976 research outputs found

    Formalization of Fixed-Point Arithmetic in HOL

    Get PDF
    This paper addresses the formalization in higher-order logic of fixed-point arithmetic. We encoded the fixed-point number system and specified the different quantization modes in fixed-point arithmetic such as the directed and even quantization modes. We also considered the formalization of exceptions detection and their handling like overflow and invalid operation. An error analysis is then performed to check the correctness of the quantized result after carrying out basic arithmetic operations, such as addition, subtraction, multiplication and division against their mathematical counterparts. Finally, we showed by an example how this formalization can be used to enable the verification of the transition from floating-point to fixed-point algorithmic level in the signal processing design flow

    Modeling and verification of DSP designs in HOL

    Get PDF
    In this thesis we propose a framework for the incorporation of formal methods in the design flow of DSP (Digital Signal Processing) systems in a rigorous way. In the proposed approach we model and verify DSP descriptions at different abstraction levels using higher-order logic based on the HOL (Higher Order Logic) theorem prover. This framework enables the formal verification of DSP designs which in the past could only be done partially using conventional simulation techniques. To this end, we provide a shallow embedding of DSP descriptions in HOL at the floating-point, fixed-point, behavioral, RTL (Register Transfer Level), and netlist gate levels. We make use of existing formalization of floating-point theory in HOL and introduce a parallel one for fixed-point arithmetic. The high ability of abstraction in HOL allows a seamless hierarchical verification encompassing the whole DSP design path, starting from top level floating- and fixed-point algorithmic descriptions down to RTL, and gate level implementations. We illustrate the new verification framework using different case studies such as digital filters and FFT (Fast Fourier Transform) algorithms

    An approach for the formal verification of DSP designs using Theorem proving

    Get PDF
    This paper proposes a framework for the incorporation of formal methods in the design flow of digital signal processing (DSP) systems in a rigorous way. In the proposed approach, DSP descriptions were modeled and verified at different abstraction levels using higher order logic based on the higher order logic (HOL) theorem prover. This framework enables the formal verification of DSP designs that in the past could only be done partially using conventional simulation techniques. To this end, a shallow embedding of DSP descriptions in HOL at the floating-point (FP), fixed-point (FXP), behavioral, register transfer level (RTL), and netlist gate levels is provided. The paper made use of existing formalization of FP theory in HOL and a parallel one developed for FXP arithmetic. The high ability of abstraction in HOL allows a seamless hierarchical verification encompassing the whole DSP design path, starting from top-level FP and FXP algorithmic descriptions down to RTL, and gate level implementations. The paper illustrates the new verification framework on the fast Fourier transform (FFT) algorithm as a case study

    A Verified Certificate Checker for Finite-Precision Error Bounds in Coq and HOL4

    Full text link
    Being able to soundly estimate roundoff errors of finite-precision computations is important for many applications in embedded systems and scientific computing. Due to the discrepancy between continuous reals and discrete finite-precision values, automated static analysis tools are highly valuable to estimate roundoff errors. The results, however, are only as correct as the implementations of the static analysis tools. This paper presents a formally verified and modular tool which fully automatically checks the correctness of finite-precision roundoff error bounds encoded in a certificate. We present implementations of certificate generation and checking for both Coq and HOL4 and evaluate it on a number of examples from the literature. The experiments use both in-logic evaluation of Coq and HOL4, and execution of extracted code outside of the logics: we benchmark Coq extracted unverified OCaml code and a CakeML-generated verified binary

    Formalization of Transform Methods using HOL Light

    Full text link
    Transform methods, like Laplace and Fourier, are frequently used for analyzing the dynamical behaviour of engineering and physical systems, based on their transfer function, and frequency response or the solutions of their corresponding differential equations. In this paper, we present an ongoing project, which focuses on the higher-order logic formalization of transform methods using HOL Light theorem prover. In particular, we present the motivation of the formalization, which is followed by the related work. Next, we present the task completed so far while highlighting some of the challenges faced during the formalization. Finally, we present a roadmap to achieve our objectives, the current status and the future goals for this project.Comment: 15 Pages, CICM 201

    Formal Verification of Nonlinear Inequalities with Taylor Interval Approximations

    Full text link
    We present a formal tool for verification of multivariate nonlinear inequalities. Our verification method is based on interval arithmetic with Taylor approximations. Our tool is implemented in the HOL Light proof assistant and it is capable to verify multivariate nonlinear polynomial and non-polynomial inequalities on rectangular domains. One of the main features of our work is an efficient implementation of the verification procedure which can prove non-trivial high-dimensional inequalities in several seconds. We developed the verification tool as a part of the Flyspeck project (a formal proof of the Kepler conjecture). The Flyspeck project includes about 1000 nonlinear inequalities. We successfully tested our method on more than 100 Flyspeck inequalities and estimated that the formal verification procedure is about 3000 times slower than an informal verification method implemented in C++. We also describe future work and prospective optimizations for our method.Comment: 15 page

    Formal Probabilistic Analysis of a Wireless Sensor Network for Forest Fire Detection

    Full text link
    Wireless Sensor Networks (WSNs) have been widely explored for forest fire detection, which is considered a fatal threat throughout the world. Energy conservation of sensor nodes is one of the biggest challenges in this context and random scheduling is frequently applied to overcome that. The performance analysis of these random scheduling approaches is traditionally done by paper-and-pencil proof methods or simulation. These traditional techniques cannot ascertain 100% accuracy, and thus are not suitable for analyzing a safety-critical application like forest fire detection using WSNs. In this paper, we propose to overcome this limitation by applying formal probabilistic analysis using theorem proving to verify scheduling performance of a real-world WSN for forest fire detection using a k-set randomized algorithm as an energy saving mechanism. In particular, we formally verify the expected values of coverage intensity, the upper bound on the total number of disjoint subsets, for a given coverage intensity, and the lower bound on the total number of nodes.Comment: In Proceedings SCSS 2012, arXiv:1307.802
    corecore