129 research outputs found

    Non-functional property analysis using UML2.0 and model transformations

    Get PDF
    Real-time embedded architectures consist of software and hardware parts. Meeting non-functional constraints (e.g., real-time constraints) greatly depends on the mappings from the system functionalities to software and hardware components. Thus, there is a strong demand for precise architecture and allocation modeling, amenable to performance analysis. The report proposes a model-driven approach for the assessment of the quality of allocations of the system functionalities to the architecture. We consider two technical domains: the UML domain for the definition of the model elements (for both description and analysis), and an analysis domain, external to UML, used for formal verification. This report defines three meta-models, one for each domain, and provides automated transformations within and between these domains. A special attention is then paid to temporal property analysis, based on a particular analysis model: the Modular and Hierarchical Time Petri Nets

    Software Architecture Description & UML Workshop

    Get PDF

    Non-functional property analysis using UML2.0 and model transformations

    Get PDF
    Real-time embedded architectures consist of software and hardware parts. Meeting non-functional constraints (e.g., real-time constraints) greatly depends on the mappings from the system functionalities to software and hardware components. Thus, there is a strong demand for precise architecture and allocation modeling, amenable to performance analysis. The report proposes a model-driven approach for the assessment of the quality of allocations of the system functionalities to the architecture. We consider two technical domains: the UML domain for the definition of the model elements (for both description and analysis), and an analysis domain, external to UML, used for formal verification. This report defines three meta-models, one for each domain, and provides automated transformations within and between these domains. A special attention is then paid to temporal property analysis, based on a particular analysis model: the Modular and Hierarchical Time Petri Nets

    Model-Based EIS Performability Analysis

    Get PDF
    In this paper we propose a methodology for the modelling, verification and performance evaluation of communication components of software for enterprise information systems. The methodology is centered upon model-driven development using a subset of UML 2.0 diagrams. It is supported by the proSPEX model processing tool which offers a simulation-based executable verification environment. The model-based development of communication components of wireless middleware solutions is discussed as a motivational example

    Leveraging formal verification tools for DSML users: a process modeling case study

    Get PDF
    15 pagesIn the last decade, Model Driven Engineering (MDE) has been used to improve the development of safety critical systems by providing early Validation and Verification (V&V) tools for Domain Specific Modeling Languages (DSML). Verification of behavioral models is mainly addressed by translating domain specific models to formal verification dedicated languages in order to use the sophisticated associated tools such as model-checkers. This approach has been successfully applied in many different contexts, but it has a major draw- back: the user has to interact with the formal tools. In this paper, we present an illustrated approach that allows the designer to formally express the expected behavioral properties using a user oriented language -- a temporal extension of OCL --, that is automatically translated into the formal language; and then to get feedback from the assessment of these properties using its domain language without having to deal with the formal verification language nor with the under- lying translational semantics. This work is based on the metamodeling pattern for executable DSML that extends the DSML metamodel to integrate concerns related to execution and behavior

    Modeling, Simulation and Emulation of Intelligent Domotic Environments

    Get PDF
    Intelligent Domotic Environments are a promising approach, based on semantic models and commercially off-the-shelf domotic technologies, to realize new intelligent buildings, but such complexity requires innovative design methodologies and tools for ensuring correctness. Suitable simulation and emulation approaches and tools must be adopted to allow designers to experiment with their ideas and to incrementally verify designed policies in a scenario where the environment is partly emulated and partly composed of real devices. This paper describes a framework, which exploits UML2.0 state diagrams for automatic generation of device simulators from ontology-based descriptions of domotic environments. The DogSim simulator may simulate a complete building automation system in software, or may be integrated in the Dog Gateway, allowing partial simulation of virtual devices alongside with real devices. Experiments on a real home show that the approach is feasible and can easily address both simulation and emulation requirement

    Using UML Models for the Performance Analysis of Network Systems

    Get PDF
    The automated functional and performance analysis of communication systems specified with some Formal Description Technique has long been the goal of telecommunication engineers. In the past SDL and Petri nets have been the most popular FDTs for the purpose. With the growth in popularity of UML the most obvious question to ask is whether one can translate one or more UML diagrams describing a system to a performance model. Until the advent of UML 2.0, that has been an impossible task since the semantics were not clear. Even though the UML semantics is still not clear for the purpose, with UML 2.0 now released and using ITU recommendation Z.109, we describe in this paper a methodology and tool called proSPEX, for the design and performance analysis of communication protocols specified with UML
    • 

    corecore