
An Approach for the Formal Verification of
DSP Designs using Theorem Proving

Behzad Akbarpour,Member, IEEE,Sofiène Tahar,Member, IEEE

Abstract—
In this paper we propose a framework for the incorporation
of formal methods in the design flow of DSP (Digital Signal
Processing) systems in a rigorous way. In the proposed
approach we model and verify DSP descriptions at different
abstraction levels using higher-order logic based on the
HOL theorem prover. This framework enables the formal
verification of DSP designs which in the past could only be
done partially using conventional simulation techniques.
To this end, we provide a shallow embedding of DSP
descriptions in HOL at the floating-point, fixed-point,
behavioral, RTL, and netlist gate levels. We make use
of existing formalization of floating-point theory in HOL
and a parallel one developed for fixed-point arithmetic.
The high ability of abstraction in HOL allows a seam-
less hierarchical verification encompassing the whole DSP
design path, starting from top level floating- and fixed-
point algorithmic descriptions down to RTL, and gate
level implementations. We illustrate the new verification
framework on FFT algorithm as case study.

I. I NTRODUCTION

Digital system design is characterized by ever increas-
ing system complexity that has to be implemented within
reduced time, resulting in minimum costs and short
time-to-market. These characteristics call for a seamless
design flow that allows to perform the design steps on
the highest suitable level of abstraction. For most digital
signal processing systems, the design has to result in
a fixed-point implementation. This is due to the fact
that these systems are sensitive to power consumption,
chip size and price per device. Fixed point realizations
outperform floating-point realizations by far with regard
to these criteria. Figure 1 illustrates a general DSP
design flow as used nowadays in leading industry design
projects. The design of digital signal processing systems
starts from an ideal real number specification. In theo-
retical analysis of digital systems, we generally assume
that signal values and system coefficients are represented
in the real number system and expressed to infinite

Manuscript received XXXX XX, 200X; revised XXXX XX, 200X.
This work is partially supported by NSERC strategic research grant
no. STP234820. The experiments were carried out with CAD tools
provided by the Canadian Microelectronics Corporation.

B. Akbarpour is with the Department of Electrical and Computer
Engineering, Concordia University, Montreal, P.Q., H3G 1M8 Canada
(e-mail: behzad@ece.concordia.ca)

S. Tahar is with the Department of Electrical and Computer En-
gineering, Concordia University, Montreal, P.Q., H3G 1M8 Canada
(e-mail: tahar@ece.concordia.ca)

Bench

HDL
Behavioral

RTL
Capture

Schematic HDL Editors

Netlist

Route
Place and

Synthesis
Logic

Test

Hardware
Architecture

Algorithm
Fixed-Point

Compilers
Datapath

Theoretical Design

External Tools
IC Design Using

System Design
Using DSP Tool

Specification
Ideal Real

Floating-Point
 Algorithm

Fig. 1. DSP design flow

precision. This allows to ignore the effects of finite
wordlengths and fixed exponents and to abstract from all
implementation details. When implemented in special-
purpose digital hardware or as a computer algorithm, we
must represent signals and coefficients in some digital
number system that must always be of finite precision.
In this case, attention must be paid to the effects of
using finite register lengths to represent all relevant de-
sign parameters [32]. Despite the advantages offered by
digital networks, there is an inherent accuracy problem
associated with digital signal processing systems, since
the signals are represented by a finite number of bits
and the arithmetic operations must be carried out with an
accuracy limited by the finite word length of the number
representation. Depending on the type of arithmetic used
in the system algorithm, the type of quantization used
to reduce the word length to a desired size, and the
exact system structure used, one can generally estimate
how system performance is affected by these finite

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Concordia University Research Repository

https://core.ac.uk/display/211516634?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE TRANSACTIONS ON CAD OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXX 200X 2

precision effects. There are several types of arithmetics
used in the implementation of digital systems. Among
the most common are floating-point and fixed-point. At
the floating- and fixed-point levels, all operands are
represented by a special format or assigned a fixed
word length and a fixed exponent, while the control
structure and the operations of the ideal program remain
unchanged. The transformation from real (numbers) to
floating- and fixed-point is quite tedious and error-prone.
On the implementation side, the fixed-point model of
the algorithm has to be transformed/synthesized into the
best suited target description, either using a hardware
description language (HDL) or a programming language.
Meeting the above (sometimes conflicting) requirements
is a great challenge in any DSP design project.

The above design process can be aided by a number of
specialized CAD tools such as SPW (Cadence) [10], Co-
Centric (Synopsys) [11], Matlab-Simulink (Mathworks)
[28], and FRIDGE (Aachen UT) [26]. The conformance
of the fixed-point implementation with respect to the
descriptions in floating-point or real algorithm on one
hand, and the RT (Register Transfer) and gate levels on
the other hand is verified by simulation techniques. Sim-
ulation, however, is known to provide partial verification
as it cannot cover all design errors, especially for large
systems. On the other hand, adopting formal verification
in system design generally means using methods of
mathematical proof rather than simulation to ensure the
quality of the design, to improve the robustness of a
design and to speed up the development. The overall aim
of this paper is to propose a general methodology for
the formalization and verification of DSP descriptions
at different abstraction levels using higher-order logic.
To this end, we adopt a shallow embedding for DSP
descriptions in which we translate the intended mean-
ing of design blocks into higher-order logic and then
complete the formal proof in the HOL [17] theorem
proving environment. To our best knowledge, this is the
first time formal methods are applied to DSP modeling
and verification in such a rigorous way.

The rest of the paper is organized as follows: Section 2
describes the proposed DSP formal verification method-
ology. Section 3 presents a case study verification of FFT
algorithms in HOL from real numbers specification to
RTL implementation. Section 4 discusses related work.
Finally, Section 5 concludes the paper and outlines future
research directions.

II. PROPOSEDDSP VERIFICATION FRAMEWORK

In this paper we propose a methodology for applying
formal methods to the design flow of DSP systems
in a rigorous way. The corresponding commutating
diagram is shown in Figure 2. Thereafter, we model
the ideal real specification of the DSP algorithms and
the corresponding floating-point (FP) and fixed-point

(FXP) representations as well as the RT and gate level
implementations as predicates in higher-order logic. The
overall methodology for the formal specification and
verification of DSP algorithms will be based on the
idea of shallow embedding of languages [6] using the
HOL theorem proving environment [17]. In the proposed
approach, we first focus on the transition from real to
floating- and fixed-point levels. For this, we make use
of existing theories in HOL on the construction of real
[18] and complex [21] numbers, the formalization of
IEEE-754 standard [24] based floating-point arithmetic
[19], [20], and the formalization of fixed-point arithmetic
[5]. We use valuation functions to find the real values
of the floating- and fixed-point DSP outputs and define
the error as the difference between these values and
the corresponding output of the ideal real specifica-
tion. Then we establish fundamental lemmas on the
error analysis of floating- and fixed-point roundings and
arithmetic operations against their abstract mathematical
counterparts. Finally, based on these lemmas, we derive
expressions for the accumulation of roundoff error in
floating- and fixed-point DSP algorithms using recursive
definitions and initial conditions. While theoretical work
on computing the errors due to finite precision effects
in the realization of DSP algorithms with floating- and
fixed-point arithmetics has been extensively studied since
the late sixties [25], this paper contains the first formal-
ization and proof of this analysis using a mechanical
theorem prover, here HOL. The formal results are found
to be in good agreement with the theoretical ones.

After handling the transition from real to floating-
and fixed-point levels, we turn to the HDL represen-
tation. At this point, we use well known techniques
to model the DSP design at the RTL level within
the HOL environment. The last step is to verify this
level using a classical hierarchical proof approach in
HOL [29]. In this way, we hierarchically prove that the
DSP RTL implementation implies the high level fixed-
point algorithmic specification, which has already been
related to the floating-point description and the ideal real
specification through the error analysis. The verification
can be extended, following similar manner, down to gate
level netlist either in HOL or using other commercial
verification tools as depicted in Figure 2. The process of
specifying a hardware description language in higher-
order logic is commonly known as semantic embedding.
There are two main approaches [6]: deep embedding
and shallow embedding. In deep embedding, the abstract
syntax of a design description is represented by terms,
which are then interpreted by semantic functions defined
in the logic that assign meaning to the design. With this
method, it is possible to reason about classes of designs,
since one can quantify over the syntactic structures.
However, setting up HOL types of abstract syntax and
semantic functions can be very tedious. In a shallow

IEEE TRANSACTIONS ON CAD OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXX 200X 3

FP Error

FP Real Value
(HOL)

(HOL)

FP
(HOL)

FXP

FP

(Convert)

(Convert) Analysis

REALREAL
Shallow

Shallow

Shallow Valuation

Valuation

Embedding

Embedding

Embedding

Analysis
FXP Error

(HOL)
FXP Real ValueFXP

(HOL)

Analysis
FP to FXP Error

Embedding

(Synthesize)

RTL

(Synthesize)
Implication
Logical

(HOL)

Netlist

Shallow

Shallow Netlist
(HOL)Embedding

Implication
Logical

RTL

Fig. 2. Proposed DSP specification and verification approach

embedding on the other hand, the design is modeled
directly by a formal specification of its functional behav-
ior. This eliminates the effort of defining abstract syntax
and semantic functions, but it also limits the proofs
to functional properties. In this paper, since our main
concern is to check the correctness of the designs based
on their functionality, we propose the shallow embedding
for DSP descriptions: translate the intended meaning of
DSP block designs as described in its documentation into
HOL and then complete the formal proof in the HOL
theorem prover.

A. Application with SPW

In this section, we demonstrate how the proposed
methodology can be used for the verification of an
Integrator designed in SPW. The Signal Processing
WorkSystem (SPW) of Cadence [10] is an integrated
framework for developing DSP and communications
products. It graphically represents a system as a network
of functional blocks and comes with a vast library of
DSP blocks and users can also add their own blocks or
build IP (Intellectual Property) blocks by composition
of primitive blocks. SPW provides all the tools needed
to interactively capture, simulate, test, and implement a
broad range of DSP designs. Typical design applications
include digital communication systems, image process-
ing, multimedia, radar systems, control systems, digital
audio, and high-definition television. SPW can be used
to evaluate various architectural approaches to a design
and to develop, simulate, and fine-tune algorithms. A
design project in SPW typically consists of the same
steps depicted in Figure 1. More details about SPW
design flow and the application of our methodology with
it can be found in [4]. To briefly illustrate our approach,
we show next the application of our methodology on a
simple integrator designed in SPW.

A digital integrator is a discrete time system that

transforms a sequence of input numbers into another
sequence of output, by means of a specific computational
algorithm. To describe the general functionality of a
digital integrator, letfxtg, fwtg, anda denote the input
sequence, output sequence, and constant coefficient of
the integrator, respectively. Then the integrator can be
specified by the difference equation:wt = xt�1 + a wt�1 (1)

Thereafter, the output sequence at timet is equal to
the input sequence at timet - 1, added to the output
at time t - 1 multiplied by the integrator coefficient.
Figure 3 shows the SPW design of an integrator. The
integrator is first designed and simulated using the
SPW predefined floating-point blocks and parameters
(Figure 3 (a)). The design is composed of an adder
(M1), a multiplier by constant (M2), and a delay (M3)
block, together with signal source (M4) and sink (M5)
elements. The input signal, the output signal, and the
output of the adder and multiplier blocks are labeled
by IN’, OUT’, S1’, and S2’, respectively. Figure 3 (b)
shows the converted fixed-point design in which each
block is replaced with the corresponding fixed-point
block (M1’;M2’;M3’;M4’;M5’). Fixed-point blocks are
shown by double circles and squares to distinguish
them from the floating-point blocks. The attributes of
all fixed-point block outputs are set to(64; 31; t) to
ensure that overflow and quantization do not affect the
system operation. The corresponding fixed-point signals
are labeled byIN”, OUT”, S1”, and S2”. In HOL, we

SIGNAL

a’ = 0.997137

M3
M4

SOURCE

SIGNAL

S2’

OUT’S1’IN’ M5
M1

M2

-1SIGNAL
SINK

(64,31,t)

b) Fixed-Point Design

a) Floating-Point Design

(64,31,t)

(64,31,t)

a’’ = 0.997137

SOURCE SINK

SIGNAL

S2’’

OUT’’S1’’

M1’
IN’’

M5’M3’M4’

M2’

-1 (64,31,t)

Fig. 3. SPW design of an Integrator

first model the design at each level as predicates in
higher-order logic. The predicates corresponding to the
floating-point design in IEEE 64 bit double precision
format are as follows:

IEEE TRANSACTIONS ON CAD OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXX 200X 4`def Float_Gain_Block a0 b0 c0 =(8t. c0 t = a0 t float_mul b0)`def Float_Delay_Block a0 b0 =(8t. b0 t = a0 (t � 1))`def Float_Add_Block a0 b0 c0 =(8t. c0 t = a0 t float_add b0 t)`def Float_Integrator_Imp a0 IN0 OUT0 =9 S10 S20.
Float_Add_Block IN0 S20 S10 ^
Float_Delay_Block S10 OUT0 ^
Float_Gain_Block OUT0 a0 S20

The HOL description of the fixed-point implementation
is as follows:`def Fxp_Gain_Block a00 b00 c00 =(8t. c00 t = a00 t fxp_mul b00)`def Fxp_Delay_Block a00 b00 =(8t. b00 t = a00 (t � 1))`def Fxp_Add_Block a00 b00 c00 =(8t. c00 t = a00 t fxp_add b00 t)`def Fxp_Integrator_Imp a00 IN00 OUT00 =9 S100 S200.

Fxp_Add_Block IN00 S200 S100 ^
Fxp_Delay_Block S100 OUT00 ^
Fxp_Gain_Block OUT00 a00 S200

In the next step, we describe each design as a difference
equation relating the input and output samples according
to Equation (1).`def FLOAT_Integrator_Spec X a0 IN0 OUT0 =8t. OUT0 t = (IN0 (t � 1) float_add(a0 float_mul OUT0 (t � 1)))`def FXP_Integrator_Spec X0 o_mode q_mode

n_bits a00 IN00 OUT00 =8t. OUT00 t = (IN00 (t � 1) fxp_add(a00 fxp_mul OUT00 (t � 1)))

The following theorems (Theorems 1 and 2) ensure
that the implementation at each level satisfies the corre-
sponding specification.

Theorem 1: FLOAT_INTEGRATOR_IMP_TO_SPEC_THM` Float_Integrator_Imp a0 IN0 OUT0 =)
Float_Integrator_Spec a0 IN0 OUT0

Theorem 2: FXP_INTEGRATOR_IMP_SPEC` Fxp_Integrator_Imp a00 IN00 OUT00 =)
Fxp_Integrator_Spec a00 IN00 OUT00

Now we assume that the floating and fixed-point
input sequences are the rounded versions of an infinite
precision ideal inputIN. We also make some other as-
sumptions on finiteness and validity of floating-point and
fixed-point inputs, coefficients, and intermediate results,
in order to have finite and valid final outputs. Using these
assumptions, we proved the following theorem (Theorem
3) concerning the error between the real values of the
floating-point and fixed-point precision integrator output
samples.

Theorem 3: INTEGRATOR_FXP_TO_FLOAT_THM` Fxp_Integrator_Imp a00 IN00 OUT00=)
Float_Integrator_Imp a0 IN0 OUT0 ^
Floaterror a0 IN0 OUT0 ^
Fxperror a00 IN00 OUT00

According to this theorem, for a valid and finite set
of input and output sequences at time(t - 1) to the
integrator design at the floating-point and fixed-point
levels, we can have finite and valid outputs at timet, and
the difference in the real values corresponding to these
output samples can be expressed as the difference in
input and output values multiplied by the corresponding
coefficients, taking into account the effects of finite
precision in coefficients and arithmetic operations. The
functionsFloaterror andFxperror represent the
errors resulting from rounding the real operation results
to a fixed-point and floating-point number, respectively.
These errors are already quantified using the theorems
mentioned in [5] for fixed-point arithmetic, and the
corresponding theorems for error analysis in the floating-
point case [20].

Next, we generated with SPW the VHDL code cor-
responding to the Filter design, and used Synopsys to
synthesize the gate level netlist. The resulting codes are
then translated into HOL notation and the corresponding
correctness theorems established as follows (Theorems
4 and 5):

Theorem 4: INTEGRATOR_Netlist_TO_RTL_THM` Netlist_Integrator_Imp a000 IN000 OUT000=) RTL_Integrator_Imp a000 IN000 OUT000
Theorem 5: INTEGRATOR_RTL_TO_FXP_THM` RTL_Integrator_Imp a000 IN000 OUT000=) Fxp_Integrator_Imp Fxp (a000)

Fxp (IN000) Fxp (OUT000)
Here the input and output signalsIN’’’ and

OUT’’’ are Boolean words. To relate them to the
corresponding specifications in fixed- and floating-point,
we make use of the bijection functionsFxp [5] and
Float [20], respectively. In the proof of these theorems
we used the modular behavior of the circuit, so that we
proved separate lemmas for different modules such as
adder, multiplier, and delay and then used these lemmas
in the proof of the original theorems.

Finally, using the obtained Theorems 1 to 5, we can
easily deduce our ultimate theorem (Theorem 6) proving
the correctness of the floating-point specification from
the gate level implementation, taking into account the
error analysis computed beforehand.

IEEE TRANSACTIONS ON CAD OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXX 200X 5

Theorem 6: INTEGRATOR_Netlist_TO_FLOAT_THM` Netlist_Integrator_Imp a000 IN000 OUT000=)
Float_Integrator_Spec Float (a000)
Float (IN000) Float (OUT000) ^
Floaterror a000 IN000 OUT000 ^
Fxperror a000 IN000 OUT000

More details about this analysis to find the error
bounds can be found in [5]. In the rest of the paper, we
demonstrate in more detail how the error analysis and
verification methodology presented in this section can
be used for the verification of the fast Fourier transform
(FFT) algorithms implemented in different canonical
forms of realization. Similar discussion can be applied
to other types of signal analysis algorithms.

III. C ASE STUDY: FFT ERROR ANALYSIS AND

VERIFICATION

The fast Fourier transform (FFT) [8], [12] is a highly
efficient method for computing the discrete Fourier
transform (DFT) coefficients of a finite sequence of
complex data. Because of the substantial time saving
over conventional methods [31], the fast Fourier trans-
form has found important applications in a number of
diverse fields such as spectrum analysis, speech and
optical signal processing, and digital filter design. FFT
algorithms are based on the fundamental principle of
decomposing the computation of the discrete Fourier
transform of a finite-length sequence of lengthN into
successively smaller discrete Fourier transforms. The
manner in which this principle is implemented leads to
a variety of different algorithms, all with comparable
improvements in computational speed. There are two
basic classes of FFT algorithms for which the number of
arithmetic multiplications and additions as a measure of
computational complexity is proportional toN log N
rather thanN2 as in conventional methods. The first
proposed by Cooley and Tukey [13], called decimation-
in-time (DIT), derives its name from the fact that in
the process of arranging the computation into smaller
transformations, the input sequence (generally thought
of as a time sequence) is decomposed into successively
smaller subsequences. In the second general class of
algorithms proposed by Gentleman and Sande [16], the
sequence of discrete Fourier transform coefficients is
decomposed into smaller subsequences, hence its name,
decimation-in-frequency (DIF).

As our case study in this paper, we consider the formal
verification of the decimation-in-time and decimation-
in-frequency FFT algorithms. We used our methodology
to derive expressions for the accumulation of roundoff
error in floating- and fixed-point FFT algorithms by
recursive definitions and initial conditions, considering
the effects of input quantization and inaccuracy in the
coefficients. Based on the extensively studied theoretical
work on computing the errors due to finite precision

effects in the realization of FFT algorithms with floating-
and fixed-point arithmetics [25], we perform a similar
analysis using the HOL theorem proving environment.
The formal results are found to be in good agreement
with the theoretical ones. Finally we prove hierarchically
that the FFT RTL implementation implies the high level
fixed-point algorithmic specification which has already
been related to the floating-point description and ideal
real specification through the error analysis.

A. Error Analysis of FFT Algorithms in HOL

In this section, the principal results for accumulation
of error in FFT algorithms using HOL theorem proving
are derived and summarized. For the most part, the
following discussion is phrased in terms of the radix-2
algorithm. However, most of the ideas employed in the
error analysis of the radix-2 algorithms can be utilized
in the analysis of other algorithms. In the following, we
first analyze the error in Decimation-in-Frequency (DIF)
FFT Algorithm. Then, we perform a similar analysis
for Decimation-in-Time (DIT) FFT Algorithm. In either
cases,we will first describe in detail the theory behind the
analysis and then explain how this analysis is performed
in HOL.

1) Decimation-in-Frequency (DIF) FFT Algorithm:
The discrete Fourier transform of a sequencefx(n)gN�1n=0
is defined as in [31]A(p) = PN�1n=0 x(n) (WN)np;p = 0; 1; 2; : : : ; N � 1 (2)

where WN = e�j2�=N and j = p�1. The
multiplicative factors(WN)np are called twiddle factors.
For simplicity, our discussion is restricted to the radix-2
FFT algorithm, in which the number of pointsN to be
Fourier transformed satisfy the relationshipN = 2m,
wherem is an integer value. The results can be extended
to radices other than 2. By using the FFT method,
the Fourier coefficientsfA(p)gN�1p=0 can be calculated
in m = log2N iterative steps. At each step, an
array ofN complex numbers is generated by using only
the numbers in the previous array. To explain the FFT
algorithm, let each integerp; p = 0; 1; 2; : : : ; N � 1, be
expanded into a binary form asp = 2m�1p0 + 2m�2p1 + � � �+ 2pm�2 + pm�1;pk = 0 or 1

(3)
and let p� denote the number corresponding to the
reverse bit sequences ofp, i.e.,p� = 2m�1pm�1 + 2m�2pm�2 + � � �+ 2p1 + p0 (4)

Let fAk(p)gN�1p=0 denote theN complex numbers cal-
culated at thekth step. Then the decimation in frequency
(DIF) FFT algorithm [25] can be expressed as

IEEE TRANSACTIONS ON CAD OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXX 200X 6

Ak+1(p) =8>><>>: Ak(p) +Ak(p+ 2m�1�k)
if pk = 0
[Ak(p� 2m�1�k)�Ak(p)] wk(p)
if pk = 1

(5)
where wk(p) is a power ofWN given by wk(p) =(WN)zk(p), andzk(p) = 2k (2m�1�kpk + 2m�2�kpk+1 + � � �+2pm�2 + pm�1)� 2m�1pk (6)

Equation (5) is carried out fork = 0; 1; 2; : : : ;m� 1;
with A0(p) = x(p). It can be shown [16] that at the last
step fAm(p)gN�1p=0 are the discrete Fourier coefficients
in rearranged order. Specifically,Am(p) = A(p�) withp andp� expanded and defined as in Equations (3) and
(4), respectively. Figure 4 shows the signal flowgraph of
the actual computation for the caseN = 24.

W 0NW 1NW 2NW 3NW 4NW 5NW 6NW 7N

W 0NW 2NW 4NW 6N

W 0NW 2NW 4NW 6N

W 0NW 4N
W 0NW 4N
W 0NW 4N
W 0NW 4N W 0N

W 0N
W 0N
W 0N
W 0N
W 0N

A (15)

A (11)

A (3)

A (8)

A (0)

A (4)

A (12)

A (2)

A (10)

A (6)

A (14)

A (1)

A (9)

A (5)

A (13)

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

A (7)

W 0N
W 0Nx (0)

x (1)

x (2)

x (3)

x (4)

x (5)

x (6)

x (7)

x (8)

x (9)

x (10)

x (11)

x (12)

x (13)

x (14)

x (15)

fA1(p)g fA2(p)g fA3(p)gfx(p)g = fA0(p)g fA4(p)g = fA(p�)g

Fig. 4. Signal flowgraph of decimation-in-frequency FFT,N = 24
There are three common sources of errors associated

with the FFT algorithms [25], namely:

1) Input Quantization: caused by the quantization of
the input signalfxng into a set of discrete levels.

2) Coefficient Accuracy: caused by the representa-
tion of the coefficientsfwk(p)g by a finite word
length.

3) Round-Off Accumulation: caused by the accu-
mulation of roundoff errors at arithmetic opera-
tions.

Therefore, the actual array computed by using Equa-
tion (5) is in general different fromfAk(p)gN�1p=0 . We
denote the actual floating- and fixed-point computed
arrays byfA0k(p)gN�1p=0 and fA00k(p)gN�1p=0 , respectively.
Then, we define the corresponding errors of thepth

element at stepk asek(p) = A0k(p)�Ak(p) (7)e0k(p) = A00k(p)�Ak(p) (8)e00k(p) = A00k(p)�A0k(p) (9)

whereek(p) ande0k(p) are the errors between the actual
floating- and fixed-point implementations and the ideal
real specification, respectively.e00k(p) is the error in the
transition from floating- to fixed-point.

In analyzing the effect of floating-point roundoff, the
effect of rounding will be represented multiplicatively.
Let � denote any of the arithmetic operations +, -,� , /,
it is known [14], [36] that, ifp represents the precision
of the floating-point format, thenfl (x � y) = (x � y)(1 + Æ);

where jÆj � 2�p (10)

The notationfl (:) is used to denote that the operation
is performed using floating-point arithmetic. The above
theorem relates the floating-point arithmetic operations
such as addition, subtraction, multiplication, and division
to their abstract mathematical counterparts according to
the corresponding errors.

While the rounding error for floating-point arithmetic
enters into the system multiplicatively, it is an addi-
tive component for fixed-point arithmetic. In this case,
the fundamental error analysis theorem for fixed-point
arithmetic operations against their abstract mathematical
counterparts can be stated asfxp (x � y) = (x � y) + �;

where j�j � 2�fra
bits (X) (11)

andfracbits is the number of bits that are to the right of
the binary point in the given fixed-point formatX. The
notationfxp (:) is used to denote that the operation is
performed using fixed-point arithmetic. We have proved
Equations (10) and (11) as theorems in higher-order
logic within HOL. These theorems are proved under the
assumption that there is no overflow or underflow in
the operation result. This means that the input values
are scaled so that the actual value of the result is
located in the ranges defined by the maximum and
minimum representable values of the given floating-point
and fixed-point formats. The details can be found in [3].

In Equation (5), thefAk(p)g are complex numbers, so
their real and imaginary parts are calculated separately.
LetBk(p) = Re [Ak(p)℄ Ck(p) = Im [Ak(p)℄Uk(p) = Re [wk(p)℄ Vk(p) = Im [wk(p)℄ (12)

where the notationsRe [:℄ and Im [:℄ denote, respec-
tively, the real and imaginary parts of the quantity inside
the bracket[:℄. Equation (5) can be rewritten as

IEEE TRANSACTIONS ON CAD OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXX 200X 7Bk+1(p) = Bk(p) +Bk(q)Ck+1(p) = Ck(p) + Ck(q) � (13)

if pk = 0Bk+1(p) = [Bk(r)�Bk(p)℄ Uk(p)�[Ck(r) � Ck(p)℄ Vk(p)Ck+1(p) = [Ck(r) � Ck(p)℄ Uk(p)+[Bk(r)� Bk(p)℄ Vk(p) 9>>=>>;
if pk = 1

where q = p + 2m�1�k and r = p � 2m�1�k.
On using the prime, and double prime to denote the
calculated floating-point and fixed-point results, the real
and imaginary parts ofA0k+1(p) andA00k+1(p) are given
respectively byB0k+1(p) = fl fB0k(p) +B0k(q)gC 0k+1(p) = fl fC 0k(p) + C 0k(q)g � (14)

if pk = 0B0k+1(p) = fl f[B0k(r) �B0k(p)℄ Uk(p)�[C 0k(r) � C 0k(p)℄ Vk(p)gC 0k+1(p) = fl f[C 0k(r)� C 0k(p)℄ Uk(p)+[B0k(r) �B0k(p)℄ Vk(p)g 9>>=>>;
if pk = 1B00k+1(p) = fxp fB00k (p) + B00k (q)gC 00k+1(p) = fxp fC 00k (p) + C 00k (q)g � (15)

if pk = 0B00k+1(p) = fxp f[B00k (r) �B00k (p)℄ Uk(p)�[C 00k (r) � C 00k (p)℄ Vk(p)gC 00k+1(p) = fxp f[C 00k (r) � C 00k (p)℄ Uk(p)+[B00k (r) �B00k (p)℄ Vk(p)g 9>>=>>;
if pk = 1

The corresponding error flowgraph showing the
effect of roundoff error using the fundamental floating-
and fixed-point error analysis theorems according to
Equations (10) and (11), respectively, is given in Figure
5, which also indicates the order of the calculation.

The quantities
0k;p,
00k;p, Æ0k;p, Æ00k;p, �0k;p, �00k;p, � 0k;p,� 00k;p, �0k;p, �00k;p, �0k;p, and �00k;p in Figure 5 are errors
caused by floating-point roundoff at each arithmetic
step. The corresponding error quantities for fixed-point
roundoff are
k;p,
000k;p, Æk;p, Æ000k;p, �k;p, �000k;p, �k;p, � 000k;p,�k;p, �000k;p, �k;p, and �000k;p. Thereafter, the actual real
and imaginary parts of the floating- and fixed-point
outputs A0k+1(p) and A00k+1(p), respectively, can be
given explicitly byB0k+1(p) = [B0k(p) +B0k(q)℄(1 +
0k;p)C 0k+1(p) = [C 0k(p) + C 0k(q)℄(1 +
00k;p) �

if pk = 0 (16)

B00k(q) C 0k(p)C 00k (p) C 0k(q)C 00k (q)

1 + �00k;p�k;p
Uk �Vk Uk Vk

pk = 1
1 + � 00k;p 1 + �00k;p�k;p 1 + �0k;p �000k;p

B0k(q)

 000k;p 1 +
 00k;pB0k+1(p) C 0k+1(p)
k;p 1 +
 0k;p pk = 0

C 00k+1(p)B00k+1(p)

B0k(p)B00k(p)

1 + �00k;p

�1B0k(r)B00k(r) B0k(p)B00k(p) C 0k(r)C 00k (r) C 0k(p)C 00k (p) C 0k(r)C 00k (r) C 0k(p)C 00k (p) B0k(r)B00k(r) B0k(p)B00k(p)�1

B0k+1(p) C 0k+1(p)

1 + �0k;p �000k;pÆ000k;p1 + Æ0k;p 1 + Æ00k;pÆk;p
1 + �0k;p�k;p �000k;p�k;p � 000k;p1 + � 0k;p

C 00k+1(p)B00k+1(p)

�1�1

Fig. 5. Error flowgraph for decimation-in-frequency FFTB0k+1(p) = [B0k(r)�B0k(p)℄ Uk(p)(1 + Æ0k;p)(1 + � 0k;p)(1 + �0k;p)� [C 0k(r) � C 0k(p)℄Vk(p)(1 + Æ00k;p)(1 + � 00k;p)(1 + �0k;p)C 0k+1(p) = [C 0k(r) � C 0k(p)℄ Uk(p)(1 + �0k;p)(1 + �0k;p)(1 + �00k;p) + [B0k(r)�B0k(p)℄Vk(p)(1 + �00k;p)(1 + �00k;p)(1 + �00k;p)
9>>>>>>=>>>>>>;

if pk = 1
andB00k+1(p) = [B00k (p) +B00k (q)℄ +
k;pC 00k+1(p) = [C 00k (p) + C 00k (q)℄ +
000k;p �

if pk = 0 (17)B00k+1(p) = [B00k (r)�B00k (p) + Æk;p℄ Uk(p) + �k;p�([C 00k (r) � C 00k (p) + Æ000k;p℄ Vk(p) + � 000k;p) + �k;pC 00k+1(p) = [C 00k (r) � C 00k (p) + �k;p℄ Uk(p) + �k;p+([B00k (r) �B00k (p) + �000k;p℄ Vk(p) + �000k;p) + �000k;p 9>>=>>;
if pk = 1

The errorsek(p), e0k(p), ande00k(p) defined in Equa-
tions (7), (8), and (9) are complex and can be rewritten
as ek(p) = B0k(p)�Bk(p) + j[C 0k(p)� Ck(p)℄ (18)e0k(p) = B00k (p)�Bk(p) + j[C 00k (p)� Ck(p)℄ (19)e00k(p) = B00k (p)�B0k(p) + j[C 00k (p)� C 0k(p)℄ (20)k = 1; 2; : : : ;m; p = 0; 1; : : : ; N � 1
withe0(p) = e00(p) = e000(p) = 0; p = 0; 1; : : : ; N � 1

(21)
From Equations (13), (16), (17), (18), (19), and (20),

we derive the following error analysis cases:

IEEE TRANSACTIONS ON CAD OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXX 200X 8

1) DIF FFT Real to Floating-Point:ek+1(p) = 8>><>>: ek(p) + ek(q) + fk(p)
if pk = 0

[ek(r) � ek(p)] wk(p) + fk(p)
if pk = 1

(22)
wherefk(p) is given by

fk(p) =
8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

0k;p[B0k(p) +B0k(q)]+j
00k;p[C 0k(p)+C 0k(q)] if pk = 0
[(1 + Æ0k;p)(1 + � 0k;p)(1 + �0k;p)� 1]
[B0k(r) �B0k(p)]Uk(p)�[(1 + Æ00k;p)(1 + � 00k;p)(1 + �0k;p)� 1][C 0k(r)�C 0k(p)]Vk(p) + j[(1 + �0k;p)(1 + �0k;p)(1 + �00k;p)� 1][C 0k(r) � C 0k(p)]Uk(p)+j[(1 + �00k;p)(1 + �00k;p)(1 + �00k;p)�1][B0k(r) �B0k(p)]Vk(p)
if pk = 1

(23)
2) DIF FFT Real to Fixed-Point:e0k+1(p) = 8>><>>: e0k(p) + e0k(q) + f 0k(p)

if pk = 0
[e0k(r) � e0k(p)] wk(p) + f 0k(p)
if pk = 1

(24)
wheref 0k(p) is given byf 0k(p) = 8>>>><>>>>:
k;p + j
000k;p if pk = 0Æk;pUk(p) + �k;p � Æ000k;pVk(p)�� 000k;p + �k;p + j(�k;pUk(p) + �k;p+�000k;pVk(p) + �000k;p + �000k;p)

if pk = 1
(25)

3) DIF FFT Floating- to Fixed-Point:e00k+1(p) = 8>>>><>>>>: e00k(p) + e00k(q) + f 0k(p)� fk(p)
if pk = 0
[e00k(r)� e00k(p)] wk(p) + f 0k(p)�fk(p)
if pk = 1

(26)
wherefk(p) andf 0k(p) are given by Equations (23)
and (25).

The accumulation of roundoff error is determined by
the recursive Equations (22), (23), (24), (25), and (26),
with initial conditions given by Equation (21).

2) Decimation-in-Time (DIT) FFT Algorithm:LetfAk(p)gN�1p=0 denote theN complex numbers calculated
at thekth step. Then the decimation in time (DIT) FFT
algorithm [27] can be expressed as

Ak+1(p) =8>><>>: Ak(p) + wk(p) Ak(p+ 2k)
if pm�1�k = 0Ak(p� 2k)� wk(p) Ak(p)
if pm�1�k = 1

(27)
where wk(p) is a power ofWN given by wk(p) =(WN)zk(p), wherezk(p) = 2m�1�k (2kpm�1�k + 2k�1pm�k + � � �+2pm�2 + pm�1)� 2m�1pm�1�k

(28)
Equation (27) is carried out fork = 0; 1; 2; : : : ;m �1; with A0(p) = x(p�), wherep and p� are expanded

and defined as in Equations (7) and (8), respectively. It
can be shown [13] that at the last step,fAm(p)gN�1p=0
are the discrete Fourier coefficients in the normal order.
Specifically,Am(p) = A(p). Figure 6 shows the signal
flowgraph of the actual computation for the caseN = 24.

-1

-1

-1

-1

-1

-1

-1

-1

W 0NW 1NW 2NW 3NW 4NW 5NW 6NW 7N
-1

-1

-1

-1

-1

-1

-1

-1

W 0NW 2NW 4NW 6N

W 0NW 2NW 4NW 6N

-1

-1

-1

-1

-1

-1

-1

-1

W 0NW 4N
W 0NW 4N
W 0NW 4N
W 0NW 4N

-1

-1

-1

-1

-1

-1

-1

-1

W 0N
W 0N
W 0N
W 0N
W 0N
W 0N
W 0N
W 0N A (0)

A (1)

A (2)

A (3)

A (4)

A (5)

A (6)

A (7)

A (8)

A (9)

A (10)

A (11)

A (12)

A (13)

A (14)

A (15)

x (0)

x (8)

x (4)

x (12)

x (2)

x (10)

x (6)

x (14)

x (1)

x (9)

x (5)

x (13)

x (3)

x (11)

x (7)

x (15)

fA4(p)g = fA(p)gfx(p�)g = fA0(p)g fA1(p)g fA2(p)g fA3(p)g

Fig. 6. Signal flowgraph of decimation-in-time FFT,N = 24
Similar to the discussion of error analysis of

decimation-in-frequency (DIF) FFT, we first rewrite
Equation (27) using the real and imaginary parts asBk+1(p) = Bk(p) + Uk(p) Bk(q)�Vk(p) Ck(q)Ck+1(p) = Ck(p) + Uk(p) Ck(q)+Vk(p) Bk(q) 9>>=>>; (29)

if pm�1�k = 0Bk+1(p) = Bk(r) � Uk(p) Bk(p)+Vk(p) Bk(q)Ck+1(p) = Ck(r) � Uk(p) Ck(p)�Vk(p) Bk(p) 9>>=>>;
if pm�1�k = 1

where q = p + 2k and r = p � 2k. We also use
the prime, and double prime to denote the calculated
floating-point and fixed-point results asA0k+1(p) and

IEEE TRANSACTIONS ON CAD OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXX 200X 9A00k+1(p). Similarly, we can express the real and imag-
inary parts ofA0k+1(p), B0k+1(p) and C 0k+1(p), andA00k+1(p), B00k+1(p) andC 00k+1(p), using the floating- and
fixed-point operations, respectively.B0k+1(p) = fl fB0k(p) + Uk(p) B0k(q)�Vk(p) C 0k(q)gC 0k+1(p) = fl fC 0k(p) + Uk(p) C 0k(q)+Vk(p) B0k(q)g 9>>=>>; (30)

if pm�1�k = 0B0k+1(p) = fl fB0k(r) � Uk(p) B0k(p)+Vk(p) B0k(q)gC 0k+1(p) = fl fC 0k(r) � Uk(p) C 0k(p)�Vk(p) B0k(p)g 9>>=>>;
if pm�1�k = 1B00k+1(p) = fxp fB00k (p) + Uk(p) B00k (q)�Vk(p) C 00k (q)gC 00k+1(p) = fxp fC 00k (p) + Uk(p) C 00k (q)+Vk(p) B00k (q)g 9>>=>>; (31)

if pm�1�k = 0B00k+1(p) = fxp fB00k (r)� Uk(p) B00k (p)+Vk(p) B00k (q)gC 00k+1(p) = fxp fC 00k (r) � Uk(p) C 00k (p)�Vk(p) B00k (p)g 9>>=>>;
if pm�1�k = 1

The corresponding error flowgraph showing the effect
of roundoff error using the fundamental floating- and
fixed-point error analysis theorems according to the
Equations (10) and (11), respectively, is given in Figure
7, which also indicates the order of the calculation.

The quantities
0k;p,
00k;p, Æ0k;p, Æ00k;p, �0k;p, �00k;p, � 0k;p,� 00k;p, �0k;p, �00k;p, �0k;p, �00k;p, �0k;p, �00k;p, �0k;p, and�00k;p in
Figure 7 are errors caused by floating-point roundoff at
each arithmetic step. The corresponding error quantities
for fixed-point roundoff are
k;p,
000k;p, Æk;p, Æ000k;p, �k;p,�000k;p, �k;p, � 000k;p, �k;p, �000k;p, �k;p, �000k;p, �k;p, �000k;p, �k;p,
and�000k;p. Thereafter, the actual real and imaginary parts
of the floating- and fixed-point outputsA0k+1(p) andA00k+1(p), respectively can be given explicitly byB0k+1(p) = [[B0k(q) Uk(p) (i+ � 0k;p)� C 0k(q)Vk(p) (1 + � 00k;p)℄ (1 + Æ0k;p) +B0k(p)℄ (1 + �0k;p)C 0k+1(p) = [[C 0k(p) Uk(p) (1 + �0k;p) +B0k(q)Vk(p) (1 + �00k;p)℄(1 + Æ00k;p) + C 0k(p)℄(1 + �00k;p) 9>>=>>;

if pm�1�k = 0B0k+1(p) = [[B0k(p) (�Uk(p)) (1 + �0k;p) + C 0k(p)Vk(p) (1 + �00k;p)℄ (1 + �0k;p) +B0k(r)℄ (1 +
0k;p)C 0k+1(p) = [[C 0k(p) (�Uk(p)) (1 + �0k;p) +B0k(p)(�Vk(p)) (1 + �0k;p)℄(1 + �00k;p) + C 0k(r)℄ (1 +
00k;p) 9>>=>>;
if pm�1�k = 1

(32)

1 + �00k;p1 + �0k;p
�k;p 1 + �0k;p

k;p 1 +
 0k;p

�Uk(p) �Vk(p)
�k;p 1 + � 00k;p� 000k;p1 + � 0k;p

�000k;p 1 + �00k;p

 000k;p 1 +
 00k;p

Uk(p) �Vk(p)
�k;p � 000k;p 1 + � 00k;p1 + � 0k;p

�000k;p
�Uk(p) Vk(p)

�k;p

Æk;p C 0k(p)

C 00k (p)C 0k(p) B00k(p)B0k(p)

C 0k(r)C 00k (r)

B00k(p)B0k(p) C 00k (p)C 0k(p)

B00k(r)B0k(r)
B0k+1(p)B00k+1(p) C 0k+1(p)C 00k+1(p)

B0k+1(p)B00k+1(p) C 0k+1(p)C 00k+1(p)

pm�1�k = 1

pm�1�k = 0 C 00k (p)1 + Æ0k;p
�k;p 1 + �0k;p

B0k(p)B00k(p)

Uk(p) �Vk(p)
�k;p 1 + �0k;p �000k;p 1 + �00k;p

1 + Æ00k;pÆ000k;p
�000k;p 1 + �00k;p

B00k(q)B0k(q) C 00k (q)C 0k(q) C 00k (q)C 0k(q) B00k(q)B0k(q)

Fig. 7. Error flowgraph for decimation-in-time FFT

andB00k+1(p) = B00k (q) Uk(p)� C 00k (q) Vk(p)+B00k (p) + �k;p + � 000k;p + Æk;p + �k;pC 00k+1(p) = C 00k (q) Uk(p) +B00k (q) Vk(p)+C 00k (p) + �k;p + �000k;p + Æ000k;p + �000k;p 9>>=>>;
if pm�1�k = 0B00k+1(p) = B00k (p) (�Uk(p)) + C 00(p) Vk(p)+B00k (r) + �k;p + �000k;p + �k;p + Æk;pC 00k+1(p) = C 00k (p) (�Uk(p)) +B00k (p)(�Vk(p)) + C 00k (r) + �k;p + �000k;p + �000k;p +
000k;p 9>>=>>;

if pm�1�k = 1
(33)

From Equations (29), (32), and (33), we derive the
following error analysis cases:

1) DIT FFT Real to Floating-Point:ek+1(p) =8>><>>: ek(p) + ek(q) wk(p) + fk(p)
if pm�1�k = 0ek(r) � ek(p) wk(p) + fk(p)

if pm�1�k = 1
(34)

wherefk(p) is given by

IEEE TRANSACTIONS ON CAD OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXX 200X 10

fk(p) =
8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

B0k(p) �0k;p + B0k(q) Uk(p) [(1 + �0k;p) (1+Æ0k;p) (1 + �0k;p)� 1℄�C0k(q) Vk(p) [(1+�00k;p) (1 + Æk;p (1 + �0k;p)� 1℄ + j[C0k(p)�0k;p + C0k(q) Uk(p) [(1 + �0k;p) (1 + Æ00k;p)(1 + �00k;p)� 1℄ + B0k(q) Vk(p) [(1 + �00k;p)(1 + Æ00k;p)(1 + �00k;p)� 1℄
if pm�1�k = 0B0k(r)
0k;p �B0k(p) Uk(p) [(1 + �0k;p (1+�0k;p) (1 +
0k;p)� 1℄� C0k(p) Vk(p) [(1+�00k;p) (1 + �0k;p (1 +
0k;p)� 1℄ + j [C0k(r)
00k;p �C0k(p) Uk(p) [(1 + �0k;p) (1 + �00k;p)(1 +
00k;p)� 1℄ + B0k(q) Vk(p) [(1 + �00k;p)(1 +
00k;p) (1 + �00k;p)� 1℄
if pm�1�k = 1

(35)

2) DIT FFT Real to Fixed-Point:e0k+1(p) = 8>><>>: e0k(p) + e0k(q) wk(p) + f 0k(p)
if pm�1�k = 0e0k(r) � e0k(p) wk(p) + f 0k(p)
if pm�1�k = 1

(36)
wheref 0k(p) is given byf 0k(p) =8>>>>>><>>>>>>: �k;p + � 000k;p + Æk;p + �k;p+j (�k;p + �000k;p + Æ000k;p + �000k;p)

if pm�1�k = 0�k;p + �000k;p + �k;p +
k;p+j (�k;p + �000k;p + �000k;p +
000k;p)
if pm�1�k = 1

(37)
3) DIT FFT Floating- to Fixed-Point:e00k+1(p) =8>><>>: e00k(p) + e00k(q) wk(p) + f 0k(p)�fk(p) if pm�1�k = 0e00k(r) � e00k(p) wk(p) + f 0k(p)�fk(p) if pm�1�k = 1

(38)
wherefk(p) andf 0k(p) are given by Equations (35)
and (37), respectively.

The accumulation of roundoff error is determined by
the recursive Equations (34), (35), (36), (37), and (38),
with initial conditions given by Equation (21).

3) Effects of Input Quantization and Coefficient Inac-
curacy: The discussion presented in previous sections
concerns only the round-off accumulation effect. As
mentioned before, there are two other common causes
of error due to the finite word length in computing the
Fourier coefficients. They are the quantization of the
input datax(n) and the inaccuracy of the coefficientswk(p). The effect of the quantization ofx(n) can be
treated as follows. Letx0(n) andx00(n) be the floating-
and fixed-point quantized versions ofx(n), respectively.
Then from the discussion in Section III-A.1 we can write

Re[x0(n)℄ = (1 + �n) Re[x(n)℄;Im[x0(n)℄ = (1 + �n) Im[x(n)℄ (39)Re[x00(n)℄ = Re[x(n)℄ + �0n;Im[x00(n)℄ = Im[x(n)℄ + �0n (40)

where�n and�n are the errors caused by floating-point
quantization, and�0n and �0n are the errors caused by
fixed-point quantization in the input signal. The effect of
Equations (39) and (40) modifies the initial conditions
as described in Equation (21) toe0(n) = �n Re[x(n)℄ + j �n Im[x(n)℄ (41)e00(n) = �0n + j �0n (42)e000(n) = e00(n)� e0(n) (43)

It can be shown that with these modifications, the final
results of the mean square errors remain the same except
for an addition term which is independent ofp [25].

Another cause for error that has been neglected in
the treatment of the previous sections is the fact that
the coefficientswk(p) can only be represented in finite
accuracy. It is possible to analyze the effect of the
inaccuracy ofwk(p) as follows. LetUk(p) and Vk(p)
be the real and imaginary parts ofwk(p) as defined in
Equation (13), respectively. Also, letU 0k(p) andU 00k (p)
be the floating- and fixed-point quantized version ofUk(p), andV 0k(p) andV 00k (p) be the floating- and fixed-
point quantized version ofVk(p), respectively. Then
from the discussion in Section III-A.1 we can writeU 0k(p) = (1 + 'k;p) Uk(p); V 0k(p) = (1 + k;p) Vk(p) (44)U 00k (p) = Uk(p) + '0k;p; V 00k (p) = Vk(p) + 0k;p (45)

where'k;p and k;p are the errors caused by floating-
point quantizations, and'0k;p and 0k;p are the errors
caused by fixed-point quantizations in the coefficients.
One may now proceed with the analysis of Sections III-
A.1 and III-A.2 by adding the factors(1 + 'k;p), (1 + k;p), '0k;p, and 0k;p in appropriate places in Equations
(23), (25), (35), and (37).

4) Error Analysis in HOL: In HOL, we first con-
structed complex numbers on reals similar to [21]. We
defined in HOL a new type for complex numbers, to
be in bijection withR � R. The bijections are written
in HOL as
omplex : R2 ! C and
oords : C !R2 . We used convenient abbreviations for the real (Re)
and imaginary (Im) parts of a complex number. We
also defined arithmetic operations such as addition, sub-
traction, and multiplication on complex numbers. We
overloaded the usual symbols (+;�;�) for C and R.
Furthermore, we defined, using recursive definition in
HOL, expressions for the finite summation on complex
numbers. Similarly, we constructed complex numbers on

IEEE TRANSACTIONS ON CAD OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXX 200X 11

floating-point and fixed-point variables. We also defined
rounding and valuation functions for floating-point and
fixed-point complex numbers. Then we defined the prin-
cipalN -roots on unity (e�j2�n=N =
os (2�n=N) �j sin (2�n=N)), and its powers as a complex number
using the sine and cosine functions available in the
transcendental theory of the HOL reals library [18]. We
specified expressions in HOL for expansion of a natural
number into a binary form in normal and rearranged
order according to Equations (3), (4), (6), and (28).
The above enables us to specify the FFT algorithms in
real, floating-, and fixed-point abstraction levels using
recursive definitions in HOL as described in Equations
(5) and (27). Then we define the real and imaginary parts
of the FFT algorithm, and powers of the principalN -
roots on unity according to the Equation (12). Later, we
proved in separate lemmas that the real and imaginary
parts of the FFT algorithm in real, floating-point, and
fixed-point levels can be expanded as in Equations (13)
and (29). Then we proved lemmas to introduce an error
in each of the arithmetic steps in real and imaginary
parts of the floating-point and fixed-point FFT algorithms
according to the Equations (16), (17), (32), and (33). We
proved these lemmas using the fundamental error analy-
sis lemmas for basic arithmetic operations [3] according
to the Equations (10) and (11). Then we defined in HOL
the error of thepth element of the floating- and fixed-
point FFT algorithms at stepk, and the corresponding
error in transition from floating- to fixed-point, according
to the Equations (7), (8), and (9). Thereafter, we proved
lemmas to rewrite the errors as complex numbers using
the real and imaginary parts according to Equations (18),
(19), and (20). Finally, we proved a set of lemmas to
determine the accumulation of roundoff error in floating-
and fixed-point FFT algorithms by recursive equations
and initial conditions according to Equations (21), (22),
(23), (24), (25), and (26) for DIF, and (34), (35), (36),
(37), and (38) for DIT FFT. A complete list of the
derived HOL definitions and theorems can be found in
[1].

B. Radix-4 64-Point FFT Design Verification

In this section, we describe the application of
the proposed approach for the verification in HOL
of the transition from real, floating- and fixed-point
specifications to RTL implementation of an FFT
algorithm. We have chosen the case study of a radix-4
pipelined 64-point complex FFT core available as VHDL
RTL model in the Xilinx Coregen library [37]. All
proofs have been conducted in HOL, hence establishing
a correctness of the FFT design implementation with
respect to its high level algorithmic specifications.
Figure 8 shows the overall block diagram of the Radix-
4 64-point pipelined FFT design. The basic elements
are memories, delays, multiplexers, and dragonflies.

In general, the 64-point pipelined FFT requires the
calculation of three radix-4 dragonfly ranks. Each
radix-4 dragonfly is a successive combination of a
radix-4 butterfly with four twiddle factor multipliers.
The FFT core accepts naturally ordered data on the
input buses in a continuous stream, performs a complex
FFT, and streams out the DFT samples on the output
buses in a natural order. These buses are respectively the
real and imaginary components of the input and output
sequences. An internal input data memory controller
orders the data into blocks to be presented to the FFT
processor. The twiddle factors are stored in coefficient
memories. The real and imaginary components of
complex input and output samples and the phase factors
are represented as 16-bit 2’s complement numbers. The
unscrambling operation is performed using the output
bit-reversing buffer.

Input
Buffer
Memory

STAGE 1

D
E
L
A
Y

M
U
X Bitreverse

CONTROL

OUTPUT
E
L
A
Y

M
U
X

D

Coefficient
Memory

STAGE 2

CONTROL

STAGE 3

Output

CONTROL
Coefficient

Memory
CONTROL

INPUT

CONTROL

E
L
A
Y

M
U
X

D

Coefficient
Memory

Buffer
Radix_4

Dragonfly
Radix_4

Dragonfly
Radix_4

Dragonfly

Fig. 8. Radix-4 64-point pipelined FFT implementation

To define the radix-4 64-point FFT algorithm [8], [31],
we represent the indicesp andn in Equation (2) in a base
4 (quaternary number system) asp = 16p2 + 4p1 + p0; p2; p1; p0 = 0; 1; 2; 3 (46)n = 16n2 + 4n1 + n0; n2; n1; n0 = 0; 1; 2; 3 (47)

It is easy to verify that asn0, n1, andn2 take on all
possible values in the range indicated,n goes through
all possible values from0 to 63 with no values repeated.
This is also true for the frequency indexp. Using these
index mappings, we can express the radix-4 64-point
FFT algorithm recursively asA1(p0; n1; n0) =3Xn2=0x(n2; n1; n0) (W64)16p0n2 (48)A2(p0; p1; n0) =3Xn1=0A1(p0; n1; n0) (W64)(4p1+p0)4n1 (49)A3(p0; p1; p2) =3Xn0=0A2(p0; p1; n0) (W64)(16p2+4p1+p0)n0 (50)

The final result can be written asA(p2; p1; p0) = A3(p0; p1; p2) (51)

IEEE TRANSACTIONS ON CAD OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXX 200X 12

Thus, as in the radix-2 algorithm, the results are in
reversed order. Based on Equations (48), (49), (50), and
(51), we can develop a signal flowgraph for the radix-
4 64-point FFT algorithm as shown in Figure 9, which
is an expanded version of the pipelined implementation
of Figure 8. The graph is composed of three successive
radix-4 dragonfly stages, with each stage comprising 16
dragonflies.

20
36

47

52

24
8

31

62
3
19
35
51
7
23
39

11
27
43

15

4
48
32
16
0

26

29

25

21

17

34

38

42

46

57
13

45
61
2
18

50
6
22

54
10

58
14
30

55

59

63

40
56
12
28
44
60
1

33
49
5

27
53
9

41

43
42
41
40
39
38
37
36
35
34
33
32
31

0

17
18
19
20
21

44

63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45

22

4
3
2
1

5

23
24
25
26

28
27

29
30

16
15
14
13
12
11
10
9
8
7
6

Fig. 9. Signal flowgraph of radix-4 64-point FFT

From Equations (48), (49), (50), and (51) we can
express the input-output relationship of radix-4 64-point
FFT as followsA(p2; p1; p0) = P3n2=0P3n1=0P3n0=0 x(n2; n1; n0)(W64)16p0n2+4(4p1+p0)n1+(16p2+4p1+p0)n0

(52)

Equation (52) can be rewritten using the real and
imaginary parts as followsB(p2; p1; p0) = 3Xn2=0 3Xn1=0 3Xn0=0B0(n2; n1; n0) U64(16p0n2 + 4(4p1 + p0)n1+(16p2 + 4p1 + p0)n0)�C0(n2; n1; n0) V64(16p0n2 + 4(4p1 + p0)n1+(16p2 + 4p1 + p0)n0)C(p2; p1; p0) = 3Xn2=0 3Xn1=0 3Xn0=0C0(n2; n1; n0) U64(16p0n2 + 4(4p1 + p0)n1+(16p2 + 4p1 + p0)n0) +B0(n2; n1; n0) V64(16p0n2 + 4(4p1 + p0)n1+(16p2 + 4p1 + p0)n0) (53)

The corresponding error flowgraph is given in Figure
10. Therefore, the actual real and imaginary parts of the

�V64(p0; p1; p2; n0; n1; n2)
1 + �(16n2+4n1+n0)Æ0(16n2+4n1+n0)�0(16n2+4n1+n0)

1 + �(16n2+4n1+n0)� 0(16n2+4n1+n0)D00(n2; n1; n0)D000(n2; n1; n0)

C 00(n2; n1; n0)C 000 (n2; n1; n0) B00(n2; n1; n0)B000 (n2; n1; n0)U64(p0; p1; p2; n0; n1; n2) V64(p0; p1; p2; n0; n1; n2)
Æ000(16n2+4n1+n0)�000(16n2+4n1+n0) 1 + �00(16n2+4n1+n0)1 + Æ00(16n2+4n1+n0)

� 000(16n2+4n1+n0)

U64(p0; p1; p2; n0; n1; n2)
B00(n2; n1; n0)B000(n2; n1; n0) C 00(n2; n1; n0)C 000 (n2; n1; n0)

1 + � 00(16n2+4n1+n0)
D000(0; 0; 0) D00(0; 0; 1)D000(0; 0; 1) D00(0; 0; 2)D000(0; 0; 2) D000(n2; n1; n0)D00(n2; n1; n0) D00(3; 3; 3)D000(3; 3; 3)

�00(1 + �0) �01(1 + �1) �063(1 + �63) B0(p0; p1; p2)B00(p0; p1; p2) C 0(p0; p1; p2)C 00(p0; p1; p2)
D00(0; 0; 0)

D0000 (n2; n1; n0)D00000 (n2; n1; n0)D0000 (0; 0; 0)D00000 (0; 0; 0) D0000 (0; 0; 1)D00000 (0; 0; 1) D0000 (0; 0; 2)D00000 (0; 0; 2) D0000 (n2; n1; n0)D00000 (n2; n1; n0) D0000 (3; 3; 3)D00000 (3; 3; 3)
(1 + �000)�0000 �0001(1 + �001) (1 + �0063)�00063

1 + Æ(16n2+4n1+n0)

Fig. 10. Error flowgraph for radix-4 64-point FFT

floating- and fixed-point outputs can be given as followsB0(p2; p1; p0) = 3Xn2=0 3Xn1=0 3Xn0=0(B00(n2; n1; n0) U64(16p0n2 + 4(4p1 + p0)n1+(16p2 + 4p1 + p0)n0) (1 + Æ(16n2+4n1+n0))�C00(n2; n1; n0) V64(16p0n2 + 4(4p1 + p0)n1+(16p2 + 4p1 + p0)n0) (1 + �(16n2+4n1+n0)))(1 + �(16n2+4n1+n0)) 63Yi=16n2+4n1+n0(1 + �i) (54)

C0(p2; p1; p0) = 3Xn2=0 3Xn1=0 3Xn0=0(C00(n2; n1; n0) U64(16p0n2 + 4(4p1 + p0)n1+(16p2 + 4p1 + p0)n0) (1 + Æ00(16n2+4n1+n0))+B00(n2; n1; n0) V64(16p0n2 + 4(4p1 + p0)n1+(16p2 + 4p1 + p0)n0) (1 + �00(16n2+4n1+n0)))(1 + �00(16n2+4n1+n0)) 63Yi=16n2+4n1+n0(1 + �00i) (55)

B00(p2; p1; p0) = 3Xn2=0 3Xn1=0 3Xn0=0B000 (n2; n1; n0) U64(16p0n2 + 4(4p1 + p0)n1+(16p2 + 4p1 + p0)n0)� C000 (n2; n1; n0)V64(16p0n2 + 4(4p1 + p0)n1 + (16p2 + 4p1+p0)n0) + Æ0(16n2+4n1+n0) + �0(16n2+4n1+n0)+�0(16n2+4n1+n0) + 63Xi=16n2+4n1+n0 �0i (56)

C00(p2; p1; p0) = 3Xn2=0 3Xn1=0 3Xn0=0C000 (n2; n1; n0) U64(16p0n2 + 4(4p1 + p0)n1+(16p2 + 4p1 + p0)n0) + B000 (n2; n1; n0) V64(16p0n2+4(4p1 + p0)n1 + (16p2 + 4p1 + p0)n0) +Æ000(16n2+4n1+n0) + �000(16n2+4n1+n0) + �000(16n2+4n1+n0)+63Xi=16n2+4n1+n0 �000i (57)

From Equations (53), (54), (55), (56), and (57), we
derive the following error analysis cases:

1) Radix-4 64-Point FFT Real to Floating-Point:e(p2; p1; p0) = 3Xn2=0 3Xn1=0 3Xn0=0(e0(n2; n1; n0)(W64)(16p0n2+4(4p1+p0)n1+(16p2+4p1+p0)n0))+f(p0; p1; p2) (58)

IEEE TRANSACTIONS ON CAD OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXX 200X 13

2) Radix-4 64-Point FFT Real to Fixed-Point:e0(p2; p1; p0) = 3Xn2=0 3Xn1=0 3Xn0=0(e00(n2; n1; n0)(W64)(16p0n2+4(4p1+p0)n1+(16p2+4p1+p0)n0))+f 0(p0; p1; p2) (59)

3) Radix-4 64-Point FFT Floating- to Fixed-Point:e00(p2; p1; p0) = 3Xn2=0 3Xn1=0 3Xn0=0(e000 (n2; n1; n0)(W64)(16p0n2+4(4p1+p0)n1+(16p2+4p1+p0)n0))+f 0(p0; p1; p2)� f(p0; p1; p2) (60)

where f and f ’ are the error functions that can be
derived based on Figure 10.

1) Verification in HOL: In HOL, we first modeled
the RTL description of a radix-4 butterfly as a predicate
in higher-order logic. The block takes a vector of four
complex input data and performs the operations, to
generate a vector of four complex output signals. The
real and imaginary parts of the input and output signals
are represented as 16-bit Boolean words. We defined
separate functions in HOL for arithmetic operations such
as addition, subtraction, and multiplication on complex
two’s complement 16-bit Boolean words. Then, we built
the complete butterfly structure using a proper combina-
tion of these primitive operations.

Thereafter, we described a radix-4 dragonfly block
as a conjunction of a radix-4 butterfly and four 16-bit
twiddle factor complex multipliers. Finally, we modeled
the complete RTL description of the radix-4 64-point
structure in HOL. The FFT block is defined as a con-
junction of 48 instantiations of radix-4 dragonfly blocks.
Proper time instances of the input and output signals are
applied to each block, according to Figure 9.

Following similar steps, we described the radix-4 64-
point FFT structures as fixed-point, floating-point, and
real domains in HOL using the corresponding complex
data types and arithmetic operations.

The formal verification of the radix-4 decimation in
frequency FFT algorithm case study was performed
based on the commutating diagram in Figure 2, in that
we proved hierarchically that the FFT Netlist implies
the FFT RTL; and then proved that the FFT RTL
description implies the corresponding fixed-point model.
The proof of the FFT block is then broken down into the
corresponding proof of the dragonfly block, which itself
is broken down into the proofs of butterfly and primi-
tive arithmetic operations. We used the data abstraction
functions described in Section II-A to convert a complex
vector of 16-bit two’s complement Boolean words into
the corresponding fixed-point vector.

Then, we proved three theorems encompassing the
error analysis of the radix-4 decimation in frequency
FFT algorithm, as discussed in Section 3. The first
lemma represents the error between the real number
specification and the floating-point specification. The

second lemma represents the error between the real
number and the fixed-point specifications. The third
lemma represents the error between floating-point and
fixed-point specifications. According to these lemmas,
the floating-point and fixed-point implementations and
the real specification of a radix-4 decimation in fre-
quency FFT algorithm are related to each other based
on the corresponding data abstraction, and error analysis
functions.

Finally, using the obtained theorems, we easily de-
duced our ultimate theorem proving the correctness of
the real specification from the RTL implementation, tak-
ing into account the error analysis computed beforehand.
A complete list of the derived HOL definitions and
theorems can be found in [1].

IV. RELATED WORK

Work related to our project can be classified in three
groups. Namely, using formal methods for error analysis,
paper-and-pencil error analysis of FFT algorithms and
formal verification of FFT designs.

A. Error Analysis in Formal Verification

Previous work on the error analysis in formal verifica-
tion was done by Harrison [20] who verified the floating-
point algorithms such as the exponential function against
their abstract mathematical counterparts using the HOL
Light theorem prover. As the main theorem, he proved
that the floating-point exponential function has a correct
overflow behavior, and in the absence of overflow the
error in the result is bounded to a certain amount. He
also reported on an error in the hand proof mostly
related to forgetting some special cases in the anal-
ysis. This error analysis is very similar to the type
of analysis performed for DSP algorithms. The major
difference, however, is the use of statistical methods and
mean square error analysis for DSP algorithms which
is not covered in the error analysis of the mathematical
functions used by Harrison. In this method, the error
quantities are treated as independent random variables
uniformly distributed over a specific interval depending
on the type of arithmetic and the rounding mode. Then
the error analysis is performed to derive expressions for
the variance and mean square error. To perform such
an analysis in HOL, we need to develop a mechanized
theory on the properties of random variables and random
processes. This type of analysis is not addressed in this
paper and is a part of our future work.

Huhnet al. [23] proposed a hybrid formal verification
method combining different state-of-the-art techniques to
guide the complete design flow of imprecisely working
arithmetic circuits starting at the algorithmic down to
the register transfer level. The usefulness of the method
is illustrated with the example of the discrete cosine
transform algorithms. In particular, the authors have

IEEE TRANSACTIONS ON CAD OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXX 200X 14

shown the use of computer algebra systems like Mathe-
matica or Maple at the algorithmic level to reason about
real numbers and to determine certain error bounds for
the results of numerical operations. In contrast to [23],
we proposed an error analysis for DSP designs using
the HOL theorem prover. Although computer algebraic
systems such as Maple or Mathematica are much more
popular and have many powerful decision procedures
and heuristics, theorem provers are more expressive,
more precise, and more reliable [22]. One option is
to combine the rigour of the theorem provers with the
power of computer algebraic systems as proposed in
[22].

B. Error Analysis of FFT Algorithms

Analysis of errors in FFT realizations due to finite pre-
cision effects has traditionally relied on paper-and-pencil
proofs and simulation techniques. The roundoff error
in using the FFT algorithms depends on the algorithm,
the type of arithmetic, the word length, and the radix.
For FFT algorithms realized with fixed-point arithmetic,
the error problems have been studied extensively. For
instance, Welch [35] presented an analysis of the fixed-
point accuracy of the radix-2 decimation-in-time FFT
algorithm. Tran-Thong and Liu [33] presented a general
approach to the error analysis of the various versions of
the FFT algorithm when fixed-point arithmetic is used.
While the roundoff noise for fixed-point arithmetic enters
into the system additively, it is a multiplicative compo-
nent in the case of floating-point arithmetic. This prob-
lem is analyzed first by Gentleman and Sande [16], who
presented an upper bound on the mean-squared error for
floating-point decimation-in-frequency FFT algorithm.
Weinstein [34] presented a statistical model for roundoff
errors of the floating-point FFT. Kaneko and Liu [25]
presented a detailed analysis of roundoff error in the FFT
decimation-in-frequency algorithm using floating-point
arithmetic. This analysis is later extended by the same
authors to the FFT decimation-in-time algorithm [27].
Oppenheim and Weinstein [32] discussed in some detail
the effects of finite register length on implementations
of digital filters, and FFT algorithms.

In order to validate the error analysis, most of the
above work compare the theoretical results with ex-
perimental simulation. In this paper, we showed how
the above error analyses for the FFT algorithms can
be mechanically performed using the HOL theorem
prover, providing a superior approach to validation by
simulation. Our focus was on the process of translating
the hand proofs done in the sixties and seventies into
equivalent proofs in HOL. The analysis we developed
is mainly inspired by the work done by Kaneko and
Liu [25], who proposed a general approach to the error
analysis problem of the decimation-in-frequency FFT
algorithm using floating-point arithmetic. Following a

similar idea, we have extended this theoretical analysis
for the decimation-in-time and fixed-point FFT algo-
rithms. In all cases, good agreements between formal
and theoretical results were obtained.

C. Formalization and Verification of FFT Algorithms

Related work on the formalization and mechanical
verification of the FFT algorithm was done by Gamboa
[15] using the ACL2 theorem prover. The author for-
malized the FFT as a recursive data-parallel algorithm,
using the powerlist data structure. He also presented an
ACL2 proof of the correctness of the FFT algorithm, by
translating the hand proof taken from Misra’s seminal
paper on powerlists [30] into a mechanical proof in
ACL2. In the same line, Capretta [9] presented the
formalization of the FFT using the type theory proof
tool Coq. To facilitate the definition of the transform
by structural recursion, Capretta used the structure of
polynomial trees which is similar to the data structure
of powerlists introduced by Misra. Finally, he proved its
correctness and the correctness of the inverse Fourier
transform (IFT). In another related work, Bjesse [7]
described the verification of FFT hardware at the netlist
level with an automatic combination of symbolic simula-
tion and theorem proving using the Lava hardware devel-
opment platform. He proved that the sequential pipelined
implementation of the radix-4 decimation-in-time FFT
is equivalent to the corresponding combinational circuit.
He also proved that the abstract implementation of the
radix-2 and the radix-4 FFT are equivalent for sizes that
are an exponent of four.

While [15] and [9] prove the correctness of the high
level FFT algorithm against the DFT, the verification
of [7] is performed at the netlist level. In contrast,
our work tried to close this gap by formally specifying
and verifying the FFT algorithm realizations at differ-
ent levels of abstraction based on different data types.
Besides, the definition used for the FFT in [15], [9]
is based on the radix-2 decimation-in-time algorithm.
We cover both decimation-in-time and decimation-in-
frequency algorithms, and radices other than 2. The
methodology we proposed in this paper is, to the best of
our knowledge, the first project of its kind that covers the
formal specification and verification of integrated FFT
algorithms at different abstraction levels starting from
real specification to floating- and fixed-point algorithmic
descriptions, down to RT and netlist gate levels.

V. CONCLUSIONS

In this paper, we described a methodology for the
formal specification and verification of DSP systems
designs at different abstraction levels. We proposed a
shallow embedding of DSP descriptions at different
levels in HOL. For the verification of the transition
from floating- to fixed-point levels, we proposed an

IEEE TRANSACTIONS ON CAD OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXX 200X 15

error analysis approach in which we consider the ef-
fects of finite precision in the implementation of DSP
systems. These include errors due to the quantization of
input samples and system coefficients, and also roundoff
accumulation in arithmetic operations. The verification
from fixed-point to RTL and netlist levels is performed
using traditional hierarchical verification in HOL. In
this paper we demonstrated our methodology using the
case study of the fast Fourier transform algorithms. The
approach covers the two canonical forms (decimation-
in-time, and decimation-in-frequency) of realization of
the FFT algorithm using real, floating-, and fixed-point
arithmetic as well as their RT implementations, each
entirely specified in HOL. We proved lemmas to derive
expressions for the accumulation of roundoff error in
floating- and fixed-point designs compared to the ideal
real specification. Then we proved that the FFT RTL
implementation implies the corresponding specification
at the fixed-point level using classical hierarchical veri-
fication in HOL, hence bridging the gap between hard-
ware implementation and high levels of mathematical
specification. In this work we also have contributed to
the upgrade and application of established real, complex
real, floating- and fixed-point theories in HOL to the
analysis of errors due to finite precision effects, and
applied them on the realization of the FFT algorithms.
Error analyses using theoretical paper-and-pencil proofs
did exist since the late sixties while design verification
is exclusively done by simulation techniques. We believe
this is the first time a complete formal framework has
been proposed for the specification and verification of
the DSP algorithms at different levels of abstraction.
The methodology presented in this paper opens new
avenues in using formal methods for the verification of
digital signal processing (DSP) systems as complement
to traditional theoretical (analytical) and simulation tech-
niques. We are currently investigating the verification
of complex wired and wireless communication systems,
whose building blocks, heavily make use of several
instances of the FFT algorithms. As a future work, we
also plan to extend the error analyses to cover worst-
case, average, and variance errors. Finally, we plan to
link HOL with computer algebra systems to create a
sound, reliable, and powerful system for the verification
of DSP systems.

REFERENCES

[1] B. Akbarpour, “Modeling and Verification of DSP Designs in
HOL,” Ph.D. Thesis, Concordia University, Department of Elec-
trical and Computer Engineering, Montreal, Canada, March 2005.

[2] B. Akbarpour and S. Tahar, “A Methodology for the Formal
Verification of FFT Algorithms in HOL,” In Formal Methods in
Computer-Aided Design, LNCS 3312, pp. 37-51, Springer-Verlag,
2004.

[3] B. Akbarpour and S. Tahar, “Error Analysis of Digital Filters using
Theorem Proving,” In Theorem Proving in Higher Order Logics,
LNCS 3223, pp. 1-16, Springer-Verlag, 2004.

[4] B. Akbarpour and S. Tahar, “The Application of Formal Verifi-
cation to SPW Designs,” In Proceedings Euromicro Symposium
on Digital System Design, IEEE Computer Society Press, pp. 325
-332, Belek, Turkey, September 2003.

[5] B. Akbarpour, S. Tahar, and A. Dekdouk, “Formalization of Fixed-
Point Arithmetic in HOL,” Formal Methods in Systems Design,
27: 173-200, 2005.

[6] R. Boulton, A. Gordon, M. Gordon, J. Harrison, J. Herbert, and
J. Van-Tassel, “Experience with Embedding Hardware Description
Languages in HOL,” In Theorem Provers in Circuit Design, pp.
129-156, North-Holland, 1992.

[7] P. Bjesse, “Automatic Verification of Combinational andPipelined
FFT Circuits,” In Computer Aided Verification, LNCS 1633, pp.
380-393, Springer-Verlag, 1999.

[8] E. O. Brigham, “The Fast Fourier Transform,” Prentice Hall, 1974.
[9] V. Capretta, “Certifying the Fast Fourier Transform with Coq,”

In Theorem Proving in Higher Order Logics, LNCS 2152, pp.
154-168, Springer-Verlag, 2001.

[10] Cadence Design Systems, Inc., “Signal Processing WorkSystem
(SPW) User’s Guide,” USA, July 1999.

[11] Synopsys, Inc., “CoCentricTM System Studio User’s Guide,”
USA, Aug. 2001.

[12] W. T. Cochran et. al., “What is the Fast Fourier Transform,” IEEE
Transactions on Audio and Electroacoustics, AU-15: 45-55,Jun.
1967.

[13] J. W. Cooley and J. W. Tukey, “An Algorithm for Machine Calcu-
lation of Complex Fourier Series,” Mathematics of Computation,
19: 297-301, Apr. 1965.

[14] G. Forsythe and C. B. Moler, “Computer Solution of Linear
Algebraic Systems,” Prentice-Hall, 1967.

[15] R. A. Gamboa, “The Correctness of the Fast Fourier Transform:
A Structural Proof in ACL2,” Formal Methods in System Design,
Special Issue on UNITY, Jan. 2002.

[16] W. M. Gentleman and G. Sande, “Fast Fourier Transforms -For
Fun and Profit,” In AFIPS Fall Joint Computer Conference, Vol.
29, pp. 563-578, Spartan Books, Washington, DC, 1966.

[17] M. J. C. Gordon and T. F. Melham, “Introduction to HOL: A The-
orem Proving Environment for Higher-Order Logic,” Cambridge
University Press, 1993.

[18] J. R. Harrison, “Constructing the Real Numbers in HOL,”Formal
Methods in System Design, 5 (1/2): 35-59, 1994.

[19] J. R. Harrison, “A Machine-Checked Theory of Floating-Point
Arithmetic,” In Theorem Proving in Higher Order Logics, LNCS
1690, pp. 113-130, Springer-Verlag, 1999.

[20] J. R. Harrison, “Floating-Point Verification in HOL Light: The
Exponential Function,” Formal Methods in System Design, 16(3):
271-305, 2000.

[21] J. R. Harrison, “Complex Quantifier Elimination in HOL,” In
Supplemental Proceedings of the International Conferenceon
Theorem Proving in Higher Order Logics, pp. 159-174, Edinburgh,
Scotland, UK, Sep. 2001.

[22] J. R. Harrison and L. Théry, “A Skeptic’s Approach to Combining
Hol and Maple,” Journal of Automated Reasoning, 21: 279-294,
1998.

[23] M. Huhn, K. Schneider, T. Kropf, and G. Logothetis, “Verifying
Imprecisely Working Arithmetic Circuits,” In ProceedingsDesign
Automation and Test in Europe Conference, pp. 65-69, Munich,
Germany, March 1999.

[24] IEEE, Standard for Binary Floating-Point Arithmetic,
ANSI/IEEE Standard 754-1985, The Institute of Electrical
and Electronic Engineers, Inc., 345 East 47th Street, New York,
NY 10017, USA, 1985.

[25] T. Kaneko and B. Liu, “Accumulation of Round-Off Error in
Fast Fourier Transforms,” Journal of Association for Computing
Machinery, 17 (4): 637-654, Oct. 1970.

[26] H. Keding, M. Willems, M. Coors, and H. Meyr, “FRIDGE: A
Fixed-Point Design and Simulation Environment,” In Proceedings
Design Automation and Test in Europe Conference, pp. 429-435,
Paris, France, February 1998.

[27] B. Liu and T. Kaneko, “Roundoff Error in Fast Fourier Trans-
forms (Decimation in Time),” Proceedings of the IEEE (Proceed-
ings Letters), 991-992, Jun. 1975.

[28] Mathworks, Inc., “Simulink Reference Manual,” USA, 1996.

IEEE TRANSACTIONS ON CAD OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXX 200X 16

[29] T. Melham, “Higher Order Logic and Hardware Verification,”
Cambridge Tracts in Theoretical Computer Science 31, Cambridge
University Press, 1993.

[30] J. Misra, “Powerlists: A Structure for Parallel Recursion,” In
ACM Transactions on Programming Languages and Systems, 16
(6): 1737-1767, Nov. 1994.

[31] A. V. Oppenheim and R. W. Schafer, “Discrete-Time Signal
Processing,” Prentice-Hall, 1989.

[32] A. V. Oppenheim and C. J. Weinstein, “Effects of Finite Register
Length in Digital Filtering and the Fast Fourier Transform,”
Proceedings of the IEEE, 60 (8): 957-976, August 1972.

[33] T. Thong and B. Liu, “Fixed-Point Fast Fourier Transform Error
Analysis,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, ASSP 24 (6): 563-573, Dec. 1976.

[34] C. J. Weinstein, “Roundoff Noise in Floating Point FastFourier
Transform Computation,” IEEE Transactions on Audio and Elec-
troacoustics, AU-17 (3): 209-215, Sep. 1969.

[35] P. D. Welch, “A Fixed-Point Fast Fourier Transform Error Anal-
ysis,” IEEE Transactions on Audio and Electroacoustics, AU-17
(2): 151-157, Jun. 1969.

[36] J. H. Wilkinson, “Rounding Errors in Algebraic Processes,”
Prentice-Hall, 1963.

[37] Xilinx, Inc., “High-Performance 64-Point Complex
FFT/IFFT V2.0, Product Specification,” USA, Aug. 2000,
http://xilinx.com/ipcenter.

