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1 INTRODUCTION 2sion. Often, the arhitetural style with whih these algorithms are imple-mented is preision-limited, and relies on a �xed-point representation. Thisrequires a translation of the spei�ation from oating-point to �xed-pointpreision. This implementation is optimized following some appliation spe-i� trade-o�s suh as speed, ost, area and power onsumption of the hip.The optimization task is tedious and error prone due to the e�ets of quanti-zation noise introdued by the limited preision of �xed-point representation.An overview of a onventional digital signal proessing (DSP) design ow isdepited in Figure 1 [23℄.
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Figure 1: DSP Design FlowUsually the onformane of the �xed-point implementation with respetto the oating-point spei�ation is veri�ed by simulation tehniques whihannot over the entire input spae yielded by the oating-point represen-tation. The objetive of this work is to formalize the �xed-point arithmetiin higher-order logi as a basis for heking the orretness of the imple-mentation of DSP designs against higher level algorithmi desriptions inoating-point and �xed-point representations.Unlike oating-point arithmeti whih is standardized in IEEE-754 [18℄and IEEE-854 [19℄, urrent �xed-point arithmeti does not follow any par-tiular standard and depends on the tool and the language used to design



1 INTRODUCTION 3the DSP hip. Examples of suh tools are SPW (Cadene) [7℄, Matlab-Simulink (Mathworks) [25℄, CoCentri (Synopsys) [37℄, and DSP Station(Mentor Graphis) [27℄. For instane, in SPW (Signal Proessing Worksys-tem), a �xed-point number is de�ned as a binary string and a set of at-tributes. Attributes speify how the binary string is interpreted using threearguments for the total number of bits, the number of integer bits, and thesign format. For arithmeti operations, it supports three kinds of exeptionssuh as loss-of-sign or overow, two overow modes, and �ve quantizationmodes. In Matlab Simulink Fixed-Point Blokset [26℄, �xed-point numbersare stored in data types that are haraterized by their word size (up to128 bits), a radix point, and whether they are signed or unsigned. The radixpoint is used to support integers, frationals, and generalized �xed-point datatypes. The Matlab Blokset provides four quantization modes orrespond-ing to those supported by SPW. It also supports saturation and wrappingto deal with overow for all �xed-point data types. Another example is theSynopsys CoCentri tool, whih uses �xed-point as desribed in the Sys-temC language [33℄. It supports signed and unsigned �xed-point data types,as well as limited preision (53 bits mantissa) �xed-point, alled fast �xed-point to speed up simulation. SystemC supports seven quantization modes,of whih four orrespond exatly to the quantization modes of SPW. Theother three modes are spei� to SystemC and are not supported by theother tools. SystemC supports �ve overow modes overing those of SPW.With the objetive of providing a general methodology for the formalizationand veri�ation of �xed-point arithmeti using higher-order logi, we de�nein this paper a omplete ommon set of �xed-point arithmeti as supportedby most of the DSP tools, in partiular SPW and SystemC.Based on higher-order logi, we propose to enode a �xed-point numberby a pair omposed of a Boolean word, and a triplet indiating the wordlength, the length of the integer portion, and the sign format. Then, we for-malize the onepts of valuation and quantization as funtions that onvertrespetively a �xed-point number to a real number and vie versa, takinginto aount di�erent quantization and overow modes. Fixed-point arith-meti operations are formalized as funtions performing operations on thereal numbers orresponding to the �xed-point operands and then applyingthe quantization on the real number result. Finally, we prove various lemmasregarding the error analysis of the �xed-point quantization and orretness ofthe basi operations like addition, multipliation, and division. The higher-order logi formalization and proof were done using the HOL theorem prover



2 RELATED WORK 4[12℄. They were developed into a full �xed-point arithmeti library, whihwas reently inluded in the last release of HOL (HOL4, Kananaskis-2).The rest of the paper is organized as follows: Setion 2 gives a reviewon work related to the formalization of oating-point arithmeti, some ofwhih diretly inuened our work. Setion 3 desribes the �xed-point arith-meti de�nitions adopted in this paper inluding the format of the �xed-pointnumbers, arithmeti operations, exeptions detetion and their handling, andthe di�erent overow and quantization modes. Setion 4 desribes in detailtheir formalization in HOL. In Setion 5, we disuss the veri�ation of ba-si �xed-point arithmeti operations, suh as addition and multipliation.Setion 6 presents an illustrative example on how this formalization an beused through the modeling and veri�ation of an Integrator iruit. Finally,Setion 7 onludes the paper.2 Related WorkThere exist several related work in the open literature on the formalizationand veri�ation of IEEE standard based oating-point arithmeti. For in-stane, Barrett [2℄ spei�ed parts of the IEEE-754 standard in Z, and Miner[29℄ formalized the IEEE-854 oating-point standard in PVS. The latter de-�ned the relation between oating-point numbers and real numbers, round-ing, and some arithmeti operations on both �nite and in�nite operands.He used this formalization to verify abstrat mathematial desriptions ofthe main operations and their relation to the orresponding oating-pointimplementations. His work was one of the earliest on the formalization ofoating-point standards using theorem proving. His formal spei�ation wasthen used by Miner and Leathrum [30℄ to verify in PVS a general lass ofIEEE ompliant subtrative division algorithms.Carreno [8℄ formalized the same IEEE-854 standard in HOL. He inter-preted the lexial desriptions of the standard into mathematial onditionaldesriptions and organized them in tables, whih were then formalized inHOL. He disussed di�erent standard aspets suh as preisions, exeptionsand traps, and many other arithmeti operations suh as addition, multipli-ation, and square-root of oating-point numbers.Harrison [13℄ onstruted the real numbers in HOL. He then developedin HOL a generi oating-point library [14℄ to de�ne the most fundamentalterms of the IEEE-754 standard and to prove the orresponding orretness



2 RELATED WORK 5analysis lemmas. He used this library to formalize and verify oating-pointalgorithms of omplex arithmeti operations suh as the square root, theexponential funtion [15℄, and the transendental funtions [16℄ against theirabstrat mathematial ounterparts. He also used the oating-point libraryfor the veri�ation of the lass of division algorithms used in the Intel IA-64arhiteture [17℄.Moore et al. [31℄ have veri�ed the AMD-K5 oating-point division algo-rithm using the ACL2 theorem prover. Also, Russino� [35℄ has developeda oating-point library for the ACL2 prover and applied it suessfully toverify the oating-point multipliation, division, and square root algorithmsof the AMD-K5 and AMD Athlon proessors.Aagaard and Seger [1℄ ombined BDD-based model-heking and theo-rem proving tehniques in the Voss hardware veri�ation system to verify theIEEE ompliane of the gate-level implementation of a oating-point mul-tiplier. O'Leary et al. [34℄ reported on the spei�ation and veri�ation ofthe Intel Pentium r Pro proessor's oating-point exeution unit at the gatelevel using a ombination of model-heking and theorem proving. Leeser etal. [24℄ veri�ed a subtrative radix-2 square root algorithm and its hardwareimplementation using the higher-order logi theorem proving system Nuprl.Chen and Bryant [10℄ used word-level SMV to verify a oating-point adder.Cornea-Hasegan [9℄ used iterative approahes and mathematial proofs toverify the orretness of the IEEE oating-point square root, divide, andremainder algorithms.More reently, Daumas et al. [11℄ have presented a generi library forreasoning about oating-point numbers within the Coq system. This librarywas then used in the veri�ation of IEEE-ompliant oating-point arithmetialgorithms [5℄ and hardware units [6℄. Berg et al. [3℄ have formally veri�eda theory of IEEE rounding presented in [32℄ using the theorem prover PVS.They have used a formal de�nition of rounding based on Miner's formaliza-tion of the standard [29℄. This theory was then used to prove the orretnessof a fully IEEE ompliant oating-point unit used in the VAMP proessor [4℄.Sawada and Gamboa [36℄ formally veri�ed the orretness of a oating-pointsquare root algorithm used in the IBM Power4TM proessor. The veri�ationwas arried out with the ACL2(r) theorem prover whih is an extension of theACL2 theorem prover that performs reasoning on real numbers using non-standard analysis. The proof required the analysis of the approximation erroron Chebyshev series by proving Taylor's theorem. Kaivola et al. [20, 21, 22℄presented the formal veri�ation of the oating-point multipliation, divi-



3 FIXED-POINT ARITHMETIC 6sion, and square root units of the Intel IA-32 Pentium r 4 miroproessor.The veri�ation was arried out using the Forte veri�ation framework, aombined model-heking and theorem-proving system built on top of theVoss system. Model heking was done via symboli trajetory evaluation(STE), and theorem proving was done in the ThmTa proof tool.While all of the above work are onerned with oating-point representa-tion and arithmeti, there is no report in the open literature on any mahine-heked formalization of properties of �xed-point arithmeti. Therefore, theformalization presented in this paper is to our best knowledge, the �rst ofits kind. Our formalization of the �xed-point arithmeti has been inspiredmostly by the work done by Harrison [15℄ and Carreno [8℄ on oating-point.Harrison's work was more oriented towards veri�ation purposes. Indeed,we used an analogous set of lemmas to his work, to hek the validity ofoperation results and to arry out the error analysis of the quantized �xed-point result. For exeption handling whih is not overed by Harrison [15℄,we followed Carreno [8℄ who formalized oating-point exeptions and theirhandling in more details.3 Fixed-Point ArithmetiIn this setion we desribe the �xed-point arithmeti de�nitions on whih webase our formalization. While we tried to keep these de�nitions as generalas possible, the �xed-point numbers format, arithmeti operations, overowand quantization modes, and exeption handling adopted are to some extentinuened by the �xed-point arithmeti de�ned by Cadene SPW [7℄ andSynopsys SystemC [33℄.3.1 Fixed-Point NumbersA �xed-point number has a �xed number of binary digits and a �xed posi-tion for the deimal point with respet to that sequene of digits. Fixed-pointnumbers an be either unsigned (always positive) or signed (in two's omple-ment representation). For example, onsider the ase of four bits being usedto represent the �xed-point numbers. If the numbers are unsigned and ifthe deimal point or, more properly, the binary point is �xed at the positionafter the seond digit (XX.XX), the representable real values range from 0:0to 3:75. In two's omplement format, the most signi�ant bit is the sign



3 FIXED-POINT ARITHMETIC 7bit. The remaining bits speify the magnitude. If four bits represent the�xed-point numbers, and the binary point is �xed at the position after theseond digit following the sign bit (SXX.X), the real values range from �4:0to +3:5.Fixed-point numbers are expressed as a pair onsisting of a binary stringand a set of attributes, (Binary String ;Attributes). The attributes speifyhow the binary string is interpreted. Generally, the attributes are spei�edin the following format: (wl; iwl; sign) (1)whih onsists of the following parameters:� wl: Total word length, speifying the total number of bits used torepresent the �xed-point binary string, inluding integer bits, frationalbits, and sign bit, if any. Word length must be in the range of 1 to 256.� iwl: Integer word length, speifying the number of integer bits (thenumber of bits to the left of the binary point, exluding the sign bit, ifany). If this number is negative, repeated leading sign bits or zeros areadded to generate the equivalent binary value. If this number is greaterthan the total word length, trailing zeroes are added to generate theequivalent binary value.� sign: A letter speifying the sign format: \u" for unsigned, and \t"for two's omplement.Example: Aording to the above de�nitions, the real value �0:75 is rep-resented by (111101; (6; 3; t)). If we onsider the same bit string with un-signed attributes (111101; (6; 3; u)), then the equivalent number is 111:101or +7:625. On the other hand, (111101; (6;�3; u)) represents the value:000111101 whih is +0:119140625.3.2 Fixed-Point OperationsA DSP design tool usually provides a library inluding basi �xed-point sig-nal proessing bloks suh as adders, multipliers, delay bloks, and vetorbloks. It also supports �xed-point hardware bloks suh as multiplexers,bu�ers, inverters, ip-ops, bit manipulation and general-purpose ombina-tional logi bloks. These bloks aurately model the behavior of �xed-point



3 FIXED-POINT ARITHMETIC 8digital signal proessing systems. In this paper, we will fous on the arith-meti and logi operations, but the idea an be generalized to the remainingoperations. Operations performed on �xed-point data types are done usingarbitrary and full preision. After the operation is omplete, the resultingoperand is ast to �t the �xed-point data type objet. The asting operationapplies the quantization behavior of the target objet to the new value andassigns the new value to the target objet. Then, the appropriate overowbehavior is applied to the result of the proess whih gives the �nal value.In addition to the parameters orresponding to the input operands and out-put result, the arithmeti operations take spei� parameters de�ning theoverow and quantization (loss of preision) modes. These parameters areas follows:� q mode: Quantization mode. This parameter determines the behaviorof the �xed-point operations when the result generates more preisionin the least signi�ant bits (LSB) than is available.� o mode: Overow mode. This parameter determines the behavior ofthe �xed-point operations when the result generates more preision inthe most signi�ant bits (MSB) than is available.� n bits: Number of saturated bits. This parameter is only used foroverow mode and spei�es how many bits will be saturated if a satu-ration behavior is spei�ed and an overow ours.Example: Consider a blok that serves as a primitive �xed-point multiplier,whih trunates the results when loss of preision ours and wraps the resultwhen overow ours. We an make a all to the multiplier routine throughthe funtion fxpMul (Wrap j Trunate; In1 ; In2 ;Out), in whih In1 and In2are the input �xed-point operands, Out is a parameter orresponding tothe output attributes, and Wrap and Trunate indiate the overow andquantization modes, respetively.3.2.1 Fixed-Point Exeption HandlingFixed-point arithmeti operations that do not ompute and return an exatresult resort to an exeption-handling proedure. This proedure is ontrolledby the exeption ags. There are three kinds of exeptions that an be tested[7℄:



3 FIXED-POINT ARITHMETIC 9� Loss of Sign: The result was negative but the result storage area wasunsigned. Zero is stored.� Overow: The result was too big to be represented in the result stor-age area. The overow mode determines the returned value.� Invalid: No result an be meaningfully represented (e.g., divide byzero). This error an also our if the �xed-point number itself isinvalid.3.2.2 Fixed-Point Quantization ModesQuantization e�ets are used to determine what happens to the LSBs of a�xed-point type when more bits of preision are required than are available.The quantization modes are listed in Table 1.Table 1. Fixed-Point Quantization ModesQuantization Mode NameQuantization to Plus In�nity RNDQuantization to Zero RND ZEROQuantization to Minus In�nity RND MIN INFQuantization to In�nity RND INFConvergent Quantization RND CONVTrunation TRNTrunation to Zero TRN ZEROFigure 2 shows the behavior of eah quantization mode. The X axis isthe result of the previous arithmeti operation and the Y axis is the valueafter quantization. The diagonal line represents the ideal number represen-tation given in�nite bits. The small horizontal lines show the e�et of thequantization. Any value of the X axis within the range of the line will beonverted to the value of the Y axis. The symbol q in the �gure refers tothe quantization step, that is, the resolution of the data type. Eah noninteger value on the X axis is loated in a quantization interval surroundedby two suessive integer multiples of q as its losest representable quantizednumbers, one greater and one smaller than the original value. If the value isexatly in the middle of the quantization interval, then the two losest rep-resentable numbers are equally distaned apart from the original value. As



3 FIXED-POINT ARITHMETIC 10shown in this �gure modes RND, RND ZERO, RND MIN INF, RND INF,and RND CONV will quantize a value to the losest representable number ifthe two nearest representable numbers are not equally distaned apart fromthe original value. Otherwise, quantization towards plus in�nity, to zero,towards minus in�nity, towards plus in�nity if positive or minus in�nity ifnegative, and towards nearest even will be performed, respetively (Figure2 (a-e)). The TRN mode is the default for �xed-point types and will beused if no other value is spei�ed. The result is always quantized towardsminus in�nity (Figure 2 (f)). In other words, the result value is the �rstrepresentable number lower than the original value. Finally, for TRN ZEROthe result is the nearest representable value to zero (Figure 2 (g)) [33℄.
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Figure 2: The Behavior of Fixed-Point Quantization Modes3.2.3 Fixed-Point Overow ModesIn addition to quantization modes, we an use overow modes to approximatea higher range for �xed-point operations. Usually, overow ours when theresult of an operation is too large or too small for the available bit range.Spei� overow modes an then be implemented to redue the loss of data.Overow modes are spei�ed by the o mode and n bits parameters, and arelisted in Table 2.



3 FIXED-POINT ARITHMETIC 11Table 2. Fixed-Point Overow ModesOverow Mode NameSaturation SATSaturation to Zero SAT ZEROSymmetrial Saturation SAT SYMWrap-Around WRAPSign Magnitude Wrap-Around WRAP SMFigure 3 shows the behavior of eah overow mode for a 3 bit �xed-pointdata type. The diagonal line represents the ideal value if in�nite bits areavailable for representation. The dots represent the values of the result. TheX axis is the original value and the Y axis is the result. From this �gure, itan be seen that MAX = 3 and MIN = �4 for a 3 bit �xed-point data type.The SAT mode will onvert the spei�ed value to MAX for an overow orMIN for an underow ondition (Figure 3 (a)). The SAT ZERO mode willset the result to 0 for any input value that is outside the representable rangeof the �xed-point type. If the result value is greater than MAX or smallerthan MIN, the result will be 0 (Figure 3 (b)). In the SAT SYM mode, posi-tive overow will generate MAX and negative overow will generate �MAXfor signed numbers or MIN for unsigned numbers (Figure 3 ()). With theWRAP mode, the value of an arithmeti operand will wrap around fromMAX to MIN as MAX is reahed. There are two di�erent ases within thismode. The �rst is with the n bits parameter set to 0 or having a defaultvalue of 0. All bits exept for the deleted bits are opied to the result num-ber (Figure 3 (d)). The seond is when the n bits parameter is a nonzerovalue. In this ase the spei�ed number of most signi�ant bits of the resultnumber are saturated with preservation of the original sign, the other bitsare simply opied. Positive numbers remain positive and negative numbersremain negative. A graph showing this behavior with n bits = 1 is given inFigure 3 (e). Note that positive numbers wrap around to 0 while negativevalues wrap around to �1. The WRAP SM overow mode uses sign magni-tude wrapping. This overow mode behaves in two di�erent styles dependingon the value of the n bits parameter. When n bits is 0, no bits are saturated.This mode will �rst delete any MSB bits that are outside the result wordlength. The sign bit of the result is set to the value of the least signi�antdeleted bit. If the most signi�ant remaining bit is di�erent from the originalMSB, then all the remaining bits are inverted. If the MSBs are the same,



4 FORMALIZING FIXED-POINT ARITHMETIC IN HOL 12the other bits are opied from the original value to the result value. A graphshowing the result of this overow mode is provided in Figure 3 (f). As thevalue of X inreases, the value of Y inreases toMAX and then slowly startsto derease until MIN is reahed. The result is a sawtooth like waveform.With n bits greater than 0, n bits MSB bits are saturated to 1. A graphshowing this behavior with n bits = 1 is given in Figure 3 (g). Note thatwhile the graph looks somewhat like a sawtooth waveform, positive numbersdo not dip below 0 and negative numbers do not ross �1 [33℄.
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Figure 3: The Behavior of Fixed-Point Overow Modes4 Formalizing Fixed-Point Arithmeti in HOLIn this setion, we present formalization of the �xed-point arithmeti inhigher-order logi, based on the general purpose HOL theorem prover. The



4 FORMALIZING FIXED-POINT ARITHMETIC IN HOL 13HOL system supports both forward and bakward proofs. The forward proofstyle applies inferene rules to existing theorems to obtain new theorems andeventually the desired theorem. Bakward or goal oriented proofs start withthe goal to be proven. Tatis are applied to the goal and subgoals until thegoal is deomposed into simpler existing theorems or axioms. The systembasi language inludes the natural numbers and Boolean type. It also in-ludes other spei� extensions like reals library [13℄, whih was proved tobe essential for our �xed-point arithmeti formalization. Table 3 summarizessome of the HOL symbols used in this paper and their meanings [12℄.Table 3. HOL SymbolsHOL Symbol Standard Symbol Meaning�x: t "x: t An x suh that t (x) holds�x: t �x: t Funtion that maps x to t (x)& (none) Natural map operator (N ! R): t : t Not t: x � x Unary negation of xinv (x) x�1 Multipliative inverse of xabs (x) j x j Absolute value of xx pow n xn Real x raised to natural number power nm EXP n mn Natural number m raised to exponent nThe HOL type system does not support subtypes, so the real numbers(R) have formally a di�erent type from the natural numbers (N). Therefore,the unary operator ampersand (&) is used to map between them. Thus thereal number numerals an be written as &0;&1, et [15℄.4.1 Fixed-Point Numbers RepresentationThe atual �xed-point numbers are represented in HOL by a pair of elementsrepresenting the binary string and the set of attributes. The extrators forthe two �elds of a �xed-point number are de�ned as follows:`def string (s,a) = s`def attrib (s,a) = aThe binary string is treated as a Boolean word (type: bool word). Forexample, the bit string 1010 is represented by WORD [T;F;T;F℄. In this way,



4 FORMALIZING FIXED-POINT ARITHMETIC IN HOL 14we use the de�nitions and theorems already available in the HOL word library [39℄to failitate the manipulation of binary words. The attributes are represented bya triplet of natural numbers for the total number of bits, the integer bits and thesign format.In HOL, we de�ne funtions to extrat the primitive parameters for arbitraryattributes.`def wordlength (w,iw,s) = w`def intbits (w,iw,s) = iw`def sign (w,iw,s) = sWe also de�ne prediates partitioning the �xed-point numbers into signed andunsigned numbers.`def is_signed X = (sign X = 1)`def is_unsigned X = (sign X = 0)The number of digits on the right hand side of the binary point of a �xed-pointnumber is de�ned as frabits. It an be derived as the di�erene between the totalnumber of bits and the number of integer bits, onsidering the sign bit in the aseof signed numbers.`def frabits X =if (is_unsigned X) then (wordlength X � intbits X)else (wordlength X � intbits X � 1)Two useful derived prediates test the validity of a set of attributes and a �xed-point number based on the de�nition in Setion 3.1. In a valid set of attributes,the wordlength should be in the range of 1 and 256, the sign an be either 0 or1, and the number of integer bits is less than or equal to the wordlength. A valid�xed-point number must have a valid set of attributes and the length of its binarystring must be equal to the wordlength.`def validAttr X =wordlength X > 0 ^ wordlength X < 257 ^intbits X < wordlength X + 1 ^ sign X < 2`def is_valid a =validAttr (attrib a) ^ (WORDLEN (string a) = wordlength (attrib a))whereWORDLEN is a prede�ned funtion of the HOL word library, whih returnsthe size of a word.



4 FORMALIZING FIXED-POINT ARITHMETIC IN HOL 154.2 Fixed-Point TypeNow we de�ne the atual HOL type for the �xed-point numbers. The type isde�ned to be in bijetion with the appropriate subset of (bool word � N3), withthe bijetions written in HOL as fxp : (bool word � N3)! fxp, and defxp : fxp!(bool word�N3 ). The bijetion maps the set of all elements of type (bool word�N3)to the set of valid �xed-point numbers spei�ed by the funtion is valid as de�nedin the previous setion. For this purpose, we make use of built-in failities in HOLfor de�ning new bijetion types [38℄. A similar tehnique was used in [15℄ forde�ning type bijetions for the oating-point numbers (oat,deoat) in HOL.fxp_tybij =` (8a. fxp (defxp a) = a) ^ (8r. is_valid r = (defxp (fxp r) = r))We speialize the previous funtions and prediates to the fxp type, as follows:`def String a = string (defxp a)`def Attrib a = attrib (defxp a)`def Wordlength a = wordlength (Attrib a)`def Intbits a = intbits (Attrib a)`def Frabits a = frabits (Attrib a)`def Sign a = sign (Attrib a)`def Issigned a = is_signed (Attrib a)`def Isunsigned a = is_unsigned (Attrib a)`def Isvalid a = is_valid (defxp a)Note that we start the name of the funtions manipulating �xed-point num-bers by apital letters to distinguish them from those taking pairs and triplets asargument.4.3 Fixed-Point ValuationNow we speify the real number valuation of �xed-point numbers. We use twoseparate formulas for signed and unsigned numbers:� Unsigned: (1=2M ) � (N�1Xn=0 2n � vn) (2)� Signed: (1=2M ) � [N�1Xn=0 2n � vn � 2N � vN�1℄ (3)



4 FORMALIZING FIXED-POINT ARITHMETIC IN HOL 16where vn represents the nth bit of the binary string in the �xed-point number1,and M and N are respetively frabits and wordlength. In HOL, we de�ne thevaluation funtion value that returns the orresponding real value of a �xed-pointnumber.`def value a =if (Isunsigned a) then &(BNVAL (String a)) / 2 pow Frabits aelse (&(BNVAL (String a)) � &((2 EXP Wordlength a) *BV (MSB (String a)))) / 2 pow Frabits awhere BNVAL is a funtion whih returns the numeri value of a Boolean word,BV is a funtion for mapping between a single bit and a number, and MSB is aonstant for the most signi�ant bit of a word, available in the HOL word library.We also de�ne the real value of the smallest (MIN ) and largest (MAX ) repre-sentable numbers for a given set of attributes. The maximum is de�ned for bothsigned and unsigned numbers using the following formula:MAX = 2a � 2�b (4)where a is the intbits and b the frabits. The minimum value for unsigned numbersis zero and for signed numbers is omputed using the following formula:MIN = � 2a (5)Thereafter, we obtain the orresponding funtions in HOL.`def MAX X = 2 pow intbits X � inv (2 pow frabits X)`def MIN X = if (is_unsigned X) then 0 else :(2 pow intbits X)The onstants for the smallest (bottomfxp) and largest (topfxp) representable�xed-point numbers for a given set of attributes an be de�ned as follows:`def topfxp X =if (is_unsigned X) then fxp (WORD (REPLICATE (wordlength X) T),X)else fxp (WCAT (WORD [F℄,WORD (REPLICATE (wordlength X � 1) T)),X)`def bottomfxp X =if (is_unsigned X) then fxp (WORD (REPLICATE (wordlength X) F),X)else fxp (WCAT (WORD [T℄,WORD (REPLICATE (wordlength X � 1) F)),X)where WCAT denotes the onatenation of two words, and REPLICATE makesa list onsisting of a value repliated a spei�ed number of times, whih are pre-de�ned funtions in HOL.1We adopt the onvention that bits are indexed from the right hand side.



4 FORMALIZING FIXED-POINT ARITHMETIC IN HOL 174.4 Exeption HandlingOperations on �xed-point numbers an signal exeptions as desribed in Se-tion 3.2. These are delared as a new HOL data type.`def Exeption = no_exept j overflow j invalid j loss_signwhere no exept is reserved for the ase without exeption.Five overow modes are also represented via an enumerated type de�nition.`def overflow_mode = SAT j SAT_ZERO j SAT_SYM j WRAP j WRAP_SMAording to the de�nition of overow modes in Setion 3.2.3 for Saturation, ifthe number is greater thanMAX or less thanMIN, we return topfxp and bottomfxp,as the losest representable values to the right result, respetively. For Saturationto Zero overow, we will return zero in any ase. For Symmetrial Saturation, ifthe number is greater thanMAX, we return topfxp. If the number is less thanMIN,we return the two's omplement of the maximum value, de�ned by the funtionminustopfxp for signed, and bottomfxp for unsigned numbers, respetively. ForWrap-around and Sign magnitude, we must �rst onvert the real number to abinary format. Then we disard the extra bits aording to the output attributes,and saturate the required bits based on the parameter n bits. The details arede�ned as funtions WRAP AROUND and WRAP AROUND SM. Therefore, wede�ne the �xed-point overow funtion in HOL as follows:`def fxp_overflow X o_mode n_bits x =if (x > MAX X) thenif (o_mode = SAT) then topfxp Xelse if (o_mode = SAT_ZERO) thenfxp (WORD (REPLICATE (wordlength X) F),X)else if (o_mode = SAT_SYM) then topfxp Xelse if (o_mode = WRAP) thenWRAP_AROUND X n_bits xelse WRAP_AROUND_SM X n_bits xelse if (x < MIN X) thenif (o_mode = SAT) then bottomfxp Xelse if (o_mode = SAT_ZERO) thenfxp (WORD (REPLICATE (wordlength X) F),X)else if (o_mode = SAT_SYM) thenif (is_unsigned X) then bottomfxp Xelse minustopfxp Xelse if (o_mode = WRAP) thenWRAP_AROUND X n_bits xelse WRAP_AROUND_SM X n_bits xelse Null



4 FORMALIZING FIXED-POINT ARITHMETIC IN HOL 18where Null is a onstant that represents the result of an invalid operation, de�nedas:`def Null = �a. : (Isvalid a)Note that if the number is in the representable range of the given attributes,i.e. its value is neither greater than MAX nor less than MIN, then the overow ismeaningless and Null will be returned as the result.4.5 QuantizationFixed-point quantization takes an in�nitely preise real number and onverts itinto a �xed-point number. Seven quantization modes are spei�ed in Setion 3.2.2,whih we formalize using the following data type.`def quantization_mode =RND j RND_ZERO j RND_MIN_INF j RND_INF j RND_CONV j TRN j TRN_ZEROThen we de�ne the �xed-point quantization operation by a funtion, whih isde�ned ase by ase on the quantization modes as follows:`def fxp_quantize X q_mode x =if (q_mode = RND) thenlosest value (� a. value a � x)fa j (Isvalid a) ^ (Attrib a = X)g xelse if (q_mode = RND_ZERO) thenlosest value (� a. abs (value a) � abs x)fa j (Isvalid a) ^ (Attrib a = X)g xelse if (q_mode = RND_MIN_INF) thenlosest value (� a. value a � x)fa j (Isvalid a) ^ (Attrib a = X)g xelse if (q_mode = RND_INF) thenlosest value(� a. (if 0 � x then value a � x else value a � x))fa j (Isvalid a) ^ (Attrib a = X)g xelse if (q_mode = RND_CONV) thenlosest value (� a. LSB (String a) = F)fa j (Isvalid a) ^ (Attrib a = X)g xelse if (q_mode = TRN) thenlosest value (� a. T)fa j (Isvalid a) ^ (Attrib a = X) ^ (value a � x)g xelse losest value (� a. T)fa j (Isvalid a) ^ (Attrib a = X) ^(abs (value a) � abs x)g x



4 FORMALIZING FIXED-POINT ARITHMETIC IN HOL 19The �xed-point quantization funtion takes as arguments a real number, aquantization mode, and an output attributes, and returns the orresponding �xed-point number. Similar to the oating-point ase [15℄, its de�nition is based on thefollowing prediate meaning that a is an element of the set s that provides a bestapproximation to x, assuming a valuation funtion v :`def is_losest v s x a =((a IN s) ^ 8b. (b IN s) =) (abs (v a � x) � abs (v b � x)))However, we still need to de�ne a funtion that piks out a best approximationin ase there are more than one losest number, based on a given property likeeven. This an be done in HOL as follows:`def losest v p s x =�a. ((is_losest v s x a) ^((9b. (is_losest v s x b) ^ (p b)) =) (p a)))Finally, we de�ne the atual �xed-point rounding funtion for an arbitraryoutput attributes.`def fxp_round X o_mode q_mode n_bits x =if (x > MAX X _ x < MIN X) then((fxp_overflow X o_mode n_bits x),overflow)else ((fxp_quantize X q_mode x),no_exept)where fxp overow is the �xed-point overow funtion as de�ned in the previoussetion and supports all overow modes, and fxp quantize is the �xed-point quan-tization funtion that supports all quantization modes. The �xed-point roundingfuntion takes as argument a real number, an output attributes, the quantizationand overow modes, and the number of saturated bits. It returns a �xed-pointnumber and an exeption ag. The funtion �rst heks for overow, and in ase ofoverow returns the result based on the overow mode, and sets the exeption agto overow. Otherwise, it performs the quantization based on the quantizationmode, and sets the exeption ag to no exept.4.6 Fixed-Point Arithmeti OperationsFixed-point arithmeti operations suh as addition or multipliation take two �xed-point input operands and store the result into a third. The attributes of the inputsand output need not math one another. Both unsigned and two's omplementinputs and output are allowed. The result is formatted into the output as spei�ed



5 VERIFICATION OF FIXED-POINT OPERATIONS 20by the output attributes and by the overow and loss of preision mode param-eters. In our formalization, we �rst deal with exeptional ases suh as invalidoperation and loss of sign. If any of the input numbers is invalid, then the resultis Null and the exeption ag invalid is raised. If the result is negative but theoutput is unsigned then zero is returned and the exeption ag loss sign is raised.Also in the ase of division by zero, the output value is fored to zero and theinvalid ag is raised. Otherwise, we take the real value of the input arguments,perform the operation as in�nite preision, then quantize the result aording tothe desired quantization and overow modes. Formally, the operations for addi-tion, subtration, multipliation, and division are de�ned as follows:`def fxpAdd X o_mode q_mode n_bits a b =if :(Isvalid a ^ Isvalid b) then (Null,invalid)else if (value a + value b < 0 ^ is_unsigned X) then(fxp (WORD (REPLICATE (wordlength X) F),X),loss_sign)else fxp_round X o_mode q_mode n_bits (value a + value b)`def fxpSub X o_mode q_mode n_bits a b =if :(Isvalid a ^ Isvalid b) then (Null,invalid)else if (value a � value b < 0 ^ is_unsigned X) then(fxp (WORD (REPLICATE (wordlength X) F),X),loss_sign)else fxp_round X o_mode q_mode n_bits (value a � value b)`def fxpMul X o_mode q_mode n_bits a b =if :(Isvalid a ^ Isvalid b) then (Null,invalid)else if (value a * value b < 0 ^ is_unsigned X) then(fxp (WORD (REPLICATE (wordlength X) F),X),loss_sign)else fxp_round X o_mode q_mode n_bits (value a * value b)`def fxpDiv X o_mode q_mode n_bits a b =if :(Isvalid a ^ Isvalid b) then (Null,invalid)else if (value b = 0) then(fxp (WORD (REPLICATE (wordlength X) F),X),invalid)else if (value a / value b < 0 ^ is_unsigned X) then(fxp (WORD (REPLICATE (wordlength X) F),X),loss_sign)else fxp_round X o_mode q_mode n_bits (value a / value b)5 Veri�ation of Fixed-Point OperationsAording to the disussion in Setion 4.3, eah �xed-point number has a or-responding real number value. The orretness of a �xed-point operation an bespei�ed by omparing its output with the true mathematial result, using the val-uation funtion value that onverts a �xed-point to an in�nitely preise number.



5 VERIFICATION OF FIXED-POINT OPERATIONS 21For example, the orretness of a �xed-point adder fxpAdd is spei�ed by ompar-ing it with its ideal ounterpart +. That is, for eah pair of �xed-point numbers(a,b), we ompare value (a)+ value (b) and value (fxpAdd (a,b)). In other words,we hek if the diagram in Figure 4 ommutes.
value

fxpAdd (a,b)

value

value (a) + value (b)
~~ ?

value (fxpAdd (a,b))

+

a , b
fxpAdd

value (a) , value (b)

Figure 4: Corretness Criteria for Fixed-Point AdditionFor this purpose we de�ne the error resulting from quantizing a real numberto a �xed-point value as follows:`def fxperror X o_mode q_mode n_bits x =value (FST (fxp_round X o_mode q_mode n_bits x)) � xand then establish the orretness theorems for all four �xed-point arithmetioperations.Theorem 1: FXP_ADD_THM` (Isvalid a) ^ (Isvalid b) ^ validAttr (X) =)(Isvalid (FST (fxpAdd (X) o_mode q_mode n_bits a b))) ^(value (FST (fxpAdd (X) o_mode q_mode n_bits a b)) =value (a) + value (b) +(fxperror (X) o_mode q_mode n_bits (value (a) + value (b))))Theorem 2: FXP_SUB_THM` (Isvalid a) ^ (Isvalid b) ^ validAttr (X) =)(Isvalid (FST (fxpSub X o_mode q_mode n_bits a b))) ^(value (FST (fxpSub X o_mode q_mode n_bits a b)) =value (a) � value (b) +(fxperror X o_mode q_mode n_bits (value a � value b)))Theorem 3: FXP_MUL_THM` (Isvalid a) ^ (Isvalid b) ^ validAttr (X) =)(Isvalid (FST (fxpMul X o_mode q_mode n_bits a b))) ^(value (FST (fxpMul X o_mode q_mode n_bits a b)) =(value a * value b) +(fxperror X o_mode q_mode n_bits (value a * value b)))



5 VERIFICATION OF FIXED-POINT OPERATIONS 22Theorem 4: FXP_DIV_THM` (Isvalid a) ^ (Isvalid b) ^ validAttr (X) =)(Isvalid (FST (fxpDiv X o_mode q_mode n_bits a b))) ^(value (FST (fxpDiv X o_mode q_mode n_bits a b)) =(value a / value b) +(fxperror X o_mode q_mode n_bits (value a / value b)))The theorems are omposed of two parts. The �rst part is about the validity ofthe �xed-point arithmeti operation output and states that if the input �xed-pointnumbers and the output attributes are valid then the result of the �xed-point op-eration is valid. The seond part of the theorem relates the result of the �xed-pointarithmeti operations to the real result based on the orresponding error funtion.To prove these main theorems, a number of lemmas have been established. We�rst proved lemmas onerning the approximation of a real number with a �xed-point number. We proved that in a �nite non-empty set of �xed-point numbers,we an �nd the best approximation to a real number based on a given valuationfuntion (Lemma 1 ).Lemma 1: FXP_IS_CLOSEST_EXISTS` FINITE (s) =) :(s = EMPTY) =) 9 (a: fxp). is_losest v s x aThen, we proved that the hosen best approximation to a real number satisfyinga property p from a �nite and non-empty set of �xed-point numbers is unique(Lemma 2 ), and is itself a member of the set (Lemma 3 ), and is itself the bestapproximation of the real number (Lemma 4 ).Lemma 2: FXP_CLOSEST_IS_EVERYTHING` FINITE (s) =) :(s = EMPTY) =)is_losest v s x (losest v p s x) ^((9b. is_losest v s x b ^ p b) =) p (losest v p s x))Lemma 3: FXP_CLOSEST_IN_SET` FINITE (s) =) :(s = EMPTY) =) (losest v p s x) IN sLemma 4: FXP_CLOSEST_IS_CLOSEST` FINITE (s) =) :(s = EMPTY) =) is_losest v s x (losest v p s x)Finally, we proved that the hosen best approximation to a real number sat-isfying a property p from the set of all valid �xed-point numbers with a givenattributes is itself a valid �xed-point number (Lemma 5 ).Lemma 5: IS_VALID_CLOSEST` (validAttr X) =)Isvalid (losest v p fa j Isvalid a ^ ((Attrib a) = X)g x)



5 VERIFICATION OF FIXED-POINT OPERATIONS 23Besides, we proved that the set of all valid �xed-point numbers with a givenattributes is �nite (Lemma 6 ).Lemma 6: FINITE_VALID_ATTRIB` FINITE fa j Isvalid a ^ (Attrib a = X)gThe proof of this lemma is a bit ompliated. For this purpose we made use ofsome built-in theorems about �nite sets in the HOL pred sets library [28℄. Amongthese are the two fundamental theorems FINITE EMPTY and FINITE INSERT,whih state that the empty set is indeed �nite and the insertion of an elementto a �nite set onstruts a �nite set. Other theorems state that the union oftwo �nite sets (FINITE UNION ), the image of a funtion on a �nite set (IM-AGE FINITE ), a singleton set2 (FINITE SING), the ross ombination of two�nite sets (FINITE CROSS ), and any subset of a �nite set (SUBSET FINITE )is itself a �nite set. Using these theorems together with the de�nition of a valid�xed-point number helped us to break down the proof of the �niteness of all valid�xed-point numbers to the proof of �niteness of the set of all Boolean words with agiven word length (WORD FINITE ) and the set of all natural numbers less thana given value (FINITE COUNT ). The last lemmas are proved by indution on theword length of the Boolean word and the maximum limit of the natural numbers,respetively.We also proved that the set of all valid �xed-point numbers is nonempty(Lemma 7 ).Lemma 7: IS_VALID_NONEMPTY` (validAttr X) =) :(fa j Isvalid a ^ (Attrib a = X)g = EMPTY)Finally, we proved that the result of quantizing a real number, whih is inthe range representable by a given valid attributes, is a valid �xed-point number(Lemma 8 ).Lemma 8: IS_VALID_QUANTIZATION` (validAttr X) =) Isvalid (FST (fxp_round X o_mode q_mode n_bits x))The validity of the quantization diretly implies validity of the �xed-point op-eration output, and this ompletes the proof of the �rst parts of the theorems. Theseond parts of the theorems are proved using the properties of the real arithmetiin HOL and rewriting with the de�nitions of the fxpAdd, fxpSub, fxpMul, fxpDiv,and fxperror funtions.The seond main theorem on �xed-point error analysis onerns bounding thequantization error. The error an be absolutely quanti�ed as follows:2a set that ontains preisely one element.



5 VERIFICATION OF FIXED-POINT OPERATIONS 24Theorem 5: FXP_ERROR_BOUND_THM` (validAttr X) ^ :(x > MAX (X)) ^ : (x < MIN (X)) =)abs (fxperror X o_mode q_mode n_bits x) � inv (&2 pow frabits X)Aording to this theorem, the error in quantizing a real number whih is inthe range representable by a given set of attributes X is less than the quantity1 = 2frabits (X). This theorem is valid for all �xed-point quantization modes.However, for RND, RND ZERO, RND MIN INF, RND INF, and RND CONVmodes, whih quantize to the nearest representable value, the error an be boundedto 1 = 2(frabits (X)+1) by extending the theorem.To explain the theorem, we onsider the following fat that relates the de�nitionof the �xed-point numbers to the rationals.An N -bit binary word, when interpreted as an unsigned �xed-point number,an take on values from a subset P of the non-negative rationals given byP = fp=2b j 0 � p � 2N � 1; p 2 Zg (6)Similarly, for signed two's omplement representation, we haveP = fp=2b j �2N�1 � p � 2N�1 � 1; p 2 Zg (7)Note that P ontains 2N elements and b represents the frational bits in eah ase.Based on this fat, we an depit the range of values overed for eah ase asshown in Figure 5. MIN
1=2b p=2b (2N � 1)=2b(2N � 2)=2b0 x a MAX

b) Signed�2N�1=2b (2N�1 � 1)=2bp=2b2=2b1=2b (2N�1 � 2)=2b0(�2N�1 + 1)=2b ax MAXMIN a) Unsigned2=2b

Figure 5: Fixed-Point Values on the Real AxisThereafter, the representable range of �xed-point numbers is divided into 2Nequispaed quantization steps with the distane between two suessive steps equalto 1 = 2b. Suppose that x 2 R is approximated by a �xed-point number a. Theposition of these values are labeled in Figure 5. The error j x � a j is hene lessthan the length of one interval, or 1 = 2b, as mentioned in the seond theorem.



5 VERIFICATION OF FIXED-POINT OPERATIONS 25In HOL, we �rst proved that the quantization result is the nearest value toa real number and the orresponding error is minimum ompared to the other�xed-point numbers (Lemma 9 ).Lemma 9: FXP_ERROR_AT_WORST_LEMMA` (validAttr X) ^ :(x > MAX (X)) ^ :(x < MIN (X)) ^(Isvalid a) ^ (Attrib a = X) =)abs (fxperror X o_mode q_mode n_bits x) � abs (value a � x)Then we proved that eah representable real value x an be surrounded by twosuessive rational numbers (Lemma 10 ).Lemma 10: FXP_ERROR_BOUND_LEMMA1` (validAttr X) ^ :(x > MAX (X)) ^ :(x < MIN (X)) =)9k. (k < 2 EXP wordlength X) ^ (&k / (&2 pow frabits X) � x) ^(x < (&(SUC k) / (&2 pow frabits (X))))Also we proved that the di�erene between the real number and the surround-ing rationals is less than 1 = 2frabits (X) (Lemma 11 ).Lemma 11: FXP_ERROR_BOUND_LEMMA2` (validAttr X) ^ :(x > MAX (X)) ^ :(x < MIN (X)) =)9k. (k � 2 EXP wordlength X) ^abs (x � &k / (&2 pow (frabits (X)))) � inv (&2 pow (frabits (X)))Finally, we proved that for eah real value we an �nd a �xed-point numberwith the required error harateristis (Lemma 12 ).Lemma 12: FXP_ERROR_BOUND_LEMMA3` (validAttr X) ^ :(x > MAX (X)) ^ :(x < MIN (X)) =) 9(w: bool word).abs (value (fxp (w,X)) � x) � inv (&2 pow (frabits X)) ^(WORDLEN w = wordlength X)Sine the quantization produes the minimum error as stated in Lemma 9,the proof of the seond main theorem (Theorem 5 ) is a diret onsequene ofLemma 12. In these proofs, we have treated the ase of signed and unsignednumbers separately sine they have di�erent de�nitions for MAX, MIN, and valuefuntions. For signed numbers a speial attention needs also to be paid to dealwith negative numbers.



6 APPLICATION WITH SPW 266 Appliation with SPWIn this setion we demonstrate how to apply the formalization of �xed-point arith-meti presented in the previous setions for the veri�ation of the transition fromoating-point to �xed-point algorithmi levels. We have hosen SPW as applia-tion tool and the ase of an Integrator as an example iruit. A digital integratoris a disrete time system that transforms a sequene of input numbers into anothersequene of output, by means of a spei� omputational algorithm. To desribethe general funtionality of a digital integrator, let fxtg, fwtg, and a denote theinput sequene, output sequene, and onstant oeÆient of the integrator, respe-tively. Then the integrator an be spei�ed by the di�erene equation:wt = xt�1 + a wt�1 (8)Thereafter, the output sequene at time t is equal to the input sequene at timet - 1, added to the output at time t - 1 multiplied by the integrator oeÆient.
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Figure 6: SPW Design of an IntegratorFigure 6 shows the SPW design of an integrator. The integrator is �rst de-signed and simulated using the SPW prede�ned oating-point bloks and param-eters (Figure 6 (a)). The design is omposed of an adder (M1), a multiplier byonstant (M2), and a delay (M3 ) blok, together with signal soure (M4 ) and sink(M5 ) elements. The input signal, the output signal, and the output of the adder



6 APPLICATION WITH SPW 27and multiplier bloks are labeled by IN', OUT', S1', and S2', respetively. Figure6 (b) shows the onverted �xed-point design in whih eah blok is replaed withthe orresponding �xed-point blok (M1';M2';M3';M4';M5'). Fixed-point bloksare shown by double irles and squares to distinguish them from the oating-point bloks. The attributes of all �xed-point blok outputs are set to (64; 31; t)to ensure that overow and quantization do not a�et the system operation. Theorresponding �xed-point signals are labeled by IN", OUT", S1", and S2".In HOL, we �rst model the design at eah level as prediates in higher-orderlogi. The prediates orresponding to the oating-point design are as follows:`def Float_Gain_Blok a0 b0 0 = (8t. 0 t = a0 t float_mul b0)`def Float_Delay_Blok a0 b0 = (8t. b0 t = a0 (t � 1))`def Float_Add_Blok a0 b0 0 = (8t. 0 t = a0 t float_add b0 t)`def Float_Integrator_Imp X a0 IN0 OUT0 =9 S10 S20.Float_Add_Blok IN0 S20 S10 ^Float_Delay_Blok S10 OUT0 ^Float_Gain_Blok OUT0 a0 S20where X is the oating-point format. In these de�nitions, we have used availableformalization of oating-point arithmeti in HOL [15℄. Floating-point data typesare stored in SPW in the standard IEEE 64 bit double preision format.The HOL desription of the �xed-point implementation is as follows:`def Fxp_Gain_Blok a00 b00 00 = (8t. 00 t = a00 t fxp_mul b00)`def Fxp_Delay_Blok a00 b00 = (8t. b00 t = a00 (t � 1))`def Fxp_Add_Blok a00 b00 00 = (8t. 00 t = a00 t fxp_add b00 t)`def Fxp_Integrator_Imp X0 o_mode q_mode n_bits a00 IN00 OUT00 =9 S100 S200.Fxp_Add_Blok IN00 S200 S100 ^Fxp_Delay_Blok S100 OUT00 ^Fxp_Gain_Blok OUT00 a00 S200where X' is the �xed-point format, and the funtions fxp add and fxp mul arede�ned as follows:`def a00 fxp_add b00 = FST (fxpAdd X0 o_mode q_mode n_bits a00 b00)`def a00 fxp_mul b00 = FST (fxpMul X0 o_mode q_mode n_bits a00 b00)



6 APPLICATION WITH SPW 28In the next step, we desribe eah design as a di�erene equation relating theinput and output samples aording to the equation (8).`def FLOAT_Integrator_Spe X a0 IN0 OUT0 =8t. OUT0 t = (IN0 (t � 1) float_add (a0 float_mul OUT0 (t � 1)))`def FXP_Integrator_Spe X0 o_mode q_mode n_bits a00 IN00 OUT00 =8t. OUT00 t = (IN00 (t � 1) fxp_add (a00 fxp_mul OUT00 (t � 1)))The following lemmas ensure that the implementation at eah level satis�esthe orresponding spei�ation.Lemma 13: FLOAT_INTEGRATOR_IMP_SPEC` Float_Integrator_Imp X a0 IN0 OUT0 =)Float_Integrator_Spe X a0 IN0 OUT0Lemma 14: FXP_INTEGRATOR_IMP_SPEC` Fxp_Integrator_Imp X0 o_mode q_mode n_bits a00 IN00 OUT00 =)Fxp_Integrator_Spe X0 o_mode q_mode n_bits a00 IN00 OUT00Now we assume that the oating-point and �xed-point input sequenes are therounded versions of an in�nite preision ideal input IN, and we have`def IN0 t = round X To_nearest (IN t)`def IN00 t = FST (fxp_round X0 o_mode q_mode n_bits (IN t))where round is the oating-point rounding funtion, and To nearest is the orre-sponding mode for rounding to nearest oating-point number [15℄. We also makesome other assumptions on �niteness and validity of oating-point and �xed-pointinputs, oeÆients, and intermediate results, in order to have �nite and valid �naloutputs. Using these assumptions and based on the theorems FXP ADD THMand FXP MUL THM (Setion 5) and the orresponding ones in oating-pointtheory [15℄, we prove the following theorem onerning the error between the realvalues of the oating-point and �xed-point preision integrator output samples.Theorem 6: INTEGRATOR_THM` Float_Integrator_Imp X a0 IN0 OUT0 ^Fxp_Integrator_Imp X0 o_mode q_mode n_bits a00 IN00 OUT00=)Val (OUT0 t) � value (OUT00 t) =Val a0 * Val (OUT0 (t � 1)) �value a00 * value (OUT00 (t � 1)) +error (IN (t � 1)) +error (Val a0 * Val (OUT0 (t � 1))) +error (Val (IN0 (t � 1)) + Val (a0 float_mul OUT0 (t � 1))) +fxperror X0 o_mode q_mode n_bits(value (value a00 * OUT00 (t � 1))) +



6 APPLICATION WITH SPW 29fxperror X0 o_mode q_mode n_bits(value (IN00 (t � 1)) + value (a00 fxp_mul OUT00 (t � 1))) �fxperror X0 o_mode q_mode n_bits (IN (t � 1))where Val is the oating-point valuation funtion, and error is the oating-pointrounding error funtion [15℄. Aording to Theorem 6, for a valid and �nite set ofinput and output sequenes at time (t - 1) to the integrator design at the oating-point and �xed-point levels, we an have �nite and valid outputs at time t, andthe di�erene in the real values orresponding to these output samples an be ex-pressed as the di�erene in input and output values multiplied by the orrespond-ing oeÆients, taking into aount the e�ets of �nite preision in oeÆients andarithmeti operations. To �nd a onstant upper bound for the di�erene betweenthe outputs, we use Theorem 5 on the �xed-point error quanti�ation. Similarly,for the oating-point error bound analysis we proved the following lemma:Lemma 15: ERROR_BOUND_NORM_STRONG_NORMALIZE` normalizes X x =)9 j. abs (error x) � (2 pow j / 2 pow (bias X + frawidth X))where normalizes de�nes the riteria for an arbitrary real number to be in therange of normalized oating-point numbers, bias de�nes the exponent bias in theoating-point format whih is a onstant used to make the exponent's range non-negative, and frawidth extrats the fration width parameter from the oating-point format. Aording to Lemma 15, if the absolute value of a real numberis in the representable range of the normalized oating-point numbers with theformat X and loated in the j 'th binade (the oating-point numbers between twoadjaent powers of 2), then the absolute value of the error is less than or equal to2j=2(bias X + frawidth X). The lemma is proved based on the general oating-pointabsolute error bound theorem developed in [15℄.Finally, we proved the following theorem (Theorem 7 ) that bounds the outputerror of the integrator design in the transition from the oating-point to �xed-pointlevels.Theorem 7: INTEGRATOR_FP_TO_FXP_ERROR_BOUND_THM` Float_Integrator_Imp X a0 IN0 OUT0 ^Fxp_Integrator_Imp X0 o_mode q_mode n_bits a00 IN00 OUT00=)9 j1 j2 j3.abs (Val (OUT0 t) � value (OUT00 t)) �2 * abs (a) * M +(2 pow j1 + 2 pow j2 + 2 pow j3) / 2 pow (bias X + frawidth X) +3 / (2 pow (frabits X0))



7 CONCLUSIONS 30In the proof of this theorem, we have assumed that the real values of theoating-point and �xed-point integrator oeÆients are equal (Val a' = value a"= a), hene ignoring the e�ets of inauraies in the integrator oeÆient. Wehave also assumed that the oating-point and �xed-point output values are boundedto a onstant value (M ). The parameters j1, j2, and j3 are related to the binadesin whih the real valued arguments of the three oating-point error expressions inTheorem 6 are loated.7 ConlusionsIn this paper, we established the formalization of �xed-point arithmeti in theHOL theorem prover. Unlike oating-point arithmeti, there is no standard forthe �xed-point ounterpart. We hene de�ned in this paper a omplete ommonset of the �xed-point arithmeti supported by most DSP tools, in partiular SPWand SystemC. We started �rst by enoding the �xed-point arithmeti in HOL on-sidering di�erent quantization and overow modes, as well as exeption handling.We then proved two main theorems stating that the operations on �xed-pointnumbers are losely related to the orresponding operations on in�nitely preisevalues, onsidering some error. The error is bounded to a ertain absolute valuewhih is a funtion of the output preision. We have also shown by an example howthese theorems an be used as a basis for analysis of the quantization errors in thedesign of �xed-point DSP subsystems. The formalization presented in this paperan be onsidered as a omplement to the oating-point formalizations whih arewidely available in the literature. Based on the proposed �xed-point formalization,our immediate future work will fous on the veri�ation of the transition from theoating-point algorithmi level to hardware implementations for DSP appliations.Referenes[1℄ M. D. Aagaard and C. -J. H. Seger, \The Formal Veri�ation of a PipelinedDouble-Preision IEEE Floating-Point Multiplier," In Proeedings Interna-tional Conferene on Computer Aided Design, pp. 7-10, San Jose, California,USA, November 1995.[2℄ G. Barrett, \Formal Methods Applied to a Floating Point Number System,"IEEE Transations on Software Engineering, SE-15 (5): 611-621, May 1989.[3℄ C. Berg and C. Jaobi, \Formal Veri�ation of the VAMP Floating Point Unit,"In Corret Hardware Design and Veri�ation Methods, LNCS 2144, pp. 325-339, Springer-Verlag, 2001.
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