination proofs of term rewrite systems. Up to now, it was regarded as one of several possible methods to prove termination. In this paper, we show that dependency pairs can instead be used as a general concept to integrate arbitrary techniques for termination analysis. In this way, the benefits of different techniques can be combined and their modularity and power are increased significantly. We refer to this new concept as the “dependency pair framework ” to distinguish it from the old “dependency pair approach”. Moreover, this framework facilitates the development of new methods for termination analysis. To demonstrate this, we present several new techniques within the dependency pair framework which simplify termination problems considerably. We implemented the dependency pair framework in our termination prover AProVE and evaluated it on large collections of examples.

    On the formalization of termination techniques based on multiset orderings

    Get PDF
    Multiset orderings are a key ingredient in certain termination techniques like the recursive path ordering and a variant of size-change termination. In order to integrate these techniques in a certifier for termination proofs, we have added them to the Isabelle Formalization of Rewriting. To this end, it was required to extend the existing formalization on multiset orderings towards a generalized multiset ordering. Afterwards, the soundness proofs of both techniques have been established, although only after fixing some definitions. Concerning efficiency, it is known that the search for suitable parameters for both techniques is NP-hard. We show that checking the correct application of the techniques-where all parameters are provided-is also NP-hard, since the problem of deciding the generalized multiset ordering is NP-hard. © René Thiemann, Guillaume Allais, and JulianNagele

    The computability path ordering

    Get PDF
    This paper aims at carrying out termination proofs for simply typed higher-order calculi automatically by using ordering comparisons. To this end, we introduce the computability path ordering (CPO), a recursive relation on terms obtained by lifting a precedence on function symbols. A first version, core CPO, is essentially obtained from the higher-order recursive path ordering (HORPO) by eliminating type checks from some recursive calls and by incorporating the treatment of bound variables as in the com-putability closure. The well-foundedness proof shows that core CPO captures the essence of computability arguments \'a la Tait and Girard, therefore explaining its name. We further show that no further type check can be eliminated from its recursive calls without loosing well-foundedness, but for one for which we found no counterexample yet. Two extensions of core CPO are then introduced which allow one to consider: the first, higher-order inductive types; the second, a precedence in which some function symbols are smaller than application and abstraction

    Description logics of context

    Get PDF
    We introduce Description Logics of Context (DLCs)—an extension of Description Logics (DLs) for context-based reasoning. Our approach descends from J. McCarthy's tradition of treating contexts as formal objects over which one can quantify and express first-order properties. DLCs are founded in two-dimensional possible world semantics, where one dimension represents a usual object domain and the other a domain of contexts, and accommodate two interacting DL languages—the object and the context language—interpreted over their respective domains. Effectively, DLCs comprise a family of two-sorted , two-dimensional combinations of pairs of DLs. We argue that this setup ensures a well-grounded, generic framework for capturing and studying mechanisms of contextualization in the DL paradigm. As the main technical contribution, we prove 2ExpTime-completeness of the satisfiability problem in the maximally expressive DLC, based on the DL forumla . As an interesting corollary, we show that under certain conditions this result holds also for a range of two-dimensional DLs, including the prominent forumla
    • …
    corecore