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ABSTRACT

Modeling and Verification of DSP Designs in HOL

Behzad Akbarpour, Ph.D.
Concordia University, 2005

In this thesis we propose a framework for the incorporation of formal methods
in the design flow of DSP (Digital Signal Processing) systems in a rigorous way. In
the proposed approach we model and verify DSP descriptions at different abstraction
levels using higher-order logic based on the HOL (Higher Order Logic) theorem
prover. This framework enables the formal verification of DSP designs which in the
past could only be done partially using conventional simulation techniques. To this
end, we provide a shallow embedding of DSP descriptions in HOL at the floating-
point, fixed-point, behavioral, RTL (Register Transfer Level), and netlist gate levels.
We make use of existing formalization of floating-point theory in HOL and introduce
a parallel one for fixed-point arithmetic. The high ability of abstraction in HOL
allows a seamless hierarchical verification encompassing the whole DSP design path,
starting from top level floating- and fixed-point algorithmic descriptions down to
RTL, and gate level implementations. We illustrate the new verification framework
using different case studies such as digital filters and FFT (Fast Fourier Transform)

algorithms.
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Chapter 1

Introduction

1.1 General Objective: System Verification

Today, hardware and software systems are widely used in applications where failure
is unacceptable: electronic commerce, telephone switching networks, highway and
air traffic control systems, medical instruments, and other examples too numerous
to list. We frequently read of incidents where some failure is caused by an error
in a hardware or software system. A recent example of such a failure is the Ari-
ane 5 rocket, which exploded on June 4, 1996, less than forty seconds after it was
launched. The committee that investigated the accident found that it was caused
by a software error in the computer that was responsible for calculating the rocket’s
movement. During the launch, an exception occurred when a large 64-bit floating
point number was converted to a 16-bit signed integer. This conversion was not
protected by code for handling exceptions and caused the computer to fail. The
same error also caused the backup computer to fail. As a result incorrect altitude
data was transmitted to the on-board computer, which caused the destruction of
the rocket. The team investigating the failure suggested that several measures be
taken in order to prevent similar incidents in the future, including the verification of

the Ariane 5 software. Clearly, the need for reliable hardware and software systems



is critical. As the involvement of such systems in our lives increases, so too does
the burden for ensuring their correctness. Unfortunately, it is no longer feasible to
shut down a malfunctioning system in order to restore safety. We are very much
dependent on such systems for continuous operation; in fact, in some cases, devices
are less safe when they are shut down. Even when failure is not life-threatening,
the consequences of having to replace critical code or circuitry can be economically
devastating. Because of the success of the Internet and embedded systems in auto-
mobiles, airplanes, and other safety critical systems, we are likely to become even
more dependent on the proper functioning of computing devices in the future. In
fact, the pace of change will likely accelerate in coming years. Because of this rapid
growth in technology, it will become even more important to develop methods that

increase our confidence in the correctness of such systems.

1.2 Specific Objectives: DSP Verification

Digital system design is characterized by ever increasing system complexity that
has to be implemented within reduced time, resulting in minimum costs and short
time-to-market. These characteristics call for a seamless design flow that allows to
perform the design steps on the highest suitable level of abstraction. For most digital
signal processing systems, the design has to result in a fixed-point implementation.
This is due to the fact that these systems are sensitive to power consumption,
chip size and price per device. Fixed point realizations outperform floating-point
realizations by far with regard to these criteria. A typical DSP design flow is depicted
in Figure 1.1 [45]. An algorithm design starts from a floating-point description.
This allows to ignore the effects of finite wordlengths and fixed exponents and to
abstract from all implementation details. Additionally, the use of floating-point
models offers a maximum degree of reusability. On the fixed-point level, all operands

are assigned a fixed word length and a fixed exponent, while the control structure and



the operations of the floating point program remain unchanged. This description
is used to analyze whether the fixed-point model fulfills the algorithmic system
requirements. The transformation to the fixed-point is quite tedious and error-
prone. On the implementation level, the fixed-point model of the algorithm has
to be transferred into the best suited target description, either using a hardware
description language (HDL) or a programming language. These requirements have
been the motivation for the development of CAD tools for DSP design. Examples
of such tools are SPW (Cadence) [12], CoCentric (Synopsys) [15], Matlab-Simulink
(Mathworks) [49], and FRIDGE (Aachen UT) [45].
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Figure 1.1: DSP design flow

Usually the conformance of the fixed-point implementation with respect to
the descriptions in floating-point algorithmic, and RT and gate levels is verified
by simulation techniques which cannot cover all design errors, especially for large
systems. On the other hand, adopting formal verification [43] in system design
generally means using methods of mathematical proof rather than simulation to
ensure the quality of the design, to improve the robustness of a design and to speed

up the development. The overall aim for the proposed research is to model the DSP



descriptions at different abstraction levels based on the shallow embedding approach

to enable their formal verification in the HOL theorem proving environment.

1.3 State of the Art: Simulation

Today, the usual validation method to discover the errors in the design flow of DSP
systems is still simulation. In this method, a simulation run must be performed in
each level of abstraction such as floating-point, fixed-point, RT and gate level to
check if the required characteristics are preserved. With simulation, input signals
are injected at certain points in the system and the resulting signals at other points
are observed. These methods can be a cost-efficient way to find errors. However,
in order to get full confidence in the design we would have to perform a complete
simulation which covers all possible input combinations. Exhaustive simulation
of even moderately-sized circuits is impossible, and partial simulation offers only
partial assurance of correctness. This is an especially serious problem in safety-
critical applications, where failure due to design errors may cause loss of life or
extensive damage. In these applications, functional errors in circuit designs cannot
be tolerated. But even where safety is not the primary consideration, there may
be important economic reasons for doing everything possible to eliminate design
errors, and to eliminate them early in the design process. A flawed design may mean
costly and time-consuming refabrication, and mass-produced devices may have to

be recalled and replaced.

1.4 Proposed Solution: Formal Verification

A solution to these problems is one of the goals of formal methods [52] for verification
of the correctness of hardware designs, sometimes just called hardware verification.

With this approach, the behaviour of hardware devices is described mathematically,



and formal proof is used to verify that they meet rigorous specifications of intended
behaviour.

However, formal verification is not the golden rule in circuit testing because
of some limitations. A correctness proof cannot guarantee that the real device will
never malfunction; the design model of the device may be proved correct, but the
hardware actually built can still behave in a way unintended by the designer (this
is the case for simulation too). Wrong specifications can play a major role in this,
because it has been verified that the system will function as specified, but it has not
been verified that it will work correctly. Defects in physical fabrication can cause
this problem too. In formal verification a model of the design is verified, not the real
physical implementation. Therefore, a fault in the modeling process can give false
negatives (errors in the design which do not exist). Although sometimes, the fault
covers some real errors. Because of these limitations we can consider simulation
and hardware verification as complementary techniques, the methods have to play
together.

Formal verification methods can be categorized in two main groups [67], theo-
rem proving and model checking. Theorem proving refers to the use of axioms and
proof rules to prove the correctness of the systems. In this method, one expresses
the system model and specifications in a suitable logic, and constructs a proof in the
logic that the system model implies the specifications. The powerful mathematical
techniques such as induction and abstraction are the strengths of theorem proving
and make it a very flexible and powerful verification technique. It makes it possi-
ble to construct a model at almost every abstraction level and proves properties on
all classes of systems. However, it is a time consuming process which can involve
generating and proving literally hundreds of lemmas in painstaking detail. Model
checking, on the other hand, is more limited in scope, but is fast and fully auto-
mated. The system model is in essence a finite state machine, and specifications are

written in temporal logic. These logics are limited with respect to the very powerful



logics handled by general theorem provers, but are quite simple and concise, and

can express a wide variety of useful properties.

1.5 Proposed DSP Verification Framework

In this thesis we propose a methodology for applying formal methods to the design
flow of DSP systems in a rigorous way. The corresponding commutating diagram is
shown in Figure 1.2. Thereafter, we model the ideal real specification of the DSP
algorithms and the corresponding floating- and fixed-point representations as well
as the RT and gate level implementations as predicates in higher-order logic. The
overall methodology for the formal specification and verification of DSP algorithms
will be based on the idea of shallow embedding of languages [4] using the HOL
theorem proving environment [23]. In the proposed approach, we first focus on the
transition from real to floating- and fixed-point levels. For this, we make use of
existing theories in HOL on the construction of real [27] and complex [32] numbers,
the formalization of IEEE-754 standard based floating-point arithmetic [28, 29], and
the formalization of fixed-point arithmetic. We use valuation functions to find the
real values of the floating- and fixed-point DSP outputs and define the error as the
difference between these values and the corresponding output of the ideal real spec-
ification. Then we establish fundamental lemmas on the error analysis of floating-
and fixed-point roundings and arithmetic operations against their abstract mathe-
matical counterparts. Finally, based on these lemmas, we derive expressions for the
accumulation of roundoff error in floating- and fixed-point DSP algorithms using
recursive definitions and initial conditions. While theoretical work on computing
the errors due to finite precision effects in the realization of DSP algorithms with
floating- and fixed-point arithmetics has been extensively studied since the late six-
ties [41], this thesis contains the first formalization and proof of this analysis using

a mechanical theorem prover, here HOL. The formal results are found to be in good



agreement with the theoretical ones.

After handling the transition from real to floating- and fixed-point levels, we
turn to the HDL representation. At this point, we use well known techniques to
model the DSP design at the RTL level within the HOL environment. The last
step is to verify this level using a classical hierarchical proof approach in HOL [52].
In this way, we hierarchically prove that the DSP RTL implementation implies the
high level fixed-point algorithmic specification, which has already been related to
the floating-point description and the ideal real specification through the error anal-
ysis. The verification can be extended, following similar manner, down to gate level
netlist either in HOL or using other commercial verification tools as depicted in

Figure 1.2. This analysis is not covered in this thesis.

hall:
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(Convert) N ~ . Analysis
AN . RS .
Fp Shallow Fp Valuation oo poyvalue
Embedding (HoL) N (HOL)
FXP Error>
(Convert) Analysis '~ 1 FPtoFXP Error
N : Analysis
FXP s"“"”’_ FXP _V_a_luatlon. FXP Real Value
Embedding (HOL) (HoL)
(Synthesize) Logical
Implication
ATL Shallow ?.,B'i_
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Embedding (HOL)

Figure 1.2: Propsed DSP specification and verification approach

The process of specifying a hardware description language in higher-order logic
is commonly known as semantic embedding. There are two main approaches [4]:
deep embedding and shallow embedding. In deep embedding, the abstract syntax of
a design description is represented by terms, which are then interpreted by semantic

functions defined in the logic that assign meaning to the design. With this method,
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it is possible to reason about classes of designs, since one can quantify over the
syntactic structures. However, setting up HOL types of abstract syntax and semantic
functions can be very tedious. In a shallow embedding on the other hand, the
design is modeled directly by a formal specification of its functional behavior. This
eliminates the effort of defining abstract syntax and semantic functions, but it also
limits the proofs to functional properties. In this thesis, since our main concern is
to check the correctness of the designs based on their functionality, we propose the
shallow embedding for DSP descriptions: translate the intended meaning of DSP
block desings as described in its documentation into HOL and then complete the
formal proof in the HOL theorem prover. '

In this thesis, we demonstrate how the methodology presented in this section
can be used for the verification of a parametric L order digital filter and the fast
Fourier transform (FFT) algorithms implemented in different canonical forms of re-
alization. Similar discussion can be applied to other types of filtering and signal
analysis algorithms.

When a linear recursive difference equation digital filter is realized with floating-
and fixed-point arithmetic, on a computer or with special-purpose hardware, errors
and constraints due to finite word length are unavoidable. The main categories of
finite precision effects are errors due to roundoff in the arithmetic operations, errors
due to quantization of input, and effects of coefficient inaccuracies. These error
problems have already been studied extensively [47]. In this thesis, as the first case
study we show how this error analysis can be mechanically performed using HOL
theorem prover. We have used our verification methodology to derive expressions
for the accumulation of roundoff error in a parametric L order digital filter, for each
of the three canonical forms of realization: direct, parallel, and cascade.

The fast Fourier transform (FFT) is an algorithm to compute the discrete
Fourier transform with a substantial time saving over conventional methods. FFT

algorithms are based on the fundamental principle of decomposing the computation



of the discrete Fourier transform of a sequence of length N into successively smaller
discrete Fourier transforms. The manner in which this principle is implemented
leads to a variety of different algorithms, all with comparable improvements in com-
putational speed. Two basic classes of FFT algorithms are the decimation-in-time
and decimation-in-frequency. As the second case studty in this project, we consider
the formal verification of the decimation-in-time and decimation-in-frequency FFT
algorithms. We used our methodology to derive expressions for the accumulation of
roundoff error in floating- and fixed-point FFT algorithms by recursive definitions
and initial conditions, considering the effects of input quantization and inaccuracy
in the coeflicients. Based on the extensively studied theoretical work on computing
the errors due to finite precision effects in the realization of FFT algorithms with
floating- and fixed-point arithmetics [41], we perform a similar analysis using the
HOL theorem proving environment. The formal results are found to be in good

agreement with the theoretical ones.

1.6 Related Work

1.6.1 Error Analysis in Formal Verification

Previous work on the error analysis in formal verification was done by Harrison [29]
who verified the floating-point algorithms such as the exponential function against
their abstract mathematical counterparts using the HOL Light theorem prover. As
the main theorem, he proved that the floating-point exponential function has a
correct overflow behavior, and in the absence of overflow the error in the result is
bounded to a certain amount. He also reported on an error in the hand proof mostly
related to forgetting some special cases in the analysis. This error analysis is very
similar to the type of analysis performed for DSP algorithms. The major difference,
however, is the use of statistical methods and mean square error analysis for DSP

algorithms which is not covered in the error analysis of the mathematical functions



used by Harrison. In this method, the error quantities are treated as independent
random variables uniformly distributed over a specific interval depending on the type
of arithmetic and the rounding mode. Then the error analysis is performed to derive
expressions for the variance and mean square error. To perform such an analysis in
HOL, we need to develop a mechanized theory on the properties of random variables
and random processes. This type of analysis is not addressed in this thesis and is
a part of our future work. Huhn et al. [34] proposed a hybrid formal verification
method combining different state-of-the-art techniques to guide the complete design
flow of imprecisely working arithmetic circuits starting at the algorithmic down to
the register transfer level. The usefulness of the method is illustrated with the
example of the discrete cosine transform algorithms. In particular, the authors
have shown the use of computer algebra systems like Mathematica or Maple at
the algorithmic level to reason about real numbers and to determine certain error
bounds for the results of numerical operations. In contrast to [34], we propose
an error analysis for digital filters using the HOL theorem prover. Although the
computer algebraic systems such as Maple or Mathematica are much more popular
and have many powerful decision procedures and heuristics, theorem provers are
more expressive, more precise, and more reliable [33]. One option is to combine
the rigour of the theorem provers with the power of computer algebraic systems as

proposed in {33].

1.6.2 Floating-Point Formal Verification

There exist several related work in the open literature on the formalization and
verification of IEEE standard based floating-point arithmetic. For instance, Barrett
[2] specified parts of the IEEE-754 standard in Z, and Miner [54] formalized the
IEEE-854 floating-point standard in PVS. The latter defined the relation between
floating-point numbers and real numbers, rounding, and some arithmetic operations

on both finite and infinite operands. He used this formalization to verify abstract
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mathematical descriptions of the main operations and their relation to the corre-
sponding floating-point implementations. His work was one of the earliest on the
formalization of floating-point standards using theorem proving. His formal specifi-
cation was then used by Miner and Leathrum [53] to verify in PVS a general class
of IEEE compliant subtractive division algorithms.

Carreno [11] formalized the same IEEE-854 standard in HOL. He interpreted
the lexical descriptions of the standard into mathematical conditional descriptions
and organized them in tables, which were then formalized in HOL. He discussed
different standard aspects such as precisions, exceptions and traps, and many other
arithmetic operations such as addition, multiplication, and square-root of floating-
point numbers.

Harrison [27] constructed the real numbers in HOL. He then developed in
HOL a generic floating-point library [28] to define the most fundamental terms of
the IEEE-754 standard and to prove the corresponding correctness analysis lemmas.
He used this library to formalize and verify floating-point algorithms of complex
arithmetic operations such as the square root, the exponential function [29], and
the transcendental functions [30] against their abstract mathematical counterparts.
He also used the floating-point library for the verification of the class of division
algorithms used in the Intel IA-64 architecture [31].

Moore et al. [56] have verified the AMD-K5 floating-point division algorithm
using the ACL2 theorem prover. Also, Russinoff [64] has developed a floating-
point library for the ACL2 prover and applied it successfully to verify the floating-
point multiplication, division, and square root algorithms of the AMD-K5 and AMD
Athlon processors.

Aagaard and Seger [1] combined BDD-based model-checking and theorem
proving techniques in the Voss hardware verification system to verify the IEEE
compliance of the gate-level implementation of a floating-point multiplier. O’Leary

et al. [62] reported on the specification and verification of the Intel Pentium® Pro

11



processor’s floating-point execution unit at the gate level using a combination of
model-checking and theorem proving. Leeser et al. [46] verified a subtractive radix-
2 square root algorithm and its hardware implementation using the higher-order
logic theorem proving system Nuprl. Chen and Bryant [14] used word-level SMV
to verify a floating-point adder. Cornea-Hasegan [17] used iterative approaches and
mathematical proofs to verify the correctness of the IEEE floating-point square root,
divide, and remainder algorithms.

More recently, Daumas et al. [19] have presented a generic library for reasoning
about floating-point numbers within the Coq system. This library was then used
in the verification of IEEE-compliant floating-point arithmetic algorithms (8] and
hardware units [7]. Berg et al. [3] have formally verified a theory of IEEE rounding
presented in [57] using the theorem prover PVS. They have used a formal definition
of rounding based on Miner’s formalization of the standard [54]. This theory was
then used to prove the correctness of a fully IEEE compliant floating-point unit
used in the VAMP processor [6]. Sawada and Gamboa [65] formally verified the
correctness of a floating-point square root algorithm used in the IBM Power4™
processor. The verification was carried out with the ACL2(r) theorem prover which
is an extension of the ACL2 theorem prover that performs reasoning on real numbers
using non-standard analysis. The proof required the analysis of the approximation
error on Chebyshev series by proving Taylor’s theorem. Kaivola et al. [38, 40, 42]
presented the formal verification of the floating-point multiplication, division, and
square root units of the Intel TA-32 Pentium® 4 microprocessor. The verification
was carried out using the Forte verification framework, a combined model-checking
and theorem-proving system built on top of the Voss system. Model checking was
done via symbolic trajectory evaluation (STE), and theorem proving was done in
the ThmTac proof tool.

While all of the above work are concerned with floating-point representation

and arithmetic, there is no report in the open literature on any machine-checked

12



formalization of properties of fixed-point arithmetic. Therefore, the formalization
presented in this thesis is to our best knowledge, the first of its kind. Our formal-
ization of the fixed-point arithmetic has been inspired mostly by the work done by
Harrison [29] and Carreno [11] on floating-point. Harrison’s work was more oriented
towards verification purposes. Indeed, we used an analogous set of lemmas to his
work, to check the validity of operation results and to carry out the error analysis
of the quantized fixed-point result. For exception handling which is not covered by
Harrison [29], we followed Carreno [11] who formalized floating-point exceptions and

their handling in more details.

1.6.3 Error Analysis of Digital Filters

Work on the analysis of the errors due to the finite precision effects in the realization
of the digital filters has always existed since their early days, however, using theo-
retical paper-and-pencil proofs and simulation techniques. For digital filters realized
with the fixed-point arithmetic, error problems have been studied extensively. For
instance, Knowles and Edwards [44] proposed a method for analysis of the finite
word length effects in fixed-point digital filters. Gold and Radar [25] carried out a
detailed analysis of the roundoff error for the first-order and second-order fixed-point
filters. Jackson [37] analyzed the roundoff noise for the cascade and parallel realiza-
tions of the fixed-point digital filters. While the roundoff noise for the fixed-point
arithmetic enters into the system additively, it is a multiplicative component in the
case of the floating-point arithmetic. This problem is analyzed first by Sandberg
[66], who discussed the roundoff error accumulation and input quantization effects
in the direct realization of the filter excited by a deterministic input. He also de-
rived a bound on the time average of the squared error at the output. Liu and
Kaneko [47] presented a general approach to the error analysis problem of digital
filters using the floating-point arithmetic and calculated the error at the output due

to the roundoff accumulation and input quantization. Expressions are derived for

13



the mean square error for each of the three canonical forms of realization: direct,
cascade, and parallel. Upper bounds that are useful for a special class of the filters
are given. Oppenheim and Weinstein [60] discussed in some details the effects of the
finite register length on implementations of the linear recursive difference equation
digital filters, and the fast Fourier transform (FFT) algorithm. Comparisons of the
roundoff noise in the digital filters using the different types of arithmetics have also
been reported in [71].

In order to validate the error analysis, most of the above work compare the
theoretical results with corresponding experimental simulations. In this thesis, we
show how the above error analysis can be mechanically performed using the HOL
theorem prover, providing a superior approach to validation by simulation. Our
focus will be on the process of translating the hand proofs into equivalent proofs
in HOL. The analysis we propose is mostly inspired by the work done by Liu and
Kaneko [47], who defined a general approach to the error analysis problem of digital
filters using the floating-point arithmetic. Following a similar approach, we have ex-
tended this theoretical analysis for fixed-point digital filters. In both cases, a good
agreement between the HOL formalized and the theoretical results are obtained.

Through our work, we confirmed and strengthened the main results of the pre-
viously published theoretical error analysis, though we uncovered some minor errors
in the hand proofs and located a few subtle corners that are overlooked informally.
For example, in the theoretical fixed-point error analysis it is always assumed that
the fixed-point addition causes no error and only the roundoff error in the fixed-
point multiplication is analyzed [60]. This is under the assumption that there is
no overflow in the result and also the input operands have the same attributes as
the output. Using a mechanical theorem prover, we provide a more general error
analysis in which we cover the roundoff errors in both the fixed-point addition and
multiplication operations. On top of that, for the floating-point error analysis, we

have used the formalization in HOL of the IEEE-754 [28], a standard which has not
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yet been established at the time of the above mentioned theoretical error analysis.
This enabled us to cover a more complete set of rounding and overflow modes and

degenerate cases which are not discussed in earlier theoretical work.

1.6.4 Error Analysis of FFT Algorithms

Analysis of errors in FFT realizations due to finite precision effects has traditionally
relied on paper-and-pencil proofs and simulation techniques. The roundoff error in
using the FF'T algorithms depends on the algorithm, the type of arithmetic, the
word length, and the radix. For FFT algorithms realized with fixed-point arith-
metic, the error problems have been studied extensively. For instance, Welch {73]
presented an analysis of the fixed-point accuracy of the radix-2 decimation-in-time
FFT algorithm. Tran-Thong and Liu [68] presented a general approach to the error
analysis of the various versions of the FFT algorithm when fixed-point arithmetic is
used. While the roundoff noise for fixed-point arithmetic enters into the system addi-
tively, it is a multiplicative component in the case of floating-point arithmetic. This
problem is analyzed first by Gentleman and Sande [22], who presented an upper
bound on the mean-squared error for floating-point decimation-in-frequency FF'T
algorithm. Weinstein [72] presented a statistical model for roundoff errors of the
floating-point FFT. Kaneko and Liu [41] presented a detailed analysis of roundoff
error in the FFT decimation-in-frequency algorithm using floating-point arithmetic.
This analysis is later extended by the same authors to the FFT decimation-in-time
algorithm [48]. Oppenheim and Weinstein [60] discussed in some detail the effects
of finite register length on implementations of digital filters, and FFT algorithms.
In order to validate the error analysis, most of the above work compare the
theoretical results with experimental simulation. In this thesis, we show how the
above error analyses for the FFT algorithms can be mechanically performed using
the HOL theorem prover, providing a superior approach to validation by simulation.

Our focus will be on the process of translating the hand proofs into equivalent proofs
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in HOL. The analysis we develop is mainly inspired by the work done by Kaneko
and Liu [41], who proposed a general approach to the error analysis problem of the
decimation-in-frequency FF'T algorithm using floating-point arithmetic. Following
a similar idea, we have extended this theoretical analysis for the decimation-in-time
and fixed-point FFT algorithms. In all cases, good agreements between formal and

theoretical results were obtained.

1.6.5 Formalization and Verification of FFT Algorithms

Related work on the formalization and mechanical verification of the FFT algorithm
was done by Gamboa [21] using the ACL2 theorem prover. The author formalized
t(he FFT as a recursive data-parallel algorithm, using the powerlist data structure.
He also presented an ACL2 proof of the correctness of the FFT algorithm, by trans-
lating the hand proof taken from Misra’s seminal paper on powerlists [55] into a
mechanical proof in ACL2. In the same line, Capretta [10] presented the formaliza-
tion of the FFT using the type theory proof tool Coq. To facilitate the definition
of the transform by structural recursion, Capretta used the structure of polynomial
trees which is similar to the data structure of powerlists introduced by Misra. Fi-
nally, he proved its correctness and the correctness of the inverse Fourier transform
(IFT).

Bjesse [5] described the verification of FFT hardware at the netlist level with
an automatic combination of symbolic simulation and theorem proving using the
Lava hardware development platform. He proved that the sequential pipelined im-
plementation of the radix-4 decimation-in-time FF'T is equivalent to the correspond-
ing combinational circuit. He also proved that the abstract implementation of the
radix-2 and the radix-4 FF'T are equivalent for sizes that are an exponent of four.
While [21] and [10] prove the correctness of the high level FFT algorithm against the

DFT, the verification of [5] is performed at the netlist level. In contrast, our work

16



tries to close this gap by formally specifying and verifying the FFT algorithm real-
izations at different levels of abstraction based on different data types. Besides, the
definition used for the FFT in [21, 10] is based on the radix-2 decimation-in-time
algorithm. We cover both decimation-in-time and decimation-in-frequency algo-
rithms, and radices other than 2. The methodology we propose in this paper is, to
the best of our knowledge, the first project of its kind that covers the formal speci-
fication and verification of integrated FFT algorithms at different abstraction levels
starting from real specification to floating- and fixed-point algorithmic descriptions,

down to RT and netlist gate levels.

1.7 Contributions of the Thesis

In light of the above related work review and discussions, we believe the contributions

of the thesis can be specified as follows:

1. Formalization in higher-order logic of fixed-point arithmetic. We encoded
the fixed-point number system and specified the different quantization and
overflow modes and exceptions. An error analysis is then performed to check

the correctness of the quantized result of basic arithmetic operations.

2. Mechanical analysis of finite word length effects in digital filters using HOL
theorem prover. We derived expressions for the accumulation of roundoff error
in parametric Lth-order digital filters, for each of the three canonical forms of
realization: direct, parallel, and cascade. The HOL formalization and proofs
are found to be in a good agreement with existing theoretical paper-and-pencil

counterparts.

3. Formal specification and verification of fast Fourier transform (FFT) algo-

rithms at different abstraction levels based on the HOL theorem prover. We
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derive expressions for the accumulation of roundoff error in FF'T designs. Fi-
nally, we use a classical hierarchical proof approach in HOL to prove that the
FFT implementations at the register transfer and gate levels imply the cor-
responding high level fixed-point and floating-point algorithmic specifications

taking into account the finite precision effects.

1.8 Organization of the Thesis

The rest of the thesis is organized as follows: Chapter 2 describes the fixed-point
arithmetic and the details of its formalization in higher-order-logic. Chapter 3 de-
scribes the error analysis of digital filters using HOL theorem proving. Chapter
4 presents the verification of FFT algorithms in HOL from real specification to
gate level implementation. Chapter 5 concludes the thesis and outlines the future

research directions.
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Chapter 2

Formalization of Fixed-Point

Arithmetic in HOL

2.1 Introduction

Usually the conformance of the fixed-point implementation with respect to the
floating-point specification is verified by simulation techniques which cannot cover
the entire input space yielded by the floating-point representation. The objective of
this work is to formalize the fixed-point arithmetic in higher-order logic as a basis
for checking the correctness of the implementation of DSP designs against higher
level algorithmic descriptions in floating-point and fixed-point representations.
Unlike floating-point arithmetic which is standardized in IEEE-754 [35] and
IEEE-854 [36], current fixed-point arithmetic does not follow any particular standard
and depends on the tool and the language used to design the DSP chip. For instance,
in SPW (Signal Processing Worksystem), a fixed-point number is defined as a binary
string and a set of attributes. Attributes specify how the binary string is interpreted
using three arguments for the total number of bits, the number of integer bits, and
the sign format. For arithmetic operations, it supports three kinds of exceptions

such as loss-of-sign or overflow, two overflow modes, and five quantization modes.
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In Matlab Simulink Fixed-Point Blockset [50], fixed-point numbers are stored in data
types that are characterized by their word size (up to 128 bits), a radiz point, and
whether they are signed or unsigned. The radiz point is used to support integers,
fractionals, and generalized fixed-point data types. The Matlab Blockset provides
four quantization modes corresponding to those supported by SPW. It also supports
saturation and wrapping to deal with overflow for all fixed-point data types. Another
example is the Synopsys CoCentric tool, which uses fixed-point as described in the
SystemC language [61]. It supports signed and unsigned fixed-point data types,
as well as limited precision (53 bits mantissa) fixed-point, called fast fized-point to
speed up simulation. SystemC supports seven quantization modes, of which four
correspond exactly to the quantization modes of SPW. The other three modes are
specific to SystemC and are not supported by the other tools. SystemC supports five
overflow modes covering those of SPW. With the objective of providing a general
methodology for the formalization and verification of fixed-point arithmetic using
higher-order logic, we define iﬁ this chapter a complete common set of fixed-point
arithmetic as supported by most of the DSP tools, in particular SPW and SystemC.

Based on higher-order logic, we propose to encode a fixed-point number by
a pair composed of a Boolean word, and a triplet indicating the word length, the
length of the integer portion, and the sign format. Then, we formalize the concepts
of valuation and quantization as functions that convert respectively a fixed-point
number to a real number and vice versa, taking into account different quantization
and overflow modes. Fixed-point arithmetic operations are formalized as functions
performing operations on the real numbers corresponding to the fixed-point operands
and then applying the quantization on the real number result. Finally, we prove
various lemmas regarding the error analysis of the fixed-point quantization and
correctness of the basic operations like addition, multiplication, and division. The
higher-order logic formalization and proof were done using the HOL theorem prover

[26]. They were developed into a full fixed-point arithmetic library, which was
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recently included in the last release of HOL (HOL4, Kananaskis-2).

The rest of this chapter is organized as follows: Section 2.3 describes the fixed-
point arithmetic definitions adopted in this thesis including the format of the fixed-
point numbers, arithmetic operations, exceptions detection and their handling, and
the different overflow and quantization modes. Section 2.4 describes in detail their
formalization in HOL. In Section 2.5, we discuss the verification of basic fixed-point
arithmetic operations, such as addition and multiplication. Section 2.6 presents an
illustrative example on how this formalization can be used through the modeling

and verification of an Integrator circuit. Finally, Section 2.7 concludes the chapter.

2.2 HOL Preliminaries

The HOL theorem prover is a mechanizaed proof-assistant developed by Mike Gor-
don at the University of Cambridge for conducting proofs in higher-order logic [26].
It was explicitly designed for the formal verification of hardware, though it has also
been applied to other areas including software verification and formalization of pure
mathematics.

HOL is based on LCF approach to interactive theorem proving and has many
features in common with LCF systems developed at Cambridge and Edinbergh [24].
Like LCF, the HOL system supports secure theorem proving by representating its
logic in the strongly-typed functional programming language ML [63]. Propositions
and theorems of the logic are represented by ML abstract data types, and interaction
with the theorem prover takes place by executing ML procedures that operate on
values of these data types. In addition to the usual programming language expres-
sions, ML has expressions that evaluate to terms, types, formulas, and theorems of
HOL’s deductive apparatus. The HOL system supports a natural deduction style
of proof, with driven rules formed from eight primitive inference rules. All inference

rules are implemented using ML functions, and their application is the only way to
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obtain theorems in the system. Once proved, theorems can be saved and used in
future proofs.

There are four types of HOL terms: constants, variables, function applications,
and lambda-terms (denoted function abstractions). Polymorphism, types containing
type variables, is a special feature supported by this logic. Semantically, types
denote sets and terms denote members of these sets. Formulas, sequences, axioms,
and theorems are represented by using terms of Boolean types. The main task of the
higher-order logic theorem prover is the derivation of proofs. Accepting defined types
and functions of new types, give us the ability to prove properties of those types and
functions. The sets of types, type operators, constants and axioms available in HOL
are organized in the form of theories. There are two main primitive theories, bool
and ind, for booleans and individuals (a primitive type to denote distinct elements),
respectively. Theorems can be derived based on these two main theories and added
to the system.

HOL supports two styles of interactive proof: forward proof and backward
proof. In the forward proof style, inference rules are simply applied in sequence to
previously proved theorems until the desired theorem is obtained. The user specifies
which rule to be applied at each step of the proof, either interactively or by writing
an ML program that calls the appropriate sequence of procedures. Forward proof
is not the easiest way of doing a proof, since the exact details of a proof are rarely
known in advance. An important advance in proving using HOL was made by Robin
Milner in the early 1970s when he invented the notion of tactic, introducing a new
proof methodology called the backward, or goal-directed, proof style. A tactic is
an ML function that breaks goals down into increasingly simple subgoals, until the
subgoals obtained can be proved directly from theorems already derived. Again,
the user specifies which tactic to use at each step. In addition to breaking a goal
down into subgoals, a tactic also constructs a sequence of forward inference steps

which can be used to prove the goal, once the subgoals have themselves been proved.
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This is necessary because all theorems in the system must ultimately be obtained
by forward proof. Table 2.2 summarizes some of the HOL symbols used in this
thesis and their meanings [26]. The HOL type system does not support subtypes, so
the real numbers (R) have formally a different type from the natural numbers (N).

Therefore, the unary operator ampersand (&) is used to map between them. Thus

the real number numerals can be written as &0, &1, etc [29].

HOL Symbol | Standard Symbol Meaning
Q. t ex. t An z such that ¢ (z) holds
Az. t Az. t Function that maps z to ¢ (z)
& (none) Natural map operator (N — R)
-1 -t Not ¢
-z -~ I Unary negation of z
inv () z! Multiplicative inverse of z
abs () | z | Absolute value of z
T pow n " Real z raised to natural number power n
m EXPn m" Natural number m raised to exponent n

Table 2.1: HOL Symbols

2.3 Fixed-Point Arithmetic

In this section we describe the fixed-point arithmetic definitions on which we base
our formalization. While we tried to keep these definitions as general as possible,
the fixed-point numbers format, arithmetic operations, overflow and quantization
modes, and exception handling adopted are to some extent influenced by the fixed-

point arithmetic defined by Cadence SPW [12] and Synopsys SystemC [61].

2.3.1 Fixed-Point Numbers

A fixed-point number has a fixed number of binary digits and a fixed position for

the decimal point with respect to that sequence of digits. Fixed-point numbers can
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be either unsigned (always positive) or signed (in two’s complement representation).
For example, consider the case of four bits being used to represent the fixed-point
numbers. If the numbers are unsigned and if the decimal point or, more properly, the
binary point is fixed at the position after the second digit (XX.XX), the representable
real values range from 0.0 to 3.75. In two’s complement format, the most significant
bit is the sign bit. The remaining bits specify the magnitude. If four bits represent
the fixed-point numbers, and the binary point is fixed at the position after the second
digit following the sign bit (SXX.X), the real values range from —4.0 to +3.5.
Fixed-point numbers are expressed as a pair consisting of a binary string and a
set of attributes, (Binary String, Attributes). The attributes specify how the binary

string is interpreted. Generally, the attributes are specified in the following format:

(wl, iwl, sign) (2.1)

which consists of the following parameters:

o wl: Total word length, specifying the total number of bits used to represent
the fixed-point binary string, including integer bits, fractional bits, and sign

bit, if any. Word length must be in the range of 1 to 256.

e iwl: Integer word length, specifying the number of integer bits (the number
of bits to the left of the binary point, excluding the sign bit, if any). If this
number is negative, repeated leading sign bits or zeros are added to generate
the equivalent binary value. If this number is greater than the total word

length, trailing zeroes are added to generate the equivalent binary value.

e sign: A letter specifying the sign format: “u” for unsigned, and “¢” for two’s

complement.

Example: According to the above definitions, the real value —0.75 is represented

by (111101, (6,3,%)). If we consider the same bit string with unsigned attributes
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(111101, (6, 3, u)), then the equivalent number is 111.101 or +7.625. On the other
hand, (111101, (6, —3, u)) represents the value .000111101 which is +0.119140625.

2.3.2 Fixed-Point Operations

A DSP design tool usually provides a library including basic fixed-point signal
processing blocks such as adders, multipliers, delay blocks, and vector blocks. It
also supports fixed-point hardware blocks such as multiplexers, buffers, inverters,
flip-flops, bit manipulation and general-purpose combinational logic blocks. These
blocks accurately model the behavior of fixed-point digital signal processing sys-
tems. In this thesis, we will focus on the arithmetic and logic operations, but the
idea can be generalized to the remaining operations. Operations performed on fixed-
point data types are done using arbitrary and full precision. After the operation
is complete, the resulting operand is cast to fit the fixed-point data type object.
The casting operation applies the quantization behavior of the target object to the
new value and assigns the new value to the target object. Then, the appropriate
overflow behavior is applied to the result of the process which gives the final value.
In addition to the parameters corresponding to the input operands and output re-
sult, the arithmetic operations take specific parameters defining the overflow and

quantization (loss of precision) modes. These parameters are as follows:

e g-mode: Quantization mode. This parameter determines the behavior of the
fixed-point operations when the result generates more precision in the least

significant bits (LSB) than is available.

¢ o_.mode: Overflow mode. This parameter determines the behavior of the
fixed-point operations when the result generates more precision in the most

significant bits (MSB) than is available.

e n_bits: Number of saturated bits. This parameter is only used for overflow

mode and specifies how many bits will be saturated if a saturation behavior
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is specified and an overflow occurs.

Example: Consider a block that serves as a primitive fixed-point multiplier, which
truncates the results when loss of precision occurs and wraps the result when over-
flow occurs. We can make a call to the multiplier routine through the function
frpMul (Wrap | Truncate, In1, In2, Out), in which In1 and In2 are the input fixed-
point operands, Out is a parameter corresponding to the output attributes, and

Wrap and Truncate indicate the overflow and quantization modes, respectively.

Fixed-Point Exception Handling

Fixed-point arithmetic operations that do not compute and return an exact result
resort to an exception-handling procedure. This procedure is controlled by the

exception flags. There are three kinds of exceptions that can be tested [12]:

e Loss of Sign: The result was negative but the result storage area was un-

signed. Zero is stored.

e Overflow: The result was too big to be represented in the result storage area.

The overflow mode determines the returned value.

e Invalid: No result can be meaningfully represented (e.g., divide by zero). This
error can also occur if the fixed-point number itself is invalid.
Fixed-Point Quantization Modes

Quantization effects are used to determine what happens to the LSBs of a fixed-point
type when more bits of precision are required than are available. The quantization

modes are listed in Table 2.2.

Figure 2.1 shows the behavior of each quantization mode. The X axis is

the result of the previous arithmetic operation and the Y axis is the value after

26



[ Quantization Mode | Name |

Quantization to Plus Infinity RND
Quantization to Zero RND_ZERO
Quantization to Minus Infinity | RND_MIN_INF
Quantization to Infinity RND_NF
Convergent Quantization RND_CONV
Truncation TRN
Truncation to Zero TRN_ZERO

Table 2.2: Fixed-Point Quantization Modes

quantization. The diagonal line represents the ideal number representation given
infinite bits. The small horizontal lines show the effect of the quantization. Any
value of the X axis within the range of the line will be converted to the value of
the Y axis. The symbol ¢ in the figure refers to the quantization step, that is,
the resolution of the data type. Each non integer value on the X axis is located
in a quantization interval surrounded by two successive integer multiples of ¢ as
its closest representable quantized numbers, one greater and one smaller than the
original value. If the value is exactly in the middle of the quantization interval, then
the two closest representable numbers are equally distanced apart from the original
value. Asshown in this figure modes RND, RND_ZERO, RND_MIN_INF, RND_INF,
and RND_CONV will quantize a value to the closest representable number if the
two nearest representable numbers are not equally distanced apart from the original
value. Otherwise, quantization towards plus infinity, to zero, towards minus infinity,
towards plus infinity if positive or minus infinity if negative, and towards nearest
even will be performed, respectively (Figure 2.1 (a-e)). The TRN mode is the default
for fixed-point types and will be used if no other value is specified. The result is
always quantized towards minus infinity (Figure 2.1 (f)). In other words, the result
value is the first representable number lower than the original value. Finally, for

TRN_ZERO the result is the nearest representable value to zero (Figure 2.1 (g))
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[61].
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Figure 2.1: The behavior of fixed-point quantization modes

Fixed-Point Overflow Modes

In addition to quantization modes, we can use overflow modes to approximate a
higher range for fixed-point operations. Usually, overflow occurs when the result of
an operation is too large or too small for the available bit range. Specific overflow
modes can then be implemented to reduce the loss of data. Overflow modes are

specified by the o_mode and n_bits parameters, and are listed in Table 2.3.

| Overflow Mode | Name |
Saturation SAT
Saturation to Zero SAT_ZERO
Symmetrical Saturation SAT.SYM

Wrap-Around WRAP
Sign Magnitude Wrap-Around | WRAP_SM

Table 2.3: Fixed-Point Overflow Modes
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Figure 2.2 shows the behavior of each overflow mode for a 3 bit fixed-point
data type. The diagonal line represents the ideal value if infinite bits are available for
representation. The dots represent the values of the result. The X axis is the original
value and the Y axis is the result. From this figure, it can be seen that MAX = 3 and
MIN = —4 for a 3 bit fixed-point data type. The SAT mode will convert the specified
value to MAX for an overflow or MIN for an underflow condition (Figure 2.2 (a)).
The SAT-ZERO mode will set the result to 0 for any input value that is outside the
representable range of the fixed-point type. If the result value is greater than MAX
or smaller than MIN, the result will be 0 (Figure 2.2 (b)). In the SAT_SYM mode,
positive overflow will generate MAX and negative overflow will generate — MAX for
signed numbers or MIN for unsigned numbers (Figure 2.2 (c)). With the WRAP
mode, the value of an arithmetic operand will wrap around from MAX to MIN as
MAX is reached. There are two different cases within this mode. The first is with
the n_bits parameter set to 0 or having a default value of 0. All bits except for the
deleted bits are copied to the result number (Figure 2.2 (d)). The second is when
the n_bits parameter is a nonzero value. In this case the specified number of most
significant bits of the result number are saturated with preservation of the original
sign, the other bits are simply copied. Positive numbers remain positive and negative
numbers remain negative. A graph showing this behavior with n_bits = 1 is given in
Figure 2.2 (e). Note that positive numbers wrap around to 0 while negative values
wrap around to —1. The WRAP_SM overflow mode uses sign magnitude wrapping.
This overflow mode behaves in two different styles depending on the value of the
n_bits parameter. When n_bits is 0, no bits are saturated. This mode will first delete
any MSB bits that are outside the result word length. The sign bit of the result is
set to the value of the least significant deleted bit. If the most significant remaining
bit is different from the original MSB, then all the remaining bits are inverted. If the
MSBs are the same, the other bits are copied from the original value to the result

value. A graph showing the result of this overflow mode is provided in Figure 2.2
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(f). As the value of X increases, the value of Y increases to MAX and then slowly
starts to decrease until MIN is reached. The result is a sawtooth like waveform.
With n_bits greater than 0, n_bits MSB bits are saturated to 1. A graph showing
this behavior with n_bits = 1 is given in Figure 2.2 (g). Note that while the graph
looks somewhat like a sawtooth waveform, positive numbers do not dip below 0 and

negative numbers do not cross —1 [61].
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Figure 2.2: The behavior of fixed-point overflow modes

2.4 Formalizing Fixed-Point Arithmetic in HOL

In this section, we present formalization of the fixed-point arithmetic in higher-order
logic, based on the general purpose HOL theorem prover. The HOL system supports

both forward and backward proofs. The forward proof style applies inference rules
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to existing theorems to obtain new theorems and eventually the desired theorem.
Backward or goal oriented proofs start with the goal to be proven. Tactics are
applied to the goal and subgoals until the goal is decomposed into simpler existing
theorems or axioms. The system basic language includes the natural numbers and
Boolean type. It also includes other specific extensions like reals library [27], which

was proved to be essential for our fixed-point arithmetic formalization.

2.4.1 Fixed-Point Numbers Representation

The actual fixed-point numbers are represented in HOL by a pair of elements repre-
senting the binary string and the set of attributes. The extractors for the two fields

of a fixed-point number are defined as follows:

Fdef string (s,a) = s

Faef attrib (s,a) = a

The binary string is treated as a Boolean word (type: bool word). For ex-
ample, the bit string 1010 is represented by WORD [T;F;T;F]. In this way, we use
the definitions and theorems already available in the HOL word library [70] to facilitate
the manipulation of binary words. The attributes are represented by a triplet of natural
numbers for the total number of bits, the integer bits and the sign format.

In HOL, we define functions to extract the primitive parameters for arbitrary at-
tributes.

Faef wordlength (w,iw,s) = w
Fdef intbits (w,iw,s) = iw

Faef sign (w,iw,s) = s

We also define predicates partitioning the fixed-point numbers into signed and un-
signed numbers.
Fdef is_signed X = (sign X = 1)

Fdef is_unsigned X = (sign X = 0)
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The number of digits on the right hand side of the binary point of a fixed-point
number is defined as fracbits. It can be derived as the difference between the total number
of bits and the number of integer bits, considering the sign bit in the case of signed

numbers.

F4ey fracbits X =
if (is_unsigned X) themn (wordlength X — intbits X)
else (wordlength X — intbits X — 1)

Two useful derived predicates test the validity of a set of attributes and a fixed-
point number based on the definition in Section 2.3.1. In a valid set of attributes, the
wordlength should be in the range of 1 and 256, the sign can be either 0 or 1, and the
number of integer bits is less than or equal to the wordlength. A valid fixed-point number
must have a valid set of attributes and the length of its binary string must be equal to the

wordlength.

I_def validAttr X =
wordlength X > 0 A wordlength X < 257 A
intbits X < wordlength X + 1 A sign X < 2

}'def is_valid a =

validAttr (attrib a) A (WORDLEN (string a) = wordlength (attrib a))

where WORDLEN is a predefined function of the HOL word library, which returns the

size of a word.

2.4.2 Fixed-Point Type

Now we define the actual HOL type for the fixed-point numbers. The type is defined
to be in bijection with the appropriate subset of (bool word x N®), with the bijections
written in HOL as fzp : (bool word x N3) — frp, and defap : frp — (bool word x N*). The
bijection maps the set of all elements of type (bool word x N?) to the set of valid fixed-

point numbers specified by the function is_valid as defined in the previous section. For
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this purpose, we make use of built-in facilities in HOL for defining new bijection types
[69]. A similar technique was used in [29] for defining type bijections for the floating-point
numbers (float,defloat) in HOL.

fxp_tybij =
F (Va. fxp (defxp a) = a) A (Vr. is_valid r = (defxp (fxp r) = r))

We specialize the previous functions and predicates to the fep type, as follows:

tdef String a = string (defxp a)

Fdef Attridb a = attrib (defxp a)

F4ef Wordlength a = wordlength (Attrib a)
Fdef Intbits a = intbits (Attrib a)

-4ef Fracbits a = fracbits (Attrib a)

Fdef Sign a = sign (Attrib a)

Fdef Issigned a = is_signed (Attrib a)
F4ef Isunsigned a = is_unsigned (Attrib a)

Faef Isvalid a = is_valid (defxp a)

Note that we start the name of the functions manipulating fixed-point numbers by

capital letters to distinguish them from those taking pairs and triplets as argument.

2.4.3 Fixed-Point Valuation

Now we specify the real number valuation of fixed-point numbers. We use two separate

formulas for signed and unsigned numbers:

¢ Unsigned:
N-1
1/2M)x (D" 2" * wvy) (2.2)
n=0
e Signed:
N-1
(1/2M) « [Z 2" % vy — 2N xuy_] (2.3)
n=0
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where v, represents the nth bit of the binary string in the fixed-point number!, and M
and N are respectively fracbits and wordlength. In HOL, we define the valuation function

value that returns the corresponding real value of a fixed-point number.

Fief value a =
if (Isunsigned a) then &(BNVAL (String a)) / 2 pow Fracbits a
else (&(BNVAL (String a)) — &((2 EXP Wordlength a) *
BV (MSB (String a)))) / 2 pow Fracbits a

where BNVAL is a function which returns the numeric value of a Boolean word, BV is a
function for mapping between a single bit and a number, and MSB is a constant for the
most significant bit of a word, available in the HOL word library.

We also define the real value of the smallest (MIN) and largest (MAX) representable
dumbers for a given set of attributes. The maximum is defined for both signed and

unsigned numbers using the following formula:

MAX = 20 — 27t (2.4)

where a is the intbits and b the fracbits. The minimum value for unsigned numbers is zero

and for signed numbers is computed using the following formula:

MIN = - 2° (2.5)
Thereafter, we obtain the corresponding functions in HOL.

Fdef MAX X = 2 pow intbits X — inv (2 pow fracbits X)

taef MIN X = if (is_unsigned X) then O else —(2 pow intbits X)

The constants for the smallest (bottomfzp) and largest (topfrp) representable fixed-

point numbers for a given set of attributes can be defined as follows:

1'We adopt the convention that bits are indexed from the right hand side.
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Faef topfxp X =
if (is_unsigned X) then fxp (WORD (REPLICATE (wordlength X) T),X)
else fxp (WCAT (WORD [F],WORD (REPLICATE (wordlemgth X — 1) T)),X)

F4ef bottomfxp X =
if (is_unsigned X) then fxp (WORD (REPLICATE (wordlength X) F),X)
else fxp (WCAT (WORD [T],WORD (REPLICATE (wordlength X — 1) F)),X)

where WCAT denotes the concatenation of two words, and REPLICATE makes a list
consisting of a value replicated a specified number of times, which are predefined functions

in HOL.

2.4.4 Exception Handling

Operations on fixed-point numbers can signal exceptions as described in Section 2.3.2.

These are declared as a new HOL data type.
Faef Exception = no_except | overflow | invalid | loss_sign

where no_ezcept is reserved for the case without exception.

Five overflow modes are also represented via an enumerated type definition.
Faef overflow_mode = SAT | SAT_ZERO | SAT_SYM | WRAP | WRAP_SM

According to the definition of overflow modes in Section 2.3.2 for Saturation, if
the number is greater than MAX or less than MIN, we return fopfrp and bottomfzp, as
the closest representable values to the right result, respectively. For Saturation to Zero
overflow, we will return zero in any case. For Symmetrical Saturation, if the number is
greater than MAX, we return topfrp. If the number is less than MIN, we return the two’s
complement of the maximum value, defined by the function minustopfrp for signed, and
bottomfzp for unsigned numbers, respectively. For Wrap-around and Sign magnitude, we
must first convert the real number to a binary format. Then we discard the extra bits

according to the output attributes, and saturate the required bits based on the parameter
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n_bits. The details are defined as functions WRAP_AROUND and WRAP_AROUND_SM.

Therefore, we define the fixed-point overflow function in HOL as follows:

Fdef fxp_overflow X o_mode n_bits x =
if (x > MAX X) then
if (o_mode = SAT) then topfxp X
else if (o_mode = SAT_ZERO) then
fxp (WORD (REPLICATE (wordlength X) F),X)
else if (o_mode = SAT_SYM) then topfxp X
else if {o_mode = WRAP) then
WRAP_ARQUND X n_bits x
else WRAP_AROUND_SM X n_bits x
else if (x < MIN X) then
if (o_mode = SAT) then bottomfxp X
else if (o_mode = SAT_ZERO) then
fxp (WORD (REPLICATE (wordlength X) F),X)
else if (o_mode = SAT_SYM) then
if (is_unsigned X) then bottomfxp X
else minustopfxp X
else if (o_mode = WRAP) then
WRAP_ARQOUND X n_bits x
else WRAP_AROUND_SM X n_bits x
else Null

where Null is a constant that represents the result of an invalid operation, defined as:
Fdef Null = @a. — (Isvalid a)

Note that if the number is in the representable range of the given attributes, i.e. its
value is neither greater than MAX nor less than MIN, then the overflow is meaningless

and Null will be returned as the result.

2.4.5 Quantization

Fixed-point quantization takes an infinitely precise real number and converts it into a

fixed-point number. Seven quantization modes are specified in Section 2.3.2, which we
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formalize using the following data type.

Fd4ef quantization_mode =

RND | RND_ZERQ | RND_MIN_INF | RND_INF | RND_CONV | TRN | TRN_ZERO

Then we define the fixed-point quantization operation by a function, which is defined

case by case on the quantization modes as follows:

Fdef fxp_quantize X q_mode x =
if (q_-mode = RND) then
closest value (/\ a. value a > x)
{a | (Isvalid a) A (Attrib a = X)} x
else if (q_mode = RND_ZERQ) then
closest value (A a. abs (value a) < abs x)
{a | (Isvalid a) A (Attrib a = XD} x
else if (q_mode = RND_MIN_INF) then
closest value (A a. value a < x)
{2 | (Isvalid a) A (Attrib a = XD} x
else if (q_mode = RND_INF) then
closest value
(A a. (if 0 € x then value a > x else value a < x))
{a | (Isvalid a) A (Attrib a = X} x
else if (g_mode = RND_CONV) then
closest value (A a. LSB (String a) = F)
{a | (Isvalid a) A (Attrib a = X)} x
else if {g_mode = TRN) then
closest value (A a. T)
{a | (Isvalid a) A (Attrib a = X) A (value a < x)} x
else closest value (A a. T)
{a | (Isvalid a) A (Attriba = X) A
(abs (value a) < abs x)} x

The fixed-point quantization function takes as arguments a real number, a quantiza-
tion mode, and an output attributes, and returns the corresponding fixed-point number.

Similar to the floating-point case [29], its definition is based on the following predicate
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meaning that a is an element of the set s that provides a best approximation to z, assum-

ing a valuation function v:

Fief is_closest v s x a =

((a INs) AVYb. (bINs) = (abs (va— x) <abs (vb — x)))

However, we still need to define a function that picks out a best approximation in
case there are more than one closest number, based on a given property like even. This

can be done in HOL as follows:

Fgef closest v p s x =
@a. {(is_closest v s x a) A

((Ip. (is_closest v s x b) A (p b)) = (p a)))

Finally, we define the actual fixed-point rounding function for an arbitrary output

attributes.

tdef fxp_round X o_mode q_mode n_bits x =
if (x > MAX X V x < MIN X) then
((fxp_overflow X o_mode n_bits x),overflow)

else ((fxp_quantize X q_mode x),no_except)

where frp_overflow is the fixed-point overflow function as defined in the previous section
and supports all overflow modes, and fzp_quantize is the fixed-point quantization function
that supports all quantization modes. The fixed-point rounding function takes as argument
a real number, an output attributes, the quantization and overflow modes, and the number
of saturated bits. It returns a fixed-point number and an exception flag. The function
first checks for overflow, and in case of overflow returns the result based on the overflow
mode, and sets the exception flag to overflow. Otherwise, it performs the quantization

based on the quantization mode, and sets the exception flag to no_ezcept.

2.4.6 Fixed-Point Arithmetic Operations

Fixed-point arithmetic operations such as addition or multiplication take two fixed-point

input operands and store the result into a third. The attributes of the inputs and output
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need not match one another. Both unsigned and two’s complement inputs and output
are allowed. The result is formatted into the output as specified by the output attributes
and by the overflow and loss of precision mode parameters. In our formalization, we first
deal with exceptional cases such as invalid operation and loss of sign. If any of the input
numbers is invalid, then the result is Null and the exception flag invalid is raised. If
the result is negative but the output is unsigned then zero is returned and the exception
flag loss_sign is raised. Also in the case of division by zero, the output value is forced
to zero and the invalid flag is raised. Otherwise, we take the real value of the input
arguments, perform the operation as infinite precision, then quantize the result according
to the desired quantization and overflow modes. Formally, the operations for addition,

subtraction, multiplication, and division are defined as follows:

Faef fxpAdd X o_mode q_mode n_bits a b =
if —(Isvalid a A Isvalid b) then (Null,invalid)
else if (value a + value b < 0 A is_unsigned X) then
(fxp (WORD (REPLICATE (wordlength X) F),X),loss_sign)

else fxp_round X o_mode q_mode n_bits (value a + value b)

Fdef fxpSub X o_mode q_mode n_bits a b =
if —(Isvalid a A Isvalid b) then (Null,invalid)
else if (value a — value b < 0 A is_unsigned X) then
(fxp (WORD (REPLICATE (wordlength X) F),X),loss_sign)

else fxp_round X o_mode q_mode n_bits (value a — value b)

f—def fxpMul X o_mode gq_mode n_bits a b =
if —(Isvalid a A Isvalid b) then (Null,invalid)
else if (value a * value b < 0 A is_unsigned X) then
(fxp (WORD (REPLICATE (wordlength X) F),X),loss_sign)

else fxp_round X o_mode q_mode n_bits (value a * value b)
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Fde; fxpDiv X o_mode q_mode n_bits a b =
if —(Isvalid a A Isvalid b) then (Null,invalid)
else if (value b = 0) then
(fxp (WORD (REPLICATE (wordlength X) F),X),invalid)
else if (value a / value b < 0 A is_unsigned X) then
(fxp (WORD (REPLICATE (wordlength X) F),X),loss_sign)

else fxp_round X o_mode q_mode n_bits (value a / value b)

2.5 Verification of Fixed-Point Operations

According to the discussion in Section 2.4.3, each fixed-point number has a corresponding
real number value. The correctness of a fixed-point operation can be specified by compar-
ing its output with the true mathematical result, using the valuation function value that
converts a fixed-point to an infinitely precise number. For example, the correctness of a
fixed-point adder frpAdd is specified by comparing it with its ideal counterpart +. That
is, for each pair of fixed-point numbers (a,b), we compare value (a)+ value (b) and value

(fzpAdd (a,b)). In other words, we check if the diagram in Figure 2.3 commutes.

+
value (a} , value (b)) —————— value (a) + value (b)
=?
value (fxpAdd (a,b))
value
value
a,b = fxpAdd (a,b
fxpAdd P @b)

Figure 2.3: Correctness criteria for fixed-point addition

For this purpose we define the error resulting from quantizing a real number to a

fixed-point value as follows:

Fdaef fxperror X o_mode q_mode n_bits x =

value (FST (fxp_round X o_mode q_mode n_bits x)) — x

and then establish the correctness theorems for all four fixed-point arithmetic operations.
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Theorem 1: FXP_ADD_THM

F  (Isvalid a) A (Isvalid b) A validAttr (X) =
(Isvalid (FST (fxpAdd (X) o_mode g_mode n_bits a b))) A
(value (FST (fxpAdd (X) o_mode q_mode n_bits a b)) =
value (a) + value (b) +

(fxperror (X) o_mode q_mode n_bits (value (a) + value (b))))

Theorem 2: FXP_SUB_THM

b (Isvalid a) A (Isvalid b) A validAttr (X) =
(Isvalid (FST (fxpSub X o_mode q_mode n_bits a b))) A
(value (FST (fxpSub X o_mode q_mode n_bits a b)) =
value (a) — value (b) +

(fxperror X o_mode q_mode n_bits (value a — value b)))

Theorem 3: FXP_MUL_THM

F  (Isvalid a) A (Isvalid b) A validAttr (X) =
(Isvalid (FST (fxpMul X o_mode q_mode n_bits a b))) A
(value (FST (fxpMul X o_mode q_mode n_bits a b)) =
(value a * value b) +

(fxperror X o_mode q_mode n_bits (value a * value b)))

Theorem 4: FXP_DIV_THM

F (Isvalid a) A (Isvalid b) A validAttr (X) =
(Isvalid (FST (fxpDiv X o_mode q_mode n_bits a b))) A
(value (FST (fxpDiv X o_mode q_mode n_bits a b)) =

(value a / value b) +

(fxperror X o_mode q_mode n_bits (value a / value b)))

The theorems are composed of two parts. The first part is about the validity of the
fixed-point arithmetic operation output and states that if the input fixed-point numbers
and the output attributes are valid then the result of the fixed-point operation is valid.
The second part of the theorem relates the result of the fixed-point arithmetic operations
to the real result based on the corresponding error function. To prove these main the-

orems, a number of lemmas have been established. We first proved lemmas concerning
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the approximation of a real number with a fixed-point number. We proved that in a fi-
nite non-empty set of fixed-point numbers, we can find the best approximation to a real

number based on a given valuation function (Lemma 1).

Lemma 1: FXP_IS_CLOSEST_EXISTS
F FINITE (s) = —(s = EMPTY) == 3 (a: fxp). is_closest v s x a

Then, we proved that the chosen best approximation to a real number satisfying a
property p from a finite and non-empty set of fixed-point numbers is unique (Lemma 2),
and is itself a member of the set (Lemma 3), and is itself the best approximation of the

real number (Lemma 4).

Lemma 2: FXP_CLOSEST_IS_EVERYTHING
b FINITE (s) = ~(s = EMPTY) =
is_closest v s x (closest v p s x) A

((3b. is_closest vs x b A pb) = p (closest v p s x))

Lemma 3: FXP_CLOSEST_IN_SET
F FINITE (s) = —(s = EMPTY) = (closest v p s x) IN s

Lemma 4: FXP_CLOSEST_IS_CLOSEST
F FINITE (s) => -—(s = EMPTY) —> is_closest v s x (closest v p s x)

Finally, we proved that the chosen best approximation to a real number satisfying
a property p from the set of all valid fixed-point numbers with a given attributes is itself

a valid fixed-point number (Lemma §).

Lemma 5: IS_VALID_CLOSEST
t  (validAttr X) =
Isvalid {closest v p {a | Isvalid a A ((Attrib a) = X)} x)

Besides, we proved that the set of all valid fixed-point numbers with a given at-
tributes is finite (Lemma 6).

Lemma 6: FINITE_VALID_ATTRIB
b FINITE {a | Isvalid a A (Attrib a = X}
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The proof of this lemma is a bit complicated. For this purpose we made use of some
built-in theorems about finite sets in the HOL pred_sets library [51]. Among these are
the two fundamental theorems FINITE_.EMPTY and FINITE_INSERT, which state that
the empty set is indeed finite and the insertion of an element to a finite set constructs a
finite set. Other theorems state that the union of two finite sets (FINITE_UNION), the
image of a function on a finite set (IMAGE_FINITE), a singleton set? (FINITE_SING),
the cross combination of two finite sets (FINITE_CROSS), and any subset of a finite set
(SUBSET_FINITE) is itself a finite set. Using these theorems together with the definition
of a valid fixed-point number helped us to break down the proof of the finiteness of all
valid fixed-point numbers to the proof of finiteness of the set of all Boolean words with a
given word length (WORD_FINITE) and the set of all natural numbers less than a given
value (FINITE_.COUNT). The last lemmas are proved by induction on the word length
of the Boolean word and the maximum limit of the natural numbers, respectively.

We also proved that the set of all valid fixed-point numbers is nonempty (Lemma

7).

Lemma 7: IS_VALID_NONEMPTY
F (validAttr X) = —({a | Isvalid a A (Attrib a = X)} = EMPTY)

Finally, we proved that the result of quantizing a real number, which is in the range

representable by a given valid attributes, is a valid fixed-point number (Lemma 8).

Lemma 8: IS_VALID_QUANTIZATION
t (validAttr X) = 1Isvalid (FST (fxp_round X o_mode q_mode n_bits x))

The validity of the quantization directly implies validity of the fixed-point operation
output, and this completes the proof of the first parts of the theorems. The second parts of
the theorems are proved using the properties of the real arithmetic in HOL and rewriting
with the definitions of the frpAdd, frpSub, frpMul, frpDiv, and feperror functions.

The second main theorem on fixed-point error analysis concerns bounding the quan-

tization error. The error can be absolutely quantified as follows:

2a set that contains precisely one element.
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Theorem 5: FXP_ERROR_BOUND_THM
F o (validAttr X) A —(x > MAX (X)) A - (x < MIN (X)) =

abs (fxperror X o_mode q_mode n_bits x) < inv (&2 pow fracbits X)

According to this theorem, the error in quantizing a real number which is in the range
representable by a given set of attributes X is less than the quantity 1 / 2/7acbits (X), This
theorem is valid for all fixed-point quantization modes. However, for RND, RND_ZERO,
RND_MIN_INF, RND_INF, and RND_CONYV modes, which quantize to the nearest repre-
sentable value, the error can be bounded to 1 / o(frachits (X)+1) extending the theorem.

To explain the theorem, we consider the following fact that relates the definition of
the fixed-point numbers to the rationals.

An N-bit binary word, when interpreted as an unsigned fixed-point number, can

take on values from a subset P of the non-negative rationals given by

P={p2]0<p<2¥-17pc¢€z (2.6)

Similarly, for signed two’s complement representation, we have

P={p2| 2" <p<2" ! —1,pez} (2.7)

Note that P contains 2V elements and b represents the fractional bits in each case.

Based on this fact, we can depict the range of values covered for each case as shown

in Figure 2.4.
MIN x a MAX
|t
1 | leovecrae Shenanees A L >
0 1/2 2/2 p/ @¥ -2/ (@¥-1)/2
a) Unsigned
MIN x  a MAX
.
4 Lecenans | - 1 lesauaas [ — A 1 >
—2N-1y0b (—o¥-1 )20 0 p4 2/2 pf2 (V' -2t @V -1y/2
b) Signed

Figure 2.4: Fixed-point values on the real axis
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Thereafter, the representable range of fixed-point numbers is divided into 2V eq-
uispaced quantization steps with the distance between two representable steps equal to
1 /2%, Suppose that z € R is approximated by a fixed-point number a. The position of
these values are labeled in Figure 2.4. The error | z — a | is hence less than the length of
one interval, or 1 / 2% as mentioned in the second theorem.

In HOL, we first proved that the quantization result is the nearest value to a real
number and the corresponding error is minimum compared to the other fixed-point num-
bers (Lemma 9).

Lemma 9: FXP_ERROR_AT_WORST_LEMMA
b (validAttr X) A =(x > MAX (X)) A =(x < MIN (X)) A
(Isvalid a) A (Attrib a = X) =

abs (fxperror X o_mode q_mode n_bits x) < abs (value a — x)

Then we proved that each representable real value z can be surrounded by two

representable rational numbers (Lemma 10).

Lemma 10: FXP_ERROR_BOUND_LEMMA1

F (validAttr X) A =(x > MAX (X)) A =(x < MIN (X)) =
Jk. (k < 2 EXP wordlength X) A (&k / (&2 pow fracbits X) < x) A
(x < (&(SUC k) / (&2 pow fracbits (X))))

Also we proved that the difference between the real number and the surrounding

rationals is less than 1 / 2fmacbits (X) (Lemma 11).

Lemma 11: FXP_ERROR_BOUND_LEMMA2
b (validAttr X) A —(x > MAX (X)) A =(x < MIN (X)) =
Jk. (k < 2 EXP wordlength X) A
abs (x — &k / (&2 pow (fracbits (X)))) < inv (&2 pow (fracbits (X)))

Finally, we proved that for each real value we can find a fixed-point number with
the required error characteristics (Lemma 12).
Lemma 12: FXP_ERROR_BOUND_LEMMA3
F  (validAttr X) A =(x > MAX (X)) A —(x < MIN (X)) = 3(w: bool word).
abs (value (fxp (w,X)) — x) < inv (&2 pow (fracbits X)) A
(WORDLEN w = wordlength X)
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Since the quantization produces the minimum error as stated in Lemma 9, the proof
of the second main theorem (Theorem §) is a direct consequence of Lemma 12. In these
proofs, we have treated the case of signed and unsigned numbers separately since they have
different definitions for MAX, MIN, and value functions. For signed numbers a special

attention needs also to be paid to deal with negative numbers.

2.6 Application with SPW

In this section we demonstrate how to apply the formalization of fixed-point arithmetic
presented in the previous sections for the verification of the transition from floating-point
to fixed-point algorithmic levels. We have chosen SPW as application tool and the case
of an Integrator as an example circuit. A digital integrator is a discrete time system
tilat transforms a sequence of input numbers into another sequence of output, by means
of a specific computational algorithm. To describe the general functionality of a digital
integrator, let {z:}, {w:}, and a denote the input sequence, output sequence, and constant
coeflicient of the integrator, respectively. Then the integrator can be specified by the
difference equation:

Wy = Tp_1 +a Wp_q (2.8)

Thereafter, the output sequence at time ¢ is equal to the input sequence at time ¢ - I,
added to the output at time ¢ - { multiplied by the integrator coefficient.

Figure 2.5 shows the SPW design of an integrator. The integrator is first designed
and simulated using the SPW predefined floating-point blocks and parameters (Figure
2.5 (a)). The design is composed of an adder (M), a multiplier by constant (M2), and
a delay (M3) block, together with signal source (M{) and sink (M5) elements. The
input signal, the output signal, and the output of the adder and multiplier blocks are
labeled by IN’, OUT’, S1’, and S2’, respectively. Figure 2.5 (b) shows the converted
fixed-point design in which each block is replaced with the corresponding fixed-point block
(M1°, M2°, M8’, M}’, M5’). Fixed-point blocks are shown by double circles and squares to
distinguish them from the floating-point blocks. The attributes of all fixed-point block

outputs are set to (64,31, to ensure that overflow and quantization do not affect the
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Figure 2.5: SPW design of an integrator

system operation. The corresponding fixed-point signals are labeled by IN”, OUT”, 5§17,
and S§2”.
In HOL, we first model the design at each level as predicates in higher-order logic.

The predicates corresponding to the floating-point design are as follows:

Faef Float_Gain_Block a' b’ ¢’ = (Vt. ¢’ t = a’ t float_mul b')
Faes Float_Delay Block a' b = (Vt. b’ t = a’ (t — 1))
F4ef Float_Add_Block a’' b’ ¢/ = (Vt. ¢’ t = a’' t float_add b' t)

Fd4ef Float_Integrator_Imp X a' IN' OUT =
3 stf s2'.
Float_Add_Block IN' S2' S1' A
Float_Delay_Block S1’ OUT' A
Float_Gain_Block OUT' a' 52/

where X is the floating-point format. In these definitions, we have used available formal-
ization of floating-point arithmetic in HOL [29]. Floating-point data types are stored in
SPW in the standard IEEE 64 bit double precision format.

The HOL description of the fixed-point implementation is as follows:
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F4ef Fxp_Gain_Block a” b ¢’ = (Vt. ¢ t = a’ t fxp_mul b")"
tdef Fxp_Delay_Block a’ b = (Vt. b’ t = a” (¢t — 1))
Fdef Fxp_Add_Block a” b" ¢! = (V. ¢ t = a’ t fxp_add b" t)

F4ef Fxp_Integrator_Imp X' o_mode q_mode n_bits a'’ IN" QUT' =
3 g1 s2”.
Fxp_Add_Block IN" 82" s1' A
Fxp_Delay_Block S1" QUT' A
Fxp_Gain_Block OUT' a'' 52"

where X’ is the fixed-point format, and the functions fzp_add and frp_mul are defined as

follows:

Faef @' fxp_add b'' = FST (fxpAdd X' o_mode q_mode n_bits a'’ b")

i

Faef @'’ fxp_mul b = FST (fxpMul X' o_mode q_mode n_bits a'' b")

In the next step, we describe each design as a difference equation relating the input

and output samples according to the equation (4.4).

Faef FLOAT_Integrator_Spec X a’' IN' OUT' =
Vt. OUT' t = (IN' (t — 1) float_add (2’ float_mul QUT' (t — 1)))

Faef FXP_Integrator_Spec X' o_mode q_mode n_bits a’ IN' QUT" =
Yt. QUT” t = (IN" (t — 1) fxp_add (a" fxp_mul OUT" (t — 1)))

The following lemmas ensure that the implementation at each level satisfies the

corresponding specification.

Lemma 13: FLOAT_INTEGRATOR_IMP_SPEC
F Float_Integrator_Imp X a’' IN' OUT' —
Float_Integrator_Spec X a' IN' OUT

Lemma 14: FXP_INTEGRATOR_IMP_SPEC

F Fxp_Integrator_Imp X' o_mode g_mode n_bits a'’ IN' QUT =

Fxp_Integrator_Spec X' o_mode q_mode n_bits a' IN" QUT”
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Now we assume that the floating-point and fixed-point input sequences are the

rounded versions of an infinite precision ideal input IN, and we have

Faef IN' t = round X To_nearest (IN t)
Faeg IN' t = FST (fxp_round X' o_mode q_mode n_bits (IN t))

where round is the floating-point rounding function, and To_nearest is the corresponding
mode for rounding to nearest floating-point number [29]. We also make some other as-
sumptions on finiteness and validity of floating-point and fixed-point inputs, coefficients,
and intermediate results, in order to have finite and valid final outputs. Using these as-
sumptions and based on the theorems FXP_ADD_THM and FXP_MUL_THM (Section
2.5) and the corresponding ones in floating-point theory [29], we prove the following the-
orem concerning the error between the real values of the floating-point and fixed-point

precision integrator output samples.

Theorem 6: INTEGRATOR_THM

b Float_Integrator_Imp X a' IN' OUT' A
Fxp_Integrator_Imp X' o_mode q_mode n_bits a'’ IN" OUT’
=
Val (OUT' t) — value (OUT” t) =
Val a' * Val (OUT' (¢t — 1)) —
value a" * value (OUT" (t — 1)) +
error (IN (¢t ~ 1)) +
error (Val a' * Val (OUT' (¢t — 1))) +
error (Val (IN' (t — 1)) + Val (a’ float_mul OUT’ (t — 1))) —
fxperror X' o_mode q_mode n_bits (IN (t — 1)) —
fxperror X' o_mode q_mode n_bits
(value a” * value (OUT” (t — 1))) —
fxperror X' o_mode q_mode n_bits

(value (IN" (t — 1)) + value (a’ fxp_mul OUT” (t — 1)))

where Val is the floating-point valuation function, and error is the floating-point rounding
error function [29]. According to Theorem 6, for a valid and finite set of input and output

sequences at time (¢ - 1) to the integrator design at the floating-point and fixed-point
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levels, we can have finite and valid outputs at time f, and the difference in the real
values corresponding to these output samples can be expressed as the difference in input
and output values multiplied by the corresponding coeflicients, taking into account the
effects of finite precision in coeflicients and arithmetic operations. To find a constant
upper bound for the difference between the outputs, we use Theorem 5 on the fixed-point
error quantification. Similarly, for the floating-point error bound analysis we proved the
following lemma:
Lemma 15: ERROR_BOUND_NORM_STRONG_NORMALIZE

} normalizes X x —

3 j. abs (error x) < (2 pow j / 2 pow (bias X + fracwidth X))

where normalizes defines the criteria for an arbitrary real number to be in the range of
normalized floating-point numbers,; bias defines the exponent bias in the floating-point
format which is a constant used to make the exponent’s range non-negative, and fracwidth
extracts the fraction width parameter from the floating-point format. According to Lemma
15, if the absolute value of a real number is in the representable range of the normalized
floating-point numbers with the format X and located in the j’th binade (the floating-
point numbers between two adjacent powers of 2), then the absolute value of the error is
less than or equal to 27 /2(bias X + fracwidth X ). The lemma is proved based on the general
floating-point absolute error bound theorem developed in [29].

Finally, we proved the following theorem (Theorem 7) that bounds the output error

of the integrator design in the transition from the floating-point to fixed-point levels.

Theorem 7: INTEGRATOR_FP_TO_FXP_ERROR_BOUND_THM
F Float_Integrator_Imp X a' IN' QUT' A
Fxp_Integrator_Imp X' o_mode q_mode n_bits a’’ IN” QUT"
=
3 31 j2 js.
abs (Val (OUT' t) — value (QUT” t)) <
2 * abs (a) * M +
(2 pow j1 + 2 pow j2 + 2 pow j3) / 2 pow (bias X + fracwidth X) +
3 / (2 pow (fracbits X'))
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In the proof of this theorem, we have assumed that the real values of the floating-

point and fixed-point integrator coefficients are equal (Val a’ = value a”
= a), hence ignoring the effects of inaccuracies in the integrator coefficient. We have also
assumed that the floating-point and fixed-point output values are bounded to a constant
value (M). The parameters jI, j2, and j3 are related to the binades in which the real

valued arguments of the three floating-point error expressions in Theorem 6 are located.

2.7 Conclusion

In this chapter, we established the formalization of fixed-point arithmetic in the HOL
theorem prover. The formalization presented in this chapter can be considered as a com-
plement to the floating-point formalizations which are widely available in the literature.
Based on the proposed fixed-point formalization, in the next chapters we will focus on
the verification of the error analysis between the real numbers and the floating-point and
fixed-point algorithmic levels for digital filters and FFT algorithms. We also discuss the
transitions from the floating-point and fixed-point algorithmic levels to hardware imple-

mentations for FFT algorithms.
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Chapter 3

Error Analysis of Digital Filters in
HOL

3.1 Introduction

Digital filters are a particularly important class of DSP (Digital Signal Processing) systems.
A digital filter is a discrete time system that transforms a sequence of input numbers into
another sequence of output, by means of a computational algorithm [39]. Digital filters
are used in a wide variety of signal processing applications, such as spectrum analysis,
digital image and speech processing, and pattern recognition. Due to their well-known
advantages, digital filters are often replacing classical analog filters. The three distinct
and most outstanding advantages of the digital filters are their flexibility, reliability, and
modularity. Excellent methods have been developed to design these filters with desired
characteristics. The design of a filter is the process of determination of a transfer function
from a set of specifications given either in the frequency domain, or in the time domain,
or for some applications, in both. The design of a digital filter starts from an ideal real
specification. In a theoretical analysis of the digital filters, we generally assume that signal
values and system coeflicients are represented in the real number system and are expressed
to an infinite precision. When implemented as a special-purpose digital hardware or as a

computer algorithm, we must represent the signals and coefficients in some digital number
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system that must always be of a finite precision. Therefore, arithmetic operations must be
carried out with an accuracy limited by this finite word length. There is a variety of types
of arithmetic used in the implementation of digital systems. Among the most common
are the floating-point and fixed-point. Here, all operands are represented by a special
format or assigned a fixed word length and a fixed exponent, while the control structure
and the operations of the ideal program remain unchanged. The transformation from the
real to the floating-point and fixed-point forms is quite tedious and error-prone. On the
implementation side, the fixed-point model of the algorithm has to be transformed into

the best suited target description, either using a hardware description or a programming

language.
REAL
(HOL) ~.__ FP Error
-~ T ~~.._ Analysis
Fp Valuation » FP Real Value
(HOL) A HOL)
FXP Error ~~_
Analysis S~ v FPto FXP Error
DR Analysis
FXP Valuation » FXP Real Value
(hoL) (HOL)

Figure 3.1: Error Analysis Approach

In this chapter we describe the error analysis of digital filters using the HOL theorem
proving environment [23] based on the commutating diagram shown in Figure 3.1. There-
after, we first model the ideal real filter specification and the corresponding floating-point
and fixed-point implementations as predicates in higher-order logic. For this, we make
use of existing theories in HOL on the construction of real numbers [27], the formalization
of IEEE-754 standard based floating-point arithmetic [28, 29], and the formalization of
fixed-point arithmetic described in Chapter 2. We use valuation functions to find the
real values of the floating-point and fixed-point filter outputs and define the errors as the
differences between these values and the corresponding output of the ideal real specifica-
tion. Then we establish fundamental lemmas on the error analysis of the floating-point

and fixed-point roundings and arithmetic operations against their abstract mathematical
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counterparts. Finally, we use these lemmas as a model to derive expressions for the ac-
cumulation of the roundoff error in parametric Lth-order digital filters, for each of the
three basic forms of realization: direct, parallel, and cascade [59]. Using these forms, our
verification methodology can be scaled up to any larger-order filter, either directly or by
decomposing the design into a combination of internal sub-blocks. While the theoretical
work on computing the errors due to finite precision effects has been extensively studied
since the late sixties [47], it is for the first time in this thesis, that a formalization and
proof of this analysis for digital filters is done using a mechanical theorem prover, here
the HOL. Our results are found to be in a good agreement with the theoretical ones.
The rest of this chapter is organized as follows: Section 3.2 introduces the funda-
mental lemmas in HOL for the error analysis of the floating-point and fixed-point rounding
and aritflmetic operations. Section 3.3 describes the details of the error analysis in HOL
of the class of linear difference equation digital filters implemented in the three basic forms

of realization. Finally, Section 3.4 concludes the chapter.

3.2 Error Analysis Models

In this section we introduce the fundamental error analysis theorems [74, 20], and the
corresponding lemmas in HOL for the floating-point {28, 29] and fixed-point arithmetics.
These theorems are then used in the next sections as a model for the analysis of the

roundoff error in digital filters.

3.2.1 Floating-Point Error Model

In analyzing the effects of floating-point roundoff, the effects of rounding will be repre-
sented multiplicatively. The following theorem is the most fundamental in the floating-

point rounding-error theory {74, 20].

Theorem 1: If the real number z located within the floating-point range, is rounded to

the closest floating-point number zg, then
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zgp = z(1 +9), where |§] < 27P (3.1)

and p is the precision of the floating-point format.
In HOL, we proved this theorem in the IEEE single precision floating-point format
for the case of rounding to nearest as follows:
Lemma 1: FLOAT_ROUND_RELATIVE_ERROR

F normalizes x == 3 e. abs (e) < (1 / 2 pow ((fracwidth X) + 1)) A
(Val (float (round X To_nearest x)) = x * (1 + e))

where the function normalizes defines the criteria for an arbitrary real number to be in
the normalized range of floating-point numbers [28], fracwidth extracts the fraction width
parameter from the floating-point format X, Val is the floating-point valuation function,
float is the bijection function that converts a triple of natural numbers into the floating-
point type, and round is the floating-point rounding function [29].

To prove this theorem [20], we first proved the following lemma which locates a real

number in a binade (the floating-point numbers between two adjacent powers of 2):

Lemma 2: REAL_IN_BINADE

F normalizes x = 3 j. j < ((emax X) — 2) A
(2 pow (j + 1) / 2 pow (bias X)) < abs x A
abs x < (2 pow (j + 2) / 2 pow (bias X))

where the function emaz defines the maximum exponent in a given floating-point format,
and bias defines the exponent bias in the floating-point format which is a constant used
to make the exponent’s range nonnegative. Using this lemma we can rewrite the general
floating-point absolute error bound theorem (ERROR_BOUND_NORM_STRONG) developed in [29]
as follows:

Lemma 3: ERROR_BOUND_NORM_STRONG_NORMALIZE

l normalizes x —

3 j. abs (error x) < (2 pow j / 2 pow (bias X + fracwidth X))

which states that if the absolute value of a real number is in the representable range of

the normalized floating-point numbers, then the absolute value of the error is less than
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or equal to 27 /2(bias X + fracwidth X) The function error, defines the error resulting from

rounding a real number to a floating-point value which is defined as follows [29]:
Fdef error x = (Val (float (round X To_nearest x)) — x)

Since (20+1) / 2(ties X))} < |g| for the real numbers in the normalized region as proved
in Lemma 2, we have (lerror z| / |z]) < (27 / 2(bias X + fracwidth X)y

(20t / 2lbias X}y or (lerror z| / |z|) < (1 / 2(frecwidth X) + 1)) Rinally, defining
e = (error z / z) will complete the proof of the floating-point relative error bound theo-
rem as described in Lemma 1.

Next, we apply the floating-point relative rounding error analysis theorem (Theo-
rem 1) to the verification of the arithmetic operations. The goal is to prove the following
theorem in which floating-point arithmetic operations such as addition, subtraction, mul-
tiplication, and division are related to their abstract mathematical counterparts according

to the corresponding errors.
Theorem 2: Let * denote any of the floating-point operations +, -, x , /. Then

fl(z xy) = (z * y)(1 + §), where |§] < 277 (3.2)

and p is the precision of the floating-point format. The notation fl (.) is used to denote
that the operation is performed using the floating-point arithmetic.

To prove this theorem in HOL, we start from the already proved lemmas on absolute
analysis of rounding error in floating-point arithmetic operations (FLOAT_ADD
, FLOAT_SUB,FLOAT MUL,FLOAT DIV) developed in [29]. We have converted these lemmas
to the following relative error analysis version, using the relative error bound analysis of

floating-point rounding (Lemma 1):
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Lemma 4: FLOAT_ADD_RELATIVE
- Finite a A Finite b A normalizes (Val a + Val b)
=3 Finite (a + b) A Je. abs e < (1 / 2 pow {{(fracwidth X) + 1)) A
(Val (a + b) = (Val a + Val b) * (1 + e))

Lemma 5: FLOAT_SUB_RELATIVE
F Finite a A Finite b A normalizes (Val a — Val b)
= Finite (a — b) A J e. abs e < (1 / 2 pow ((fracwidth X) + 1)) A
(Val (a — b) = (Val a — Val b) * (1 + e))

Lemma 6: FLOAT_MUL_RELATIVE
F Finite a A Finite b A normalizes (Val a * Val b)
== Finite (a * b) A J e. abs e < (1 / 2 pow ((fracwidth X) + 1)) A
(Val (a * b) = (Val a * Val b) * (1 + e))

Lemma 7: FLOAT_DIV_RELATIVE
b Finite a A Finite b A — Iszero b A normalizes (Val a / Val b)
= Finite (a / b) A Je. abs e < (1 / 2 pow ((fracwidth X) + 1)) A
(Val (a / b) = (Val a / Val b) * (1 + e))

where the function Finite defines the finiteness criteria for the floating-point numbers, and
the function Iszero checks if a given floating-point number is equal to zero. Note that we
use the conventional symbols for arithmetic operations on floating-point numbers using
the operator overloading feature of HOL. The lemmas are composed of two parts. The
first part is about the finiteness of the floating-point operation output. It states that for
each pair of finite floating-point numbers, if the real result is in the representable range of
normalized floating-point numbers, then the output result is also finite. For floating-point
division, the second operand should be nonzero to avoid the division by zero. The second
part of the lemmas states that the result of a floating-point operation is the exact result,

perturbed by a relative error of bounded magnitude.
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3.2.2 Fixed-Point Error Model

While the rounding error for the floating-point arithmetic enters into the system multi-
plicatively, it is an additive component for the fixed-point arithmetic. In this case the

fundamental error analysis theorem can be stated as follows [74].

Theorem 3: If the real number z located in the range of the fixed-point numbers with

format X', is rounded to the closest fixed-point number z', then

th = & + € where |¢| < 2-frachits (X') (3.3)

and frachits is a function that extracts the number of bits that are to the right of the
binary point in the given fixed-point format.
This theorem is proved in HOL as follows:
Lemma 5: FXP_ROUND_ABSOLUTE_ERROR_BOUND

F  (validAttr X') A (representable X' x) =
abs (Fxp_error X' x) < (1 / 2 pow (fracbits X'))

where the function wvalidAttr defines the validity of the fixed-point format, representable
defines the criteria for a real number to be in the representable range of the fixed-point
format, and Fzp_error defines the fixed-point rounding error.

The verification of the fixed-point arithmetic operations using the absolute error
analysis of the fixed-point rounding (Theorem 3) can be stated as in the following theorem
in which the fixed-point arithmetic operations are related to their abstract mathematical

counterparts according to the corresponding errors.

Theorem 4: Let * denote any of the fixed-point operations +, -, x , /, with a given

format X’. Then

fzp(z * y) = (z * y) + ¢, where |¢| < 2-frackits (X') (3.4)

and the notation frp (.) is used to denote that the operation is performed using the

fixed-point arithmetic. This theorem is proved in HOL using the following lemmas:
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Lemma 9: FXP_ADD_ABSOLUTE

F  (Isvalid a) A (Isvalid b) A validAttr (X') A
representable X' (value a + value b) => (Isvalid (FxpAdd X' a b)) A
J e. abs e < inv (2 pow (fracbits X')) A
value (FxpAdd X' a b) = (value a + value b) + e

Lemma 10: FXP_SUB_ABSOLUTE

t (Isvalid a) A (Isvalid b) A validAttr (X') A
representable X' (value a — value b) == (Isvalid (FxpSub X' a b)) A
J e. abs e < inv (2 pow (fracbits X)) A

value (FxpSub X' a b) = (value a ~ value b) + e

Lemma 11: FXP_MUL_ABSOLUTE

F (Isvalid a) A (Isvalid b) A validAttr (X') A

4 representable X' (value a * value b) => (Isvalid (FxpMul X' a b)) A
J e. abs e < inv (2 pow (fracbits X)) A

value (FxpMul X' a b) = (value a * value b) + e

Lemma 12: FXP_DIV_ABSOLUTE

i (Isvalid a) A (Isvalid b) A - (value b = 0) A validAttr (X') A
representable X' (value a / value b) = (Isvalid (FxpDiv X' a b)) A
J e. abs e < inv (2 pow (fracbits X)) A

value (FxpDiv X' a b) = (value a / value b) + e

where the function Isvalid defines the validity of a fixed-point number, value is the fixed-
point valuation function, and FrpAdd, FzpSub, FrpMul, and FzpDiv are the corresponding
functions for fixed-point addition, subtraction, multiplication, and division operations,
respectively. According to these lemmas, if the input fixed-point numbers and the output
attributes are valid, then the result of fixed-point operations is valid. For fixed-point
division, the second operand should be nonzero to avoid the division by zero. The result
of the fixed-point operations is the exact result, perturbed by an absolute error of bounded

magnitude.
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3.3 Error Analysis of Digital Filters using HOL

In this section, the principal results for roundoff accumulation in digital filters using the-
orem proving are derived and summarized. We shall employ the models for floating- and
fixed-point roundoff errors in HOL presented in the previous section. To illustrate our
approach, we first considered the case of first- and second-order digital filters. Then, we
extended this analysis to the general case of the direct form realization of a parametric
L*"-order filter of which the first- and second-order filters are special cases. Finally, we
applied our approach to the parallel and cascade forms. Using these forms, larger-order
filters can be treated as a combination of first- and second-order filters. Then, the total
error is computed by accumulating the error in all internal sub-filters. In the following,
we will first describe in details the theory behind the analysis and then explain how each
step of this analysis is performed in HOL.

The class of digital filters considered in this paper is that of linear constant coefficient

filters specified by the difference equation:

M L
Wy = Zbi Tp—i — Zai Wn—4 (35)
i=0 =1

where {z,} is the input sequence and {wy,} is the output sequence. L is the order of
the filter, and M can be any positive number less than L. There are three basic forms of
realizing a digital filter, namely the direct, parallel, and cascade forms (Figure 3.2) [59].

If the output sequence is calculated by using the equation (3.5), the digital filter is
said to be realized in the direct form. Figure 3.2 (a) illustrates the direct form realization
of the filter using the corresponding blocks for the addition, multiplication by a constant
operations, and the delay element.

The implementation of a digital filter in the parallel form is shown in Figure 3.2 (b)
in which the entire filter is visualized as the parallel connection of the simpler filters H; of a
lower order. In this case, K intermediate outputs {w?}, i = 1,2,...,K are first calculated
and then summed to form the total output {w,}. Therefore, for the input sequence {zn}

we have:
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b) Parallel form

2 K
w, w, w,' =w.
Hl * Hz 8 —__ * -

¢) Cascade form

Figure 3.2: Basic forms of digital filter realizations

wh = fiTtn + giTn_1 — qwh_; — diwi_, (3.6)

where the parameters f;,g;,c;, and d; are obtained from the parameters a; and b; in
equation (3.5) using the parallel expansion. The output of the entire filter wy, is then

related to w?, by:

Wy = wy +wh 4wy (3.7)

The implementation of a digital filter in the cascade form is shown in Figure 3.2

(c) in which the filter is visualized as a cascade of lower filters. From the input {z,}, the
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intermediate output {wl} is first calculated, and then this is the input to the second filter.
Continuing in this manner, the final output wX = wy, is calculated. Since the output of

i

the ¢th section (w},) is the input of the (i+1)th section, the following equation holds:

witl = wi 4 kywi_ | + Ll — ciwff_ll - d,"w,’;_*_l2 (3.8)
where the parameters k;,l;,c;, and d; are obtained from the parameters a; and b; in
equation (3.5) using the serial expansion.

There are three common sources of errors associated with the filter of the equation

(3.5), namely [47]:

1. input quantization: caused by the quantization of the input signal {z,} into a

set 6f discrete levels.

2. coefficient inaccuracy: caused by the representation of the filter coefficients {ay }

and {b;} by a finite word length.

3. round-off accumulation: caused by the accumulation of roundoff errors at arith-

metic operations.

Qur concern in this thesis is round-off accumulation effect only. However, the results
can be extended by minor modification to consider other sources of error. Therefore, for
the digital filter of the equation (3.5) the actual computed output reference is in general
different from {w,}. We-denote the actual floating-point and fixed-point outputs by {y,}

and {v,}, respectively. Then, we define the corresponding errors at the nth output sample

as:
€n = Yn — Wn (39)
€y, = U — Wn (3.10)
€n =Un — Yn (3.11)

where e, and e}, are defined as the errors between the actual floating-point and fixed-
point implementations and the ideal real specification, respectively. e}, is the error in the

transition from the floating-point to fixed-point levels.
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3.3.1 First-Order Filter

To illustrate our approach for the analysis of roundoff errors with floating- and fixed-point
arithmetic, let us consider a first-order filter. Let z,, wy, and a denote the ideal real input
signal, output response, and the coefficient of the filter, that is, the filter parameters with
no roundoff noise and z,, yn, @’ and zli, v,, a”’ denote the corresponding actual floating-
point and fixed-point filter parameters in the presence of roundoff noise, respectively. Then

we can write:

Wp, = aWp_1 + T, (3.12)

The corresponding computed floating- and fixed-point outputs are:

Yn = fl [a'yn—1 + ) (3.13)
vn = fap [a"vn_1 + 23] (3.14)

The notations fI (.) and fzp (.) are used to denote that the operations are performed
using the floating- and fixed-point arithmetics, respectively. In HOL, we specified the
first-order digital filter in real, floating-, and fixed-point abstraction levels, as predicates

in higher-order logic. The corresponding codes are as follows.

Faef First_Order Filter_Ideal_Spec a x w =

Vn.wn=a*w({n—1) +xn

F4ef First_Order_Filter_Float_Imp a' x' y =

Vo.yn=a'*y(@m-1) +xn

Faesf First_Order_Filter_Fxp_Imp X a' x'' v =
Vn. v n = (FxpAdd X (FxpMul X a" (v (n — 1))) (" n))

The calculation of Equation (3.13) is to be performed in the following manner. First
the product a’yn_1 is calculated separately. Then it is added to z, to obtain 1. Similar
discussion can be applied for the calculation of the fixed-point output v, according to

the Equation (3.14). Following Sandberg [66], a flowgraph as given in Figure 3.3 may be
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drawn by using the fundamental error analysis theorems on floating-point and fixed-point
arithmetic operations introduced in Section 3.2 as given in Equations (3.2) and (3.4).
Formally, a flowgraph is a network of directed branches that connect at nodes.
Associated with each node is a variable or node value. Each branch has an input signal and
an output signal with a direction indicated by an arrowhead on it. In a linear flowgraph,
the output of a branch is a linear transformation of the input to the branch. The simplest
examples are constant multipliers and adders, i.e., when the output of the branch is simply
a multiplication or an addition of the input to the branch with a constant value, which
are the only classes we consider in this paper. The linear operation represented by the
branch is typically indicated next to the arrowhead showing the direction of the branch.
For the case of a constant multiplier and adder, the constant is simply shown next to the
qrrowhead. When an explicit indication of the branch operation is omitted, this indicates
a branch transmittance of unity, or identity transformation. By definition, the value
at each node in a flowgraph is the sum of the outputs of all the branches entering the
node. To complete the definition of the flowgraph notation, we define two special types
of nodes. (1) Source nodes that have no entering branches. They are used to represent
the injection of the external inputs or signal sources into a flowgraph. (2) Sink nodes that
have only entering branches. They are used to extract the outputs from a flowgraph [59].
Note that we have used one flowgraph to represent both the floating-point and fixed-point
cases, simultaneously. For floating-point errors, the branch operations are interpreted as
constant multiplications, while for fixed-point errors the branch operations are interpreted
as constant additions.
The quantities €, and &, are errors caused by roundoff at each floating-point arithmetic
step. The corresponding error quantities for fixed-point roundoff are €], and &,.

Therefore the actual y, is seen to be given explicitly by

Yn = [ayn-1(1 + €x) + zn)(1 + &n) (3.15)

In HOL, we established the following lemma to compute the real value of the floating-

point output for the first-order filter according to the Equation (3.15).
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Figure 3.3: Error flowgraph for the first-order filter

Lemma 13: FIRST_ORDER_FILTER_FLOAT_QUTPUT_VALUE

b First_Order_Filter_Float_Imp a' ¥’ y =
J el e2. abs el < (1 / 2 pow 24) A abs €2 < (1 / 2 pow 24) A
(Val (y n) = (Val (') * Val (y (n — 1)) * (1 + el) +
Val (x' n)) * (1 + e2))

Similarly, the actual fixed-point output vy, is given explicitly by

vn = [avn_1 + €, + Zp) + &, (3.16)
and the corresponding lemma is established in HOL as follows:

Lemma 14: FIRST_ORDER_FILTER_FXP_OUTPUT_VALUE
I First_Order_Filter_ Fxp_Imp X a’’ x'' v =—
J el €2. abs el < inv (2 pow (fracbits X)) A
abs e2 < inv (2 pow (fracbits X)) A
value (FxpAdd X (FxpMul X a” (v (n — 1))) (¥" n)) =

({(value (a’) * value (v (n — 1)) + el) + value (x' n)) + e2

For error analysis, we need to calculate the y, and v, sequences from Equations
(3.15) and (3.16), and compare them with the ideal output sequence wy, specified by the
Equation (3.12) to obtain the corresponding errors ey, €}, and €lf, according to the Equa-
tions (3.9), (3.10), and (3.11). Therefore, the difference equations for the errors between

different levels showing the accumulation of roundoff error are derived as follows:
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1) Floating-Point Error Analysis:
en —Qaén-1=4a yn—l(fn + §n + Gné'n) + (Enfn (3.17)

To prove this theorem in HOL, we first defined the error as the difference between
the output of the real filter specification, and the corresponding real value of the floating-
point filter implementation (Float_Error). Then, we established the following lemma for
the accumulation of round-off error in floating-point realization of the first-order filter,

according to the Equation (3.17).

Lemma 15: FIRST_ORDER_FILTER_FLOAT_TO_REAL_THM

F First_Order_Filter_Ideal_Spec a x w A
First_Order_Filter_Float_Imp a’ x' y =
J el e2. abs el < (1 / 2 pow 24) A abs e2 < (1 / 2 pow 24) A
(Float_Error n — a * Float_Error (n — 1) =

a*Val (y (n — 1)) * (el + 2 + el * e2) + (x n) * e2)

2) Fixed-Point Error Analysis:

/

eh—aen,_=¢,+& (3.18)

To prove this theorem in HOL, we first defined the error as the difference between
the output of the real filter specification, and the corresponding real value of the fixed-
point filter implementation (Fzp_Error). Then, we established the following lemma for the
accurnulation of round-off error in fixed-point realization of the first-order filter, according

to the Equation (3.18).

Lemma 16: FIRST_ORDER_FILTER_FXP_TO_REAL_THM

F  First_Order_Filter_Ideal_Spec a x w A
First_Order_Filter Fxp_Imp X a” x" v =
J el e2. abs el < inv (2 pow (fracbits X)) A
abs e2 < inv (2 pow (fracbits X)) A

(Fxp_Error n — a * Fxp_Error (n — 1) = el + e2)

3) Floating- to Fixed-Point Error Analysis:

" "o _

€p Q€ 1 = 5:: + g;; —a yn—-l(fn +&n + 6nfn) — Tnén (3.19)
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To prove this theorem in HOL, we first defined the error as the difference between the
real value of the output of the fixed-point filter implementation, and the corresponding real
value of the floating-point filter implementation (Float-Fzp_Error). Then, we established
the following lemma for the accumulation of round-off error in transition from floating-

point to fixed-point levels of the first-order filter, according to the Equation (3.19).

Lemma 17: FIRST_ORDER_FILTER_FXP_TO_FLOAT_THM
I First_Order_Filter_Ideal_Spec a x w A
First_Order_Filter_Float_Imp a' x' y A
First_Order_Filter_Fxp_Imp X a" x" v —=
J el e2 e3 e4. abs el < inv (2 pow (fracbits X)) A
abs e2 < inv (2 pow (fracbits X)) A
abs e3 < (1 / 2 pow 24) A abs e4 < (1 / 2 pow 24) A
(Float_Fxp_Error n — a * Float_Fxp_Error (n — 1) =
el +e2 —a*Val (y (n — 1)) * (e3 + e4 + e3 * e4) — (x n) * ed)

We proved these lemmas using the fundamental error analysis lemmas (Lemmas
4,5, and 6 for floating-point, and Lemmas 9,10, and 11 for fixed-point), based on the error

models presented in Section 3.2.

3.3.2 Second-Order Filter

A second-order filter is specified by

wy, = by — (a1’wn._1 + azwn_z) (3.20)

The corresponding computed floating- and fixed-point outputs are

Yn = fl [bozn — (a1yn-1 + a2yn-2)] (3.21)
vp = fzp [bozn — (@19n-1 + agvp_2)] (3.22)

In HOL, we specified the second-order digital filter in real, floating-, and fixed-point
abstraction levels, as predicates in higher-order logic. The corresponding codes are as

follows.
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|‘def Second_Order_Filter_Ideal_Spec a b x w =
Vo. wn=(bO*xn—-—(al*win-1)+a2x*w(n-2))

def Second_Order_Filter_Float_Imp a' b’ x' y =
Vo.yn=(d 0*x'n—- (@ 1*xy@m-1)+a 2%y (- 2)))

F4ef Second_Order_Filter_Fxp_Imp X a” b" x'' v =
Vn. v n = (FxpSub X (FxpMul X (b 0) (x" n))
(FxpAdd X (FxpMul X (3 1) (v (» — 1)))
(FxpMul X (a" 2) (v (n — 2)))))

The calculation of Equation (3.21) is performed in the following manner. First, the
products a1yn—1, G2yYn—2, and bpz, are calculated separately. Then a1y,-1 and asyn—2
are added. Finally, this sum is subtracted from byz, to obtain y,. Similar discussion
can be applied for the calculation of the fixed-point output v, according to the Equation
(3.22). A flowgraph for the error of this case is drawn in Figure 3.4. The quantities dy, g,
€n,1y €n,2; T, &n are errors caused by floating-point roundoff at each arithmetic step. The

corresponding error quantities for fixed-point roundoff are &, 4, €, 1, €, 2, T, &,

bozn

1+ 571,0 77:;

Figure 3.4: Error flowgraph for the second-order filter

Therefore the actual y, is seen to be given explicitly by

2

Yn = bo 0n,0 In — Z a ¢n,k Yn—k (3.23)
k=1

where

68



9n,0 = (1 + 5n,0)(1 + £n)
¢n,1 = (1 + 511,1)(1 + ")n)(l + fn)
¢n,2 = (1 + 5n,2)(1 + 77n)(1 + fn)

In HOL, we established the following lemma to compute the real value of the floating-

point output for the second-order filter according to the Equation (3.23).

Lemma 18: SECOND_ORDER_FILTER_FLOAT_OUTPUT_VALUE

F  Second_Order_Filter_Float_Imp a' b x' y =
3t f. Val (y n) = Val (' 0) * (£ 0) * Val (x' n) —
sum (1,2) (A i. Val (@' i) * (f i) * Val (y (n ~ i))) A
J el e2 e3 e4 e5. abs el < (1 / 2 pow 24) A

(1 / 2 pow 24) A abs e3 < (1 / 2 pow 24) A

abs e4 < (1 / 2 pow 24) A abs eb < (1 / 2 pow 24) A

abs e2

IA

t 0

Ii
—
N

+el) * (1 + e5) A
f1=(1+e2)*(1+e4)*(1+eb)A
f2

i
—~
o

+e3) * (1 + e4) * (1 + eb)

Similarly, the actual fixed-point output v, is given explicitly by

Un = [DoZn — (@1Vn—1 + G2Un_2)] + Sp o+ €1 + o+ + &5 (3.24)
and the corresponding lemma is established in HOL as follows:

Lemma 19: SECOND_ORDER_FILTER_FXP_OUTPUT_VALUE

+ Second_Order_Filter_Fxp_Imp X a”’ b" x'' v =
J el e2 e3 e4 e5. abs el < inv (2 pow (fracbits X)) A
abs e2

IA

inv (2 pow (fracbits X)) A
abs e3 < inv (2 pow (fracbits X)) A
abs e4 < inv (2 pow (fracbits X)) A
abs eb < inv (2 pow (fracbits X)) A
value (v n) = value (b' 0) * value (x'' n) —
(value (3’ 1) * value (v (n — 1)) +
value (a’’ 2) * value (v (n — 2))) +

el +e2 + e3 + e4 + &5
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For error analysis, we need to calculate the y, and v, sequences from Equations
(3.23) and (3.24), and compare them with the ideal output sequence wy, specified by the
Equation (3.20) to obtain the corresponding errors ey, e;,, and €}, according to the Equa-
tions (3.9), (3.10), and (3.11). Therefore, the difference equations for the errors between

different levels showing the accumulation of roundoff error are derived as follows:

1) Floating-Point Error Analysis:
ép + a1 ép.1 + Q2 €p_9 = bO-'En(Gn,O - 1) - [alyn—l (d’n,l - 1) + (3'25)

a2Yn—2 ($n,2 — 1)]

To prove this theorem in HOL, we established the following lemma for the accumu-
lation of round-off error in floating-point realization of the second-order filter, according

to the Equation (3.25).

Lemma 20: SECOND_ORDER_FILTER_FLOAT_TO_REAL_THM

FF Second_Order_Filter_Ideal Spec a b x w A
Second_Order_Filter_Float_Imp a' b’ x' y =
Jt f. Float_Error n + a 1 * Float_Error (n — 1) +
a 2 *x Float_Error (n — 2) = b0 *xn* (£t 0 — 1) —
fat1*Val (y(m — D) *(f1 - 1) +
a2*Val(y(n—2))*(f2—-1))A
J el e2 e3 e4 e5. abs el < (1 / 2 pow 24) A
abs €2 < (1 / 2 pow 24) A abs e3 < (1 / 2 pow 24) A
abs e4 < (1 / 2 pow 24) A abs €5 < (1 / 2 pow 24) A
t0=(1+el) * (1+eb)A
f1=1(1+e2) *(1+ed) *(1+e5) A

f2=(1+e3) * (1+ed)*(1+eb)

2) Fixed-Point Error Analysis:

€n + a1€,_; + azen g = dpg + €1 + o + M + & (3.26)

n
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To prove this theorem in HOL, we established the following lemma for the accumu-
lation of round-off error in fixed-point realization of the second-order filter, according to

the Equation (3.26).

Lemma 21: SECOND_ORDER_FILTER_FXP_TO_REAL_THM

F  Second_Order_Filter_Ideal_Spec a b x w A
Second_Order_Filter_Fxp_Imp X a’ b" x' v =
J el e2 e3 e4 eb. abs el < (inv (&2 pow (fracbits X))) A
abs e2

IA

inv (2 pow (fracbits X)) A
abs e3

A

inv (2 pow (fracbits X)) A

abs e4 < inv (2 pow (fracbits X)) A
abs e5 < inv (2 pow (fracbits X)) A
Fxp_Error n + a 1 * Fxp_Error (o — 1) + a 2 * Fxp_Error (n — 2) =

el +e2 +e3 + e4 + &5

3) Floating- to Fixed-Point Error Analysis:

1"

€ + arep + azen o = dng + €ny + o + M + & - (3.27)
boZn(Ono — 1) + a1yn-1 (¢n1~1) + a2yn_2 ($n2 —1)
To prove this theorem in HOL, we established the following lemma for the accu-

mulation of round-off error in transition from floating-point to fixed-point levels of the

second-order filter, according to the Equation (3.27).
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Lemma 22: SECOND_ORDER_FILTER_FXP_TO_FLOAT_THM

- Second_Order_Filter_Ideal Spec a b x w A
Second_Order_Filter_Float_Imp a' b/ x' y A
Second_Order_Filter_Fxp_Imp X a”’ b x' v —
Jt f el e2 e3 e4 ef.

abs el

IA

inv (2 pow (fracbits X)) A
abs e2

IA

inv (2 pow (fracbits X)) A
abs e3

IA

inv (2 pow (fracbits X)) A
abs e4

IN

inv (2 pow (fracbits X)) A
abs eb

IN

inv (2 pow (fracbits X)) A
(Float_Fxp_Error n + a 1 * Float_Fxp_Error (n — 1) +
a 2 * Float_Fxp_Error (n — 2) =

el + e2' +e3 +e4 +e5 —bO*xxn*(t0— 1)+
(atl1t*Val (y(n — 1)) « (1~ 1) +

a2*xVal (y(n—2)) *(£2-1))) A

J el e2 e3 ed e5. abs el < (1 / 2 pow 24) A

abs e2 < (1 / 2 povw 24) A abs e3 < (1 / 2 pow 24) A
abs e4 < (1 / 2 pow 24) A abs e5 < (1 / 2 pow 24) A
t 0= (1+el) *x (1+e5)A

f1

(1 +e2) » (1 +e4) (1 +eb) A
f 2

i

(1 +e3) (1 +ed) % (1+eb)

We proved these lemmas using the fundamental error analysis lemmas (Lemmas
4,5, and 6 for floating-point, and Lemmas 9,10, and 11 for fixed-point), based on the error

models presented in Section 3.2.

3.3.3 Lth-Order Filter (Direct Form)

The direct form realization of a parametric Lth-order filter is specified by Equation (3.5).

The corresponding computed floating- and fixed-point outputs are

M L
Un = FLOQ bk Tnk — DGk Ynk) (3.28)

k=0 k=1
and
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M L
n = fzp () bk Tnok — D ak vn-k) (3.29)
k=0 k=1

In HOL, we specified the direct form realization of a parametric Lth-order digital
filter in real, floating-, and fixed-point abstraction levels, as predicates in higher-order

logic. The real specification is defined in HOL using Equation (3.5). For this we used

m+4n—1

the expression sum (m,n) f denoting > ;"7"~

f(@), which is a function available in the
HOL real library [27] and defines the finite summation on the real numbers. The floating-
and fixed-point specifications are defined in HOL according to the Equations (3.28) and
(3.29). For these cases, we defined similar functions for finite summation on the floating-
point (float-sum) and fixed-point (fzp_sum) numbers, using recursive definition in HOL.

The corresponding codes in HOL are as follows.

I—def L_Order_Filter_Direct_Form_Ideal Spec a bx w M L =
Vo. wan = sum (0,SUCM) (A i. bi*x (n —~ 1)) —
sum (1,L) (A i. a i *w (n — 1))

Fdef V £ nm. (float_sum (n,0) f = float (0,0,0)) A
(float_sum (n,SUC m) f = float_sum (n,m) f + £ (n + m))

Fdef L_Order_Filter Direct_Form_Float_Imp a' b’ x' y ML =
Vn. yn = float_sum (0,SUC M) (A i. V' i »x' (n — 1)) -
float_sum (1,L) (A i. a' i * y (a — 1))

Fdeg VX f nm (fxp.sum (n,0) X £ =
(fxp (WORD (REPLICATE (streamlength X) F),X))) A
(fxp_sum (n,SUC m) X £ =
FxpAdd X (fxp_sum (n,m) X f) £ (n+m))

Faef L_Order_Filter_Direct_Form Fxp.Imp X 2’ b’ v ML =
VY n. v o = FxpSub X
(fxp_sum (0,SUC M) X (A i. FxpMul X " i ¥ (n — i)))
(fxp_sum (1,L) X (A i. FxpMul X a i y (» — 1)))
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The calculation of Equation (3.28) is to be performed in the following manner. First,
the output products ax yn—k, k = 1,2,..., L are calculated separately and then summed.
Next, the same is done for the input products by zn—t, K = 0,1,..., M. Finally, the
output summation is subtracted from the input one to obtain the main floating-point
output y,. Similar discussion can be applied for the calculation of the fixed-point output
vp, according to the Equation (3.29). The corresponding flowgraph showing the effect of
roundoff error using the fundamental error analysis theorems (Theorems 2 and 4) according
to the Equations (3.2) and (3.4), is given by Figure 3.5 which also indicates the order of the
calculation. The quantities 8,4, £ = 0,1,..., M, en, k = 1,2,..., L, (ni, k= 1,2,..., M,

ks k= 2,3,..., L, and &, are errors caused by floating-point roundoff at each arithmetic

step. The corresponding error quantities for fixed-point roundoff are 6;’k, k=0,1,...,. M,

ok =1,2.,L, ¢ k=12, M, o, k=2,3,..,L, and &,

ngn

14 671,0

boZn—1 -
nl , €n,2 QoVy,—2
CGuaYl+ G 1+7m2 Y0
1+ l1+e
bOzn—2 +, n,2 n,3 a3Yn—3
n2 €71,3

n2Y1+¢n2 14703 Y73

Figure 3.5: Error flowgraph for Lth-order filter (Direct form)

Therefore, the actual floating-point output y, is seen to be given explicitly by:

M L
Yn = Zbk Onk Tn-k — Zak bnk Yn—k (3.30)
k=0 k=1
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where

M=

011,0 = (1 + én)(l + ‘Sn,O) (1 + Cn,i)

-
—

il

On;=(1+&)1+65) (1 +Ey) 7 = 1,2, M

i=j
L
¢n,1 - (1 +§n)(1 + 6n,l) H(l =+ 7’n,i)
=2
L
¢n1j = (1 +§n)(1 + €’I’l,_']') H(l + nn’i) ] = 2, 3, ...,L

i=j
In HOL, we first defined finite multiplication on the real numbers recursively as the

expression mul (m,n) f denoting [["*"™ ' f(i) as follows:

Fdgeg V£ nm (mul (n,0) £ =1) A
(mul (n,SUC m) £f = mul (n,m) £ * £ (n + m))

Then, we established the following lemma to compute the real value of the floating-

point filter output for the direct form of realization according to the Equations (3.30).

Lemma 23: L_ORDER_FILTER_DIRECT_FORM_FLOAT_OUTPUT_VALUE
b L_Order_Filter_Direct_Form_Float_Imp a' b' x' y M L. =
3t £f. (Val {y n) = (if L = 0 then
sum (0,SUC M) (A i. (Val (b’ i) * t i * Val (¥' (n — i))))
else sum (0,SUC M) (A i. (Val (b’ i) * t i * Val (¥’ (m — 1i)))) -
sum (1,L) (A i. (Val (@' i) * £ i * Val (y (o — 1)))))) A

Jkdpez absk < (1/ 2 pow 24) A

(Vi. (i <M) = (abs (d i) € (1 / 2 pow 24))) A
(Vi. (i <M = (abs (pi) < (1 / 2 pow 24))) A
(Vi. (1 <L) = (abs (e i) < (1 / 2 pow 24))) A
(Vi. 1 € L) = (abs (z i) < (1 / 2 pow 24))) A

(t0=(1+k)*(1+d0)* (ml (1,0 (Ai. (1+pi))))A

Vi 1ginjsm =

(tj=(0+k)»(1+4dj)*

(mal (G,MM — G- DN KAji- QA+p NN A

(f1l=(1+k *x(1+el1)*(ml(2,L-1))RQi. 1+z1i)))A
Vi (2<iAjsn =
Fji=@Q+k)*(Q+ej)*ml(G,L~-3+1)AKXji Q+ziDHNN
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Similarly, the actual fixed-point output v, is given explicitly by

M L M M L L
) DUTHIS YIRS SEAES DATS JEANS SE PR CIN
k=0 k=1 k=0 k=1 k=1 k=2
and the corresponding lemma is established in HOL as follows:

Lemma 24: L_ORDER_FILTER_DIRECT_FORM_FXP_OUTPUT_VALUE_EXPAND

F L_Order_Filter_Direct_Form_Fxp_Imp X a' v x'" v ML =
Jdkdpez abs k < (inv (2 pow {fracbits X))) A
v i. (i
Vi (i
v i. @
Vi (4
(value (v n) = if (L = 0) then

IA

M) = abs (4 i) inv (2 pow (fracbits X)))

A

<
M) = abs (p i) < inv (2 pow (fracbits X)))
<

IN

L) = abs (e 1) inv (2 pow (fracbits X)))

> > > >

IA

L) => abs (z i) < inv (2 pow (fracbits X)))

sum (0,SUC M) (A i. value (b"” i) * value (x' (n — 1))) +
sum (0,SUC M) (A i. d i) + sum (1,M) (A j. p j) + k else
sum (0,SUC M) (X i. value (b” i) * value (x" (n — i))) —
sum (1,L) (A i. value (a i) * value (v (n — 1i))) +

sum (0,SUC M) (A i. d i) + sum (1,M) (A j. p j) +

sum (1,L) (A i. e i) + sum (2,(L — 1)) (X j. z j) + k)

For error analysis, we need to calculate the y, and v, sequences from Equations
(3.30) and (3.31), and compare them with the ideal output sequence w, specified by the
Equation (3.5) to obtain the corresponding errors ey, e),, and e, according to the Equa-
tions (3.9), (3.10), and (3.11). Therefore, the difference equations for the errors between

different levels showing the accumulation of roundoff error are derived as follows:

1) Floating-Point Error Analysis:

L M L
en + Zak En—k = Zbk (0n,k - 1) Tpn—-k — Zak (¢n,k - 1) Yn—k (3'32)
k=1 k=0 k=1

To prove this theorem in HOL, we established the following lemma for the accumu-
lation of round-off error in floating-point realization of the direct form filter, according to

the Equation (3.32).
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Lemma 25: L_QORDER_FILTER_DIRECT_FORM_FLOAT_TO_REAL_THM

b L_Order_Filter_Direct_Form_Ideal Spec a b x w M L A
L_Order_Filter_Direct_Form_Float_Imp a’' b x' y M L =
3t f. (if L = O then (Float_Error n =
sum {(0,SUC M) (A i. Val (b’ i) * (¢ i — 1) * Val (x' (o — i)))) else
(((Float_Error n) + sum (1,L) (A i. a i * (Float_Error (n — i))) =
sum (0,SUC M) (A i. Val (b’ i) * (£t i — 1) * Val (x' (n — i))) —
sum (1,L) (A i. Val (@' i) * (f i — 1) * Val (y (m — i) A
dkdpez (absk < (1 / 2 pow 24)) A

(Vi. (1 <M = (abs (d i) < (1 / 2 pow 24))) A
Vi. (1 €M) = (abs (p i) < (1 / 2 pow 24))) A
(Vi. (i <L) = (abs (e i) < (1 / 2 pow 24))) A
(Vi. (i <L) = (abs (z i) < (1 / 2 pow 24))) A

(t0=(Q+k *(1+d0)* (ml (1,M) (A i. (1 +p i) A

Vi @1<inisw =

(ti=00+k (1 +dj)«

(mal (G, (MM — (G — ) (A j. @+piNN) A

f1=({1+k *(1+e1)* (mul (2,(L — 1)) (Ai. (1+zi)))A
Vi-2<injsy =

fij=0Q+k *(1+ej)*ml (GL—-3F+1D)NXi. A+ziDdNN

2) Fixed-Point Error Analysis:

L M M L L
et D ek =D Gkt D Gt Gpt Y Mptén (339
k=1 k=0 k=1 k=1 k=2

To prove this theorem in HOL, we established the following lemma for the accumu-
lation of round-off error in fixed-point realization of the direct form filter, according to the

Equation (3.33).
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Lemma 26: L_ORDER_FILTER_DIRECT_FORM_FXP_TO_REAL_THM

F L_Order_Filter_Direct_Form_Ideal Spec a b x w ML A
L_Order_Filter_Direct_Form_Fxp_Imp X 2" b"” x' v M L =
Jdkdpez abs k < inv (2 pow (fracbits X)) A
v i. (i
(Vi. (1 € M) = abs (p i) < inv (2 pow (fracbits X))) A

IA

M) = abs (d i) < inv (2 pow (fracbits X))) A

(Vi. (i < L) = abs (e i) < inv (2 pow (fracbits X))) A
(Vi. (i € L) = abs (z i) € inv (2 pow (fracbits X))) A
(if (L = 0) then (Fxp_Error n =

sum (0,SUC M) (A i. d i) + sum (1,M) (A j. p j) + k) else
(Fxp_Error n + sum (1,L) (A i. a i * Fxp_Error (n — i)) =
sum (0,SUC M) (A i. d i) + sum (1,M) (A j. p ) +

sum (1,L) (A i. e i) + sum (2,(L — 1)) (A j. z j) + k))

3) Floating- to Fixed-Point Error Analysis:
L M M L L
en + Z ak eq_j = Z On g + Z n Zeﬁ,k + Z’I;,k +&n — (3.34)
k=1 k=0 k=1 k=1 k=2
M L
D bk Bng—1) Tnok + Dk (bngk — 1) Ynk
k=0

k=1

To prove this theorem in HOL, we established the following lemma for the accumu-
lation of round-off error in transition from floating-point to fixed-point levels of the direct

form filter, according to the Equation (3.34).
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Lemma 27: L_ORDER_FILTER_DIRECT_FORM_FXP_TO_FLOAT_THM
I L_Order_Filter_Direct_Form_Ideal Spec a b x w M L A
L_Order_Filter_Direct_Form_Float_Imp a' b’ x' y M L =
3t £ kidl pl el zl.
(abs k1 < inv (2 pow (fracbits X))) A
Vi (i<
Vi. i <M = abs (pt i) <
(Vi. i € L) = abs (el i) < inv (2 pow {fracbits X))) A
(Vi. (i € L) = abs (z1 i) < inv (2 pow (fracbits X))) A
(if (L = 0) then

M) = abs (d1 i) < inv (2 pow (fracbits X))) A
inv (2 pow (fracbits X))) A

(Float_Fxp_Error n = sum (0,SUC M) (A i. d1 i) +

sum (1,M) (A j. p1 i) + k1 — (sum (0,SUC M)

(Ai. val (0 1) * (i — 1) * Val (¥’ (n — i))))) else
{Float_Fxp_Error n + sum (1,L) (A i. a i * Float_Fxp_Error (n — i)) =
sum (0,SUC M) (A i. d1 i) + sum (1,M) (A j. pl j) +

sum (1,L) (A i. el i) + sum (2,{L — 1)) (A j. z1 ) + k1 —

sum (0, (SUC M)) (A i. Val (b' i) * (t i — 1) * Val (' (n — i))) +
sum (1,L) (A i. Val (@' i) * (f i — 1) * Val (y (m — i))))) A

J k2 d2 p2 e2 z2. abs k2 < (1 / 2 pow 24) A

(Vi. (i €M) = abs (d2 i) < (1 / 2 pow 24)) A

(Vi. (1 <M = abs (p2 i) < (1 / 2 pow 24)) A
(Vi. (i €LY = abs (e2 i) < (1 / 2 pow 24)) A
(Vi. (i <L) = abs (22 i) < (1 / 2 pow 24)) A

(t0=(1+k2) * (1 +d20) * (mul (1,M) (A i. (1 + p2 iN)) A
Vi-.Q1<iAj<M= (tj=@1Q+k2) % (1+4d2j) =

(mul (G, — (G — DN (A j. @+p2 DN A

(f1=(1+%2) *«(1+e21) % (ml (2,(L — 1)) (Ai. (1 +22i)))) A
Vi- <iAF<L) = Fj=0Q+k2) *x(1+e23j)*

(ml (G,L — 3+ 1)) (XAj. (1+223N)N

We proved these lemmas using the fundamental error analysis lemmas (Lemmas
4,5, and 6 for floating-point, and Lemmas 9,10, and 11 for fixed-point), based on the error
models presented in Section 3.2. The lemmas are proved by induction on parameters L

and M for the direct form of realization.
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3.3.4 Lth-Order Filter (Parallel Form)

For parallel form of realization, the ith parallel path is described by Equation (3.6). The

corresponding computed floating- and fixed-point outputs are

ye = fl [fitn + giTn-1 — civn—1 — dit_o] (3.35)
v}, = fop [fitn + giTn-1 — ety — divh_g] (3.36)

The output of the entire parallel form filter is described by Equation (3.7). The

corresponding computed floating- and fixed-point outputs are

Un = f1lyn + ¥ + o + 9] (3:37)
vy = fzp [l + 02 + ... +0K] . (3.38)

In HOL, we first specified the ith parallel path in real, floating-, and fixed-point
abstraction levels, using Equations (3.6), (3.35), and (3.36). Then, we specified the en-
tire output as defined in Equations (3.7), (3.37), and (3.38) using the finite summation

functions. The corresponding codes are as follows.

F4ef Parallel Form_Ideal Spec ¢ d f g x ww w K =
Vo, wn=sum (1, K) (A i. wwin) A
Vi.win=fi*xxn+gi*x((@-1) —

ci*wywim-—-1)—-di*wi(@m-2)

F4ef Parallel_Form_Float_Imp ¢’ d' f' g’ x' yy y K =
Vn. yn = float_sum (1,K) (A i. yy i n) A
Vi.(i2>21A1i<K = yyin=
fi*xxXn+g ixx (n-1) -

(c"i*yyi@m@—-1)+d i*xyyi(n-2)
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F4ef Parallel_Form Fxp_Imp X ¢/ 4" ' g ¥ vww v K =
Vn. vo = fxp_sum (1,K) X (A i. vw i n) A
Vi. (3 >1Ai<K) = vvin = FxpSub X
(FxpAdd X (FxpMul X (f” i) (" n))
(FxpMul X (g" 1) (¥ (n — 1))))
(FxpAdd X (FxpMul X (¢” i) (vwv i (n — 1)))
(FxpMul X (@ i) (vv i (n — 2))))

Figure 3.6 shows the error flowgraph for the parallel form realization of a parametric
Lth-order filter.

fiza © Ci¥h1

1]
CiVp

1+ (-';,1 0

diyi_s
divy,_y

GiTn—1

Yn
a) ith parallel path

v ¥n v
v v v¥
+ 1
N n2 n K
¥n O > -———— > O Yn
v} 1 1+4Cnp 14Cnx  ¥n

b) Final parallel output
Figure 3.6: Error flowgraph for Lth-order filter (Parallel form)
The corresponding error flowgraph for the ith parallel path is shown in Figure 3.6

(a). The actual floating-point output sequence for the ith parallel path is therefore given

by

Yo = fiznbh | + giTn_105 9 — Ci¥h_10h 1 — divh_odh o (3.39)

where

0, =1 +8 )1+ )1 +E)
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;,2 =(1+ 5;,2)(1 + C:L,l)(l + &)
iz,l =(1+ 621,1)(1 +n;,1)(1 +&)
31,2 =(1+ 52,2)(1 +Uiz,1)(1 +&h)

If the summation of (3.37) is carried out from the left to the right, a corresponding

flowgraph can be drawn as given in Figure 3.6 (b). Thus

K
Un = Z "pn,iy; (3.40)
i=1
where
K
T+, i=1
Yni = j;Q
110+ ¢, i>2
j=i

In HOL, we established the following lemma, to compute the real value of the floating-
point output of the parallel form of realization according to the Equations (3.39) and

(3.40).

Lemma 28: PARALLEL_FORM_FLOAT_QUTPUT_VALUE

I Parallel_Form_Float_Imp ¢’ d' £ g’ ¥’ yy y K =
(3t f. Val (yy i n) = Val (£ i) * Val (x' n) * (t 1) +
Val (g’ i) * Val (¥’ (n — 1)) * (t 2) —
Val (¢’ i) * Val (yy i (n — 1)) = (f 1) -
Val (d' i) * Val (yy i (m — 2)) * (£ 2)) A
Jkdl d2 p el e2 z. abs (k i) < (1 / 2 pow 24) A
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abs {(d1 i) < (1 / 2 pow 24) A
abs (d2 i) < (1 / 2 pow 24) A
abs (p i) < (1 / 2 pow 24) A
abs (el i) < (1 / 2 pow 24) A
abs (e2 i) < (1 / 2 pow 24) A
abs (z i) < (1 / 2 pow 24) A

t1=(1+d11i)*(1+pi)*(1+k)A
t2=(1+d2 i) * (1 +pi)* (1 +Kk)A
fl=(1+eti)*(1+z1i)*(1+k)A
f2=(1+e21i) % (1+zi)*(1+k) A

3 s. (Val (y n) = sum (1,K) (A i. s i * Val (yy i n)) A

Jk. si=(if (i = 1) then (mul (2,(K — 1)) (A i. (1 + k i))) else

(mul (i,(K — i+ 1)) (A i. (1 +Xk 1))

Similarly, the actual fixed-point outputs of the parallel form of realization v, and

vy, are given explicitly by

v}, = fitn + gitn-1 — Civp_y — divh_o + 52,1 + 52,2 + Cy’;i,1 + fg,l'*‘ (3.41)

n 1 11
6n,2 + nn,l + £n

and

K K
v =Y vh+ D (3.42)
i=1 =2

and the corresponding lemma is established in HOL as follows:

Lemma 29: PARALLEL_FORM_FXP_OUTPUT_VALUE
t Parallel_Form_Fxp_Imp X ¢ 4" £ g" x'' vwwv Kk =
3 ¥ di’ d2' p' el’ e2' Z'.
abs (k' i) < inv (2 pow (fracbits X)) A
abs (d1’ i) < inv (2 pow (fracbits X)) A
abs (d2' i) < inv (2 pow (fracbits X)) A
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abs (p’ i) < inv (2 pow (fracbits X)) A

abs (el’ i) < inv (2 pow (fracbits X)) A

abs (e2' i) < inv (2 pow (fracbits X)) A

abs (z' i) < inv (2 pow (fracbits X)) A

value (vv i n) = value (f' i) * value (x' n) +

value (g" i) * value (x' (n — 1)) —

value (¢ i) * value (vv i (n — 1)) -

value (d' i) * value (vv (n — 2)) +

di' i+d2 i+ p i+et'i+e2i+2i+Xk iA

3 s'. value (v n) = sum (1,K) (A i. value (vv i n)) +

sum (2,(K — 1)) (A j. s' )

For error analysis of the parallel form, we first define the corresponding errors at

the ith parallel path output sample as:

en = yh — Wy, (3.43)
el = o} — (3.44)
et = vt — wh (3.45)

Then, we calculate the 3%, yn, v%, and v, sequences from Equations (3.39), (3.40),
(3.41), and (3.42), respectively and compare them with the ideal output sequences w?,
and w, specified by the Equations (3.6), and (3.7) to obtain the corresponding errors €,

17

eli, et en, €, and € according to the Equations (3.43), (3.44), (3.45), (3.9), (3.10), and

(3.11), respectively. Therefore, the difference equations for the errors between different

levels showing the accumulation of roundoff error are derived as follows:

1) Floating-Point Error Analysis:

€ + ciey_ + dieh,_o = fimn(oil,l -1) +gi$n-1(01i1,2 -1)- Ciyfz—l(fﬁiz,l -1) - (346
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diy;—Z( ;,2 -1)

and

K

K
en— D €h=> (Yni—1) 1} (3.47)
=1

i=1

To prove these theorems in HOL, we established the following lemma for the accu-
mulation of round-off error in floating-point realization of the parallel form filter, according

to the Equations (3.46), and (3.47).

Lemma 30: PARALLEL_FORM_FLOAT_TO_REAL_THM

F Pararllel_Form_Ideal Spec c d f g x ww w K A
Parallel_Form_Float_Imp ¢’ d' f' ¢’ ¥ yyy K =
Jt £f. Float_Error i n + ¢ i * Float_Error i (n ~ 1) +
d i *» Float_Error i (n — 2) =
fi*xxn*x(t1l-1)+gi*xxm=-1)*(t2-1)—
ci*Val(y(m— 1)) % (£1— 1) —
dix*xVal (y (mn — 2)) *=(f 2 — 1) A
Jkdl d2pele2z. abs (ki) < (1 / 2 pow 24) A
abs (d1 i) < (1 / 2 pow 24) A
abs (d2 i) < (1 / 2 pow 24) A
abs (p i) < (1 / 2 pow 24) A
abs (el i) < (1 / 2 pow 24) A
abs {e2 i) < (1 / 2 pow 24) A
abs (z i) < (1 / 2 pow 24) A
t1=(1+d1t i) *» (1 +pi)*x(1+k)A
t2={(1+d24i) * (1 +pi)*(1+k)A
fi1=(1+eti)*x(1+zi)*(1+k)A
f2=(1+e2i)*(1+zi)*(1+k)A
1 s. (Float_Error n = sum (1,K) (A i. Float_Fxp_Error i n) +
sum (1, K) (A i. (((s 1) — 1) * Val (yy i m))) A
Jk.si=if (i = 1) then mul (2, (K — 1)) (A i. (1 + (k 1))) else
mul (i,(K — 1 + 1)) (A i. (1 + (k i))))

2) Fixed-Point Error Analysis:
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et i g =0 O e e, & (3-48)

and

K K
eh =D =D Cns (3.49)
i=1 i=1
To prove these theorems in HOL, we established the following lemma for the accu-

mulation of round-off error in fixed-point realization of the parallel form filter, according

to the Equations (3.48), and (3.49).

Lemma 31: PARALLEL_FORM_FXP_TO_REAL_THM
F Parallel Form_Ideal Spec c d f g x ww w K A
| Parallel_Form_Fxp_Imp X ¢’ d"” " g’ ¥ w v K =

3 ¥ dl’ d2' p’ el’ e2' Z'.
abs (k' i) < inv (2 pow (fracbits X)) A
abs (d1’ i) < inv (2 pow (fracbits X)) A
abs (d2' i) < inv (2 pow (fracbits X)) A
abs (p’ i) < inv (2 pow (fracbits X)) A
abs (el’ i) < inv (2 pow (fracbits X)) A
abs (e2' i) < inv (2 pow (fracbits X)) A
abs (2’ i) < inv (2 pow (fracbits X)) A
Fxp_Error i n + ¢ 1 * Fxp_Error i (n — 1) +
d i * Fxp_Error i (n — 2) =
dl’ i +d2' i +p i+el' i+e2 i+2 i+k iA
3 s'. Fxp_Error n = sum (1,K) (A i. Fxp_Error i n) +

sum (2,(K — 1)) (A j. s j)

3) Floating- to Fixed-Point Error Analysis:

it ciEn y +din =0 O, G e+ eng g + b (3-50)

fizn(efz,l -1) - giwn—l(oim -1+ Ciy:;—1(¢fz,1 -1) + diy,iz—z(d’%,z -1)
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and

K

K K
=D e = G D (ni =D up (3.51)

i=1

To prove these theorems in HOL, we established the following lemma for the accu-
mulation of round-off error in transition from floating-point to fixed-point realizations of

the parallel form filter, according to the Equations (3.50), and (3.51).

Lemma 32: PARALLEL_FORM_FXP_TQ_FLOAT_THM

F Parallel_Form_Ideal Spec c d f g x ww w K A
Parallel_Form_Float_Imp ¢’ d' £ g’ x' yy y K A
Parallel _Form_Fxp_Imp X c” @’ £ g" %" vww v K =
¢t £k di’ 42 p' etl’ &2 Z'.

* abs (k' i) < inv (2 pow (fracbits X)) A
abs (d1’ i) < inv (2 pow (fracbits X)) A
abs (d2' i) < inv (2 pow (fracbits X)) A
abs (p' i) < inv (2 pow (fracbits X)) A
abs (el’ i) < inv (2 pow (fracbits X)) A
abs (e2’ i) < inv (2 pow (fracbits X)) A
abs (z' i) < inv (2 pow (fracbits X)) A
Float_Fxp Error i n + ¢ i * Float_Fxp_Error i (n — 1) +
d i * Float_Fxp_Error i (n — 2) =
d’ i+d2 i+p i+el'i+e2 i+2 i+kK i~
(fi*xnx*x(t1-—1)+
gi*x@x@m-1))*(t2-1) -
(ci*Val(y(m— 1)) > (f1~ 1)+
di*Val (y(m—2)) *(f2-1)A
Jkdld2pele2z. abs (ki) < (1 / 2 pow 24) A
abs (d1 i) < (1 / 2 pow 24) A
abs (d2 i) < (1 / 2 pow 24) A
abs (p 1) < (1 / 2 pow 24) A
abs (el i) < (1 / 2 pow 24) A
abs (e2 i) < (1 / 2 pow 24) A
abs (z i) < (1 / 2 pow 24) A
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t1=(1+dli)* (1+pi)*(1+k A
t2=(1+d21i) * (1 +p i) * (1 +k)A
fi=(1+eli)*(1+2z1i)*(1+Kk)A
£2=(1+e2i)* (1+z1i) x(1+k A

3 s s'. Float_Fxp_Error n = sum (1,K) (A i. Float_Fxp_Error i n) +
sum (2,(K — 1)) (A j. & j) -

sum (1, K) (A i. ((s i — 1) * Val (yy i n))) A

Jk. si=1if (i = 1) thenmul (2, (K — 1)) (A i. (1 + k i)) else
mul (i,(K — i+ 1)) (A i. (1 + k 1))

We proved these lemmas using the fundamental error analysis lemmas (Lemmas
4,5, and 6 for floating-point, and Lemmas 9,10, and 11 for fixed-point), based on the error
models presented in Section 3.2. The lemmas are proved by induction on the parameter K
which is defined as the number of internal sub-filters connected in parallel form to generate

the final output, according to the Equation (3.7).

3.3.5 Lth-Order Filter (Cascade Form)

The cascade form realization of a parametric Lth-order filter is specified by Equation (3.8).

The corresponding computed floating- and fixed-point outputs are

Yt = fUlyh + kivho1 + Liva—s — C’:y::ltll = G :ztlz (3.52)
vitl = faplod, + kavk_y + livk_y — colTy - divith (3.53)

In HOL, we specified the second-order digital filter in real, floating-, and fixed-point
abstraction levels, using recursive definitions as predicates in higher-order logic. The

corresponding codes are as follows.
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}_def Cascade_Form_Ideal Spec cd k1 x w =
YVn. WOn=xnAVYi.
vEUCi)n=((((win+ki*wi(@m~—1)+
li*wi(m—-—2)—ci*w(SUCi) (n— 1)) —
di*w(SUCi) (n — 2)))

F4ef Cascade_Form_Float_Imp ¢’ d' k' 1' x' y =
Vo (yOn=x'nAYVYi.
yEUC D n=(({(yin+ & i*xyi(@m- 1))+
P i*xyi@m-2)))-(c"i*y(@SUCL) (n—- 1)) -
(d i *y (SUC i) (n — 2))))
Faef Cascade Form Fxp_Imp X ¢ d” k" 17 %" v =
’ Vn vOn=x"nAVi v (SUCi)n=
FxpSub X (FxpSub X (FxpAdd X (FxpAdd X v i n
(FxpMul X (k" 1) vi (n — 1))
(FxpMul X (1" 1) vi (mn — 2)))
(FxpMul X (¢" i) v (i + 1) (n — 1)))
(FxpMul X @” i) v (i + 1) (n — 2)))

Figure 3.6 shows the error flowgraph for the cascade form realization of a parametric
Lth-order filter.
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1+ ¢4 1+¢, 1+ni)

P o 2 s
1+ 6+ G140
k y'- + n,l
in—1
e
kit ik
i+1
vit

Figure 3.7: Error flowgraph for Lth-order filter (Cascade form)

The actual floating-point output sequence for the cascade form is therefore given by

y71’1+1 = y%%‘,‘ol + fiyil—lof‘:ll + Qiyfl—20i:2l - ciy':‘t—l(ﬁ:':ll - iy:.z—z‘f’::-zl (3.54)

89



where

O = L+ A+ G+ &M

0: = (1+ A+ N+ GHa + &)

05 = (1+ 6511+ aEH (1 + &)

St = L+ DA+ + &M

gty = (1+ A+ athH +&H)

In HOL, we established the following lemma to compute the real value of the floating-

point output of the parallel form of realization according to the Equation (3.54).

Lemma 33: CASCADE_FORM_FLOAT_QOUTPUT_VALUE

l Cascade_Form_Float_Imp ¢’ d' k' 1' ' y =
Jt f. Val (y (SUC 1) n) = Val (y i n) * (t 0) +
Val (k' i) * Val (y i (m — 1)) * (¢t 1) +
Val (' i) * Val (y i (n — 2)) * (t 2) —
Val (¢! i) * Val (y i (m — 1)) * (£ 1) —
Val (d' i) * Val (y i (mn — 2)) * (f 2) A

3 k di d2 p1 p2
abs (d1 i) < (1
abs (d2 i)

abs (e2 i

A
A
1/ 2 pow 24) A
A
A
A

el e2 z, abs (k i) < (1 / 2 pow 24) A
/ 2 pow 24)
1/ 2 pow 24)

/ 2 pow 24)
/ 2 pow 24)
/ 2 pow 24)

abs (z i) < (1 / 2 pow 24) A
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t 0= (1+pli)*(1+p2i)*{1+k)A
t1=(1+d1i) *(1+pli)*(1+p2i) *(1+Kk)A
t2=(1+d2i) * (1 +p2i) *» (1 + k) A

fl1=(1+eli)* (1+2zi)*(1+k)A
f2=(1+e21i)* (1

+

21)*(1+k)

Similarly, the actual fixed-point outputs of the cascade form of realization is given

explicitly by

+1 i ] ] i+1 i+1 1i+1 141 114-1 "
U =UpF fivp 1+ givh g — vl —div Ty + 8 + (T 05 H pat (3.55)

141 1i+1 1i+1 1i+1
€n1 TEn +hy +&

and the corresponding lemma is established in HOL as follows:

Lemma 34: CASCADE_FORM_FXP_OUTPUT_VALUE

i Cascade_Form_Fxp_Imp X ¢’ 4" k' 1" x'' v =
3 ¥’ d1’ d2' p1’ p2' el’ e2' Z'.
abs (k' i) < inv (2 pow (fracbits X)) A
abs (d1’ i)

IN

inv (2 pow (fracbits X))
abs (d2' i)

IA

inv (2 pow (fracbits X))
abs (p1’ i)
abs (p2' i)

IA

inv (2 pow (fracbits X))

IA

inv (2 pow (fracbits X))
abs (el’ i)

IA

inv (2 pow (fracbits X))

> > > > > >

abs (e2’' i)

IN

inv (2 pow (fracbits X))
abs (2’ i) < inv (2 pow (fracbits X)) A
value (v (SUC i) n) = value (v i n) +
value (k' i) * value (v i (n — 1)) +

2)) +

2)) +
value (¢’ i) * value (v (SUC i) (n — 1)) +
value (d i) * value (v (SUC i) (n — 2)) +

value (1" i) * value (v i (n

value (1" i) * value (v i (n

d1 i +pl'i+d2i+p2i+tetl’i+e2i+2i+¥ki
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For error analysis of the cascade form, we first define the corresponding errors as:

’L+1 yn+1 _ w;—*—l (3.56)
it = gitl _ gyt (3.57)
elfitl — ikl _ gyitl (3.58)

Then, we calculate the yit!, and vit! sequences from Equations (3.54), (3.55),
respectively and compare them with the ideal output sequences wit! specified by the
Equations (3.8) to obtain the corresponding errors e}, e/it!, and e/ét! according to the
Equations (3.56), (3.57), (3.58), respectively. Therefore, the difference equations for the
errors between different levels showing the accumulation of roundoff error are derived as

follows:

1) Floating-Point Error Analysis:

il =+ fich s+ iy - et — et + USO8 — 1)+ fd (05K — D)+ (359

glyn 2(9le ) Clyn l(qu_1 ) lyn 2(¢1+1 )

To prove this theorem in HOL, we established the following lemma for the accumu-
lation of round-off error in floating-point realization of the cascade form filter, according

to the Equation (3.59).
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Lemma 35: CASCADE_FORM_FLOAT_TO_REAL_THM

I Cascade_Form_Ideal Spec c d k 1 x w A

Cascade_Form_Float_Imp c¢' d X' 1' ¥ y =

3 t £. Float_Error (SUC i) n = Float_Error i n +

k i * Float_Error i (n — 1) + 1 i * Float_Error i (n — 2) —

¢ i * Float_Error (SUC i) (n — 1) —

d i * Float_Error (SUC i) (n — 2) +

Val (y imn) * (t 0 — 1) +

(ki) *Val (yi(m—1) (¢t 1 - 1) +

(1i)*Val (yi(m—2) (t2—1) -

(ci)*Val(yi(m—- 1)) (f1-1) —

(@i) *Val (yi(n— 2)) (£f2~ 1) A

3k d1 d2 p1 p2 el e2 2. abs (k i) < (1 / 2 pow 24) A

abs (d1 i) < (1 / 2 pow 24) A

abs (d2 i) < (1 / 2 pow 24) A

abs (p1 i) < (1 / 2 pow 24) A

abs (p2 i) < (1 / 2 pow 24) A

abs (el i) < (1 / 2 pow 24) A

abs (e2 1) < (1 / 2 pow 24) A

abs (z i) € (1 / 2 pow 24) A
=(1+pli)*(1+p2i) *x(1+k)A
=(1+d1 i) * (1 +pli)*(1+p2i)*(1+Kk)A
={1+d21i) * (1 +p2i) * (1 +Kk) A
=(1+eld) *x (1+z1i)*(1+Kk A
=(1+e2i)* (1 +2i)*(1+k)

2) Fixed-Point Error Analysis:

l1,+1 — ell +fz er_ 1+g1, n P cze'lrz-i-l dell+1 (3.60)

n+l /‘L+l Iz+1 Iz+1 Iz+1 Iz+1 1i+1 1i+1
Sl g gl +¢ + et il + £

To prove this theorem in HOL, we established the following lemma for the accumu-

lation of round-off error in floating-point realization of the cascade form filter, according
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to the Equation (3.60).

Lemma 36: CASCADE_FORM_FXP_TO_REAL_THM

- Cascade_Form_Ideal Spec c dk 1 x w A

Cascade_Form_Fxp_Imp X ¢ d" k" 1" " v =

3 k' d1’ 42’ p1’ p2 el e2' Z'.

abs (k' i) < inv (2 pow (fracbits X)) A

abs
abs
abs
abs
abs

abs

(dl'
(a2’
(pt/
(p2'
(et
(e2'

i)
i)
i)
i)
i)
i)

IN N AN N IA IA

inv (2 pow (fracbits X))

inv
inv
inv
inv

inv

(2 pow (fracbits X))

(2 pow (fracbits X))

(2 pow (fracbits X))

A
A
A
(2 pow (fracbits X)) A
A
A

(2 pow (fracbits X))

abs (z' i) < inv (2 pow (fracbits X)) A

Fxp_Error (SUC i) n =

Fxp_Error i n + k i * Fxp_Error i (n — 1) +

13i* Fxp_Error i (m — 2) — c i * Fxp_Error (SUC i) (n — 1) —
d i * Fxp_Error (SUC i) (n — 2) +

di’ i +p1' 1 +d2' i +p2'i+el'i+e2 i+2 i+¥ i

3) Floating- to Fixed-Point Error Analysis:

mi+1 _
e, =e, + fie

To prove this theorem in HOL, we established the following lemma for the accumu-
lation of round-off error in floating-point realization of the cascade form filter, according

to the Equation (3.61).

/7,+1 + 6/1+1 +nu+1 + 6/1-}-1 yn(01+1 — 1) - fzyn_ (02+1 ) glyn~2(01+1

qyﬁ;_l(cﬁh,

"

n1+gzn2

- 1) + dzyn 2(¢1+1 )
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Lemma 37: CASCADE_FORM_FXP_TO_FLOAT_THM

I Cascade_Form_Ideal Spec cd k 1 x w A
Cascade_Form_Float_Imp ¢’ d' X' 1' x' y A
Cascade_Form_Fxp_Imp X ¢’ d" ¥’ 1" x' v =
3t £k dl’ 42’ p1’ p2’ el’ e2' Z'.
abs (k' i) < inv (2 pow (fracbits X)) A
abs (d1’ i) < inv (2 pow (fracbits X))
abs (d2' i)

IN

inv (2 pow (fracbits X))
abs (p1’ i)

IA

inv (2 pow (fracbits X))
abs (p2' i)
abs (el’ i)

IA A

A
A
A
inv (2 pow (fracbits X)) A
inv (2 pow (fracbits X)) A

A

abs (e2' i)

IA

inv (2 pow (fracbits X))

abs (z' i) < inv (2 pow (fracbits X)) A

Float_Fxp_Error (SUC i) n = Float_Fxp_Error i n +

k i * Float_Fxp_Error i (n — 1) +

1 i * Float_Fxp_Error i (n — 2) —

¢ i * Float_Fxp_Error (SUC i) (n — 1) —

d i * Fxp_Error (SUC i) (n — 2) +

di' i +p1'i+d2 i+p2 i+el'i+e2 i+z2'i+¥k i-—
Val (y in) * (t 0 — 1) —

ki) *Val (yi(m—-—1) (t1-1) -

Li)*Val(yi(m—2)) (t2-1)+

(ci)*Val (yi(n— 1)) (f1-1)+

(di) *Val (yi (n—2)) (£2 - 1) A

3k dl d2 pl p2 el e2 z. abs (k i) < (1 / 2 pow 24) A
abs (d1 i) < (1 / 2 pow 24) A

(1 / 2 pow 24)
(1 / 2 pow 24)
(1 / 2 pow 24)
(1 / 2 pow 24)
abs (e2 i) < (1 / 2 pow 24)

e
|

abs (d2 i)

IA

abs (pl i)

IA

abs (p2 i)

IA

abs (el i)

IA
> > > > >

abs (z i) < (1 / 2 pow 24) A
t0=(1+pli)* (1 +p24i)*x(1+k)A
t1=(1+d1i)*(1+pli)*x(1+p2i)*x(1+%k)A
t2=(1+d21i) *x (1 +p21i)*x(1+k)A
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fl=(1+e1i)*(1+z1i)*x(1+k)A
f2=(1+e21i)* (1 +2zi) *(1+k)

We proved these lemmas using the fundamental error analysis lemmas (Lemmas
4,5, and 6 for floating-point, and Lemmas 9,10, and 11 for fixed-point), based on the error

models presented in Section 3.2.

3.4 Conclusion

In this chapter, we described our comprehensive methodology for the error analysis of
generic digital filters using the HOL theorem prover. We believe this is the first time a
complete formal framework is considered using mechanical proofs in HOL for the error
analysis of digital filters. In the next chapter, we describe the formal verification of FFT
algorithms. We perform a similar error analysis between the real numbers and the floating-
point and fixed-point algorithmic levels. We also perform the verification for the transition
from the floating-point and fixed-point algorithmic levels to hardware implementations for

FFT algorithms.
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Chapter 4

Verification of FFT Algorithms in
HOL

4.1 Introduction

The fast Fourier transform (FFT) [9, 16] is a highly efficient method for computing the
discrete Fourier transform (DFT) coefficients of a finite sequence of complex data. Because
of the substantial time saving over conventional methods, the fast Fourier transform has
found important applications in a number of diverse fields such as spectrum analysis,
speech and optical signal processing, and digital filter design. FFT algorithms are based
on the fundamental principle of decomposing the computation of the discrete Fourier
transform of a finite-length sequence of length N into successively smaller discrete Fourier
transforms. The manner in which this principle is implemented leads to a variety of
different algorithms, all with comparable improvements in computational speed. There
are two basic classes of FFT algorithms for which the number of arithmetic multiplications
and additions as a measure of computational complexity is proportional to N log N rather
than N2 as in the conventional methods. The first proposed by Cooley and Tukey [18],
called decimation-in-time (DIT), derives its name from the fact that in the process of
arranging the computation into smaller transformations, the input sequence (generally

thought of as a time sequence) is decomposed into successively smaller subsequences. In
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the second general class of algorithms proposed by Gentleman and Sande [22], the sequence
of discrete Fourier transform coefficients is decomposed into smaller subsequences, hence
its name, decimation-in-frequency (DIF).

In Chapter 1, Figure 1.1 illustrates a generic DSP (digital signal processing) design
flow as used in leading industrial projects for the design of FFT algorithms. Thereafter, the
design process starts from an ideal real specification used for the theoretical analysis of the
fast Fourier transform. Here signal values and system coefficients are represented with real
numbers expressed to infinite precision. When implemented as a special-purpose digital
hardware or as a computer algorithm, these must be represented in some digital number
system of finite precision. There is hence an inherent accuracy problem in calculating the
Fourier coefficients, since the arithmetic operations must be carried out with an accuracy
limited by the finite word length of signals. Among the most common types of arithmetic
used in the implementation of FFT systems are floating- and fixed-point [59]. Here, all
operands are represented by a special format or assigned a fixed word length and a fixed
exponent, while the control structure and the operations of the ideal program remain
unchanged. The transformation from real to floating- and fixed-point is quite tedious and
error-prone. On the implementation side, the fixed-point model of the algorithm has to
be transformed into the best suited target description, either using a hardware description
languages (HDL) or a software programming language.

The conformance of the fixed-point implementation with respect to the descriptions
in floating-point or real algorithm on one hand, and the RT (Register Transfer) and gate
levels on the other hand is verified by simulation techniques. Simulation is, however,
known to provide partial verification as it cannot cover all design errors, especially for
large systems. In this chapter, we are proposing the use of formal methods for the mod-
eling and verification of FFT algorithms. Adopting formal verification generally means
using methods of mathematical proof to ensure the quality of the design, to improve the
robustness of a design and to speed up the overall system design and development cycles.

The proposed verification approach is depicted in the commutating diagram shown
in Figure 4.1, where we model the ideal real specification of the FFT algorithms and the

corresponding floating- and fixed-point representations as well as the RT and gate level

98



(HOL)  ~-___ FP Error
N~ ~~ . _ _Analysis

FFT FP Valuation » FP Real Value
(HOL) . (HOL)

FXP Error ~~. A
Analysis .. 1 FPto FXP Error
AN : Analysis
FFT EXP Valuation » FXP Real Value
(HOL) (HOL)
A\

Logical
Implication

FFT RTL
(HOL)
A\

Logical
Implication

-

FFT Netlist
(HoOL)
Figure 4.1: Proposed FFT specification and verification approach

implementations as predicates in higher-order logic. The overall methodology for the for-
mal specification and verification of FFT algorithms will be based on the idea of shallow
embedding of languages [4] using the HOL theorem proving environment [23]. In the
proposed approach, we first focus on the transition from real to floating- and fixed-point
levels. For this, we make use of existing theories in HOL on the construction of real [27]
and complex [32] numbers, the formalization of IEEE-754 standard based floating-point
arithmetic [28, 29], and the formalization of fixed-point arithmetic. We use valuation,
functions to find the real values of the floating- and fixed-point FFT outputs and define
the error as the difference between these values and the corresponding output of the ideal
real specification. Then we establish fundamental lemmas on the error analysis of floating-
and fixed-point rounding and arithmetic operations against their abstract mathematical
counterparts. Finally, based on these lemmas, we derive, for each of the two canonical
forms of realization, expressions for the accumulation of roundoff error in floating- and
fixed-point FFT algorithms using recursive definitions and initial conditions. While theo-
retical work on computing the errors due to finite precision effects in the realization of FFT
algorithms with floating- and fixed-point arithmetics has been extensively studied since

the late sixties [41], this thesis contains the first formalization and proof of this analysis
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using a mechanical theorem prover, here HOL. The formal results are found to be in good
agreement with the theoretical ones.

After handling the transition from real to floating- and fixed-point levels, we turn to
the HDL representation. At this point, we use well known techniques to model the FFT
design at the RTL level within the HOL environment. The last step is to verify this level
using a classical hierarchical proof approach in HOL [52]. In this way, we hierarchically
prove that the FFT RTL implementation implies the high level fixed-point algorithmic
specification, which has already been related to the floating-point description and the
ideal real specification through the error analysis. The verification can be extended, fol-
lowing similar manner, down to gate level netlist either in HOL or using other commercial
verification tools as depicted in Figure 4.1, which is not covered in this paper.

The rest of the chapter is organized as follows: Section 4.2 describes the details of
the error analysis in HOL of the FFT algorithms at the real, floating-point and fixed-point
levels. Section 4.3 describes the verification of the FFT algorithms in the transition to the
RTL and gate level netlist for a radix-4 16-point FFT implementation. Finally, Section
4.4 concludes the chapter.

4.2 FError Analysis of FFT Algorithms in HOL

In this section, the principal results for roundoff accumulation in FFT algorithms using
HOL theorem proving are derived and summarized. For the most part, the following
discussion is phrased in terms of the decimation-in-frequency form of radix-2 algorithm.
The results, however, are applicable with only minor modification to the decimation-in-
time form. Furthermore, most of the ideas employed in the error analysis of the radix-2
algorithms can be utilized in the analysis of other algorithms. In the following, we will
first describe in detail the theory behind the analysis and then explain how this analysis
is performed in HOL,.
The discrete Fourier transform of a sequence {z(n)}N-! is defined as [59]

N-1
Alp) = ) z(n) (WN)™, p =10,1,2...,N-1 (4.1)

n=0
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where Wy = e 727/N and j = +/=1. The multiplicative factors (Wx)"? are called
twiddle factors. For simplicity, our discussion is restricted to the radix-2 FFT algorithm, in
which the number of points N to be Fourier transformed satisfy the relationship N = 2™,
where m is an integer value. The results can be extended to radices other than 2. By using
the FFT method, the Fourier coefficients {A(‘IJ)};,V:_O1 can be calculated in m = logy N
iterative steps. At each step, an array of N complex numbers is generated by using

only the numbers in the previous array. To explain the FFT algorithm, let each integer

p, p=0,1,2,..., N — 1, be expanded into a binary form as

p=2"1pg+ 2™ 2p +  + 2P +Pm-1, Pk =0 or 1 (4.2)

and let p* denote the number corresponding to the reverse bit sequences of p, i.e.,

p* — 2m—1pm~1 + 2m_2pm_2 N 2p1 + po (43)

¢ Decimation-in-Frequency (DIF) FFT Algorithm:

Let {Ak(p)}::’:_1 denote the N complex numbers calculated at the kth step. Then

the decimation in frequency (DIF) FFT algorithm can be expressed as [41]

Agp1(p) = Ax(p) + Axlp+27717) ?f =0 (4.4)
[Ak(p — 2™~ 17%) — Ap(p)] wi(p) if pp=1

where wy(p) is a power of Wy given by wy(p) = (Wx)#*P), where

z(p) =28 (@™ 1k + 2™ 2R i b 4+ 2Dmeg F pme1) — 2™ p, (4.5)

Equation (4.4) is carried out for k =0,1,2,...,m — 1, with Ag(p) = z(p). It can be
shown [22] that at the last step {Am(p)};,v___"o1 are the discrete Fourier coefficients in
rearranged order. Specifically, A,,(p) = A(p*) with p and p* expanded and defined
as in Equations (4.2) and (4.3), respeétively. Figure 4.2 shows the signal flowgraph

of the actual computation for the case N = 24,
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Formally, a flowgraph consists of nodes and directed branches. Each branch has an
input signal and an output signal with a direction indicated by an arrowhead on
it. Each node represents a variable which is the weighted sum of the variables at
the originating nodes of the branches that terminate on that node. The weights,
if other than unity, are shown for each branch. Source nodes have no entering
branches. They are used to represent the injection of the external inputs or signal
sources into the flowgraph. Sink nodes have only entering branches. They are used

to extract the outputs from the flowgraph [59].

{z(0)} = {A(p)} {Ai(2)} {Aa(n)} {As(n)} {AD)} = (40"}
x (0) s A (0)

o LN SN e
/S ¢
W ==
\\V//Epeeee
,(,)W/ 7 wn_/\ wﬁ><wn AQa)
/A \\/ X m
Y/ AN AN ><
o LN e XXX
condl N SN N 7
nd] \\ AN
YA SNt

EY -1

S

Figure 4.2: Signal flowgraph of decimation-in-frequency FFT, N = 2*

¢ Decimation-in-Time (DIT) FFT Algorithm:

Let {Ak(p)}ll,vz_o1 denote the N complex numbers calculated at the kth step. Then

the decimation in time (DIT) FFT algorithm can be expressed as [48]

102



Apor(p) = Ai(p) +wi(p) Ax(p+2%) i o1k =0 (46)
+1(p) = :
Alp ~ 25) —wi(p) Ae(P)  if pmo1k =1

where wi(p) is a power of Wy given by wy(p) = (Wx)*®), where

zk(p) = g1k (2kpm—1—k + 2k_lpm—lc + o+ 2P0 +pm—1) - 2m——lpm—l—lc (4-7)

Equation (4.6) is carried out for £ = 0,1,2,...,m — 1, with Ag(p) = z(p*) with p
and p* expanded and defined as in Equations (4.2) and (4.3), respectively. It can be
shown (18] that at the last step {Am( )}p—O are the discrete Fourier coefficients in
the normal order. Specifically, Apn(p) = A(p). Figure 4.3 shows the signal flowgraph

of the actual computation for the case N = 24.

{z{p")} = {Alp)} {Ap)} {4(p)} {A4s(p)} {Adp)} = {A(p)}
x (0) A (0}

wh A1)

L XX \\// A /
e e N NXXZ W\ I
<

w XXX \\//T
ERNZOW) AR\ (/A
| RO EWAANGR 1/
x<,4,csz w:_/\;wz/ \« \XXXXXX/Hn
=N N |
o XK \\// LN
PN NI/
n XXX v J///\\\LM

o L N w M\
n < /A\ // L\
N

Wi b A (15)
-1 -1 -1

wy

x (15) oA

Figure 4.3: Signal flowgraph of decimation-in-time FFT, N = 24
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There are three common sources of errors associated with the FFT algorithms,

namely [41]:

1. Input Quantization: caused by the quantization of the input signal {z,} into a

set of discrete levels.

2. Coeflicient Accuracy: caused by the representation of the coefficients {w(p)} by
a finite word length.

3. Round-Off Accumulation: caused by the accumulation of roundoff errors at

arithmetic operations.

Therefore, the actual array computed by using equations (4.4) and (4.6) are in gen-
eral different from {Ax(p) ;,Vz_ol. We denote the actual floating- and fixed-point computed
arrays by {AL(p) zl,vz_l and {A}(p) 11)\7:—01’ respectively. Then, we define the corresponding
errors of the pth element at step & as

ex(p) = Ai(p) — Ax(p) (4.8)
ex(p) = A(p) — Ax(p) (4.9)
ek(p) = Ak(p) — Ai(p) (4.10)

where ex(p) and e (p) are defined as the error between the actual floating- and fixed-
point implementations and the ideal real specification, respectively. e} (p) is the error in
transition from floating- to fixed-point levels.

In analyzing the effect of floating-point roundoff, the effect of rounding will be
represented multiplicatively. Letting * denote any of the arithmetic operations +, -, x ,

/, as proved in Section 3.2, if p represents the precision of the floating-point format, then
fl(z xy) = (z * y)(1 + &), where |§] < 277 (4.11)

The notation fI (.) is used to denote that the operation is performed using floating-
point arithmetic. The theorem relates the floating-point arithmetic operations such as
addition, subtraction, multiplication, and division to their abstract mathematical coun-

terparts according to the corresponding errors.
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While the rounding error for floating-point arithmetic enters into the system multi-
plicatively, it is an additive component for fixed-point arithmetic. In this case the funda-
mental error analysis theorem for fixed-point arithmetic operations against their abstract

mathematical counterparts as shown in Section 3.2 can be stated as
fzp(z * y) = (z * y) + ¢, where |¢] < 2~ frachits (X) (4.12)

and fracbits is the number of bits that are to the right of the binary point in the given fixed-
point format X. The notation fzp (.) is used to denote that the operation is performed
using fixed-point arithmetic. We have proved equations (4.11) and (4.12) as theorems in
higher-order logic within HOL. The theorems are proved under the assumption that there
is no overflow or underflow in the operation result. This means that the input values are
scaled so that the real value of the result is located in the ranges defined by the maximum
and minimum representable values of the given floating-point and fixed-point formats.

In equation (4.4) the {Ag(p)} are complex numbers, so their real and imaginary

parts are calculated separately. Let

Bi(p) = Re [Ak(p)]  Ck(p) = Im [Ax(p)]

(4.13)
Uk(p) = Re [wi(p)]  Vi(p) = Im [wi(p)]

where the notations Re [.] and I'm [.] denote, respectively, the real and imaginary parts of

the quantity inside the bracket [.]. Equation (4.4) can be rewritten as

By11(p) = Bx(p) + Bi(q)
Cr11(p) = Cr(p) + Ci(q)
By11(p) = [By(r) ~ Bi(p)] Uk(p) — [Ck(r) — Ci(p)] Vi(p)
Cr+1(p) = [Ci(r) — Cr(p)] Uk(p) + [Bx(r) — Br(p)] Vi(p)

if pg =0 (4.14)

where ¢ = p+ 2™ 7% and r = p — 2™17*, Similarly, we can express the real and imag-

!

inary parts of A, ,(p), Bi,;(p) and C},(p), and A} ,(p), By, (p) and C}(p), using

the floating- and fixed-point operations, respectively. The corresponding error flowgraph
showing the effect of roundoff error using the fundamental floating- and fixed-point error

analysis theorems according to the equations (4.11) and (4.12), respectively, is given in
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Figure 4.4, which also indicates the order of the calculation.

The quantities 1, Y. ps Sk Bgs chpr s S Sl T Ty Mo 30 A
in Figure 4.4 are errors caused by floating-point roundoff at each arithmetic step. The
corresponding error quantities for fixed-point roundoff are vy , 'y,’c’:p, Ok ps 6;5’:,), €k.py E;c,:p’
Ch,ps (,’c”’p, Th,ps n;c’:p, Ak,p, and )\;c':p. Thereafter, the actual real and imaginary parts of the
floating- and fixed-point outputs A}, ;(p) and A}, ,(p), respectively are seen to be given

explicitly by

Bi(p) Bi(g) Cip) Cil)
By(p) Bi(q) Ci(p) Cila)
pe=0
Tep] 1%, Tep] 1+,
Bil) Cinlp)
By (p) Ci.lp)
Bi(r) By(p) Cilr) G G Cile) Bir) Bi{p)
Bi(r) Bi(p) Cilr) G Cin) Gilp) Bi(r) Bi(p)

B}, (p) Gonlp)
By11(p) Cinlp)

Figure 4.4: Error flowgraph for decimation-in-frequency FFT

By 11(p) = [Bi(p) + Br(@))(1 + 7k p)
Cr11(p) = [Ci(p) + CL(D)(1 + 7k )
By 11(p) = [By(r) = Bi(p)] Uk(p)(1 + 6% ;) (1 + G ) (1 + X )
= [Ci(r) = CL(P)] Vi(p)(1 + 85 ) (1 + G ) (1 + X )
Ch1(P) = [C(r) = Ci(P)] Ur(P)(1 + €, ,)(1 + mf ;) (1 + A% )
+ [Bi(r) = Bi(p)] Vi(p)(1 + € ) (1 + mg ) (1 + A )

if pp=0 (4.15)

\

p if pp=1

/

and
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By 1(p)
Ci1a1(p)

B;cl+1(p)
([Ci(r)
Cr1(P)
((B(r)

= [B}(p) + Bi(q)] + Yk, } if pp =0 (4.16)

= [Cx(p) + CY (D] + 71,

s
= [Bx(r) — B{(p) + dk,p) Uk(p) + Ckp—
= Cy(p) + &) Vi(p) + ) + My
= [C(r) — C{(P) + €k p) U(p) + M pt
— By(p) + €] Vilp) +milp) + A0,

if szl

—

The errors ex(p), € (p), and e}(p) defined in equations (4.8), (4.9), and (4.10) are

complex and can be rewritten as

with

ex(p) = By (p) — Bi(p) + 5[Ci(p) — Ci(p)] (4.17)
ex(p) = Bi(p) — Bi(p) + j[Ci (p) - Ck(p)] (4.18)
ex(p) = Bi(p) — By(p) + j[C¥ (p) — Ci(p)] (4.19)

k=1,2...,m, p=0,1,... ., N—1

60(p) =66(p) =eg(p) =0) p:()ala"'aN*l (420)

From equations (4.14), (4.15), (4.16), (4.17), (4.18), and (4.19), we derive the following

error analysis cases

1. FFT Real to Floating-Point:

ex(p) + ex(q) + fr(p) if pp=0

ex+1(p) = { (4.21)

lex(r) — ex(p)] wi(p) + fr(p) if pr=1

where fi(p) is given by

fe(p) = ¢

(% ,[BL(0) + By(@)+57,(Calp) + Cila)] i px=0

[(1+ 6 p) A+ G ) (1 + A, ) — 1[By(r) — By(p)1Uk(p)

=1+ G0+ Gep) (L + X ) = 1[Cy(r) = C(p)]Vi(p)

+il(1 + €)1+ 7, )1 + X ) = 1[C(r) — Ci(p)]Uk(p)

(1 + € p) (1 + 7 p) (1 + X ) — 1[By(r) — By(p)]Vi(p)
if pp=1

(4.22)
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2. FFT Real to Fixed-Point:

e;c+1(17) = e;c (v) + ek(q) * f’é(p) ?f Pe=0 (4.23)
[e;c(r) - e;c(P)] wi(p) + fr.(p) if pp=1

where fi(p) is given by
Ve + Iy i PE=0
Fe®) = § 82Uk (D) + Crp — 87 Vi(p) = G + Myt (4.24)
3 (expUn(P) + Miesp + €, Ve (D) + 1, + A0)  if pp =1

3. FFT Floating- to Fixed-Point:

" | ek(p) +ela) + fr(p) — fi(p) if pp=0
eg1(p) = - (4.25)
lex(r) — ex(p)] we(p) + fr(p) — fr(p) if pp=1

where fir(p) and f;(p) are given by equations (4.22) and (4.24).

The accumulation of roundoff error is determined by the recursive equations (4.21),
(4.22), (4.23), (4.24), and (4.25), with initial conditions given by equation (4.20).

In HOL, we first constructed complex numbers on reals similar to [32]. We defined

in HOL a new type for complex numbers, to be in bijection with R X R. The bijections

are written in HOL as complez : R — C and coords : C — R2.
Faef (V a. complex (coords a) = a) A (V r. coords (complex r) = r)

We used convenient abbreviations for the real (Re) and imaginary (Im) parts of a

complex number.

4 Re z = FST (coords z)

Fdeg Im z = SND (coords z)

and also defined arithmetic operations such as addition, subtraction, and multiplication

on complex numbers. We overloaded the usual symbols (+, —, %) for C and R

108



Fdef compadd a b = (FST a + FST b,SND a + SND b)
l'def compsub a b = (FST a — FST b,SND a — SND b)

Fdef compmul a b = (FST a * FST b — SND a * SND b,
FST a * SND b — SND a * FST b)

Fief W complex_add z = complex (compadd (coords w) (coords z))

t4ef w complex_sub z = complex (compsub (coords w) (coords z))

Fdef W complex_mul z = complex (compmul (coords w) (coords z))

Furthermore, we defined using recursive definition in HOL expressions for the finite

summation on complex numbers.

Fdaes (complex_sum (n,0) £ = complex (0,0)) A

(complex_sum (n,SUC m) f = complex_sum (n,m) £ + f (n + m))

Similarly, we constructed complex numbers on floating-point numbers (float_complez,
float_coords, float_Re, float-Im, float_complex_add, float_complez_sub, float_complex_mul,
float_complez_sum) and fixed-point numbers (fzp_complez, frp_coords, frp_Re, fep_Im, frp_
complez_add, frp_complex_sub, frp_complez_mul, frp_complez_sum). We also defined round-
ing and valuation functions for floating-point (float-complez_round, float_-complez_Val) and
fixed-point (fzp_complez.round, frp_complez.value) complex numbers.

Then we defined the principal N-roots on unity (e~/2"™*/N = cos (27n/N) —
J sin (2nn/N)), and its powers (OMEGA) as a complex number using the sine and cosine

functions available in the transcendental theory of the HOL reals library [27].

F4ef principal_root_1n N =

complex (cos =2 * pi * & n / & N, sin =2 * pi * & n / & N)
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We specified expressions in HOL for expansion of a natural number into a binary

form in normal and rearranged order according to the equations (4.2), (4.3), and (4.5).

Faef DIG nm = (m DIV 2 ** n) MOD 2

Fdef Binary Formp m = (A k. DIG (m — 1 — k) p)

Fdeg Log 2 p = @k. p =2 #*k

Faef (num_sum (n,0) £ = 0) A

(num_sum (n,SUC m) f = num_sum {(n,m) £ + £ (n + m))

Fgef Z Xk p N = 2 »x k * num_sum (k,Log_2 N — k)
(A i. 2 ##(Log_2 N — 1 — i) * DIG i p) —
2 *x (Log_.2 N — 1) * DIG k p

Fdef p.star p m = num_sum (O,m) (A i. 2 ** m * DIG i p)

The above enables us to specify the FFT algorithms in real (FFT), floating- (FLOAT_FFT),
and fixed-point (FXP_FFT) abstraction levels using recursive definitions in HOL as de-

scribed in equation (4.4).

Fdgeg (FFTxNO = (Ap. xp)) A
FFT x N (SUC k) =

(* p-
(if DIG k p = O then
FFTx Nk p+ FFT x Nk (p+ 2 #* (Log.2 N — 1 — k))
else
(FFT x Nk (p — 2 ** (Log.2 N — 1 — k)) — FFT x N k p) *
OMEGA k p N))

Then we define the real and imaginary parts of the FFT algorithm (FFT_REAL,
FFT_IMAGE) and powers of the principal N-roots on unity (OMEGA_REAL,OMEGA_IMAGE)
according to the equation (4.13).
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F4es FFT_REAL x N k p = Re (FFT x N k p)
Faef FFT_IMAGE x N k p = Im (FFT x N k p)
Faef OMEGA_REAL k p N = Re (OMEGA k p N)
ng OMEGA_IMAGE k p N = Im (OMEGA k p N)

Later, we prove in separate lemmas that the real and imaginary parts of the FFT
algorithm in real, floating-point, and fixed-point levels can be expanded as in equation
(4.14). In following, we show the HOL expansion theorem (Lemma 1) for real numbers.

Similar lemmas have been derived for the floating- and fixed-point levels.

Lemma 1:
Y xNkp.
(if DIG k p = O then
(FFT_REAL x N (SUC k) p =
FFT_REAL x N k p +
FFT_REAL x N k (p + 2 ** (Log_2 N — 1 — k))) A
(FFT_IMAGE x N (SUC k) p =
FFT_IMAGE x N k p +
FFT_IMAGE x N k (p + 2 ** (Log 2 N — 1 — k)))
else
(FFT_REAL x N (SUC k) p =
(FFT_REAL x N k (p — 2 ** (Log_.2 N — 1 = k)) -
FFT_REAL x N k p) * OMEGA_REAL k p N —
(FFT_IMAGE x Nk (p — 2 ** (Log_.2 N — 1 — k)) —
FFT_IMAGE x N k p) * OMEGA_IMAGE k p N) A

(FFT_IMAGE x N (SUC k) p =
(FFT_IMAGE x N k (p — 2 ** (Log.2 N — 1 — k)) —
FFT_IMAGE x N k p) * OMEGA_REAL k p N +
(FFT_REAL x Nk (p — 2 ** (Log 2 N — 1 — k)) —
FFT_REAL x N k p) * OMEGA_IMAGE k p N))
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Then we prove lemmas to introduce an error in each of the arithmetic steps in real
and imaginary parts of the floating-point and fixed-point FFT algorithms according to
the equations (4.15), and (4.16). In following, we show the HOL theorem (Lemma 2)
corresponding to the error analysis of the transition from real to floating-point. Similar
theorems have been proven for the transitions from, respectively, real and floating-point

to the fixed-point level.

Lemma 2:
VxNkp.
3 e.
Y i.
1<iANni <12 =
ei <1/ 2pow?24 A
(if DIG k p = O then
(Val (FLOAT_FFT_REAL x N (SUC k) p) =
(Val (FLOAT_FFT_REAL x N k p) +
Val
(FLOAT_FFT_REAL x N k (p + 2 ** (Log_2 N — 1 — k)))) =*
(1 +e1))A
(Val (FLOAT_FFT_IMAGE x N (SUC k) p) =
(Val (FLOAT_FFT_IMAGE x N k p) +
Val
(FLOAT_FFT_IMAGE x N k
(p+2** (Log.2 N —1-kKk)))) *(1L+e?2))
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else
(Vval (FLOAT_FFT_REAL x N (SUC k) p) =
(Val
(FLOAT_FFT_REAL x N k (p — 2 #* (Log.2 N — 1 — k))) —
Val (FLOAT_FFT_REAL x N k p)) *
Val (FLOAT_OMEGA_REAL k p N) * (1 + e 3) * (1 + e 4) *
(1 +eb5) —
(Val
(FLOAT_FFT_IMAGE x N k (p — 2 #* {Log 2 N — 1 — k))) —
Val (FLOAT_FFT_IMAGE x N k p)) *
Val (FLOAT_OMEGA_IMAGE k p N) * (1 + e 6) * (1 + e 7) *
(1 +eB)) A
(Val (FLOAT_FFT_IMAGE x N (SUC k) p)
(Val
(FLOAT_FFT_IMAGE x N k (p — 2 #* (Log.2 N — 1 — k))) —
Val (FLOAT_FFT_IMAGE x N k p)) *

i

Val (FLOAT_OMEGA_REAL k p N) * (1 + e 8) * (1 + e 9) *
(1 +e 10) +
(Val

(FLOAT_FFT_REAL x N k (p — 2 ** (Log 2 N — 1 — k))) —
Val (FLOAT_FFT_REAL x N k p)) =*
Val (FLOAT_OMEGA_IMAGE k p N) * (1 + e 11) * (1 + e 12) *
1+ e 10)))

We prove these lemmas using the fundamental error analysis lemmas for basic arith-
metic operations according to the equations (4.11) and (4.12). Then we defined in HOL
the error of the pth element of the floating- (FLOAT-TO-REAL_FFT_ERROR) and fixed-
point (FXP_TO-REAL_FFT_-ERROR) FFT algorithms at step k, and the corresponding
error in transition from floating- to fixed-point (FLOAT-TO_-FXP_FFT_ERROR), accord-
ing to the equations (4.8), (4.9), and (4.10).

Fdef FLOAT_TO_REAL_FFT_ERROR x N k p =
float_complex_Val (FLOAT_FFT x N k p) — FFT x N k p
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Thereafter, we prove lemmas to rewrite the errors as complex numbers using the
real and imaginary parts according to the equations (4.17), (4.18), and (4.19), respectively.

The HOL theorem (Lemma &) for the real numbers to floating-point transition is given
below.

Lemma 3:
Y xNkop.
FLOAT_TO_REAL_FFT_ERROR x N k p =
complex
(Val (FLOAT_FFT_REAL x N k p) — FFT_REAL x N k p,
Val (FLOAT_FFT_IMAGE x N k p) — FFT_IMAGE x N k p)

Finally, we prove a set of lemmas to determine the accumulation of roundoff error
in floating- and fixed-point FFT algorithms by recursive equations and initial conditions
according to the equations (4.20), (4.21), (4.22), (4.23), (4.24), and (4.25). Lemma 4

represents the HOL theorem for the transition from real numbers to floating-point.

Lemma 4:
Vx N k p.
(FLOAT_TO_REAL_FFT_ERROR x N 0 p = complex (0,0)) A
af.
(FLOAT_TO_REAL_FFT_ERROR x N (SUC k) p =
(if DIG k p = O then
FLOAT_TO_REAL_FFT_ERROR x N k p +
FLOAT_TO_REAL_FFT_ERROR x N k (p + 2 *x (Log_.2 N — 1 — k)) +
fxNkp
else
(FLOAT_TO_REAL_FFT_ERROR x N k (p — 2 #* (Log_.2 N — 1 — k)) —
FLOAT_TO_REAL_FFT_ERROR x N k p) * OMEGA k p N + £ x N k p)) A
Je.
Vi.
1<iANi<L 12 =
ei< 1/ 2pow24 A
(f xNkp-=
(if DIG k p = O then
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complex
(e 1 *
(Val (FLOAT_FFT_REAL x N k p) +
Val
(FLOAT_FFT_REAL x N k
(p+2#*x (Log2 N —1—k))),
e 2 %
(Val (FLOAT_FFT_IMAGE x N k p) +
Val
(FLOAT_FFT_IMAGE x N k
(p+2*x (Log_.2 N — 1 — k))))
else
complex
{1 +e3) *(1+e4)*(1+eb) —1) *
(Val
(FLOAT_FFT_REAL x N k
(p — 2 #* (Log_.2 N — 1 — k))) —
Val (FLOAT_FFT_REAL x N k p)) * OMEGA_REAL k p N —
(1L +e6) *x (1L +e7) (1L +eb)— 1) *
(Val
(FLOAT_FFT_IMAGE x N k
(p — 2 ** (Log.2 N — 1 — k))) —
FFT_IMAGE x N k p) * OMEGA_IMAGE k p N,
(1 +e8) *(1+e9) (1 +e10) — 1) *
(val
(FLOAT_FFT_IMAGE x N k
(p— 2 % (Log2 N — 1 —~ k))) —
Val (FLOAT_FFT_IMAGE x N k p)) * OMEGA_REAL k p N —
(1 +e11) * (1 +e 12) » (1 +e 10) — 1) *
(Val
(FLOAT_FFT_REAL x N k
(p— 2 (Log.2 N -1 - k))) —
Val (FLOAT_FFT_REAL x N k p)) *
'OMEGA_IMAGE k p N)))
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4.3 FFT Design Implementation Verification

In this section, we describe the application of the proposed approach for the verification
in HOL of the transition from real, floating- and fixed-point specifications to RTL and
gate level netlist implementations of an FFT algorithm. We have chosen the case study
of a radix-4 pipelined 16-point complex FFT core available as a VHDL RTL model in
the Xilinx Coregen library [76]. We have also used Synopsys tools to generate the gate
level netlist of the design. All proofs have been conducted in HOL, hence establishing a
correctness of the FFT design implementation with respect to its high level algorithmic
specifications.

Figure 4.5 shows the overall block diagram of the Radix-4 16-point pipelined FFT
design. The basic elements are memories, delays, multiplexers, and dragonflies. In gen-
eral, the 16-point pipelined FFT requires the calculation of two radix-4 dragonfly ranks.
Each radix-4 dragonfly is a successive combination of a radix-4 butterfly with four twid-
dle factor multipliers. The FFT core accepts naturally ordered data on the input buses
in a continuous stream, performs a complex FFT, and streams out the DFT samples on
the output buses in a natural order. These buses are respectively the real and imaginary
components of the input and cutput sequences. An internal input data memory controller
orders the data into blocks to be presented to the FFT processor. The twiddle factors are
stored in coefficient memories. The real and imaginary components of complex input and
output samples and the phase factors are represented as 16-bit 2’s complement numbers.

The unscrambling operation is performed using the output bit-reversing buffer.

I STAGE 1 | STAGE 2 -
[ ] 1

Input S— Output
INPUT o—| sutier Riowio Biagid Bt | —~ OUTPUT
Memory - - Bitrev:
- ores

Figure 4.5: Radix-4 16-point pipelined FFT implementation

To define the radix-4 FFT algorithm [9, 59], we represent the indices p and = in
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equation (4.1) in a base 4 (quaternary number system) as

p= 4p1 + po, P1L,Po = 07 11 2a 3 (426)

n = 4ny + no, n,ng = 0,1,2,3 (4.27)

It is easy to verify that as ng and n; take on all possible values in the range indicated,
n goes through all possible values from 0 to 15 with no values repeated. This is also true
for the frequency index p. Using these index mappings, we can express the radix-4 16-point
FFT algorithm recursively as

3

Ar(po,mo) = Y z(ny,no) (Wig)Po™ (4.28)
ny=0
3
As(po,p1) = Y A1(po,no) (Wig)*Pr-Hrolno (4.29)
no=0

The final result can be written as

A(p1,p0) = Aa(po,p1) (4.30)

Thus, as in the radix-2 algorithm, the results are in reversed order. Based on
equations (4.28), (4.29), and (4.30) we can develop a signal flowgraph for the radix-4
16-point FFT algorithm as shown in Figure 4.6, which is an expanded version of the
pipelined implementation of Figure 4.5. The graph is composed of two successive radix-4
dragonfly stages. To alleviate confusion in this graph we have shown only one of the
radix-4 butterflies in the first stage. Also, we have not shown the multipliers for the
radix-4 butterflies in the second stage since they are similar to the representative butterfly
of the first stage. Figure 4.6 also illustrates the unscrambling procedure for the radix-4
algorithm.

In HOL, we first modeled the RTL description of a radix-4 butterfly as a predicate
in higher-order logic (radiz_4_butterfly_ RTL).
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Figure 4.6: Signal flowgraph of radix-4 16-point FF'T

F4ef radix_4_butterfly RTL N ar ai br bi cr ci dr di qir qli q2r g2i q3r
q31 q4r q4i =
(2 yir yii y2r y2i.
N_complex_add_RTL N ar ai br bi yir yli A
N_complex_add_RTL N cr ci dr di y2r y2i A
N_complex_add_RTL N yir yii y2r y2i qlir qli) A
(3 y3r y3i y4r y4i ySr y5i y6r y6i.
N_complex_mul_two_comp_RTL N br bi (NBWORD N 0) (NBWORD N 1) y3r y3i A
N_complex_sub_RTL N ar ai y3r y3i y4r y4i A
N_complex_mul_two_comp_RTL N dr di (NBWORD N 0) (NBWORD N 1) y5r y5i A
N_complex_sub_RTL N y5r y5i cr ci y6r y6i A
N_complex_add_RTL N y4r y4i y6r y6i q2r q2i) A
(3 y7r y7i y8r y8i.
N_complex_sub_RTL N ar ai br bi y7r y7i A
N_complex_sub_RTL N cr ci dr di y8r y8i A
N_complex_add_RTL N y7r y7i y8r y8i q3r q3i) A
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3 y9r y9i y10r y10i yilr y1ii yi12r yi2i.

N_complex_mul_two_comp_RTL N br bi (NBWORD N O) (NBWORD N 1) y9r y9i A
N_complex_add _RTL N ar ai y9r y9i y10r y10i A
N_complex_mul_two_comp_RTL N dr di (NBWORD N O) (NBWORD N 1) yiir yi1i A
N_complex_add_RTL N yiir y11i cr ci y12r y12i A

N_complex_sub_RTL N y10r y10i y12r y12i q4r q4i

The block takes a vector of four complex input data and performs the operations
as depicted in the flowgraph of Figure 4.6, to generate a vector of four complex output
signals. The real and imaginary parts of the input and output signals are represented as
16-bit Boolean words. We defined separate functions in HOL for arithmetic operations
such as addition (N_complez_add_RTL), subtraction (N_complez_sub_RTL), and multiplica-
tion (N_complez_mul_two_comp_RTL) on complex two’s complement 16-bit Boolean words.
Then, we built the complete butterfly structure using a proper combination of these prim-
itive operations.

Thereafter, we described a radix-4 dragonfly block (radiz_4_dragonfly-RTL) as a
conjunction of a radix-4 butterfly and four 16-bit twiddle factor complex multipliers as

shown in Figure 4.6.

F4ef radix_4_dragonfly RTL N ar ai br bi cr ci dr di wr wi
qir qli q2r q2i q3r q3i q4r q4i =
Jd s1 s2 s3 s4 s5 s6 s7 s8.
radix_4_butterfly RTL N ar ai br bi cr ci dr di
sl s2 s3 s4 s5 s6 s7 s8 A
N_complex_mul_two_comp_RTL N s1 s2 (wr 1) (wi 1) gir qli A
N_complex_mul_two_comp_RTL N s3 s4 (vr 2) (wi 2) g2r q2i A
N_complex_mul _two_comp_RTL N s5 s6 (wr 3) (wi 3) q3r q3i A
N_complex_mul_two_comp_RTL N s7 s8 (ﬁr 4) (wi 4) q4r q4i

Finally, we modeled the complete RTL description of the radix-4 16-point FFT
structure (radiz_4-16_point_ DIF_FFT_RTL) in HOL. The FFT block is defined as a con-
junction of 8 instantiations of radix-4 dragonfly blocks according to Figure 4.6, by applying

the proper time instances of the input and output signals to each block.
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Fdef radix_4_16_point_DIF_FFT_RTL xr xi ar ai wr wi =

3 air ali.

radix_4_dragonfly _RTL N (xr 0) (xi 0) (xr 4) (xi 4) (xr 8) (xi 8)
(xr 12) (xi 12) (wr 0) (wi 0) (ailr 0) (ali 0) (alr 4) (ali 4)
(alr 8) (ali 8) (ailr 12) (ali 12) A

radix_4_dragonfly_RTL N (xr 1) (xi 1) (xr 5) (xi 5) (xr 9) (xi 9)
(xr 13) (xi 13) (wr 1) (wi 1) (alr 1) (ali 1) (alr 5) {(ali &)
(alr 9) (ali 9) (alr 13) (ali 13) A

radix_4_dragonfly RTL N (xr 2) (xi 2) (xr 6) (xi 6) (xr 10)
(xi 10) (xr 14) (xi 14) (vr 2) (wi 2) (alr 2) (ali 2) (alr 6)
(a1i 6) (air 10) (ali 10) (air 14) (ali 14) A

radix_4_dragonfly_RTL N (xr 3) (xi 3) (xr 7) (xi 7) (xr 11)
(xi 11) (xr 15) (xi 15) (wr 3) (wi 3) (alr 3) (ali 3) (alr 7)
(a1li 7) (alr 11) (ali 11) (alr 15) (aii 15) A

radix_4_dragonfly_RTL N (alr 0) (ali 0) (alr 1) (ali 1) (air 2)
(a1i 2) (alr 3) (a1li 3) (wr 4) (wi 4) (ar 0) (ai 0) (ar 4)
(ai 4) (ar 8) (ai 8) (ar 12) (ai 12) A

radix_4_dragonfly_RTL N (air 4) (aii 4) (alr 5) (aii 5) (alr 6)
(ali 6) (alr 7) (a1i 7) (wr 5) (wi 5) (ar 1) (ai 1) (ar 5)
(ai 5) (ar 9) (ai 9) (ar 13) (ai 13) A

radix_4_dragonfly_RTL N (alr 8) (ali 8) (alr 9) (ali 9) (alr 10)
(ali 10) (air 11) (ali 11) (wr 6) (wi 6) (ar 2) (ai 2) (ar 6)
(ai 6) (ar 10) (ai 10) (ar 14) (ai 14) A

radix_4_dragonfly_RTL N (air 12) (a1i 12) (alr 13) (ali 13)
(alr 14) (ati 14) (alr 15) (ali 186) (wr 7) (wi 7) (ar 3) (ai 3)
(ar 7) (ai 7) (ar 11) (ai 11) (ar 15) (ai 15)

Following similar steps, we described a radix-4 16-point FFT structure as fixed-
point (radiz_4_16_point_DIF_FFT frp), floating-point (radiz_4-16_point_DIF_FFT._float),
and real (radiz_4_16_point_DIF_FFT_real) domains in HOL using the corresponding com-

plex data types and arithmetic operations.

For the formal verification of the case study of the radix-4 decimation in frequency

FFT algorithm based on the commutating diagram of Figure 1.2, we proved that the FFT
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RTL description implies the corresponding fixed-point model (Lemma §).

Lemma 5:
V N xr xi ar ai wr wi.
radix_4_16_point _DIF_FFT_RTL N xr xi ar ai wr wi =
radix_4_16_point_DIF_FFT_FXP N (FXP_VECT_COMPLEX N xr xi)
(FXP_VECT_COMPLEX N ar ai) (FXP_VECT_COMPLEX N wr wi)

The proof of the FFT block is then broken down into the corresponding proof of
the dragonfly block, which itself is broken down to the proof of butterfly and primitive

arithmetic operations.

Lemma 6:
V N ar ai br bi cr ci dr di qlr qli q2r q2i q3r q3i q4r q4i wr wi.
radix_4_dragonfly RTL ar ai br bi cr ci dr di wr wi qir ql1i q2r
q2i q3r gq3i q4r q4i —=

radix_4_dragonfly _FXP (N,N — 1,1) (fxp_complex (FXP N ar,FXP N ai))
(fxp_complex (FXP N br,FXP N bi)) (fxp_complex (FXP N cr,FXP N ci))
(fxp_complex (FXP N dr,FXP N di)) (FXP_VECT_COMPLEX N wr wi)
(fxp_complex (FXP N qir,FXP N q1i)) (fxp_complex (FXP N q2r,FXP N q2i))
(fxp_complex (FXP N q3r,FXP N q3i)) (fxp_complex (FXP N q4r,FXP N g4i))

We used the data abstraction functions FXP and FXP_.VECT.-COMPLEX to con-
vert a complex vector of 16-bit two’s complement Boolean words into the corresponding
fixed-point vector.

For the error analysis of the radix-4 decimation in frequency FFT algorithm and
following the discussions in Section 4.2, we proved the theorems below, which state the
error between the real values of, respectively, the floating-point { Lemma 7) and fixed-point
(Lemma 8) precision output samples and the corresponding ideal real specification. We
also proved a theorem (Lemma 9) on the error from the transition from floating-point to

fixed-point specifications.
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Lemma 7:

Lemma 8:

Lemma 9:

According to these theorems, the floating-point and fixed-point implementations
and the real specification of a radix-4 decimation in frequency FFT algorithm are related
to each other based on the corresponding data abstraction (FLOAT-VECT-COMPLEX,
FXP_VECT.COMPLEX, REAL_.VECT-COMPLEX), and error analysis (FLOAT-TO-R
EAL_FFT_ERROR, FXP_.TO_.REAL_FFT.ERROR, FLOAT.TO.FXP_.FFT_-ERROR)

functions. These errors are already quantified using the theorems mentioned in Section

4.2,

Finally, using the obtained theorems (Lemma 5, Lemma 8), we can easily deduce
our ultimate theorem (Lemma 10) proving the correctness of the real specification from

the RTL implementation, taking into account the error analysis computed beforehand.

V N xr xi ar ai wr wi.

radix_4_16_point_DIF_FFT_FLOAT N (FLOAT_VECT_COMPLEX N xr xi)
(FLOAT_VECT_COMPLEX N ar ai) (FLOAT_VECT_COMPLEX N wr wi) =
radix_4_16_point_DIF_FFT_REAL N (REAL_VECT_COMPLEX N xr xi)
(REAL_VECT_COMPLEX N ar ai) (REAL_VECT_COMPLEX N wr wi) A
FLOAT_TO_REAL_FFT_ERROR N xr xi ar ai wr wi

N xr xi ar ai wr wi.

radix_4_16_point_DIF_FFT_FXP N (FXP_VECT_COMPLEX N xr xi)
(FXP_VECT_COMPLEX N ar ai) (FXP_VECT_COMPLEX N wr wi) —»

radix_4_16_point_DIF_FFT_REAL N (REAL_VECT_COMPLEX N xr xi)
(REAL_VECT_COMPLEX N ar ai) (REAL_VECT_COMPLEX N wr wi) A

FXP_TO_REAL_FFT_ERROR N xr xi ar ai wr wi

N xr xi ar ai wr wi.

radix_4_16_point_DIF_FFT_FXP N (FXP_VECT_COMPLEX N xr xi)
(FXP_VECT_COMPLEX N ar ai) (FXP_VECT_COMPLEX N wr wi) =

radix_4_16_point DIF_FFT_FLOAT N (FLOAT_VECT_COMPLEX N xr xi)
(FLOAT_VECT_COMPLEX N ar ai) (FLOAT_VECT_COMPLEX N wr wi) A

FLOAT_TO_FXP_FFT_ERROR N xr xi ar ai wr wi
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Lemma 10:
V N xr xi ar ai wr wi.
radix_4_16_point_DIF_FFT_RTL N xr xi ar ai wr wi =
radix_4_16_point_DIF_FFT_REAL N (REAL_VECT_COMPLEX N xr xi)
(REAL_VECT_COMPLEX N ar ai) (REAL_VECT_COMPLEX N wr wi) A
FXP_TO_REAL_FFT_ERROR N xr xi ar ai wr wi

4.4 Conclusion

In this chapter, we described a comprehensive methodology for the verification of generic
fast Fourier transform algorithms using the HOL theorem prover. We believe this is
the first time a complete formal framework has been proposed for the specification and
verification of the fast Fourier transform algorithms at different levels of abstraction. The
methodology presented in this chapter opens new avenues in using formal methods for
the verification of digital signal processing (DSP) systems as complement to traditional

theoretical (analytical) and simulation techniques.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we first established the formalization of fixed-point arithmetic in the HOL
theorem prover. Unlike floating-point arithmetic, there is no standard for the fixed-point
counterpart. We hence defined in this thesis a complete common set of the fixed-point
arithmetic supported by most DSP tools, in particular SPW and SystemC. We started
first by encoding the fixed-point arithmetic in HOL considering different quantization
and overflow modes, as well as exception handling. We then proved two main theorems
stating that the operations on fixed-point numbers are closely related to the corresponding
operations on infinitely precise values, considering some error. The error is bounded to a
certain absolute value which is a function of the output precision. We have also shown
by an example how these theorems can be used as a basis for analysis of the quantization
errors in the design of fixed-point DSP subsystems. The formalization presented in this
thesis can be considered as a complement to the floating-point formalizations which are
widely available in the literature. The developed theories have been accepted by the HOL
developers to be included in the new public release of HOL.

Based on the developed ﬁxed-point theories, we proposed a comprehensive method-
ology for the error analysis of generic digital filters using the HOL theorem prover. The

proposed approach covers the three basic forms (direct, parallel and cascade) of realization
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entirely specified in HOL. We made use of existing theories in HOL on real, IEEE standard
based floating-point, and fixed-point arithmetic to model the ideal filter specification and
the corresponding implementations in higher-order logic. We used valuation functions
to define the errors as the differences between the real values of the floating-point and
fixed-point filter implementation outputs and the corresponding output of the ideal real
filter specification. Finally, we established fundamental analysis lemmas as our model to
derive expressions for the accumulation of the roundoff error in digital filters. Related
work did exist since the late sixties using theoretical paper-and-pencil proofs and simula-
tion techniques. The authors believe this is the first time a complete formal framework is
considered using mechanical proofs in HOL for the error analysis of digital filters.
Furthermore, we established a more elaborated methodology for the verification of
generic fast Fourier transform algorithms using the HOL theorem prover. The approach
covers the two canonical forms (decimation-in-time, and decimation-in-frequency) of re-
alization of the FFT algorithm using real, floating-, and fixed-point arithmetic as well as
their RT implementations, each entirely specified in HOL. We proved lemmas to derive
expressions for the accumulation of roundoff error in floating- and fixed-point designs com-
pared to the ideal real specification. Then we proved that the FFT RTL implementation
implies the corresponding specification at the fixed-point level using classical hierarchical
verification in HOL, hence bridging the gap between hardware implementation and high
levels of mathematical specification. In this work we also have contributed to the upgrade
and application of established real, complex real, floating- and fixed-point theories in HOL
to the analysis of errors due to finite precision effects, and applied them on the realization
of the FFT algorithms. Error analyses using theoretical paper-and-pencil proofs do exist
since the late sixties while design verification is exclusively done by simulation techniques.
We believe this is the first time a complete formal framework has been proposed for the
specification and verification of the fast Fourier transform algorithms at different levels of

abstraction.
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5.2 Future Work

The methodology presented in this thesis opens new avenues in using formal methods for
the verification of DSP systems as a complement to the traditional theoretical (analytical)
and simulation techniques. There are many opportunities for further work to improve our

approach on verifying DSP systems.

¢ Extend the error analysis lemmas to analyse the worst-case, average, and variance

€rrors.

e Develop a mechanized theory on the properties of random variables and processes

for statistical error analysis in HOL.

e Link HOL with computer algebra systems (Maple [13], Mathematica [75]) to create

a sound, reliable, and powerful system for the verification of DSP systems.

e Prove the correctness of automatic transitions from floating-point to fixed-point

levels.

o Investigate the verification of complex wired and wireless communication systems,
whose building blocks, heavily make use of several instances of the FFT algorithms

such as OFDM (Orthogonal Frequency Division Multiplexing) modems [58].
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