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Abstract— Slsgti:i:fs:zat{ilon
In this paper we propose a framework for the incorporation ‘ Theoretical Design
of formal methods in the design flow of DSP (Digital Signal T
Processing) systems in a rigorous way. In the proposed Floating-Point
approach we model and verify DSP descriptions at different Algorithm
abstraction levels using higher-order logic based on the i
HOL theorem prover. This framework enables the formal Test Fixed-Point
verification of DSP designs which in the past could only be Bench Algorithm
done partially using conventional simulation techniques. l
To this end, we provide a shallow embedding of DSP Hardware _
descriptions in HOL at the floating-point, fixed-point, Architecture System Design
behavioral, RTL, and netlist gate levels. We make use Using DSP Tool
of existing formalization of floating-point theory in HOL IC Design Using
and a parallel one developed for fixed-point arithmetic. Behavioral External Tools
The high ability of abstraction in HOL allows a seam- HDL
less hierarchical verification encompassing the whole DSP i
design path, starting from top level floating- and fixed- Schematic ‘ _
point algorithmic descriptions down to RTL, and gate Capture R | oL Editors
level implementations. We illustrate the new verification
framework on FFT algorithm as case study. Duapah Logic

Compilers Synthesis
|I. INTRODUCTION l l

Netlist
Digital system design is characterized by ever increas- ei °

ing system complexity that has to be implemented within S
reduced time, resulting in minimum costs and short Mroute.
time-to-market. These characteristics call for a seamless
design flow that allows to perform the design steps dfig. 1. DSP design flow
the highest suitable level of abstraction. For most digital
signal processing systems, the design has to result in
a fixed-point implementation. This is due to the faGprecision. This allows to ignore the effects of finite
that these systems are sensitive to power consumptigfrdiengths and fixed exponents and to abstract from all
chip size and price per device. Fixed point realizationgplementation details. When implemented in special-
outperform floating-point realizations by far with regar¢yyrpose digital hardware or as a computer algorithm, we
to these criteria. Figure 1 illustrates a general DSRust represent signals and coefficients in some digital
design flow as used nowadays in leading industry desigimber system that must always be of finite precision.
projects. The design of digital signal processing systems this case, attention must be paid to the effects of
starts from an ideal real number specification. In thegsing finite register lengths to represent all relevant de-
retical analysis of digital systems, we generally assunagyn parameters [32]. Despite the advantages offered by
that signal values and system coefficients are represengggital networks, there is an inherent accuracy problem
in the real number system and expressed to infinigRsociated with digital signal processing systems, since
Manuscript received XXXX XX, 200X; revised XXXX Xx, 200x. the signals are represented by a finite number of bits
This work is partially supported by NSERC strategic reseagcant  and the arithmetic operations must be carried out with an
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S. Tahar is with the Department of Electrical and Computer En d I .
gineering, Concordia University, Montreal, P.Q., H3G 1Ma&n@da exact system structure use " one can generally eSt_lmate
(e-mail: tahar@ece.concordia.ca) how system performance is affected by these finite
Yy p y



https://core.ac.uk/display/211516634?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE TRANSACTIONS ON CAD OF INTEGRATED CIRCUITS AND SYSTEMS/OL. XX, NO. X, XXXX 200X 2

precision effects. There are several types of arithmeti(EXP) representations as well as the RT and gate level
used in the implementation of digital systems. Amongnplementations as predicates in higher-order logic. The
the most common are floating-point and fixed-point. Adverall methodology for the formal specification and
the floating- and fixed-point levels, all operands areerification of DSP algorithms will be based on the
represented by a special format or assigned a fix@ka of shallow embedding of languages [6] using the
word length and a fixed exponent, while the contrddiOL theorem proving environment [17]. In the proposed
structure and the operations of the ideal program remapproach, we first focus on the transition from real to
unchanged. The transformation from real (numbers) fmating- and fixed-point levels. For this, we make use
floating- and fixed-point is quite tedious and error-pronef existing theories in HOL on the construction of real
On the implementation side, the fixed-point model dfl8] and complex [21] numbers, the formalization of
the algorithm has to be transformed/synthesized into theEE-754 standard [24] based floating-point arithmetic
best suited target description, either using a hardwdfi9], [20], and the formalization of fixed-point arithmetic
description language (HDL) or a programming languaggb]. We use valuation functions to find the real values
Meeting the above (sometimes conflicting) requirementd the floating- and fixed-point DSP outputs and define
is a great challenge in any DSP design project. the error as the difference between these values and
The above design process can be aided by a numbetloé corresponding output of the ideal real specifica-
specialized CAD tools such as SPW (Cadence) [10], Cben. Then we establish fundamental lemmas on the
Centric (Synopsys) [11], Matlab-Simulink (Mathworks)error analysis of floating- and fixed-point roundings and
[28], and FRIDGE (Aachen UT) [26]. The conformancarithmetic operations against their abstract mathematica
of the fixed-point implementation with respect to the&ounterparts. Finally, based on these lemmas, we derive
descriptions in floating-point or real algorithm on onexpressions for the accumulation of roundoff error in
hand, and the RT (Register Transfer) and gate levels fioating- and fixed-point DSP algorithms using recursive
the other hand is verified by simulation techniques. Singlefinitions and initial conditions. While theoretical work
ulation, however, is known to provide partial verificatioron computing the errors due to finite precision effects
as it cannot cover all design errors, especially for large the realization of DSP algorithms with floating- and
systems. On the other hand, adopting formal verificatidixed-point arithmetics has been extensively studied since
in system design generally means using methods thie late sixties [25], this paper contains the first formal-
mathematical proof rather than simulation to ensure tliwation and proof of this analysis using a mechanical
quality of the design, to improve the robustness of theorem prover, here HOL. The formal results are found
design and to speed up the development. The overall aimbe in good agreement with the theoretical ones.
of this paper is to propose a general methodology for After handling the transition from real to floating-
the formalization and verification of DSP descriptionand fixed-point levels, we turn to the HDL represen-
at different abstraction levels using higher-order logi¢ation. At this point, we use well known techniques
To this end, we adopt a shallow embedding for DS#® model the DSP design at the RTL level within
descriptions in which we translate the intended meathe HOL environment. The last step is to verify this
ing of design blocks into higher-order logic and thetevel using a classical hierarchical proof approach in
complete the formal proof in the HOL [17] theoremHOL [29]. In this way, we hierarchically prove that the
proving environment. To our best knowledge, this is thBSP RTL implementation implies the high level fixed-
first time formal methods are applied to DSP modelingoint algorithmic specification, which has already been
and verification in such a rigorous way. related to the floating-point description and the ideal real
The rest of the paper is organized as follows: Sectionsbecification through the error analysis. The verification
describes the proposed DSP formal verification methodan be extended, following similar manner, down to gate
ology. Section 3 presents a case study verification of FHdvel netlist either in HOL or using other commercial
algorithms in HOL from real numbers specification towerification tools as depicted in Figure 2. The process of
RTL implementation. Section 4 discusses related workpecifying a hardware description language in higher-
Finally, Section 5 concludes the paper and outlines futuoeder logic is commonly known as semantic embedding.
research directions. There are two main approaches [6]: deep embedding
and shallow embedding. In deep embedding, the abstract
Il. PROPOSEDDSP VERIFICATION FRAMEWORK syntax of a design description is represented by terms,
_ ~ which are then interpreted by semantic functions defined
In this paper we propose a methodology for applying, the |ogic that assign meaning to the design. With this
formal methods to the design flow of DSP systemgethog, it is possible to reason about classes of designs,
in a rigorous way. The corresponding commutatingince one can quantify over the syntactic structures.
diagram is shown in Figure 2. Thereafter, we modeloyever, setting up HOL types of abstract syntax and

the ideal real specification of the DSP algorithms angbmantic functions can be very tedious. In a shallow
the corresponding floating-point (FP) and fixed-point
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Shallow . )
REAL i R~ transforms a sequence of input numbers into another
(Convert) YNl Anayes sequence of output, by means of a specific computational
Shal v\| . algorithm. To describe the general functionality of a
allow aluation . . . .
S (HOL) ~> e e digital integrator, le{z;}, {w;}, anda denote the input
mbedding N ..
(Convert) FXP Error, A Eo 1o FXP Enror sequence, output sequence, and constant coefficient of
\! Analysis the integrator, respectively. Then the integrator can be
hall luati e . .
FXP Ei:e:;n (FHgPL)Va“a“"” FXP Real Value specified by the difference equation:
9
(Synthesize) Logical
Implication Wy = Ty_1 + a w1 (]_)
RTL Shallow RTL o
Embedding  (HOL) Thereafter, the output sequence at titmis equal to
(Synthesize) ﬂlLo?ica[ the input sequence at time- 1, added to the output
mplication . . . . . .
Shal P at time t - 1 multiplied by the integrator coefficient.
allow f . . .
Netist — =  Netlist Figure 3 shows the SPW design of an integrator. The
Embedding ( )

integrator is first designed and simulated using the
Fig. 2. Proposed DSP specification and verification approach ~ SPW predefined floating-point blocks and parameters
(Figure 3 (a)). The design is composed of an adder
(M1), a multiplier by constantM2), and a delay N13)
embedding on the other hand, the design is modelbtbck, together with signal sourcéM@) and sink M5)
directly by a formal specification of its functional behavelements. The input signal, the output signal, and the
ior. This eliminates the effort of defining abstract syntagutput of the adder and multiplier blocks are labeled
and semantic functions, but it also limits the proofey IN’, OUT’, S1’, and S2', respectively. Figure 3 (b)
to functional properties. In this paper, since our maighows the converted fixed-point design in which each
concern is to check the correctness of the designs basdock is replaced with the corresponding fixed-point
on their functionality, we propose the shallow embeddingiock (M1’, M2’, M3’, M4’, M5"). Fixed-point blocks are
for DSP descriptions: translate the intended meaning siiown by double circles and squares to distinguish
DSP block designs as described in its documentation inteem from the floating-point blocks. The attributes of
HOL and then complete the formal proof in the HOLall fixed-point block outputs are set t(64,31,t) to
theorem prover. ensure that overflow and quantization do not affect the
system operation. The corresponding fixed-point signals

A. Application with SPW are labeled byN”, OUT", S1”, andS2". In HOL, we

In this section, we demonstrate how the proposed " M1 o M3 our M5
methodology can be used for the verification of an [sena @ z1 SIGNAL
Integrator designed in SPW. The Signal Processing |*"* o
WorkSystem (SPW) of Cadence [10] is an integrated M2

. Lo S270
framework for developing DSP and communications @
products. It graphically represents a system as a network a = 0.997137

of functional blocks and comes with a vast library of
DSP blocks and users can also add their own blocks or
build IP (Intellectual Property) blocks by composition

a) Floating-Point Design

of primitive blocks. SPW provides all the tools needed ;4 M1’ M3’ M5’
to interactively capture, simulate, test, and implement dg N @ s1” || -1 ||64gLy OUT -
broad range of DSP designs. Typical design applicationgsousce [[¢4310 N/ 431 sk
include digital communication systems, image processt M2’

ing, multimedia, radar systems, control systems, digital SZ’@

audio, and high-definition television. SPW can be used @310 \OJ

to evaluate various architectural approaches to a design a" =0.997137

and to develop, simulate, and fine-tune algorithms. A b) Fixed-Point Design

design project in SPW typically consists of the same

steps depicted in Figure 1. More details about SPWjg. 3. SPW design of an Integrator

design flow and the application of our methodology with

it can be found in [4]. To briefly illustrate our approachfirst model the design at each level as predicates in

we show next the application of our methodology on higher-order logic. The predicates corresponding to the

simple integrator designed in SPW. floating-point design in IEEE 64 bit double precision
A digital integrator is a discrete time system thatormat are as follows:
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bay Float_Gain_Block a' b’ ¢/ = Theor em 3: | NTEGRATOR_FXP_TO FLOAT_THM
(vt. ¢’ t = a' t float_mul b’) F Fxp_lntegrator_Inp a' IN’' OUT”
Fq4ef Float_Delay_Block a' b’ = ol
(vt. bt =a' (t — 1)) Float _Integrator_Inp a’ IN OQUT' A
F4e Float_Add_Block a' b’ ¢’ = Floaterror a’' IN QUT'" A
(vt. ¢t =a't float_add b’ t) Fxperror a' IN' oUr”
! ! . . . ..
F et ;'é’f,t—s'zr,“ egrator_inp a’ IN QUT" = According to this theorem, for a valid and finite set
Float_Add_Block IN S2' S1' A of input and output sequences at tinte- 1) to the
Fl oat _Del ay_BI ock Sl: O,UT’ A integrator design at the floating-point and fixed-point
Fl oat_Gain_Bl ock QUT" a’ S2 levels, we can have finite and valid outputs at tinand
The HOL description of the fixed-point implementatiorihe difference in the real values corresponding to these
is as follows: output samples can be expressed as the difference in

input and output values multiplied by the corresponding
coefficients, taking into account the effects of finite

Far Pxp_Gal n_Bl ock a’’ b tC”f o b precision in coefficients and arithmetic operations. The
F def Fxp_Deﬁ ag,_;, ock ;//a bt :Xp—rm ) functionsFl oat error and Fxperror represent the
(Vt. bt =a’ (t — 1)) errors resulting from rounding the real operation results
Faeg Pxp_Add Block & b et = ot to a fixed-point and floating-point number, respectively.
(vt. ¢ - xp-a ) These errors are already quantified using the theorems
Fae Fxp_lntegrator_Inp a’ IN’' QUT" = mentioned in [5] for fixed-point arithmetic, and the
ﬁxglxdgzgl- ock IN' 27 S A corresponding theorems for error analysis in the floating-
Fxp_Del ay_Bl ock S1' OQUT" A point case [20].
Fxp_Gai n_Bl ock OUT"" a'’ S2" Next, we generated with SPW the VHDL code cor-

In the next step, we describe each design as a diﬁererggg'ponqmg to the Filter de&_gn, and used. Synopsys to
synthesize the gate level netlist. The resulting codes are

equation relating the input and output samples accord'ﬂ?’en translated into HOL notation and the corresponding

to Equation (1). .
q (1) correctness theorems established as follows (Theorems
4 and 5):
Fa4 FLOAT_ Integrator_Spec X a’' IN OQUT' =
vi. o't = (IN (t — 1) float_add
(@’ float_mul OUT" (t — 1)))
Theorem 4: | NTEGRATOR Netlist_TO RTL_THM
F4ep FXP_Integrator_Spec X' o_node g_node
n_bits a’” IN' QUT" = F Netlist_Integrator_Inp a' IN" oUT'”’
vt. ot t = (IN' (t — 1) fxp_add — RTL_Integrator_Inp &' IN" our’”
(@ fxp_mul oUT" (t — 1)))
Theorem 5: | NTEGRATOR RTL_TO FXP_THM
The following theorems (Theorems 1 and 2) ensure
RTL Integrator_Inp a'' IN' oUT'’!

that the implementation at each level satisfies the corre- "
=—> Fxp_Integrator_Inp Fxp (a'"’)

sponding specification. Fxp (IN') Fxp (OUT'"")

Theorem 1: FLOAT_| NTEGRATOR | MP_TO_SPEC_THM Here the input and output signalsN and

F Float Integrator _Inp a IN OUT" — QUT' '’ are Boolean words. To relate them to the
Float_I ntegrator_Spec a’ IN OUT’ corresponding specifications in fixed- and floating-point,

Theor em 2: FXP_| NTEGRATCR | MP_SPEC we make use of the bijection functior’p [5] and

F Fxp_lntegrator_lnp a”’ IN' QUT" — Fl oat [20], respectively. In the proof of these theorems
Fxp_l ntegrator_Spec a’ IN' oUT" we used the modular behavior of the circuit, so that we

Now we assume that the floating and fixed-poirﬁroved separate lemmas for different modules such as

input sequences are the rounded versions of an infinfidder. multiplier, and delay and then used these lemmas

precision ideal inputN. We also make some other asi" the proof of the original theorems.

sumptions on finiteness and validity of floating-point and F!Ina(ljly,dusmg thelqbtameﬁ Theorerr;]s 1t 5, we can
fixed-point inputs, coefficients, and intermediate result§2S!ly deduce our u timate theorem (Theorem 6) proving

in order to have finite and valid final outputs. Using thes&€ Correctness of the floating-point specification from
e gate level implementation, taking into account the

assumptions, we proved the following theorem (Theore )

3) concerning the error between the real values of tfa"or analysis computed beforehand.
floating-point and fixed-point precision integrator output

samples.
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Theorem 6: | NTEGRATOR Net |i st _TO_FLOAT_THM effects in the realization of FFT algorithms with floating-

- Netlist_Integrator Inp a’' IN' QU and fix_ed-p_oint arithmetics [25], we p_erform a similar
— analysis using the HOL theorem proving environment.
Float I ntegrator_Spec Float (a"') The formal results are found to be in good agreement
Fl oat (IN’') Float (OQUT''') A ith the th tical Finall hi hicall
Floaterror a’ IN'" OUT'"" A wi e theoretical ones. Finally we prove hierarchically
Fxperror a’’’ IN'' our’” that the FFT RTL implementation implies the high level

More details about this analysis to find the erroExed-point algorithmic specifica_\tion Whi(_:h_has alre_ady

bounds can be found in [5]. I the rest of the paper, w een relgtgd Fo the floating-point descrlpt_lon and ideal
. d o r%al specification through the error analysis.

demonstrate in more detail how the error analysis an

verification methodology presented in this section ca . . .

be used for the verification of the fast Fourier transform* Error Analysis of FFT Algorithms in HOL

(FFT) algorithms implemented in different canonical In this section, the principal results for accumulation

forms of realization. Similar discussion can be applie@f error in FFT algorithms using HOL theorem proving

to other types of signal analysis algorithms. are derived and summarized. For the most part, the
following discussion is phrased in terms of the radix-2

I1l. CASE STUDY: FFT ERRORANALYSIS AND algorithm. However, most of the ideas employed in the

V ERIFICATION error analysis of the radix-2 algorithms can be utilized

The fast Fourier transform (FFT) [8], [12] is a highlyin the analysis of othe_r algor_ithm_s. In the following, we
efficient method for computing the discrete FouriefSt analyze the error in Decimation-in-Frequency (DIF)
transform (DFT) coefficients of a finite sequence of 1 Algorithm. Then, we perform a similar analysis

complex data. Because of the substantial time savifiy Pecimation-in-Time (DIT) FFT Algorithm. In either
over conventional methods [31], the fast Fourier tranSases,we will first describe in detail the theory behind the

form has found important applications in a number Oﬁmalysis and then explain how this analysis is performed

diverse fields such as spectrum analysis, speech dRdioL. . )
optical signal processing, and digital filter design. FFT 1) Decimation-in-Frequency (DIF) FFT Algorztvrer:
algorithms are based on the fundamental principle gf'€ discrete Fourier transform of a sequeficen) },,—g
decomposing the computation of the discrete Fouribt defined as in [31]

transform of a finite-length sequence of lengthinto _ o« N-1 n
successively smaller discrete Fourier transforms. The Alp) = 2 (n) (Wn)™,
manner in which this principle is implemented leads to
a variety of different algorithms, all with comparablevhere Wy = e 727/N andj = /=1. The
improvements in computational speed. There are twoultiplicative factors1¥y)"? are called twiddle factors.
basic classes of FFT algorithms for which the number &for simplicity, our discussion is restricted to the radix-2
arithmetic multiplications and additions as a measure &6FT algorithm, in which the number of poinf§ to be
computational complexity is proportional t& log N  Fourier transformed satisfy the relationship = 2™,
rather thanN? as in conventional methods. The firstvherem is an integer value. The results can be extended
proposed by Cooley and Tukey [13], called decimatiorie radices other than 2. By using the FFT method,

)

in-time (DIT), derives its name from the fact that inthe Fourier coefficient{ A(p) ;)V;O] can be calculated
the process of arranging the computation into smaller m = log, N iterative steps. At each step, an

transformations, the input sequence (generally thoughiray of N complex numbers is generated by using only
of as a time sequence) is decomposed into successivillg numbers in the previous array. To explain the FFT
smaller subsequences. In the second general classalgforithm, let each integer, p=0,1,2,...,N —1, be
algorithms proposed by Gentleman and Sande [16], tegpanded into a binary form as
sequence of discrete Fourier transform coefficients is
decomposed into smaller subsequences, hence its name, — 2m—1p 4 9m=2p 4 ... 4 2p o+ 1,
decimation-in-frequency (DIF). pr=0 or 1

As our case study in this paper, we consider the formal 3)
verification of the decimation-in-time and decimationand let p* denote the number corresponding to the
in-frequency FFT algorithms. We used our methodologgverse bit sequences pf i.e.,
to derive expressions for the accumulation of roundoff
error in floating- and fixed-point FFT algorithms by
recursive definitions and initial conditions, consideringp
the effects of input quantization and inaccuracy in the Let {Ak(p)}ggol denote theV complex numbers cal-
coefficients. Based on the extensively studied theoreticallated at thé:th step. Then the decimation in frequency
work on computing the errors due to finite precisioDIF) FFT algorithm [25] can be expressed as

= 2"y 1+ 2" 2Py o+ 4+ 2p1 +po (4)
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element at stegr as

_f;lk(p) +A(p+2m71F) ex(p) = Ay (p) — Ax(p) ™
Aea@) =9 T D 4 €(p) = AL(D) — Au(p) ®)
e AT ) ) = A) — AL0) ©

®)

wheree,, (p) andej (p) are the errors between the actual
floating- and fixed-point implementations and the ideal
real specification, respectively, (p) is the error in the
transition from floating- to fixed-point.

In analyzing the effect of floating-point roundoff, the
(6) effect of rounding will be represented multiplicatively.
Pk Let x denote any of the arithmetic operations +x-, /,

it is known [14], [36] that, ifp represents the precision

Equation (5) is carried out fok = 0,1,2,...,m—1, of the floating-point format, then

with Ag(p) = z(p). It can be shown [16] that at the last

where wy (p) is a power of Wy given by wi(p) =
(WN)Zk(p)' and

ze(p) =28 2™ hpp 42 g -+
2pmfZ +pm71) - 2m71

step {A,,(p) Q’;Ol are the discrete Fourier coefficients fl(x xy) = (z *x y)(1 + 0), (10)
in rearranged order. Specifically,, (p) = A(p*) with where |0 < 277

p andp* expanded and defined as in Equations (3) and

(4), respectively. Figure 4 shows the signal flowgraph of The notationf! (.) is used to denote that the operation
the actual computation for the cadée = 24, is performed using floating-point arithmetic. The above

theorem relates the floating-point arithmetic operations
{1 = () such as addition, subtraction, multiplication, and divisi

(o)} = (A} (A} {Aa(p)} {Alp)
x (0) A(0)

» )i / < to their abstracj[ mathematical counterparts according to

. / /XX e the corresponding errors.

XX N < While the rounding error for floating-point arithmetic

/ ><><>< enters into the system multiplicatively, it is an addi-

‘o / M i tive component for fixed-point arithmetic. In this case,

: = p p

o AW/ E % >< ~® the fundamental error analysis theorem for fixed-point

xo WV\COCCO/V - > Bt A0 arithmetic operations against their abstract mathematica

"G Vi — counterparts can be stated as

x (9) 71\ ] ‘ / ><>< - . N A(9)

<o />OOC<4\ : NN Ae fezp (x x y) = (z *x y) + ¢

x () 'Q ”:‘W ( A ”\‘><‘: WE L, A1) Where ‘F| S Q*fracbits (X) (11)

4\ /m >< andfracbitsis the number of bits that are to the right of
T N — the binary point in the given fixed-point format The

notation fxp (.) is used to denote that the operation is
Fig. 4. Signal flowgraph of decimation-in-frequency FiV,— 2¢  performed using fixed-point arithmetic. We have proved
Equations (10) and (11) as theorems in higher-order
There are three common sources of errors associalggic within HOL. These theorems are proved under the
with the FFT algorithms [25], namely: assumption that there is no overflow or upderflow in
the operation result. This means that the input values
1) Input Quantization: caused by the quantization ofare scaled so that the actual value of the result is
the input signalz,} into a set of discrete levels. located in the ranges defined by the maximum and
2) Coefficient Accuracy: caused by the representaminimum representable values of the given floating-point
tion of the coefficients{wy(p)} by a finite word and fixed-point formats. The details can be found in [3].
length. In Equation (5), the A, (p)} are complex numbers, so
3) Round-Off Accumulation: caused by the accu-their real and imaginary parts are calculated separately.
mulation of roundoff errors at arithmetic operai et

tions.
. Bi(p) = Re [Ax(p)]  Ci(p) = Im [A(p)] 1,
Therefore, the actual array computed by using Equa- i/, (p) = Re [wi(p)]  Vi(p) = I [wi(p)] (12)
tion (5) is in general different fron{ Ay (p)}g’;(f. We
denote the actual floating- and fixed-point computedhere the notationgte [.] and Im [.] denote, respec-
arrays by{A4}(p) ;V;O] and { A} (p) 1’)\’;0], respectively. tively, the real and imaginary parts of the quantity inside
Then, we define the corresponding errors of @th the brackef.]. Equation (5) can be rewritten as
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Bi(p By(q) Ci(p) Cia)
Bi(p) By(a) Ci(p Cila)
By+1(p) = Bi(p) + Bi(q) } (13) iy oo Y
Ck+1(p) — Ck (p) + C (q) Yep b ks Yew
B, Cral
if pr =0 B Ei c;’..ri

if pk:I

whereq = p+ 2" % andr = p — 2m 1k

On using the prime, and double prime to denote the
calculated floating-point and fixed-point results, the real
and imaginary parts ofl}  , (p) and A}, (p) are given
respectively by

Fig. 5. Error flowgraph for decimation-in-frequency FFT

Bj1(p) = fL{By(p) + Bi.(0)}
ek ot )69
if pr =
/ _ (1) — B! _ By (p) = [B’() By (p)] Uk(p)(1+ »)
) e
Cir (0) = fI{IC4() = Ci(p)] Uk (p)+ e P0G )
[BL(r) = By(p)] Vi(p)} Chr) = [Chtr) ~ )] U501 + 4,
o1 (T4, )(1+X.,) + [B(r) — By(»)]
Vi(p )(1+ekp)( ) (14 XY )
if pr =1
B]’c’+1 (p) = fxp {B}(p) + By (q)} } (15)and
Ciya(p) = fzp {CY(p) + Cf(a) }
T he=0 BYL(9) = [BL() + BL(@)] + e,
Bipa(e) = fom (IBL) = B{0)] Uelo) - CE ) = loh ~ Ch <8 )
k\T) — L i
Cil 1y (p) = fow {[CY(r) — CY(0)] Ulp)+ o= a0
[Bi/(r) — By (p)] Vi(p)}
it pr =1 B(%’g},((pg g%;c; (7;) —ﬁ,@’}(p) J(r;F 7p]C’[’{k)( p) ;rcw
The corresponding error flowgraph showing the " ,,p k.p Vi(p) + + Ak
effect of roundoff error using the fundamental floating- k+1(p) o {C(T) o %’C (p) + enpl %’“( p) ;,7,7’“ 2t
and fixed-point error analysis theorems according to ([Bi(r) = Bi(p) + i) Vie(p) + 1) +

Equations (10) and (11), respectively, is given in Figure it pe=1

5, which also indicates the order of the calculation. The errorsey(p), €} (p), ande!(p) defined in Equa-
The quamltlesYk D Vi D O P! 52',): Ek,p: elkl,pi Cl’c,p’ tions (7), (8), and (9) are complex and can be rewritten
¢ . M . nkp, A p, and /\Zp in Figure 5 are errors gg

caused by floatlng point roundoff at each arithmetic

step. The corresponding error quantities for fixed-point €x(p) = Bi(p) — Bi(p) + j[Ci(p) — Cr(p)]  (18)
roundoff arevyi p, 7y, Ok.ps Oy €k €1y Chipr Cilpo ex(p) = B (p) — Bi(p) + j[C¥ (p) — Ck(p)]  (19)
Mk,p> nkp, Akp, and Ay’ . Thereafter, the actual real e/ (p) = B} (p) — BL(p) + j[CI'(p) — Cl(p)]  (20)
and imaginary parts of the floating- and fixed-point E—19 m. =01 N1
outputs 4; ., (p) and A}, (p), respectively, can be T ST P L
given explicitly by with
eo(p) = e =ey(p) =0, =0,1,...,N -1
Bl (p) = [Bi(p) + Bi(@)](1 + 7 ) } =) =) ! (21)
Cli1(p) = [Cr(p) + Ci(@](1 + 7 ) From Equations (13), (16), (17), (18), (19), and (20),

if pr=0 (16) we derive the following error analysis cases:
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1) DIF FFT Real to Floating-Point:
Ag(p) + wi(p) Ap(p + 2¥)

ek(p)+€k(q)+fk(p) A ( )_ If pmflszo
eenip) =9 =0 PN Anlp =29 — wi(p) A(p)
* ler(r) — ex(p)] wi(p) + fr(p) if pmo1ox=1
(22) where wy(p) is a power of Wy given by wy(p) =
where fi,(p) is given by (Wx)* ), where
, ze(p) =2k Fpp s+ 2" g 4+ +
r ryllc,’p[B;“ (p) + By (Q)]+'W’l“lvp[0’l“ (p)+ 2pm—2 + Pm-1) — 2" 'Pm_1-k
Cr(@)] i pp=0 (28)
[(1+6; )1+ ¢, +A,) —1] Equation (27) is carried out fok = 0,1,2,...,m —
[Bi(r) = BL.(0)]Uk(p)—[(1 + 6 ) 1, with Ag(p) = z(p*), wherep and p* are expanded
Fulp) = T+ ¢ )+ X)) — UG (r)— and defined as in Equations (7) and (8), respectively. It
FPIZN O Vip) + 4001 + €,,)(1+17},) can be shown [13] that at the last stepd,.(p)} ;'
(1+ Xy ,) = 1[CL(r) = Ci(p)]Uk(p) are the discrete Fourier coefficients in the normal order.
i+ € )+ )T+ A ) - Specifically, A4, (p) = A(p). Figure 6 shows the signal
I BL(r) — B(p)1Vi (p) 7 flowgraph of the actual computation for the caée= 2*.
If pk = 1 (23) {=(0)} = {Aal)} {A)} {Aan)} {Aaln)} {Aulp)} = {Aln)}
2) DIF FFT Real to Fixed-Point; P < ; ;
S =N AR\ /M
ek(p) + ekj (q) + fk;(p) ‘@ "k><><><>< / A
e = =0 T >©</ ﬂ<><§ W ;
ket B [e’k(r) - e;c(p)] Wy (p) + f]i:(p) x(©) iE 3 \:::::/ AG
if P = 1 s vvx‘>< we A‘ w \ W a®)
(24) x(@) Wi A®
where f; (p) is given by >< /. W
k X (5) LS >§ / LA A<><><><\j\ A (10)
o =07 NN ¢/ /(9
ryk,P + ]r}/k’p If pk = 0 @ "k><><><>< 1\ A(12)
6k,pUk (p) + Ck,p - (S;cl’lpvk (p)i x (1) ”‘\‘><‘: / W /><><\ 1\ A3)
k() =19 Gy + My + 0 (ErpUs (D) + e pt o — % - E E ro
ep V(D) + i, + M) ot s b e
if Pr = 1

(25) Fig. 6. Signal flowgraph of decimation-in-time FF, = 24
3) DIF FFT Floating- to Fixed-Point: . ) _ )
Similar to the discussion of error analysis of
decimation-in-frequency (DIF) FFT, we first rewrite

iefk (ﬁ) t%k@ + fip) — fi(p) Equation (27) using the real and imaginary parts as
. =
! — e(r) — e w + ! _
0 Gy e Biar(p) = Bu(p) + Un(p) Bela)~
it pp=1 Vi(p) Ck(q) (29)
(26) Cr+1(p) = Cr(p) + Uk(p) Crlq)+
wherefy (p) andf] (p) are given by Equations (23) Vi(p) Bi(q)
and (25). if pm_1-1=0

The accumulation of roundoff error is determined by 5’““(2 = Bi(r) — Ue(p) Bi(p)+
the recursive Equations (22), (23), (24), (25), and (26), Ok (p) ’“SQ)C 0 (o) O
with initial conditions given by Equation (21). k1(p) = Ci(r) — Ur(p) Ci(p)—
Vi(p) Bk(p)

. . if pm_1 k=1
2) Decimation-in-Time (DIT) FFT Algorithm:Let Pm—1-k

{Ak(p)}ggol denote theV complex numbers calculatedwhere ¢ = p + 2¥ andr = p — 2*. We also use
at thekth step. Then the decimation in time (DIT) FFTthe prime, and double prime to denote the calculated
algorithm [27] can be expressed as floating-point and fixed-point results as;_,(p) and
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Ay, (p). Similarly, we can express the real and imag- ?ﬁiii gf}@
inary parts of A}, (p), B;,,(p) and C;,(p), and
Ay, (p), By, (p) andCy/, (p), using the floating- and
fixed-point operations, respectively.

1+,
B§c+1(p) = fl {B},(p) + Ux(p) Bj(q)— )
Vi(p) Cila)} (30)
Cllc+1(p) = fl {C}(p) + Ux(p) C;(q)
Vi(p) Bi(q)} J
if pm—_1-£=0 Pm-1-1 =0
B, (p) = fl {Bj(r) — Us(p) Bi(p)+ )
Vi(p) By(a)}
Ciia(p) = fL{CL(r) = Uk(p) Ci(p)—
Vi(p) By(p)} J
if Pm—1-k = 1
Vi(p)
B?JH( ) = fap {B}(p) + Ur(p) By (q)—
( ) Cllc,(q)} (31) T,
Ciia(p) = fop {CY (p) + Uk(p) Cil(a)+
Vi.(p) By (q)} )
if Pm—1-k =0
By 1 (p) = fazp {B}(r) — Ux(p) By (p)+
Vi (p) B;c'(q)} Pm 1 k=1
Cii1(p) = fop {C}(r) — Uk(p) C} (p)—
Vi(p) By (p)} ) 5 o
if pm1x =1 Bl () lal)

The corresponding error flowgraph showing the effe¢ig. 7. Error flowgraph for decimation-in-time FFT
of roundoff error using the fundamental floating- and
fixed-point error analysis theorems according to the
Equations (10) and (11), respectively, is given in Figurand
7, which also indicates the order of the calculation.

The quantItIESyk D’ ,716 D’ 6;6p' 5;flp' Fk 0’ Fk D’ Ck,P’ k'+1(p = B”( ) Uk(p) — CIICI(Q) Vi(p)+
Ko Topr Thpr Mhpr Mepr Ut pr By a”dﬁk By (p) + Cep + Gy + 0p + Ay
Figure 7 are errors caused by roatmg pomt roundoff atC () = C'q) Us(p) + By (q) Vi(p)+

each arithmetic step. The correspondlng error quantltle%’“(

for fixed-point roundoff arey; ,, v}’ " Ok ps 5k "o Ekpy
n n
Fk pl Ck Y22 Ck’pl T}k iy 2l 77]6)71)’ Ak iy 2l Ak) pl ak iy 2l ak’pl 6](: Y22

+ e + U;e”p + 5/// III
if pmflfk =0

andB”’ Thereafter, the actual real and imaginary partsBZ+1(p) By (p )HE Uk(p)) + C"(p) Vi(p)+
of the floating- and fixed-point outputd} ., (p) and k r) + p ot Xy €yt O, »
AY . (p), respectively can be given explicitly by Ok+1(p) C (p) ( Uk(p)) + By (p)
(=Vk(p)) + 0"( ) + Brp + By €l +
B 0) = [B@) Uslp) (i Gp) = Chla) ) " Pmor-e =1
,( p) (1+¢ ) (1+0;,) + Bi(p)] (1Jlr/\2,p) (33)
Ck+1(p) = [[,(17 1(p) U ( ) ( +’,7k p) + By, (,?) From Equations (29), (32), and (33), we derive the
Viep) (L4 mi )] +05,) + G+ AL,) ) following error analysis cases:
i Pt =0 1) DIT FFT Real to Floating-Point:
By 1(p) = [[Bi(p) (=Uk(p)) (1+0427p)+012(p) ) (5) + ex(@) we () + Fu (p)
Vi) (1)) 1+ e,) & B0+ 4lp) +eula) wo) 5 Sl
Cii1(p) = [[Ci(p) (=Uk(p)) (1 +6;c ) + Bi(p) ex+1(p) = TN
(V) (14 B N1+ €f,) + G (1+7,) ) ) ey Sl
it Ptk =1 T (34)

(32) where fi(p) is given by
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By(0) M, , + Bi(@) Us(p) [(1+ ;) (1+ Refa'(n)] = (1+ 0n) Refz(n)],
?«l,p; E}i;k,p)(;j_}; C;'I“(q)u‘jf(;-u[)(w[/((]? Im[z'(n)] = (1 +&,) Im[z(n)] (39)
k, - MALIAVY " /

N o) U 107 ) (46 ) Re[z"(n)] = Re[z(n)] +6,,,

L o e V@ [0 ¢y Imfs" ()] = Imlz(n)] + €, (40
Folp) = it pr:;?—k = Qk'p ) whered,, and¢,, are the errors caused by floating-point

B () K Bk(P]) ng? [(]‘j%,p ](” quantization, and!, and ¢! are the errors caused by

;k,}p)) ((11117’1))(1 j;, ])C(f)l} _’T_(i)[g, (t) fixed-point quantization in the input signal. The effect of

fel b ke kol 7 Equations (39) and (40) modifies the initial conditions

Yi,p Ch(p) Ux(p) [(1 + By, p) (1+¢€; p)

(1+ ) =1+ B(q) Vie(p) [(1 + g;j‘p) as described in Equation (21) to

(T ,) (TN 1]

if P11k =1

(39) eo(n) =6, Re[z(n)] +j & Im[z(n)] (412)
2) DIT FFT Real to Fixed-Point: eh(n) =6 +j ¢ (42)
e1(p) + €4 (a) we(p) + 11(0) () = eo(n) = ealn) (*3)
e (p) = if pm1x=0 It can be shown that with these modifications, the final
kil ep(r) — ex(p) wi(p) + fr(p) results of the mean square errors remain the same except
if pm1-x=1 (36) for an addition term which is independent p{25].

Another cause for error that has been neglected in
the treatment of the previous sections is the fact that
the coefficientsw (p) can only be represented in finite

where f; (p) is given by

Crp + Gy + Okp + Ak pt accuracy. It is possible to analyze the effect of the
J Mk +mp, + 65, +A) inaccuracy ofwy(p) as follows. LetUx(p) and Vi (p)
p if pm_1-£=0 be the real and imaginary parts of,(p) as defined in
k() = pp + oy, + €k p + Y pt Equation (13), respectively. Also, I&f; (p) and U}/ (p)
7 Brp +B;c'fp +e, ) be the floating- and fixed-point quantized version of
if pm_1_p =1 Ui (p), andV,(p) andV}'(p) be the floating- and fixed-
(37) point quantized version oV (p), respectively. Then
3) DIT FFT Floating- to Fixed-Point; from the discussion in Section 1lI-A.1 we can write
e (p) + €;(a) wi(p) + f1.(p) - Ui(p) = (1+ orp) Ue(p),  Vilp) = (14 ¥r) Valp) (44)
ey (p) = flkl(p) ”if P11k = ? Ui (p) = U (@) + o pr  Vi' () = Vielp) + ¥y (45)
;Z 8 if ez,(gz:(i);_ Ji®) where gy, andy, , are the errors caused by floating-

(38) point quantizations, and;, , and ¢ , are the errors
wheref; (p) andf, (p) are given by Equations (35) caused by fixed-point quantizations in the coefficients.
and (37), respebtively. One may now proceed with the analysis of Sections Ill-

_ _ _ A.1 and IlI-A.2 by adding the factorfl + ¢y ), (1 +
The accumulation of roundoff error is determined by, »), ¥ ,» andyy,  in appropriate places in Equations

the recursive Equations (34), (35), (36), (37), and (3 3) (25), (35), and (37).
with initial conditions given by Equation (21). 4) Error Analysis in HOL: In HOL, we first con-
structed complex numbers on reals similar to [21]. We
3) Effects of Input Quantization and Coefficient Inacdefined in HOL a new type for complex numbers, to
curacy: The discussion presented in previous sectiot® in bijection withR x R. The bijections are written
concerns only the round-off accumulation effect. Agn HOL as complez : R2 — C and coords : C —
mentioned before, there are two other common caus®$. We used convenient abbreviations for the rdé)(
of error due to the finite word length in computing theand imaginary Ifm) parts of a complex number. We
Fourier coefficients. They are the quantization of thalso defined arithmetic operations such as addition, sub-
input dataz(n) and the inaccuracy of the coefficientdraction, and multiplication on complex numbers. We
wg(p). The effect of the quantization of(n) can be overloaded the usual symbols-(—, x) for C and R.
treated as follows. Let'(n) andz”(n) be the floating- Furthermore, we defined, using recursive definition in
and fixed-point quantized versions ©fn), respectively. HOL, expressions for the finite summation on complex
Then from the discussion in Section I1I-A.1 we can writewumbers. Similarly, we constructed complex numbers on
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floating-point and fixed-point variables. We also defineth general, the 64-point pipelined FFT requires the
rounding and valuation functions for floating-point anaalculation of three radix-4 dragonfly ranks. Each
fixed-point complex numbers. Then we defined the primadix-4 dragonfly is a successive combination of a
cipal N-roots on unity ¢ 727*/N = cos (2nn/N) — radix-4 butterfly with four twiddle factor multipliers.

J sin (2nn/N)), and its powers as a complex humbeThe FFT core accepts naturally ordered data on the
using the sine and cosine functions available in thaput buses in a continuous stream, performs a complex
transcendental theory of the HOL reals library [18]. WEFT, and streams out the DFT samples on the output
specified expressions in HOL for expansion of a naturblses in a natural order. These buses are respectively the
number into a binary form in normal and rearrangeckal and imaginary components of the input and output
order according to Equations (3), (4), (6), and (28kequences. An internal input data memory controller
The above enables us to specify the FFT algorithms arders the data into blocks to be presented to the FFT
real, floating-, and fixed-point abstraction levels usingrocessor. The twiddle factors are stored in coefficient
recursive definitions in HOL as described in Equatiommemories. The real and imaginary components of
(5) and (27). Then we define the real and imaginary pardemplex input and output samples and the phase factors
of the FFT algorithm, and powers of the principgl are represented as 16-bit 2's complement numbers. The
roots on unity according to the Equation (12). Later, wanscrambling operation is performed using the output
proved in separate lemmas that the real and imaginadri-reversing buffer.

parts of the FFT algorithm in real, floating-point, and
fixed-point levels can be expanded as in Equations (13) ‘ ) ‘
and (29). Then we proved lemmas to introduce an error | o T o \

in each of the arithmetic steps in real and imaginary
parts of the floating-point and fixed-point FFT algorithms "™ * 7 i, |- | S oeLt

according to the Equations (16), (17), (32), and (33). We
proved these lemmas using the fundamental error analy-
sis lemmas for basic arithmetic operations [3] according
to the Equations (10) and (11). Then we defined in HOL, ) o ) )
the error of thepth element of the floating- and fixed-"'9 8 Radix-4 64-point pipelined FFT implementation

point FFT algorithms at stek, and the corresponding ) ) _ _

error in transition from floating- to fixed-point, according 10 define the radix-4 64-point FFT algorithm [8], [31],
to the Equations (7), (8), and (9). Thereafter, we provele represent the indicgsandn in Equation (2) in a base
lemmas to rewrite the errors as complex numbers usiffflduaternary number system) as

the real and imaginary parts according to Equations (18), _ _

(19), and (20). Finally, we proved a set of lemmas tof = 0Pzt dprtpo, p2oprpo = 01,23 (46)

determine the accumulation of roundoff error in floating? = 1672 + 4n1 + no, nz, im0 = 0,1,2,3 (47)

and fixed-point FFT algorithms by recursive equations |t jg easy to verify that asg, ni, andn. take on all
and initial conditions according to Equations (21), (22)possible values in the range indicatedgoes through
(23), (24), (25), and (26) for DIF, and (34), (35), (36)all possible values frorf to 63 with no values repeated.
(37), and (38) for DIT FFT. A complete list of theThjs s also true for the frequency index Using these
derived HOL definitions and theorems can be found ifpgex mappings, we can express the radix-4 64-point

Coefficient
Memory

Coefent
Nenory

Coefficient

0 0
CONTROL
Venory CONTROL

0 0 0
CONTROL. CONTROL. CONTROL

(1]. FFT algorithm recursively as
B. Radix-4 64-Point FFT Design Verification A (po,m,no)s -
In this section, we describe the application of Z x(ny,ny,ng) (Weq)' 0™ (48)
the proposed approach for the verification in HOL na—0
of the transition from real, floating- and fixed-point 4, (py,p1,n0) =
specifications to RTL implementation of an FFT 3
algorithm. We have chosen the case study of a radix-4 > Ai(po,na, o) (Wea)WPrHro)tm— (49)
pipelined 64-point complex FFT core available as VHDL n1=0

RTL model in the Xilinx Coregen library [37]. All Az(po,p1,p2) =

proofs have been conducted in HOL, hence establishing 3

a correctness of the FFT design implementation with Z As(po,p1,m0) (W64)(]6P2+4P1+p0)”0 (50)
respect to its high level algorithmic specifications. no=0

Figure 8 shows the overall block diagram of the Radix- The final result can be written as

4 64-point pipelined FFT design. The basic elements

are memories, delays, multiplexers, and dragonflies. A(p2,p1,p0) = As(po, p1,D2) (51)
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Thus, as in the radix-2 algorithm, the results are in
reversed order. Based on Equations (48), (49), (50), and
(51), we can develop a signal flowgraph for the radix-
4 64-point FFT algorithm as shown in Figure 9, which
is an expanded version of the pipelined implementation
of Figure 8. The graph is composed of three successiye’
radix-4 dragonfly stages, with each stage comprising 15

dragonflies.
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Fig. 10. Error flowgraph for radix-4 64-point FFT

floating- and fixed-point outputs can be given as follows

3 3 3
B'(p2,p1,P0) Z o>

2=0n1=0ng=0
(By(nz,n1,n0) U64(16p0nz + 4(4p1 + po)n1+
(16p2 + 4p1 + po)no) (1 + d(16ns+4n;+ng)) — (54)
C{(nz2,n1,n0) Vea(16pons + 4(4p1 + po)ni+
(16p2 + 4p1 + po)no) (1 + 6(1(;3;12—4-4711—4-710)))

(1 + C(16m2+4n1+n0)) H 1+ X)
1=16no+4n1+ng

3 3 3
C'(p2,p1,P0) Z >y

2=0n1=0nqg=0
(Cy(n2,m1,n0) U64(16pon2 + 4(4p1 + po)n1+
(16p2 + 4p1 + po)no) (1 + 5(16n2+4n1+n0))+

E Bj(n2,n1,n0) Vea(16ponz + 4(4p1 + po)ni+ (55)
& & (16p2 +4p1 + po)no) (1 + €16, 1 any 4ng)))
63
"
Fig. 9. Signal flowgraph of radix-4 64-point FFT (1+ CE’16n2+4n1 +n0)) H (1+X7)
i=16ng+4n1+ng
From Equations (48), (49), (50), and (51) we can
express the input-output relationship of radix-4 64-point  B" (p2,p1,po) Z Z Z
ny=0n1=0ng=0
FFT as follows B (n2,n1,n0) Usa(16ponz + 4(4p1 + po)n1+
(16p2 + 4p1 + po)no) — C{ (n2,n1,n0) (56)
3 3 3 1 4(4 1 4
A(P2,P1,00) = D000 2omi—0 2ong—o T(12,n1,10) Xg;éoﬁponz + 4(4p: +P0)T$ + (16p2 + p1+
(W64)16170n2+4(4101+po n1+(16p2+4p1+po)no (16“2 +4n1+“0) (16ﬂ2+4ﬂ1 +ﬂ0)
!
. . . (52) CE16n2+4n1 +ng) + ] Z A’f
Equation (52) can be rewritten using the real and i=16ny+dn;+ng
imaginary parts as follows
3 3 3
C"(p2,p1,p0) = D >, >
A A ) Uoa(16pons + 4(ip1 + po)
B Cy (n2,n1,n0) Usa(16ponz + 4(4p1 + po)ni+
B(p2,p1,p0) = ZO ZO ZO (16p2 + 4p1 + po)no) + BY (n2,n1,n0) Vea(16poma 57)
ny=0n1=0ng= +44 + n+16 +4p; + ng) +
By(nz,n1,n0) Usa(16pons + 4(4p1 + po)ni+ (4p1 +po)m +e ( P2 P p(ﬁ CO) +
(16p2 4 4p1 + po)no) — Co(na2, n1,n0) Ves (16n2+4n1+n0) (16n2+4n1+n0) (16ng+4n1+ng)
(16pona + 4(4p1 + po)ni+ Z N
16pa + 4 i
(16p2 + 4p1 +;D0)3no) (53) i 16me Finy 40

3
Clp2.p1.p0) = Y > >

no=0n1=0np=0

Co(n2,n1,n0) Usa(16ponz + 4(4p1 + po)ni+

(16p2 + 4p1 + po)no) + Bo(nz,n1,n0) Ves
(16pona + 4(4p1 + po)ni1+
(16p2 + 4p1 + po)no)

The corresponding error flowgraph is given in Figure

From Equations (53), (54), (55), (56), and (57), we
derive the following error analysis cases:
1) Radix-4 64-Point FFT Real to Floating-Point:

3 3 3
e(p2,p1,p0) = Y 3. > (eo(na,n1,no)
no=0n1=0ng=0 (58)
(W64)(16P0n2+4(4p1+P0)”1+(16P2+4P1+P0)"0))+

10. Therefore, the actual real and imaginary parts of the f(po,p1,p2)
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2) Radix-4 64-Point FFT Real to Fixed-Point: second lemma represents the error between the real
s 3 3 number and the fixed-point specifications. The third

€ (p2.p1,00) = . Y. > (ef(n2,n1,n0) lemma represents the error between floating-point and
75=0n1=0ng=0 (59) fixed-point specifications. According to these lemmas,

(W64)(16P0ﬂ2+4(4131 +po)n1+(16p2+4p1 +p0)n0))+

(9o, p1,p2) the floating-point and fixed-point implementations and

_ _ _ _ . the real specification of a radix-4 decimation in fre-
3) Radix-4 64-Point FFT Floating- to Fixed-Point: quency FFT algorithm are related to each other based

3 3 3 on the corresponding data abstraction, and error analysis
e (p2,p1,p0) = D D > (ef(na,n1,no) functions.
no=0mn1=0ng=0 (60) . f . A )
(W64)(16%"2“(4]”2%0);1+(1%p2+4m+p0)n0)>+ Finally, using the obtained theorems, we easily de

duced our ultimate theorem proving the correctness of
, . the real specification from the RTL implementation, tak-
wheref andf' are the error functions that can b&ng intg account the error analysis computed beforehand.

derived based on Figure 10. _ A complete list of the derived HOL definitions and
1) Verification in HOL: In HOL, we first modeled ineorems can be found in 1.

the RTL description of a radix-4 butterfly as a predicate
in higher-order logic. The block takes a vector of four IV. RELATED WORK
complex input data and performs the operations, to
generate a vector of four complex output signals. The
real and imaginary parts of the input and output signa
are represented as 16-bit Boolean words. We defin
separate functions in HOL for arithmetic operations suc
as addition, subtraction, and multiplication on complex o -
two's complement 16-bit Boolean words. Then, we buiffh- Erfor Analysis in Formal Verification
the complete butterfly structure using a proper combina- Previous work on the error analysis in formal verifica-
tion of these primitive operations. tion was done by Harrison [20] who verified the floating-
Thereafter, we described a radix-4 dragonfly blocgoint algorithms such as the exponential function against
as a conjunction of a radix-4 butterfly and four 16-bitheir abstract mathematical counterparts using the HOL
twiddle factor complex multipliers. Finally, we modeledLight theorem prover. As the main theorem, he proved
the complete RTL description of the radix-4 64-pointhat the floating-point exponential function has a correct
structure in HOL. The FFT block is defined as a comsverflow behavior, and in the absence of overflow the
junction of 48 instantiations of radix-4 dragonfly blockserror in the result is bounded to a certain amount. He
Proper time instances of the input and output signals aso reported on an error in the hand proof mostly
applied to each block, according to Figure 9. related to forgetting some special cases in the anal-
Following similar steps, we described the radix-4 64ysis. This error analysis is very similar to the type
point FFT structures as fixed-point, floating-point, andf analysis performed for DSP algorithms. The major
real domains in HOL using the corresponding compledifference, however, is the use of statistical methods and
data types and arithmetic operations. mean square error analysis for DSP algorithms which
The formal verification of the radix-4 decimation inis not covered in the error analysis of the mathematical
frequency FFT algorithm case study was performddnctions used by Harrison. In this method, the error
based on the commutating diagram in Figure 2, in thguantities are treated as independent random variables
we proved hierarchically that the FFT Netlist impliesiniformly distributed over a specific interval depending
the FFT RTL; and then proved that the FFT RTLlon the type of arithmetic and the rounding mode. Then
description implies the corresponding fixed-point modethe error analysis is performed to derive expressions for
The proof of the FFT block is then broken down into théhe variance and mean square error. To perform such
corresponding proof of the dragonfly block, which itselin analysis in HOL, we need to develop a mechanized
is broken down into the proofs of butterfly and primitheory on the properties of random variables and random
tive arithmetic operations. We used the data abstractiprocesses. This type of analysis is not addressed in this
functions described in Section II-A to convert a complepaper and is a part of our future work.
vector of 16-bit two’s complement Boolean words into Huhnet al. [23] proposed a hybrid formal verification
the corresponding fixed-point vector. method combining different state-of-the-art techniques t
Then, we proved three theorems encompassing theide the complete design flow of imprecisely working
error analysis of the radix-4 decimation in frequencgrithmetic circuits starting at the algorithmic down to
FFT algorithm, as discussed in Section 3. The firshe register transfer level. The usefulness of the method
lemma represents the error between the real numberillustrated with the example of the discrete cosine
specification and the floating-point specification. The#ansform algorithms. In particular, the authors have

f'(po,p1,p2) — f(po,p1,p2)

Work related to our project can be classified in three
oups. Namely, using formal methods for error analysis,
aper-and-pencil error analysis of FFT algorithms and
eral verification of FFT designs.
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shown the use of computer algebra systems like Mathgimilar idea, we have extended this theoretical analysis
matica or Maple at the algorithmic level to reason abotfibr the decimation-in-time and fixed-point FFT algo-
real numbers and to determine certain error bounds fathms. In all cases, good agreements between formal
the results of numerical operations. In contrast to [23jnd theoretical results were obtained.

we proposed an error analysis for DSP designs using

the HOL theorem prover. Although computer algebrai¢. Formalization and Verification of FFT Algorithms

systems such as Maple or Mathematica are much MOrzelated work on the formalization and mechanical

popular and have many powerful decision procedur.%rification of the FFT algorithm was done by Gamboa

and heuristics, theorem provers are more expressi) fS] using the ACL2 theorem prover. The author for-

:nore pg?C'SS]’ and morfetr:eh{ahble [22]. One op'ttlﬁnthl alized the FFT as a recursive data-parallel algorithm,
0 combine ne rigour of the theorem provers wi Ssing the powerlist data structure. He also presented an
power of computer algebraic systems as proposed

[22] AtL2 proof of the correctness of the FFT algorithm, by

: translating the hand proof taken from Misra’s seminal
paper on powerlists [30] into a mechanical proof in
B. Error Analysis of FFT Algorithms ACL2. In the same line, Capretta [9] presented the

Analysis of errors in FFT realizations due to finite preformalization of the FFT using the type theory proof
cision effects has traditionally relied on paper-and-glend0©! C0g. To facilitate the definition of the transform
proofs and simulation techniques. The roundoff errdty Structural recursion, Capretta used the structure of
in using the FFT algorithms depends on the algorithrROlynomial trees which is similar to the data structure
the type of arithmetic, the word length, and the radi®f powerlists introduced by Misra. Finally, he proved its
For FFT algorithms realized with fixed-point arithmeticCOITectness and the correctness of the inverse Fourier
the error problems have been studied extensively. Fgnsform (IFT). In another related work, Bjesse [7]
instance, Welch [35] presented an analysis of the fixefléscribed the verification of FFT hardware at the netlist
point accuracy of the radix-2 decimation-in-time FFfevel with an automatic combination of symbolic simula-
algorithm. Tran-Thong and Liu [33] presented a generHpn and theorem proving using the Lava hardware devel-
approach to the error analysis of the various versions @Pment platform. He proved that the sequential pipelined
the FFT algorithm when fixed-point arithmetic is usedMplementation of the radix-4 decimation-in-time FFT
While the roundoff noise for fixed-point arithmetic enterdS €quivalent to the corresponding combinational circuit.
into the system additively, it is a multiplicative compo{1€ also proved that the abstract implementation of the
nent in the case of floating-point arithmetic. This prop@dix-2 and the radix-4 FFT are equivalent for sizes that
lem is analyzed first by Gentleman and Sande [16], wif§€ an exponent of four. _
presented an upper bound on the mean-squared error foyVhile [15] and [9] prove the correctness of the high
floating-point decimation-in-frequency FFT algorithm!€vel FFT algorithm against the DFT, the verification
Weinstein [34] presented a statistical model for roundofff [7] is performed at the netlist level. In contrast,
errors of the floating-point FFT. Kaneko and Liu [25]0Ur Work tried to close this gap by formally specifying
presented a detailed analysis of roundoff error in the FFRd verifying the FFT algorithm realizations at differ-
decimation-in-frequency algorithm using floating-poingnt 1evels of abstraction based on different data types.
arithmetic. This analysis is later extended by the sangsides, the definition used for the FFT in [15], [9]
authors to the FFT decimation-in-time algorithm [27]'S based on the radix-2 decimation-in-time algorithm.
Oppenheim and Weinstein [32] discussed in some det¥ff¢ cover both decimation-in-time and decimation-in-
the effects of finite register length on implementation§eduency algorithms, and radices other than 2. The
of digital filters, and FFT algorithms. methodology we proposed in this paper is, to the best of

In order to validate the error analysis, most of th@Ur knowledge, the first project of its kind that covers the
above work compare the theoretical results with eformal specification and verification of integrated FFT
perimental simulation. In this paper, we showed ho@ldorithms at different abstraction levels starting from
the above error analyses for the FFT algorithms cdf@l specification to floating- and fixed-point algorithmic
be mechanically performed using the HOL theorerd€scriptions, down to RT and netlist gate levels.
prover, providing a superior approach to validation by
simulation. Our focus was on the process of translating V. CONCLUSIONS
the hand proofs done in the sixties and seventies intoln this paper, we described a methodology for the
equivalent proofs in HOL. The analysis we developefibrmal specification and verification of DSP systems
is mainly inspired by the work done by Kaneko andlesigns at different abstraction levels. We proposed a
Liu [25], who proposed a general approach to the errghallow embedding of DSP descriptions at different
analysis problem of the decimation-in-frequency FFlevels in HOL. For the verification of the transition
algorithm using floating-point arithmetic. Following afrom floating- to fixed-point levels, we proposed an
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error analysis approach in which we consider the ef4] B. Akbarpour and S. Tahar, “The Application of Formal Wer

fects of finite precision in the implementation of DSP cation to SPW Designs,” In Proceedings Euromicro Symposium

. L on Digital System Design, IEEE Computer Society Press, @p. 3
systems. These include errors due to the quantization of 355 gBeIekyTurkey Sgptember 2003? Y P

input samples and system coefficients, and also roundpif B. Akbarpour, S. Tahar, and A. Dekdouk, “FormalizaticiFixed-

accumulation in arithmetic operations. The verification Point Arithmetic in HOL," Formal Methods in Systems Design,
. : ; : 27: 173-200, 2005.
from fixed-point to RTL and netlist levels is performedg r ‘ouiton. A. Gordon, M. Gordon, J. Harrison, J. Herbennd

using traditional hierarchical verification in HOL. In "~ J.van-Tassel, “Experience with Embedding Hardware Dptori
this paper we demonstrated our methodology using the Languages in HOL," In Theorem Provers in Circuit Design, pp.

: f 129-156, North-Holland, 1992.
case study of the fast Fourier transform algorithms. T P. Bjesse, “Automatic Verification of Combinational aRgelined

approach covers the two canonical forms (decimation- FFT Circuits,” In Computer Aided Verification, LNCS 1633, .pp
in-time, and decimation-in-frequency) of realization of 380-393, Springer-Verlag, 1999.

; ; L : _nninBl E. O. Brigham, “The Fast Fourier Transform,” PrenticellHE974.
the FFT algorlthm using real, floatlng » and fixed pol ] V. Capretta, “Certifying the Fast Fourier Transform wi€oq,”

arithmetic as well as their RT implementations, each’ |n Theorem Proving in Higher Order Logics, LNCS 2152, pp.
entirely specified in HOL. We proved lemmas to derive 154-168, Springer-Verlag, 2001.

; ; :[10] Cadence Design Systems, Inc., “Signal Processing Bimtem
expressions for the accumulation of roundoff error i (SPW) User's Guide” USA. July 1999,

floating- and fixed—point designs compared to the idegh; synopsys, Inc., “CoCentie System Studio User's Guide,’
real specification. Then we proved that the FFT RTL USA, Aug. 2001. _ '
implementation implies the corresponding specificatidﬁzl W. T. Cochran et. al., “What is the Fast Fourier TransfSHEEE

. . . . . . . Transactions on Audio and Electroacoustics, AU-15: 45358
at the fixed-point level using classical hierarchical veri- ;967 BB

fication in HOL, hence bridging the gap between hardi3] J. W. Cooley and J. W. Tukey, “An Algorithm for Machine IGa-
ware implementation and high levels of mathematical 'ation of Complex Fourier Series,” Mathematics of Compotat

e . , 19: 297-301, Apr. 1965,
specification. In this work we also have contributed t9 4" “Forsythe and C. B. Moler, “Computer Solution of Linea

the upgrade and application of established real, complex’ Algebraic Systems,” Prentice-Hall, 1967.
real, floating- and fixed-point theories in HOL to thdl5] R. A. Gamboa, “The Correctness of the Fast Fourier Toans

. - o A Structural Proof in ACL2,” Formal Methods in System Design
analysis of errors due to finite precision effects, and Special Issue on UNITY, Jan. 2002.

applied them on the realization of the FFT algorithmsi6] w. M. Gentleman and G. Sande, “Fast Fourier Transforfier-
Error analyses using theoretical paper-and-pencil proofs Fun and Profit,” In AFIPS Fall Joint Computer Conference,. Vol

did exist since the late sixties while design verificatioEm zl?/l' 8"'05%3(;?(1735 :ﬁ;;t.aE ?Aoe?EZhwﬁi?rglgégg6E t%’ &g?_(.shﬂ_

is exclusively done by simulation techniques. We believe “orem Proving Environment for Higher-Order Logic,” Camiygd
this is the first time a complete formal framework has University Press, 1993.

At St ] J. R. Harrison, “Constructing the Real Numbers in HOEgrmal
been proposed for the specification and verification & Methods in System Design, 5 (1/2): 35-59, 1094,

the DSP algorithms at diﬁere_m |e_V€|S of abstractionyg) 3. R. Harrison, “A Machine-Checked Theory of FloatiRgint
The methodology presented in this paper opens new Arithmetic,” In Theorem Proving in Higher Order Logics, LISC

avenues in using formal methods for the verification of 1690, pp. 113-130, Springer-Verlag, 1999. .
J. R. Harrison, “Floating-Point Verification in HOL Lig: The

digital _sjgnal procegsing (DSP? systems as complem NU Exponential Function,” Formal Methods in System Design(3)6
to traditional theoretical (analytical) and simulatioche 271-305, 2000.

niques. We are currently investigating the verificatioff1l J- R. Harison, “Complex Quantifier Elimination in HOLn

f | ired d wirel icati t Supplemental Proceedings of the International Conferemte
o complex wired and wireless communicaton Systems, hegrem Proving in Higher Order Logics, pp. 159-174, Edighy

whose building blocks, heavily make use of several Scotland, UK, Sep. 2001.
instances of the FFT algorithms. As a future work, we?2] J. R. Harrison and L. Thery, "A Skeptic's Approach tor@iining

Hol and Maple,” Journal of Automated Reasoning, 21: 279;294
also plan to extend the error analyses to cover worst- jg9g
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