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Foreword by the Workshop Co-chairs 

 
The description of software architectures has always been concerned with the 

definition of the appropriate notations or languages for designing the various architectural 
artifacts. The past ten years, formal or less formal Architecture Description Languages 
(ADLs) and supporting methods and tools have been proposed by researchers. Recently 
UML is being widely accepted in both industry and academia as a language for 
Architecture Description (AD), and there have been approaches of UML-based AD either 
by extending the language, or by mapping existing ADLs onto it. The upcoming UML 
2.0 standard has also created great expectations about the potential of the language to 
capture software architectures and especially allow for early analysis of systems under 
development. The interest in this field is also raised by the IEEE 1471 standard for AD 
that can foster the use of UML through defined viewpoints. Furthermore, MDE and 
MDA are tightly connected with both UML and AD, thus promoting new approaches of 
combining these two.  

The interest of the UML community in the field of software architecture 
description is growing over the recent years, as indicated from the rising number of 
published research papers. This workshop will attempt to delve into this field, by 
presenting the latest research advances and by facilitating discussions between experts. 

This workshop aims to bring together researchers and practitioners that work on 
all aspects of Architectural Description of software systems with respect to the Unified 
Modeling Language. It will foster a presentation of the latest approaches on the field 
from both industry and academia, as well as a creative discussion between the 
participants in specific themes. Topics of the workshop include but are not limited to: 

• Case studies of UML-based AD 
• CASE tools that foster UML-based AD 
• Theoretical aspects, e.g. pros and cons of UML applied to AD, limitations of 

UML for AD 
• UML profiles for AD 
• Quality evaluation of UML-based AD 
• Mapping existing ADLs to UML  
• OCL in AD 
• UML 2.0 & AD 
• Transformations from requirements to architecture and to detailed design 
• Modeling architecture in an MDE chain 
• Application of UML to IEEE 1471-compliant AD 
• Alternatives to UML for AD 
• Architecting dependable and fault tolerant systems in UML 
 



A keynote speech will open the workshop, entitled ‘Specifying and Enforcing 
Software Architectures’, by Bran Selic of IBM Rational Software. After the sessions of 
paper presentations a panel discussion of invited experts will follow.  

The intended audience will be comprised of researchers and practitioners in 
Architectural Description relating to the use of UML. Attendance will be limited to a 
maximum of 30 participants. 

 
Please visit the following URL for further information: http://uml2004.uni.lu/ 
After the workshop, all the presented papers and discussion summaries will be 

made available through this website. 
 
We extend our thanks to all those who have participated in the organization of this 

workshop, particularly to the program committee. They are: 
Arsanjani Ali, IBM Global Services, USA 
Bosch Jan, University of Groningen, the Netherlands 
Dubois Eric, CRP Henri Tudor, Luxembourg 
Egyed Alexander, Teknowledge Corporation, USA 
Ewetz Hans, Clearstream International, Luxembourg 
Garlan David, Carnegie Mellon University, USA 
Issarny Valerie, INRIA, France 
Kruchten Philippe, University of British Columbia, Canada 
Ortega-Arjona Jorge, Universidad Nacional Autonoma de Mexico, Mexico 
Pastor Oscar, Universidad Politecnica de Valencia, Spain 
Poels Geert, University of Arts and Sciences Brussel, Belgium 
Razavi Reza, University of Luxembourg, Luxembourg 
Riehle Dirk, Stanford University, USA 
Romanovsky Alexander, University of Newcastle, UK 
Rosenblum David, University College London, UK 
Sharif Niloufar, Clearstream International, Luxembourg 
 
Sincerely, 
Nenad Medvidovic, U.S.A. 
Paris Avgeriou, Luxembourg 
Nicolas Guelfi, Luxembourg 
 The organizing committee 



Documenting Architectural Connectors with
UML 2

James Ivers1, Paul Clements1, David Garlan2, Robert Nord1, Bradley
Schmerl2, and Jaime Rodrigo Oviedo Silva2

1 Software Engineering Institute, Carnegie Mellon University, Pittsburgh PA 15213,
USA

2 School of Computer Science, Carnegie Mellon University, Pittsburgh PA 15213,
USA

Abstract. Previous versions (1.x) of the UML have been an awkward fit
for documenting software architectures. Users have adopted conventions
for representing architectural concepts using different combinations of
UML modeling elements or have created profiles to specialize the UML.
Changes incorporated in UML 2 have improved UML’s suitability for ar-
chitectural documentation in many ways, but UML is still an awkward fit
for documenting some types of architectural information. In particular,
documenting architectural connectors remains problematic.

1 Introduction

Because architectures are intellectual constructs of enduring and long-lived im-
portance, communicating an architecture to its stakeholders becomes as impor-
tant a job as creating it in the first place. An architecture must be clearly un-
derstood if others are to build systems from it, analyze it, maintain it, and learn
from it. Therefore, increased attention is now being paid to how architectures
should be documented.

Modern software architecture practice embraces the concept of architectural
views as part of the solution [1–4]. A view is a representation of a set of system
elements and relations associated with them [5]. Systems are typically docu-
mented in terms of multiple views, each of which represents aspects of the system
needed to analyze and communicate different quality attributes of the system.
For instance, a layered view is useful for understanding modifiability, while a
communicating processes view is useful for understanding system performance.

The widespread presence of UML has led practitioners to try to use it to
document software architectures. The results have been mixed and somewhat
disappointing. For example, UML has no built-in way to represent the basic ar-
chitectural concept of a layer. Nor was there any straightforward way to represent
a connector, in the rich sense proposed by Garlan and Shaw [6]. Nevertheless,
ways have been proposed to represent several familiar architectural views using
UML. Previous work has investigated ways that it can be used as is to repre-
sent architectural concepts or ways that UML can be specialized to improve its
suitability for architectural documentation, such as [7–9].
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During the development of UML 2, changes were made that significantly im-
prove UML’s suitability for architectural documentation [10]. Structured Clas-
sifiers permit improved representation of architectural hierarchy, often used ef-
fectively to expose detail in stages or for different stakeholders. Ports provide a
natural way to represent runtime points of interaction and collections of inter-
faces involved in a common protocol.

Unfortunately, some of UML’s shortcomings with respect to architectural
documentation remain. In this paper, we examine one such shortcoming–docu-
menting architectural connectors with UML 2. Though UML 2 provides better
support for representing connectors, users are still left with a variety of modeling
options to choose among, each of which is best suited to different uses.

To distinguish between architectural and UML uses of the same term, we
capitalize the names of UML modeling elements (e.g., Component or Class) and
use lower case for architectural concepts (e.g., component or connector).

2 Component and Connector Views

Component and connector views (C&C views, for short) present an architecture
in terms of elements that have a runtime presence (e.g., processes, clients, and
datastores) and pathways of interaction (e.g., communication links and proto-
cols, information flows, and access to shared resources). Components are the
principal units of run-time interaction or data storage. Connectors are the inter-
action mechanisms among components. Different styles of C&C views specialize
this vocabulary and often impose additional topological restrictions. For ex-
ample, in a pipe-and-filter view, filters are the components and pipes are the
connectors. In a shared-data view, the data repository and the accessors are the
components; the access mechanisms are the connectors. And in a client-server
view, the components are clients and servers; the connectors are the protocol
mechanisms by which they interact.

When considering documentation options it is important to be clear about
criteria for choosing one way of using UML 2.0 over other possibilities. These
criteria allow us to determine when a particular documentation option is likely
to be appropriate. The criteria (the first three of which are derived from [8]) are

– Semantic match: The UML modeling elements should map intuitively to the
architectural concepts that are being documented.

– Visual clarity: The UML description should bring conceptual clarity to a
system design, avoid visual clutter, and highlight key design details.

– Completeness: All relevant architectural features for the design should be
expressible in the UML model.

– Tool support: Not all uses of UML are equally supported by all tools, par-
ticularly when specializing the UML.

The changes in UML 2 provide better representation options for many archi-
tectural concepts with respect to these criteria, particularly in terms of semantic
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match and completeness (as elaborated in [11]). However, UML 2’s representa-
tion options for architectural connectors remain deficient. Ideally, we look for a
UML modeling option that is

– typically used to represent pathways of interaction,
– visually distinct from component representations and introduces a minimum

number of visual elements,
– able to represent connector behavior (e.g., a state machine), state (e.g., queue

size), and interfaces over which a connector’s protocol might be enforced, and
– supported by UML tools implementing the minimal features needed to be

compliant with the UML 2 standard.

3 Documenting Connectors with UML 2

While the Connector element introduced in UML 2 is intended to represent
communication links (a good semantic match to architectural connectors), it
lacks the expressiveness needed to satisfy our completeness criteria. In partic-
ular, semantic information such as a connector’s behavior or interfaces cannot
be associated with a UML Connector. As a result, we examine other options
available in UML 2 and how each compares to our criteria. We restrict our-
selves to solutions that avoid specializing the UML to facilitate communication
among varied documentation users, but briefly mention one simple specialization
(examples of more complex specializations include [7, 9]).

In the following discussion and examples, we represent architectural compo-
nents using UML Classes. UML Components could also be used in many cases,
but for the purpose of this discussion, the differences are negligible.

3.1 Using Associations

An Association can be used to represent an architectural connector (as shown
in Figure 1 for a pipe connector), though the result is much the same as us-
ing a UML Connector. An Association is a good semantic match, representing
a relationship among elements. An Association is also a good visual solution,
using a single visual element (a line) that is distinct from the visualization of
components (boxes). In fact, this visual distinction is effectively what has been
used for years in informal “box-and-line” diagrams of architectures.

An Association, like a Connector, is a poor solution in terms of completeness
though. While it can be labeled with a stereotype (such as <<pipe>> in Figure
1) to denote the type of connector used, a more precise semantic definition cannot
be supplied. Neither behavioral descriptions (e.g., State Machines), state (e.g.,
Attributes), nor Interfaces can be associated with an Association.

:Filter :Filter
<<pipe>>

Fig. 1. Representing a connector using an Association

3



3.2 Using Association Classes

Alternatively, an Association Class can be used to represent an architectural
connector (as shown in Figure 2a), which does permit an appropriate semantic
definition to be supplied. An Association Class is still visually distinct from a
Class used to represent a component, but the difference is less stark than when
using the Association option. Additionally, visual clutter begins to accumulate,
with two lines and a box for each connector.

Further, in order to unambiguously associate component interfaces with con-
nector interfaces, additional lines need to be added for UML Assembly Connec-
tors (see Figure 2b), adding more visual clutter.

:Filter :Filter
pIn

source sink

:Filter :Filter
pIn

source sink

(a) (b)

pOut

:Pipe

pOut

:Pipe

Fig. 2. Representing a connector using an Association Class, without (a) and with (b)
showing connections between component and connector interfaces (Ports)

3.3 Using Classes

Alternatively, a Class can be used to represent an architectural connector (as
shown in Figure 3a). Like the Association Class option, using a Class does permit
appropriate semantic information (e.g., behavioral descriptions and interfaces)
to be supplied. A Class introduces less visual clutter than the Association Class
option, but removes the visual distinction between component and connector
representations–everything is now a Class.

Defining an <<ArchitecturalConnector>> stereotype for a Class can improve
the situation. Specifically, if the stereotype could be defined to have a different
visualization (such as the thick line used in Figure 3b), visual distinctiveness is
restored. Specializing a Class in this way would also improve this option’s seman-
tic match. While a Class is not an intuitive semantic match for an architectural
pathway of interaction, an <<ArchitecturalConnector>> stereotype would de-
fine its own semantics. Unfortunately, this use of stereotypes requires graphical
support not offered by most UML tools, limiting its practical application.

:Filter :Pipe :Filter
pOut

source sink

pIn

:Filter :Filter
pOut

source sink

pIn

(a)

(b)

Fig. 3. Representing a connector using a Class (a) and using a Stereotyped Class that
changes its visualization (b)
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4 Conclusion

In previous versions, the UML has been an awkward fit for documenting software
architectures. Though architectural concepts could be represented using different
UML modeling elements, in many cases there has been no clear best option for
documenting some concepts, often resulting in compromising completeness or
semantic match to fit within the UML vocabulary.

UML 2 has improved considerably by introducing new elements such as
Structured Classifier and Port, which are excellent semantic matches to their
corresponding architectural concepts. These improvements provide a clear best
option, and reduce the confusion that can be caused by modeling the same archi-
tectural concepts differently for different systems or in different organizations.

However, there has not been a similar leap forward in terms of documenting
architectural connectors. The new UML 2 Connector modeling element is not
sufficiently rich, making it difficult to associate detailed semantic descriptions or
representations with them; consequently, they are a poor choice for representing
C&C connectors, and less natural representations must be used. This paper
reviews the most suitable options and the shortcomings of each option.
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Using UML for SA-based Modeling and Analysis

V. Cortellessa, A. Di Marco, P. Inverardi, H. Muccini, P. Pelliccione

Dipartimento di Informatica, Università degli Studi di L’Aquila ,
{cortelle, adimarco, inverard, muccini, pellicci}@di.univaq.it

Abstract. The use of UML as a language for architecture description
has strongly impacted the way academia and industry approach the mod-
elization of Software Architectures (SA).

The activities of our research group are quite strictly related to the us-
age of different UML-like notations for analysis purposes. In this paper
we outline our approaches for SA-based model-checking, testing, perfor-
mance analysis and reliability. We show how the standard UML notation
needs to be extended in order to provide information useful for analysis.

We finally introduce an ongoing work devoted to provide a framework
for software analysis integration.

1 Introduction

In recent years, Software Architecture (SA) has emerged as an autonomous dis-
cipline, requiring its own concepts, formalisms, methods, and tools [17]. SA re-
search addresses the design and analysis of complex distributed systems and
tackles the problem of scaling up in software engineering. Through suitable ab-
stractions, it provides the means to make large applications manageable.

Formal Architecture Description Languages (ADLs) (surveyed in [23]) have
been employed to specify SAs in a formal and rigorous way, thus complement-
ing/replacing informal box-and-line notations. Many methods and tools devel-
oped on the basis of these ADLs have been proposed for SA-level testing, model
checking, deadlock analysis, performance analysis and so on [16].

Although several studies have shown the suitability of such languages for
analysis purposes, formal languages are not yet commonly used in industrial
applications which tend to prefer model-based, semi-formal notations. The in-
troduction of the Unified Modelling Language (UML) as the de-facto standard to
model software systems has increased the use of model-based notations. Further-
more, the introduction of UML extensions makes UML diagrams more suitable
for SA modeling and analysis.

In this direction, we recall the seminal paper by a research group at the
University of California Irvine [24], which proposed a set of extensions to make
UML semantically equivalent to the C2 architectural style, as well as the idea of
describing SAs through different “views” [22]. Since then, many other extensions
have been proposed [18] and the concept of views has been adopted in industrial
contexts [20, 1].
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In this paper, we report on how our group is using UML to specify SAs for
analysis purposes. We briefly report on ongoing work on modeling SA through
UML as a way to produce a specification usable for different kinds of analysis.
In particular, we describe current work on model-checking, testing, performance
and reliability analysis applied at the SA level and we introduce TOOL•one, a
joined effort to incorporate all such work in the same analysis framework.

1.1 The SEA Group

The Software Engineering and Architecture Group (SEA Group) – Computer
Science Department, University of L’Aquila – under the guidance of Paola In-
verardi mostly works in software modeling and analysis at the architectural level.

Some of our research work makes use of UML as the specification language
for SA. There are multiple interpretations of software architectures in UML [24],
and in this paper we show our use of UML for different analysis.

In Section 2 we describe our approach for SA-level model-checking. Section
3 outlines our SA-based code testing approach. Section 4 describes an approach
to estimate performance at the architectural level. Section 5 highlights the use
of UML to model and analyze reliability of SA. Each section has the same
structure: we describe how UML is used for modeling SAs and how the produced
model is used for analysis. To conclude, we introduce the TOOL•one framework
in Section 6 and draw some conclusions in Section 7.

2 Charmy (CHecking ARchitectural Model consistencY)

Charmy is a framework that aims at assisting the software architect in designing
Software Architectures and in validating them against functional requirements.
Model checking techniques are used to check the consistency between the SA
and functional requirements.

A software process is associated to the framework to help identifying and
refining architectural models. Charmy supports also a compositional verifica-
tion of properties [6] and formal analysis of architectural patterns [5]. Finally,
Charmy is tool supported: it offers a graphical user interface which helps to
specify the software architecture and automates the approach.

2.1 Charmy usage of UML to model Software Architectures

Charmy allows to specify the SA through model-based specifications that are
extensively used in industrial projects. In particular, as graphically outlined in
Figure 1, the SA topology is modeled through stereotyped class diagrams, state
machines are used to specify how architectural components behave, and scenarios
are used to specify selected properties. State machines are automatically inter-
preted in order to synthesize a formal prototype in Promela while scenarios are
automatically translated into Büchi Automata expressing behavioral properties.
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SA topology
SA dynamics

Comp 1 Comp 2

Comp 3

Comp 4

e1

e2 e3e4

e5

Promela
Prototype

LTL
Formulae/

Buchi
Automata

SPIN
(standard checks)

Step 1

Step 2

Step 3

Comp1

Comp2

Comp3

SPIN
(Charmy specific

checks)Comp1 Comp2 Comp4
e1 e3

e2

Component
State machines

Scenarios

Fig. 1. The Framework

The state machine formalism used by Charmy is a subset of UML State
Diagrams (Fig. 2.a). Transitions are labeled as in the following:

‘[‘guard‘]‘event‘(‘parameter list‘)“/‘op1‘; ‘op2‘; ‘ · · · ‘; ‘opn

where guard is a boolean condition that denotes the transition activation. An
event can be a send or a receive action (denoted by an exclamation mark “!”
or a question mark “?”, respectively) of a message, or an internal operation (τ)
(i.e. something not visible from the environment). Send and receive actions are
performed over defined channels ch. Components can exchange parameterized
events properly defined in the parameters list. op1, op2 · · · , opn are the operations
performed when the transition fires.

S0 s1

!m2

!m1(e)

S2

?m3 S0 s1
?m2

[x!=0]?m 1(e)/Op();

Component P Component Q

Comp P Comp Q

[x!=0] e: m 1

f: m2

a) b)

r: m3
!m3

C1

Fig. 2. State diagrams and Scenarios formalisms

In Charmy scenarios are used to describe temporal properties we want to
check on the SA. They are used to model both desired and undesired scenarios.
Charmy scenarios (Fig. 2.b) are described using a UML notation, stereotyped
so that i) each rectangular box represents a component, ii) each arrow defines a
communication line (a channel) between the left and the right components. Both
synchronous and asynchronous communications are taken into account. Between
a pair of messages we can select if other messages can occur (loose relation) or
not (strict relation).

Graphically, the strict relation is realized whit a thick line that lies the mes-
sages pair (as in Fig. 2.b, between messages m1 and m3). Constraints, graphically
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represented as a filled circle, are introduced to define a set of messages that must
never occur in between the message containing the constraint (i.e., the one with
the filled circle) and its predecessor (e.g., in Fig. 2.b, the constraint C1 must
be verified between m3 and m1). Constraints represent a weaker version of the
strict ordering: in fact, while a strict order between messages m1 and m2 im-
poses that no other message may happen, a constraint C (over the same pair of
components) imposes that messages defined in C may not happen.

Other improvements are added to increase the model expressiveness. Fol-
lowing graphical notations used in the Timeline Editor [21] (a tool created by
Margaret Smith at Bell Labs), there are three different types of messages that the
components can exchange (see Fig. 2.b): (i) Regular messages: are identified by
the “e” label and they denote a set of messages that constitute the precondition
for a desired (or an undesired) behavior. A Regular message must not neces-
sary happen in every system execution. However, if it happens, it is relevant.
(ii) Required messages: are identified by the “r” label. If the precondition for a
Required message is satisfied, then the system must exchange this message. (iii)
Fail messages: are identified by the “f” label and identify messages that should
never be true, when its precondition becomes true.

2.2 Analysis results obtainable by Charmy

The Charmy tool allows the software architect to check if the SA Promela
prototype satisfies the set of desired properties expressed by using scenarios.
The model checker SPIN [21] is the verification engine in Charmy; a Promela
specification and Büchi Automata, modelling the SA and the requirements re-
spectively, are both derived from the source notations. SPIN takes in input such
specifications and performs model checking. In the case of a not valid result a
counter-example is generated, showing the trail that conducts to the error. The
trail is helpful for the software architect to adjust the component or the set of
components that caused the anomalous behavior.

Technical details on Charmy may be found in [7], and an approach to in-
tegrate Charmy into a real software development life-cycle can be found in
[8].

3 Testing at the Software Architecture level

SA-based testing is a particular instantiation of specification-based testing, de-
voted to check that the Implementation Under Test (IUT) fulfills the (architec-
tural) specifications [2]. The abstraction provided by an SA allows testing to
take place early and at a higher-level. The SA-based testing activity allows the
detection of structural and behavioral problems before they are coded into the
implementation. Various approaches have been proposed on testing driven by
the architectural specification, as analyzed in [25].

The approach we propose spans the whole spectrum from test derivation
down to test execution. Our approach is based on the specification of SA dy-
namics, which is used to identify useful schemes of interactions between system
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components, and to select test classes corresponding to relevant architectural
behaviors. The goal is to provide a test manager with a systematic method to
extract suitable test classes for the higher levels of testing and to refine them
into concrete tests at the code level.

In particular, we propose an SA-based conformance testing approach with the
goal of testing the implementation for conformance to the software architecture.
The SA specification is used as a reference model to generate test cases while its
behavioral model, which describes the expected behavior, serves as a test oracle.

3.1 Use of UML to model Software Architectures for Testing

In this section, we focus on how to specify a software architecture for testing
purposes.

In previous experience [3, 26, 4, 25] we used different notations to specify be-
havioral aspects of an SA. In [3] we used the Chemical Abstract Machine (Cham)
ADL to specify the SA behavior thus producing a global/monolitic Labelled
Transition System (LTS) of the system behavior. In [25] we made use of the
Finite State Process (FSP) algebra to specify the behavior of each single compo-
nent/connector in the SA in the form of LTSs. In [26] we proposed a specializa-
tion and refinement of our general framework by dealing with an SA in the C2
architectural style combined with a behavioral specification in FSP. In [4], we
integrated our testing framework with model-checking techniques, thus specify-
ing the SA following the Charmy formalism for state machines (as introduced
in Section 2.1).

Based on this experience, we may here discuss what needed to adapt previ-
ously adopted notations to UML-line ones. Here what required:

– An UML class diagram needs to be used to specify the SA topology. Stereo-
types such as “component” and “connector” may be used to create a seman-
tic mapping between classes and architectural elements (similarly to what
done in [24]);

– State diagrams may be used to describe how each component/connector be-
haves. A mechanism to put in parallel the different state diagrams is needed,
in order to produce a behavioral specification of the entire architecture. In
[4], for example, in order to integrate both testing and model-checking, we
specified the SA behavior through the Charmy notation for state diagrams
and extracted test cases starting from model-checking results;

– Sequence diagrams, may be used to depict SA-level and code-level test cases
(as in [25]).

3.2 Analysis results obtainable by the approach

The specification of structural and behavioral aspects of the SA represents the
first step in our five-steps SA-based testing framework (as shown in Figure 3).
When the SA is specified (Step 0), the behavioral model is abstracted in order to
define a testing criteria which allows to express all high-level behaviors we want
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to test, hiding any other irrelevant one (Step 1). An architectural test case (ATC)
is defined as all those actions which cover a sequence of system actions that are
meaningful at the software architecture level, i.e., a set of complete paths that
appropriately cover the minimized graph (Step 2). Since ATCs strongly differ
from executable code-level test cases, due to the abstraction gap between SA
and coding (the traceability problem initially discussed in [14]) we introduce a
“mapping” function which maps SA-level functional tests into the code (Step
3). Finally, the code is run over the identified test cases. The execution traces
are analyzed to check whether the system implementation works correctly with
respect to the architectural tests (Step 4). The architectural model works as an
oracle, identifying when the test case fails or succeeds.

SA-spec Testing
Criterion

Map SA-level Test Cases
into Code-level Test Cases
as a way to select T for P

Extract SA-level
Test Cases

(ATCs)

Run T over P
and Evaluate

Results

Step 0 Step 1 Step 2 Step 3 Step 4

Fig. 3. The Testing Framework

In previous experience, we shown how such framework may be implemented
in a systematic way in order to identify SA-level test cases, which, refined at the
code level, may be run to provide confidence on the code conformance to the
SA specification. By adopting UML instead of previous specification languages
and models, we are confident may be gain the same results, since the expressive
power of UML (for testing purposes) is comparable with (previously used) ADLs.

4 SAP•one (Software Architectural Performance)

Generally, designers have to choose a Software Architecture (SA) among several
functionally equivalent SAs. Such choice is driven by non-functional requirements
such as performance, security, reliability, and others constraints. We have defined
an approach, called SAP•one [13], which allows us to make quantitative analysis
on SAs, in order to help the architects and designers in that choice.

SAP•one automatically generates a performance model, based on a Queueing
Network model (QN), from a SA specification described by UML 2.0 Diagrams
[27]. Since performance analysis required suitable information on performance
relates aspects, the SA description should provide additional information de-
scribing such aspects. We use the UML profile for Schedulability, Performance
and Time (SPT) [28], introduced by OMG, to annotate the UML diagrams with
such an information.

A QN model is defined by a set of service centers, a topology representing
how the service centers are connected, and a workload intensity modelling the
behavior of the sources generating the requests (QN customers). The definition
of the service centers, in terms of their service rates and the scheduling policies
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of their waiting queues, and the workload intensity, that is the definition of the
incoming traffic, is generally called parameterization of the QN model. In our
approach, a QN model represents the software architecture we want to analyze
and a service center in the QN model corresponds to an architectural component.

Since in general, the software system provides several services to its users, the
requests entering the software system are of several types. Also the customers
entering to the QN model should be of different types. Moreover, the software
system has different behaviors according to the different types of requests and
this implies that also the QN customer types representing the user requests
should have different behavior in the QN model. The behavior of a customer is
defined by the chain of services it requires to the service centers in the QN.

In our approach, the SA description is used to generate the QN topology,
whereas the additional information defines the QN model parameterization.
Feedbacks at the SA description level could be also provided by annotating
the UML diagrams with the performance results obtained by the analysis.

4.1 SAP •one usage of UML to mo del Software Architectures

Software Architecture describes the system at a very high level of abstraction.
It generally specifies the (statical) structure of the software system and its (dy-
namical) behavior. In our approach we use UML 2.0 to describe the structure
and the behavior of the software system. In particular we use UML 2.0 Com-
ponent Diagram to model the statics in terms of the software components and
connectors (see Figure 4-SA structure). Instead the description of the behavior
of the software system is done by using the UML 2.0 sequence diagrams where
the lifelines represents the software component instances and the arrows model
their interactions (see Figure 4-SA dynamics). Moreover we use Use Case Dia-
grams to specify the services provided by the software system we are considering
(see Figure 4-SA services).

With respect to a previous work [12], we migrated from MSC to UML 2.0
since this last version of UML improves the expressiveness of the UML notation
providing the definition of all facilities we need to generate the QN model. In
particular, it strengthens the definition of Sequence Diagrams, by introducing
all the facilities previously held only from the MSC notation. UML 2.0 also
defines new operators on Sequence Diagrams that can facilitate and improve our
approach. For example, operators such as alternative, parallel, reference
and loop make more concise the software behavioral description allowing the
representation of several execution traces in a single Sequence Diagram. The new
operator ignore, instead, allows the slicing of the software system behavior by
removing unnecessary details. It is very useful because it allows the simplification
of the target model by acting at the software architecture level.

The UML SPT profile is used in a standard way except for the component
diagram. Since the SPT profile has been defined on UML 1.x, no annotations
on component diagram are specified in the profile. However, we annotate the
component diagram with the <<PAhost>> stereotype to model active resources,
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Fig. 4. UML as ADL for SAP•one

and <<PAstep>> to specify the service rate of the component services. See Figure
4-SA structure for an example.

As shown in Figure 4, the use case diagram gives information on the types of
QN customer entering the system. The sequence diagrams are used to generate
the QN topology and the chains definition. The Sequence Diagram describes the
behavior of the associated type of QN customers in the software system. Since
there is a mapping between the sequence diagram and type of QN customers, the
Sequence diagram gives information on the workload intensity of the class of cus-
tomer it describes (see <<PAclosedLoad>> stereotype in Figure 4-SA dynamics).
The annotated component diagram provides information on the parameteriza-
tion of the service centers of the QN, such as the type of the service center (e.g.
servers with waiting queue or a delay), the rates of the services they provide and
the scheduling policies they use to extract jobs from their waiting queues.

4.2 Analysis results obtainable by SAP•one

Through SAP•one it is possible to evaluate the response time of the system use
cases, the utilization and the throughput of each software component. The feed-
back step at the software architecture level could be improved with a graphical
mechanism that permits to highlight the components and/or the services (use
cases) that do not meet the performance requirements. We are also investigating
suitable techniques that, from the SA description and the performance results
obtained from the analysis, automatically provides to the software designers SA
alternatives that can overcome the identified performance problems.

5 Software Architectural Reliability

In the past, several techniques have emerged for estimation and analysis of
software reliability at the architectural level. We are particularly interested to
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the techniques that model the application reliability as a function of reliabil-
ity of individual components and (possibly) connectors [19]. These are different
from classical system level approaches, which treat the system as a whole and
hide valuable component information from the analysis. In fact, in modern soft-
ware/hardware systems the ability to study the system’s reliability in terms of
the reliability of its components and connectors is becoming crucial, as (besides
the well-known advantages of early failure detection) it allows the system archi-
tect to select components with suitable reliability characteristics in cases where
alternative reusable assets are available.

5.1 Use of UML from the approach to model Software Architectures

In order to provide a unique framework for reliability prediction in the archi-
tectural phase, the idea of extending UML to represent concepts in this domain
may be a reasonable starting point. We have proposed an extension of UML to
represent concepts in the reliability domain [9]. At a certain extent, our approach
is closely related to the modelling proposed in [29], which starts from a wider
perspective, as it aims at modelling the means for reliability (i.e. support for
fault tolerance, fault removal and fault forecasting) beside the basic concepts of
fault, error and failure. Our extensions fall in the same domain, but they are
conceived to model (up to date) only the aspects that concerns reliability of
component-based systems.

In Figure 5 we show some stereotypes that we have introduced, as well as
how they relate to other stereotypes belonging to existing profiles. Actually
all of them inherit from stereotypes in the General Resource Modeling of the
Schedulability, Performance and Time profile [28]. Shaded boxes in Figure 5
contain the name of the stereotype (e.g., Active Resource) and the name of
the package the stereotype belongs to (e.g., Resource Types). The rationale
behind our approach is that in order to model the reliability of a component-
based system three types of data have to be expressed: (i) the user profile, (ii)
the ”atomic” failure probabilities of components and connectors, and (iii) their
utilizations. In Figure 5 REuser models a type of user that may require services
to the system (e.g., privileged customer or new customer for an e-commerce web
site). The user profile is intended as a combination of the probability that a type
of user accesses to the system and the probability that such type of user requires
a certain service among the available ones. Such combination allows to obtain a
probability of execution for each REservice.

In Figure 6 examples of usage of our extensions on UML diagrams are shown.
In particular, we show Sequence and Use Case diagrams containing the newly
defined stereotypes. Information in annotated UML diagrams can then be used
to generate a relaibility model of the software system, as we will shortly describe
in the next section.
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Fig. 5. UML extensions for software reliability.

5.2 Analysis results obtainable by the approach

In this section we take, as an example, the reliability model presented in [10]
and we show how the tags introduced here may fit into that model. The model
in [10] introduces a mathematical relation between the reliability of a soft-
ware/hardware system, the reliabilities of single components and connectors,
and the rates of usage of components and connectors . Let compfp(i) represent
the value of the REcompfailprob tag associated to the i-th REcomponent. Let
bp(i, j) represent the value of the REbp tag associated to the behaviour of the
i-th REcomponent in the j-th REservice (i.e., the number of invocations of the
i-th component needed to deliver the j-th service). The probability for the i-th
component of not failing during the delivering of the j-th service will be given
by (1 − compfp(i))bp(i, j). Analogously, let connfp(l, i) represent the value of
the REconnfailprob tag associated to the REconnector between the l-th and i-th
components. Let nms(l, i, j) represent the value of the REnummsg tag associated
to the usage of the REconnector between the l-th and i-th components in the
j-th REservice (i.e., the number of messages exchanged between the l-th and the
i-th components to deliver the j-th service). The probability for the connector
between the l-th and i-th components of not failing during the delivering of the
j-th service will be given by (1−connfp(l, i))nms(l, i, j). Let p(j) be the value of
the REprob tag associated to the j-th REservice (i.e., the probability of service
invocation). On the top of these definitions, it is easy to infer that the failure
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probability FP (S) of a system S made up of N components and delivering K
services will be as follows:

FP (S) = 1−
K∑

j=1

pj(
N∏

i=1

(1− compfp(i))bpij ·
∏

(l,i)

(1− connfp(l, i))|nms(l,i,j)|) (1)

We like to remark the relevance of models that allow estimating system qual-
ity attributes from the combination of component attributes. Equation (1) could
be helpful to analyze the sensitivity of the architecture reliability to the replace-
ment of certain components. The failure probability obtained by (1) may be
compared to the result that would be obtained, for example, by replacing a
component with a more reliable one (i.e., a component with a lower value of the
REcompfailprob tag). In a component-based software world, composition nowa-
days cannot be bounded to functional aspects (i.e., connectors), but tools need
to be introduced to suitably combine non-functional properties of components
to obtain system properties even at the architectural level.

6 A Perspective: Merging Software Analysis

The modern software evolution requires the integration of functional and non-
functional analysis, and the automation in embedding the feedback resulting
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from analysis into the software models. The need of integration has been repeat-
edly claimed in the recent past, with particular focus on the software architec-
tural level [15]. We started to reason about the software analysis integration from
the goal of evidencing inter-relationships between functional and non-functional
aspects that would not necessarily emerge from separate analysis. For example,
upon detecting a deadlock in a software model, a critical component may be split
in two components, and this refinement may heavily affect the software perfor-
mance. Viceversa, a security analysis may lead to introduce additional logics to
components (that work as firewalls) in a subsystem, thus the behaviour of the
subsystem needs to be validated again. So, our main perspective in this area is to
build a common ground where different analysis methodologies can share their
results and the software development process can benefit from the integration.

In [11] we introduced TOOL•one, a framework to cope with the integration
issues at the software architecture level. Our intent is to design a general frame-
work that permits to integrate analyses that are not necessarily UML-based.
In many cases methodologies of analysis are based on a translation of the soft-
ware model into a different notation to be analyzed (e.g., a formal language for
functional verification, or a Petri Net for performance validation). To cope with
all different issues we devise an intermediate representation (based on XML) of
software models that may work as a common ground to apply functional and
non-functional analysis as well as to feed back the analysis results on the software
models.
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Fig. 7. Our framework architecture.
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In Figure 7 we show the architecture of TOOL•one. Rounded boxes on
the top side of the figure represents software notations adopted for the software
development (e.g., the Unified Modeling Language or whatever Architectural De-
scription Language). Let us assume that a software architecture has been built
using one of these notations. Several methodologies are nowadays available to
take as input a software model and to produce the same model in a different no-
tation, ready to be validated by automated tools with respect to either functional
or non-functional properties. On the bottom side of Figure 7 some examples of
methodologies are presented (i.e. Charmy and SAP•one) as square boxes, and
some examples of automated tools for software analysis (e.g., the SPIN model
checker).

In Figure 7 a big square box has been placed between the topmost software
notations and the bottommost analysis methodologies. It contains filtering com-
ponents and the XML Integration Core, which is the main component of our
framework.

Each Input filter translates the software model from its original notation to
a XML-based common representation, namely the XML Models Representation
box in Figure 7. An appropriate Analysis filter translates the XML representation
into the input notation to the desired analysis methodology (e.g., SAP•one
notation in Figure 7).

The feedback resulting from a specific analysis (e.g., splitting a component
upon a deadlock detection) propagates, through an Analysis filter, up to the
XML Integration Core where either the model is updated or a hint is given on
how to modify it.

In the Semantic Relations box the rules that link entities to entities are
expressed (in XML). Such rules allow the integration of the analysis in terms of
the analysis results and the produced feedbacks at the software architecture level.
Semantic relations are built every time it is possible to semantically relate the
concepts in different notations and they are given by considering the approaches
pairwise. An engine instantiates the relationships defined by the structural rules
on the current architecture.

In fact, the model changes inferred by the analysis results in the XML In-
tegration Core have to be reflected in the other analysis methodologies. This is
the way we conceive analysis integration.

In the Visual Editors box on the right side of Figure 7 there can be any
editor able to take a XML representation of a software model and display it.

7 Conclusions

We presented different ways of extending UML for different analysis purposes
and TOOL•one a framework to cope with the integration issues at the software
architecture level. We remark that our integration framework does not intend
to push software developers to use a specific notation (such as UML), rather we
want to provide tools to make the software analysis as much transparent as pos-
sible to the software development process. Instead of providing a complete profile
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which may include both functional and non functional aspects, we prefer to leave
the software architects open to design their own profiles (as usually happens in
practice) while allowing the integration of such profiles/analysis techniques into
the same UML-based analysis framework.

We share with the UML 2 project the idea of having an XML intermediate
format as a basis for the analysis tasks. Indeed, since the XMI standards for
UML 2 are not yet out up to this date, it has been and it is being our concern
to make our XML schemas as much compliant as possible to the XMI standards
for UML 1.x.

However our experience in adapting UML to model and analyze different
attributes of software systems has been supported from the high versatility of
UML itself, which today has proven to be a very promising project for software
modeling and analysis.

Finally, the work we are doing is not aimed at evaluating whether a certain
ADL oriented to a certain type of analysis may be more suitable than a general
framework like TOOL•one. Rather we intend to propose an environment where
adding new ”ilities” will probably need new attributes and rules to be defined,
but we hope this effort shall be payed back from the possibility of an integrated
analysis, while almost no modification to software developers will be required to
their practices.

References

1. L. Bass, P. Clements and R. Kazman. Software Architecture in Practice, second
edition. SEI Series in Software Engineering, Addison-Wesley Professional, 2003.

2. A. Bertolino, and P. Inverardi. Architecture-based software testing. In Proc.
ISAW96, October 1996.

3. A. Bertolino, F. Corradini, P. Inverardi, and H. Muccini. Deriving Test Plans from
Architectural Descriptions. In ACM Proc. Int. Conf. on Software Engineering
(ICSE2000), pp. 220-229, June 2000.

4. A. Bucchiarone, H. Muccini, P. Pelliccione, and P. Pierini. Model-Checking plus
Testing: from Software Architecture Analysis to Code Testing. In Proc. Int. Work-
shop on Integration of Testing Methodologies, ITM ’04. October 2004.

5. M. Caporuscio, P. Inverardi, and P. Pelliccione. Formal analysis of architectural
patterns. In First European Workshop on Software Architecture - EWSA 2004,
21-22 May 2004, St Andrews, Scotland.

6. M. Caporuscio, P. Inverardi, and P. Pelliccione. Compositional verification of
middleware-based software architecture descriptions. In Proc. of the Int. Con-
ference on Software Engineering (ICSE 2004), Edimburgh, 2004.

7. Charmy Project. Charmy web site. http://www.di.univaq.it/charmy.
8. D. Compare, P. Inverardi, P. Pelliccione, and A. Sebastiani. Integrating model-

checking architectural analysis and validation in a real software life-cycle. In Proc.
12th FM03, LNCS, n. 2805 (2003).

9. V. Cortellessa and A. Pompei. Towards a UML profile for QoS: a contribution in
the reliability domain In WOSP 2002.

10. V. Cortellessa et al. Early reliability assessment of UML-based software models.
In WOSP 2002.

20



11. V. Cortellessa, A. Di Marco, P. Inverardi, F. Mancinelli, and P. Pelliccione. A
framework for the integration of functional and non-functional analysis of software
architectures”. Int. Workshop on Test and Analysis of Component Based Systems
(TACOS 2004). March, 2004.

12. A. Di Marco and P. Inverardi Starting from Message Sequence Chart for Software
Architecture Early Performance Analysis. In Proc. of the 2nd Int. Workshop on
Scenarios and State Machines: Models, Algorithms, and Tools, May 2003.

13. A. Di Marco and P. Inverardi. Compositional Generation of Software Architecture
Performance QN Models. In Proc. of the Fourth Working IEEE/IFIP Conf. on
Software Architecture (WICSA04), June 2004.

14. J. Dick and A. Faivre. Automating the Generation and Sequencing of Test Cases
from Model-Based Specifications. In J.C.P. Woodcock and P.G. Larsen (Eds.),
FME’93: Industrial-Strenght Formal Methods, pp. 268-284. LNCS 670, 1993.

15. A.H. Dutoit, D. Kerkow, B. Paech, and A. von Knethen. Functional requirements,
non-functional requirements, and architecture should not be separated. Int. Work-
shop REFSQ ’02, Essen, September 2002.

16. Formal Methods for Software Architectures. Tutorial book on Software Archi-
tectures and formal methods. In SFM-03:SA Lectures, Eds. M. Bernardo and P.
Inverardi, LNCS 2804., 2003.

17. D. Garlan. Software Architecture. Encyclopedia of Software Engineering, John
Wiley & Sons, Inc. 2001.

18. D. Garlan, A.J. Kompanek and S.-W. Cheng. Reconciling The Needs of Architec-
tural Description with Object-Modeling Notations. Wiley Encyclopedia of Software
Engineering, J. Marciniak (Ed.), John Wiley & Sons, 2001.

19. K. Goseva-Popstojanova and K. S. Trivedi. Architecture-based approach to reli-
ability assessment of software systems. Performance Evaluation, vol.45, no.2/3,
June 2001.

20. C. Hofmeister, R. Nord and D. Soni. Applied Software Architecture. Addison-
Wesley, 1998.

21. G. J. Holzmann. ”The SPIN Model Checker: Primer and Reference Manual”.
Addison-Wesley, September 2003.

22. P. Kruchten. Architectural Blueprints - The “4+1” View Model of Software Ar-
chitecture. IEEE Software, 12(6) November 1995, pp. 42-50.

23. N. Medvidovic and R.N. Taylor. A Classification and Comparison Framework for
Software Architecture Description Languages. IEEE Trans. on Software Engineer-
ing, 26(1), pp.70-93, January 2000.

24. N. Medvidovic, D.S. Rosenblum, D.F. Redmiles, and J.E. Robbins. Modeling
Software Architectures in the Unified Modeling Language. ACM Transactions on
Software Engineering and Methodology, vol. 11, no. 1, pages 2-57 (January 2002).

25. H. Muccini, A. Bertolino, and P. Inverardi. Using Software Architecture for Code
Testing. In IEEE Transactions on Software Engineering. Vol. 30, Issue N. 3, March
2004, pp. 160-171.

26. H. Muccini, M. Dias, D. Richardson. Systematic Testing of Software Architectures
in the C2 style. In Proc. Fundamental Approaches to Software Engineering (FASE
’04), ETAPS 2004, March 2004.

27. OMG. Unified Modeling Language 2.0. 2003 http://www.omg.org/uml/.
28. OMG. UML Profile for Schedulability, Performance, and Time. OMG document

ptc/2002-03-02 http://www.omg.org/cgi-bin/doc?ptc/2002-03-02.
29. A. Zarras and V. Issarny. UML-based modelling of software reliability. In proc.

ICSE 2001.

21



 

22



Flexible Component Modeling with the ENT
Meta-Model
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Abstract. Software architecture is important from both research and practical
point of view, and its notion of component has gained strong support in the in-
dustry. The properties of components used in an architecture are influenced by
the meta-model on which the given component framework is based, and their
understanding is greatly helped by suitable notations. Current meta-models are
however mostly straightforward generalizations of the present state of the tech-
nology, and similarly the visual notations offer only fixed views on components
rather than a support for the desirable separation of concerns.

In this paper we propose to alleviate these deficiencies by two means. Firstly,
we describe the ENT meta-model which is open to future technological develop-
ments and which enables to define the component characteristics from the user’s
point of view (rather than in just technological terms). Secondly, we show a flex-
ible graphical notation that, based on the meta-model abstractions, allows the
users to adjust the visual representation of component interface.

1 Introduction

In recent years, software architecture research has resulted in the understanding of ar-
chitecture as a set of components interconnected by connectors, with rules governing
the types of both [Szy98,Gar01]. As with any other software engineering discipline,
good architectures begin with good models and understanding architecture is greatly
helped by suitable notations.

The properties of components used in an architecture are defined by their compo-
nent model. Enterprise JavaBeans [Sun03], SOFA components [PBJ98] and for exam-
ple Mozilla plug-ins therefore look rather different and their users (software developers)
will expect them to offer different kinds of features. (We ought to emphasize here that
in this work, the features considered are only those manifest in the component interface
since these are of primary interest when developing with black-box components.)

The capabilities of a component model are, on a higher abstraction level, influenced
by the meta-model on which it is based. Meta-models (the M3 level in the Meta Ob-
ject Facility [OMG02b]) thus define the vocabulary and structures common to a set of
component models. Examples of meta-models in current research and industrial use are
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Rastofer’s meta-model [Ras02] derived from the commonalities of existing component
models, and the UML EDOC Profile [OMG02c].

The notations for visual representation of components and architectures are also
directly influenced by component meta-models. One of the desired features of such
notations is the support for the separation of concerns [OT00] because this enables the
developers to concentrate on the aspects of the architecture currently studied. In UML,
this is for example represented by the various diagrams supporting the “4+1” views of
architecture [Kru95].

1.1 Problems with Component Modeling and the Goals of the Paper

The problem with current meta-models is that the structures and relations they define
are mostly straightforward generalizations of the present state of the technology; this
is true even of the new UML2 meta-model for components [OMG03]. Worse yet, even
some of the “penetrating” technological features currently in wide use (persistence,
reliability, concurrency) are handled in an ad-hoc manner on a per-model basis, instead
of being defined at the meta-level. This leads to a duplication of effort and problems in
component interoperability.

New, enhanced meta-models are therefore needed to accommodate both the cur-
rent state of the technology and the upcoming developments (streaming media [F+03],
mobility, emphasis on quality of service, etc.). The ENT meta-model, defined in this
paper, is designed to fulfill these needs and additionally allows multi-faceted views and
analyzes of the component interface.

Current notations similarly offer only a statically defined representations of compo-
nents and architectures. An example is the notation for components in UML2 [OMG03]
which fixes component interface to contain only attributes, operations, provided and re-
quired interfaces. Some aspects of the component interface, such as events consumed,
are therefore difficult to model. The notation will in extrapolation run into problems
when new kinds of features are devised in future.

More importantly, such notations concentrate only on the provides-requires view of
component interconnections. We believe other views are equally important in different
parts of the application development cycle, for example when mapping attributes to a
database schema during deployment.

This paper describes the ENT meta-model1 and a novel flexible notation that al-
lows user-defined views on component interface. The rest of the paper is structured as
follows. The next section describes an analysis of current component models, resulting
in a classification system for component interface features. This is used in the ENT
meta-model defined in Section 3, and is an enabling factor for the notation proposed
in Section 4. A small case-study of CORBA components is used to illustrate the con-
cepts. The next section discusses the achievements in the context of related work, and
the paper is ended with a Conclusion.

1 The name comes from the ability to distinguish three key parts of the component interface: the
exported part, the needed (dependencies) part, and the ties which link these two together; see
Section 3 below.
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2 Commonalities in Current Component Models

For a meta-model to be open, it has to be designed with an understanding of the current
and foreseeable technological trends. We have therefore conducted an analysis [Bra03]
of key component meta-models, concrete models and the designs of important modular
programming languages. In the approach and classification used, we have been inspired
by the comparative study by Medvidovic and Taylor [MT00].

For our analysis, we have among others selected the following frameworks: SOFA
[PBJ98] and Han’s model [Han98] for their interesting properties, CORBA Component
Model (CCM) [OMG02a] and Enterprise JavaBeans [Sun03] for their industrial rele-
vance, and Fractal [C+02] as a new research effort. In addition, we briefly surveyed the
Acme ADL [GMW00], the ArchJava language [ACN02] with its alternative approach,
package specifications in Ada because of its acclaimed language design, and several
older research component models.

2.1 Component Interface Elements and Their Properties

Results of the analysis told us that each component model uses slightly different terms
for the same or very similar concepts. We can therefore distill the commonalities into
high-level abstractions, similarly to other existing meta-models.

In general, the specification of a given component’s interface consists, at the low-
est granularity level, of elements (sometimes also called “ports”) through which the
component and its environment interact. Each element may have a name, a language
type, and sometimes also additional qualification tags which further define its type or
semantic properties. A typical example of an element is one receptacle (required in-
terface) of a CORBA component; a tag can be e.g. the multiple keyword in its
declaration. The element’s language type is an instance of a meta-type, for example,
IAddrBookSearch is an “interface”.

However, there are other properties of elements which are not usually captured in
their declarations but which are relevant from the user’s point of view. In the following
paragraphs, we describe several such properties which were identified as distinguish-
ing characteristics of elements in the analyzed component models. Some extrapolation
has then been made by the author to achieve a more general (and thus future-proof)
classification system.

The key distinguishing characteristics of elements is their nature. A component’s
interface can contain syntactic elements (“features”), or elements which declare its se-
mantic or non-functional properties (“rules”). This nature of the element abstracts away
not only from the particular interface specification languages with their syntax and type
systems, but also from the individual characteristics of component models. Examples
of syntactical features are an IDL interface of a CORBA or SOFA component, an event
sink of a CORBA component, a log file created and written to by a web server module,
etc. Typical instances of semantic rules are behavior protocols in SOFA, state transition
descriptions in Rapide [LV95], or the “illities” in Han’s model [Han98]. Non-functional
rules are e.g. the quality of service indications [FK98].

Next, we have observed several other properties of the elements which we consider
important from user’s point of view. A fundamental distinction of the elements is by
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what we call the kind of the element. The operational features and rules describe or are
used to invoke functionality (e.g. interfaces, events). The data features describe (sets
of) data which the component exchanges with its environment (most often, these are
called attributes, as in the CORBA component model). There can also be features and
qualities which contain a mix of these two characteristics.

An orthogonal property is the element’s role in component interactions. Each com-
ponent provides elements which its clients can use to invoke its functionality and which
thus represent the purpose of the component. On the other hand, the component may
require the connection to or existence of some elements in its environment for correct
linking or execution. Some kinds of elements (e.g. the behavior protocol in SOFA com-
ponents) describe the ties between these two parts of component interface, i.e. exhibit
both provided and required roles. This distinction of element roles is explicit in the
component-based systems and in many modular programming languages.

A user may be interested in the granularity of the element, since coarser elements
tends to be more abstract and consequently better aligned with the granularity of the
component as a whole. An element which is a single item is not structured in inter-
component interactions, as is common with the data kind elements (e.g. CORBA at-
tributes, JavaBeans properties). At at the operational level we prefer structures as sets
of items (e.g. whole interfaces). An extrapolation, not found in current models, is a
compound of structures.

From the point of view of the specification language, it is sometimes important to
distinguish the language construct of the element declaration. In most cases, the ele-
ment will define an instance of a type; in rare circumstances (e.g. properties in UniCon
[S+95]) also a constant value. Sometimes however, the element will contain just type
information in the form of type definition or type reference. Then its contents is not
accessible via an identifier within the scope of the component declaration – as, for ex-
ample, the supports interfaces of CORBA components.

In some systems, an element’s necessity of presence can be designated. Ordinarily
an element is permanent which means that it will always be present on the component
interface at run-time; a mandatory element moreover has to be declared in the interface
for the component to be valid. On the other hand, optional elements may be missing at
run-time and still the component conforms to its specification. An example of a com-
ponent model which uses this distinction is the Fractal framework [C+02].

Next, each feature may have different arity with respect to the bindings on that
feature. We differentiate two cases, single arity for 1:1 bindings, and multiple for 1:N
links. An example of using arity are CORBA Component Model’s event publishers
(which allow multiple sinks) and emitters (for one-to-one communication).

Lastly, we can differentiate features and rules according to their usage during or
applicability to different stages in component lifecycle. Current models distinguish se-
veral such stages: development for correct compilation, static or dynamic linking, and
packaging (when e.g. component assemblies are created from individual pieces), as-
sembly (or design) for the integration stage of creating component interconnections in
a visual tool and configuring the composed application, deployment which covers the
phase of (re)configuring the application in the actual deployment environment, setup
stage of application initialization and tear-down, and run-time stage which exercises
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interface elements during application execution for inter-component communication.
Again, some elements may be relevant in several phases of the lifecycle – for example
business interfaces of an EJB component are useful in the development, assembly as
well as run-time stages.

2.2 The ENT Faceted Classification System

These human-perceived element characteristics are formalized in a classification sys-
tem which uses the faceted classification approach [PDF87]. We believe its set of facets
is adequate for most component models, the classification is nevertheless open to fu-
ture developments. Due to the nature of faceted classification, extensions of the system
should not affect the models based on the set presented here.

The ENT classification system is a system for faceted classification of component
specification elements which uses an ontology DimensionsENT = {Nature, Kind,
Role, Granularity, Construct, Presence, Arity, Lifecycle} where the dimensions
(facets) are

– Nature = {syntax , semantics,nonfunctional},
– Kind = {operational, data},
– Role = {provided, required, neutral},
– Granularity = {item, structure, compound},
– Construct = {constant, instance, type},
– Presence = {mandatory, permanent, optional},
– Arity = {single,multiple},
– Lifecycle = {development, assembly, deployment, setup, runtime}.

In addition, the classification in each dimension can be assigned a value from the
set Idspec = {nil, na, nk} of special identifiers: nil denotes an empty classification,
na is used in the cases when the given dimension is not applicable to the given element,
and the nk value (not known) is used when the class cannot be clearly determined.

The classification of en element is done via an ENT classifier. This is an ordered
tuple (nature, kind, role, granularity, construct, presence, arity, lifecycle) =
(d1, d2, . . . , dD) such that di ⊆ dimi, and dimi ∈ DimensionsENT . This classifier
structure, which is a net result of the conducted analysis of component models and
frameworks, is used as a key part of our meta-model described below.

3 The ENT Meta-Model of Component Interface

This section provides a concise description of the ENT meta-model and its structures.
The goal of the model is to allow the definition of concrete component models in terms
close to the user’s point of view. In order to do so, it embodies selection and structuring
mechanisms that are based on the ENT classification.

We first provide a description of the key meta-model concepts in plain English,
using the CORBA component model (CCM) [OMG02a] as a case study. Then, their
detailed definitions are provided for reference.
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3.1 Overview of the ENT Model

The structural hierarchy of the meta-model starts with a component model as a set of
component types. For example, CCM defines one component type whereas the Enter-
prise JavaBeans (EJB) model uses three.

A component type (with the meaning corresponding to the classic Szyperski’s de-
finition [Szy98]) is defined by enumerating the different groups of interface elements
which the user will distinguish. As an example, the CCM component type supports se-
veral kinds of ports (facets, receptacles, event sources etc.) plus data attributes. That is,
the ENT meta-model does not consider component interface to be “flat” – it is quite
natural for developers to think of e.g. all component’s provided interfaces as a group,
regardless of their concrete interface types and location in the specification source.

component Parking
{

provides ParkingAccess barriers; // facet
readonly attribute PlaceNumber capacity; // attribute
attribute string description; // attribute
provides ModifyState for_admin; // facet
readonly attribute PlaceNumber free; // attribute
readonly attribute ParkingState state; // attribute
publishes ChangeState state_notify; // event source

};

Fig. 1. Interface specification of an example CORBA component

These groups of like elements, which we call the component’s traits, are defined
by the common characteristics of their elements – essentially the meta-type and ENT
classifier. The CCM “facet” trait is for instance characterized by the “interface” meta-
type and “provided” role of its elements. It is then in the ENT meta-model terminology
completely defined as shown in Figure 2, where the complete set of CCM traits is
presented. The traits, unlike language types, thus concentrate on the user’s perception
of elements, not on their type structures.

When an ENT-based representation of a concrete component is created, each trait
is “filled with” the set of interface elements which correspond to the trait’s meta-type
and classifier. For example, the Parking component from Figure 1 has two elements
in the facets trait (barriers and for admin) and four attribute elements. The set
of all component’s interface elements is obtained as a union of the element sets of its
traits.

An element in the ENT meta-model is a complete representation of one component
interface feature or rule as described in Section 2, identified by language name and/or
type plus any attached tags. For example, the “capacity” attribute of Parking is rep-
resented as a tuple (capacity , PlaceNumber , {(access, readonly)}). All element’s
parts are directly related to the interface specification source code (the human classifi-
cation of an element is attached to its containing trait). Operations on them are therefore
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attributes provided data; metatype = attribute, classifier = ({syntax}, {data},
{provided}, {item}, {instance}, {permanent},
{na}, {development , assembly , deployment , runtime})

facets provided interfaces; metatype = interface, classifier = ({syntax},
{operational}, {provided}, {structure}, {instance}, {permanent},
{multiple}, Lifecycle)

receptacles required interfaces; metatype = interface, classifier = ({syntax},
{operational}, {required}, {structure}, {instance}, {permanent},
{single, multiple}, Lifecycle)

emitters event sources; metatype = event, classifier = ({syntax}, {operational},
{required}, {item}, {instance}, {permanent},
{single}, Lifecycle)

publishers event sources; metatype = event, classifier = ({syntax}, {operational},
{required}, {item}, {instance}, {permanent},
{multiple}, Lifecycle)

sinks event sinks; metatype = event, classifier = ({syntax}, {operational},
{provided}, {item}, {instance}, {permanent},
{multiple}, Lifecycle)

supports component-level interfaces; metatype = interface, classifier = ({syntax},
{operational}, {provided}, {structure}, {type}, {permanent},
{na}, {development, assembly, deployment, runtime})

Fig. 2. The trait definitions for the CORBA component model

subject to the syntax and typing rules of the language L used for this specification. In
applications of the ENT meta-model, elements are the ultimate subject of analysis and
manipulation of the component interface specification.

3.2 Categories as User Defined Views on Components

Although traits provide a useful grouping of specification elements, architectural ana-
lyzes are easier if coarser views (separating different concerns, or expressing various
architectural aspects) are available: a component deployer would for example like to
see “all required features” of a component together. Furthermore, in case of heteroge-
neous architectures – which integrate components from several models – these analyzes
would be complicated by the different trait sets of each model.

We therefore augment the ENT meta-model with the notion of a trait category,
which groups traits similar in some high-level aspect(s). This similarity is defined by
a function which selects traits for a category based on their classifiers, in most cases
by simply enumerating the desired common subset of classification terms. Typically,
several orthogonal categories are defined together to represent a particular view on the
component interface structure, creating a category set.

For example, a component developer may define a single category with role =
{provided}∧kind = {operational} to see only the exported functionality relevant for
component development, whereas an application assembler will prefer a category set
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with role = {provided} vs. role = {required} separating the exported and required
elements in order to correctly construct component interconnections.

The key advantage of categories is that the users can define their own category sets,
as suits their needs and corresponds to their particular concerns. Additionally, categories
are independent of any concrete component model (being defined on the classifiers, not
on traits) and therefore create a unifying abstraction layer on the component interface
structure. These two advantages make categories a good vehicle for the analysis of
components on a fairly abstract level.

E-N-T (Exports-Needs-Ties)
fE = λC. C.role = {provided})
fN = λC. C.role = {required})
fT = λC. C.role = {provided, required})

F-D (Functionality-Data)
fF = λC. (C.kind = {operational})
fD = λC. (C.kind = {data})

aPR (assembly-relevant Provided and Required)
fP = λC. (C.role = {provided}) ∧ (assembly ∈ C.lifecycle)
fR = λC. (C.role = {required}) ∧ (assembly ∈ C.lifecycle)

Fig. 3. Example category sets (C denotes trait ENT classifier)

Some category sets that can be useful in the ENT model applications are shown
in Figure 3. The set of categories we find most useful is obtained by focusing on the
Role dimension. This way we get three categories, “Exports”, “Needs” and “Ties” –
an “ENT” – which emphasizes the different aspects which each part of the interface
has from the point of view of the component interconnections2. This view is crucial
for both the developers and component framework implementations to ensure proper
functionality of component applications [Bra02].

The effect of applying different category sets on a component interface specification
is illustrated by Figure 4 in the next section; note how the traits are reorganized and put
into the category compartments, each time in a different manner.

3.3 Definitions of the ENT Meta-Model Structures

In this section we augment the above explanations with precise definitions of the ENT
meta-model structures; further details can be found in [Bra04]. We present them in a
top-down fashion for consistency with the explanations, even though the upper layers
refer to terms defined only subsequently on the lower ones.

Component. A component type is a tuple Cdef = (ctname, tagset, TS) where
ctname ∈ Identifiers is the name of the component type, tagset = {(namei, valseti,

2 The T category explicitly sets apart the elements which express the bindings between the
two parts of the component interface, such as SOFA behavior protocols or the parametrized
contracts [RS02].
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default i)}, namei ∈ Identifiers, valseti ⊆ Identifiers, and default i ∈ valseti is the
definition of possible component-level tags, and TS = {T def

i } is the definition of the
component type’s trait set.

Component type is the key meta-level definition in a concrete component model.
For instance, “session bean” is one component type in the EJB component model. We
require that the trait set definition of a component type cover all interface elements of
any concrete component of that type without duplicates. The tagset part defines – in
a declarative form – the optional semantic or non-functional information attached to
the whole component. An example of such concept are the persistence and transaction
management tags defined for EJB components. Each tag has a name, an enumeration of
possible values, and a default value. Each value is expected to map to some language
phrase(s) in the component’s specification language(s).

Trait. A component trait definition is a quadruple T def = (tname, metatype,
CT , tagset) where tname ∈ Identifiers is the trait’s name, metatype ∈ Identifiers is
the meta-type of the elements in this trait, CT = (ct1, ct2, ..., ctD) is an ENT classifier
called trait classifier, and tagset is the set of allowed tags of these elements.

The metatype may be related to or derived from the name of the corresponding
non-terminal symbol in the grammar of the component’s specification language. The
CT part uniquely describes the classification properties of the trait’s elements. The
tagset has the same definition and meaning as that of the component, except that the
concrete tag values are assigned to individual elements (not to the trait).

The information about the meta-type and classifier, characteristic of a trait is based
on an a-priori human analysis or design of the concrete component model, its com-
ponent types and the meaning of the phrases of its interface specification language(s).
The goal should always be to create a complete minimal set of traits which distinguish
elements of a component type like the users do.

Element. An interface element e of a concrete component c with interface specifi-
cation written in language L is a tuple e = (name, type, tags, inh) where name ∈
Identifiers is the element’s name, type ∈ L is a language phrase denoting its type,
tags = {(namei, valuei)}, namei ∈ Identifiers, valuei ∈ Identifiers is the set of
element’s concrete tags, and inh = (i1, . . . , in);n ≥ 0, im ∈ Identifiers is the source
of the element in c’s inheritance hierarchy.

While the component and trait definitions above describe types, this definition con-
cerns a representation of an element in a concrete component (e.g. state attribute in
the Parking CCM component). A representation of a concrete component (conform-
ing to a given component type) is primarily composed of a set of traits (conforming to
their trait definitions), which in turn contain the interface elements as defined here.

We obviously require that in the representation, the tag values of the whole compo-
nent as well as those of each element be taken from the respective value set, according to
their definition. Tags are important if one needs to e.g. precisely compare two elements
or re-generate a valid source code for the component.

The ENT meta-model provides for component inheritance through the inh part of
the element. Its members are the parts of the fully qualified name of the concrete compo-
nent from which the element is inherited (e.g. inheritance from ::core::foo::Bar
results in inh = (core, foo,Bar)).
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Category. The definition of category of interface traits is a tuple Kdef = (kname,
fK) in which kname ∈ Identifiers is the name of the category and the trait selection
function fK : (d1, . . . , dD) → Boolean; di ∈ DimensionsENT is a boolean function
on ENT classifiers. A trait t belongs to a category K if fK(t.CT ) = true. A category
set definition is a set KS = {Kdef

1 ,Kdef
2 , ...,Kdef

n } of category definitions such that
∀Ki,Kj ∈ KS , i 6= j : Ki 6= Kj ∧Ki.kname 6= Kj .kname.

We require that for any category set, the trait selection functions generate non-
overlapping categories (a trait belongs to at most one category of a set). Note on the
other hand that a category set is not required to cover all traits of a component type.

4 Flexible Visual Representation of Components

Component developers or application assemblers, who use visual modeling of com-
ponents would benefit if the component appearance could be affected according to a
desired viewpoint. This would result in software presentation in user terms rather than
(as common now) in language terms. The ENT structures together with trait categories
provide the abstractions that support such presentation.

Fig. 4. Two category-based views of a CORBA component

Following this idea, we have developed a visual representation of software compo-
nents that is inspired by the UML notation. It tries to stick with the UML representation
of class/interface structures — the component is shown as a box with its name in the
top row, and constituent parts in separate boxes.

However, the contents of the component is structured according to its traits and a
selected category set. The possibility to define category sets as desired provides a degree
of flexibility in this structuring. Our model therefore allows us to parametrize the visual
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representation and additionally to group the constituent parts hierarchically, unlike the
standard UML profile which prescribes a fixed flat structure of the class box.

Figure 4 gives an example of the resulting proposed visual representation of compo-
nents, when applied to a CORBA component. On the left, the component is shown in the
E, N , T category set while on the right in the Functionality-Data set. As can be seen,
the use of category sets enables us to look at the component interface in completely
different ways. We could similarly create a custom category set to e.g. show only the
event-based part of CORBA components’ interfaces, important when designing an app-
lication with asynchronous communication. The other interface elements, which would
only distract from the primary design goal, would be completely elided from view.

We have developed two prototype tools which support this representation. One is
a prototype application (shown on Figure 5) which uses a XML representation of the
ENT component model and component instances data, plus a set of XSLT stylesheets to
convert and render this data. The second tool is a plug-in for the Borland JBuilder IDE
for IDL3 (CORBA Components) editing, that enables to switch between source and
visual views. The visual view uses the XML ENT model representation to parametrize
component visualization.

Fig. 5. The ENT-VIS tool displaying a set of SOFA components

5 Discussion and Related Work

The purpose of creating models is to abstract away details of the subject which are not
interesting from the particular point of view. In the design of the ENT meta-model we
approached this challenge from a rather different direction compared to most research
and industrial efforts. We believe this has resulted in conceptual simplicity and close
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correspondence to human (primarily developer’s) view on software components, achi-
eved by the use of a restricted set of classification facets and straightforward rules for
element grouping into traits and categories. We therefore believe the model is easy to
understand and implement in code.

Considering the primary role of meta-models, the ENT’s novel approach to meta-
modeling allows the designers of new component models to reason about the desired
usage properties of components, rather than restricting them to the low-level problems
of component wiring. In other words, the model directs towards what is useful and
possible rather than merely repeating what is currently implemented.

The meta-model was designed to be independent of any particular technology or
specification language. The current component models which use external interface
specifications, namely SOFA [PBJ98] and CORBA [OMG02a], can be easily re-phrased
in the ENT meta-model. An effort to create an Enterprise JavaBeans ENT-based model
is currently under way [Bra04].

5.1 Open Issues

The primary problem of the ENT meta-model as we see it is the difficulty of manual
classification of interface elements in the given language, in order to define traits for
current models. This problem arises because automated classification is in general a
difficult problem [ZW97], in this case further complicated by the lack of expressiveness
of some specification and programming languages. Manual classification opens room
to different interpretations and thus ambiguity of features and properties (e.g. along the
Lifecycle dimension). We have attempted to address this problem partly by creating
models for the key platforms in current use.

The second set of problems concerns the modeling of various levels of granularity in
ENT. Firstly, elements are taken as atomic units without considering the details of their
internal structure. This complicates for example the modeling of Enterprise JavaBeans
which attach transaction and security properties to individual methods rather than whole
interfaces. Since more accurate handling would come at the expense of readability and
simplicity, we opted for the simpler approach. On the other side of the spectrum are
complete component applications (as graphs of interconnected components) and archi-
tectural styles like those available in Acme [GMW00], where the latter is an abstraction
that falls somewhere between the ENT meta-model and a concrete component model
definition. Although these are undoubtedly important concepts, at present there is no
support for them in the ENT meta-model.

Considering the proposed visual representation, we are aware that it would be cum-
bersome for use in visual design of component applications as inter-component links
cannot be easily attached to elements. An alternative could be to use the UML2 com-
ponent notation with color coding of traits and categories. However, more investigation
is required in this matter.

5.2 Related Work

The work on the ENT meta-model was started by a comparative analysis of several
component models. A similar, more detailed study of high-level similarities of various
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modular and component-based systems was done by Medvidovic and Taylor [MT00].
It uses a classification system which differentiates the features that can be specified on
component interface which found useful; it is the nature facet in our classifiers. On the
other hand, they do not differentiate operational from data features, a distinction which
we find important.

The UML Profile for Enterprise Distributed Object Computing (EDOC) [OMG02c,
Chapter 3] provides good modeling features and flexibility in terms of current industrial
standards. EDOC is interesting for its use of mixed in-out interfaces (“protocol ports”)
and data-oriented interfaces (“flow ports”).

On the other hand, the term component is very loosely defined in the specifica-
tion (“something that is composable”) which makes it difficult to interpret its meaning
and relate meta-model’s structures to concrete models. Also, the protocol ports allow
to mix the specification of syntax (operations) and semantics (choreography) without
distinction by identifiers, associations or language constructs. We believe that a clear se-
paration of these concepts on the meta-model level is crucial for component modeling,
implementation and analysis. As a last point, the EDOC meta-model allows recursive
composition of interfaces. This feature adds flexibility but we have doubts about the
practical applicability of such abstraction, and feel that recursively defined ports are
overly complex to understand.

The research meta-model described by Seyler and Aniorte [SA02] is unique in that
the component interface is split into functional (control) and data (information) parts,
and orthogonally into the standard required and provided roles. This meta-model pro-
vides features we think the mainstream models are lacking, and supports our position
that data elements should be specified on component interface. On the other hand, its
notion of information points is a very general concept which needs more concrete map-
ping on real objects – files, data streams, tables etc.

There have been several proposals at a visual notation for software components (e.g.
[MAV02]), none of which has gained wider support. It is primarily due to the strength of
UML as the de-facto standard modeling notation. With this role, the authors of UML2
[OMG03] could have, in our opinion, paid a greater attention to the component meta-
model built into the new version of the notation. At present, it cannot easily describe
even existing component models, for example the CORBA Component Model.

6 Conclusion

In this paper we presented a meta-model for component architectures which is novel in
several aspects. All of the current meta-models explicitly enumerate the possible kinds
of component specification elements (i.e. the possible characteristic traits of compo-
nents). The approach we chose is rather to enumerate the properties of such elements,
and let the ENT meta-model user create its own set of traits, forming a concrete com-
ponent model. We believe this results in an increased flexibility in component modeling
as well as better mappings to present and future component models and frameworks.

Furthermore, this flexibility is manifested in the proposed ENT-based notation for
component interfaces, implemented also by a prototype tool. Its primary benefit should
be the ability to display the component from various viewpoints, by parameterizing the
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representation by user-defined sets of trait categories. This enables to use separation of
concerns in architectural analysis.

In our future work, we would like to concentrate on two topics. In the design of the
meta-model itself, we need to improve the handling of structured element declarations
and consider the modeling of component interconnections. A second goal related to the
visual representation is to investigate possible applications on the UML2 component
notation. We will also try to solicit feedback from industry regarding the ENT meta-
model and its value for practical use.
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Abstract. As part of a methodology for model-driven development of
embedded systems software, we have given selected elements of UML
2.0 an interpretation as an architectural design language (leveraging the
port concept). Our focus is on modularisation and variant design, where
the variant problem is related to the method of testing embedded con-
trol software by simulation of environment components. We describe our
approach to architectural design and how we applied it to the design of
a particular embedded control system, highlighting some design issues
and patterns.

1 Introduction

The recently finished IDESA project (Integrated Design of Distributed Embed-
ded Systems in Industrial Automation [1]) was focused on the introduction and
methodical application of UML modelling and code generation to the practice
of software development for a particular type of embedded systems. With dis-
tributed systems appearing only as a special case, this type of systems can be
characterised by:

– small-volume series
– high number of variants
– relaxed resource constraints (32 bit platforms, uncritical memory sizes)

A model-driven development methodology was elaborated and implemented,
based on existing tools, where UML is used for both software design and im-
plementation (code generation from executable UML models) [2]. For validation
and demonstration purposes, the project included the development of an example
application, which was provided by TLON GmbH [3], one of the four European
industry partners of FZI in the research and technology transfer project. As the
redesign of parts of an existing system (the control software of an industrial coffee
machine), our demonstrator had the advantage of being a real-world example.

This paper concentrates on the software architecture aspect of the method-
ology and the practical experiences gained from developing the system. As to
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our language for describing architectural design, a major advancement became
possible during the term of the project with the availability of UML 2.0 to our
tool chain. Early in the project, the consortium had decided for I-Logix’s Rhap-
sody in C++ [4] for UML 1.4 based modelling, simulation, and code generation.
At the same time, a methodology for component-based design, aligned with an
communication model abstracted from LonWorks [5] for distributed systems,
had been elaborated [6, 7]. The component model, which regarding its interface
concept (ports) was similar to ROOM [8] and the upcoming UML 2.0 [9], was
subsequently implemented on top of UML 1.4 in terms of modelling guidelines
supported by a set of stereotypes and a library (modelling framework) [10]. Early
experiences with this approach in practice showed that, in fact, software design
was happening on a higher level of abstraction than UML was able to describe,
and the models were rather unreadable for designers not familiar with the ideas
of the IDESA component model. With the 5.0 release of Rhapsody by the end
of 2003, I-Logix implemented major parts of the UML 2.0 port concept. After a
strategic decision to take the chance, IDESA migrated its methodology to this
part of UML 2.0, leveraging original features of the new language for the design
of component interfaces. While modelling communication in distributed systems
is still supported by a framework (which is beyond the scope of this paper),
describing architectural design relies primarily on native UML concepts.

UML’s state machines and events, complemented by procedural operations
for ‘zero-time’ actions, predefined to us a particular model of (real-time) com-
putation, implemented by Rhapsody’s code generator and runtime framework,
which had been ported to a particular real-time operating system as a prede-
fined platform. With this initial conditions, the remaining central question and
our treatment of software architecture was organising the application logic as a
composition of modules (components) and the definition of their interfaces (con-
nectors), where a standard interface style with asynchronous event notifications
and synchronous procedure calls was found appropriate.

Our treatment of modularisation had a special focus on variant design. Ba-
sically, not the architecture of a single system but of a family of systems would
be designed. The family members would be configured as different hierarchical
compositions of subsets of the modules, where some modules would be alterna-
tive to each other. A simulation variant of the embedded system, where device
drivers for the controlled environment were replaced by simulators of the devices,
served us for proving the concept with at least two system variants. At a later
stage, it was an easy task to introduce an additional variant, which partitioned
the control software into a distributed system, to the existing architecture.

The structure of the paper is as follows: In section 2 we present our approach
to module and variant design, giving selected elements of UML 2.0 an inter-
pretation as an architectural design language. In section 3, we describe how we
applied this approach to the problem of designing the software architecture of
an embedded control system. A conclusion follows in section 4.
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2 Modular Design with UML 2.0

In the IDESA methodology, a module
1. is a functional system unit
2. exports functionality to other modules
3. imports functionality from other modules

Saying it is a functional (or logical) unit distinguishes a module from a physical
system unit, which is a piece of software (e. g., an executable or a DLL) that
can be deployed to a standalone computing unit or a network node. For such
physical units, the UML concept of components is reserved in Rhapsody. Modules
will be represented by classes in UML. Modules are independent from other
modules in the sense that they have explict interfaces for exporting and importing
functionality instead of referring to (and thus depending on) functionality of
particular other modules directly.

The outcome of architecture design is a collection of interconnected modules
that only exist by their interface specifications (see section 2.1) until they are
implemented (see section 2.2). For more on the underlying ‘information hiding’
principle, see [11].

2.1 Module Interfaces

When talking about modules and their interfaces, we could give any of the
following descriptions of the relationship between these two concepts:
– A module has an interface through which it exports and imports function-

ality.
– A module has an export interface through which it exports functionality and

an import interface through which it imports functionality.
– A module has one or more interfaces through which it exports and imports

functionality.
– A module has one or more export interfaces through which it exports func-

tionality and one or more import interfaces through which it imports func-
tionality.

The four definitions are essentially equivalent. Attaching exactly one interface
or any number of interfaces to a module, and using directed or bidirectional
interfaces, are a matter of grouping the exports and imports.

The component model of the IDESA methodology [7] had directed ports
(matching the fourth definition). The functionality exported or imported were
simply signals, either data signals or event signals, carrying values of a single
(but maybe complex) datatype in a pull or push manner, respectively. The port
concept of UML 2.0 with its notion of required and provided interfaces seems to
match the third definition (ports representing interfaces and provided/required
interfaces representing exports/imports of functionality). But, in fact, the UML
2.0 port concept—in the way presented by Rhapsody—also matches the fourth
definition. It is more general than the IDESA component model in that it re-
places signals by contracts, which allow bidirectional communication with several
signals to be grouped as one protocol or service as explained in the following.
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The Contract Concept In the UML 2.0 variant implemented by Rhapsody, a
port specifies its meaning in terms of provided interfaces and required interfaces
which together define a contract. More than one provided interface and more
than one required interface are allowed per port/contract, but, unless there is
a case for reuse between different contracts, to design exactly one provided in-
terface and at most one required interface will be the simplest and a sufficient
choice. Provided and required interfaces are interface classes in UML, which are
classes stereotyped with << Interface >>. Contracts can be reversed: Reversed
contracts differ from their originals in that the provided interfaces become re-
quired interfaces and vice versa. When two ports are linked, one of the contracts
is the reverse of the other.

Fig. 1. Ports and Contracts

In the example of figure 1, the port named control has been given the
contract BrewingUnit which consists of the provided interface BrewingUnit
and the required interface BrewingUnitClient. The port named brewingPress
has the contract Press, which consists of the provided interface Press and the
required interface PressClient, as reversed, i. e. PressClient is provided and
Press is required at this port. (That the contract of the port is marked as
reversed cannot be seen in the diagram, but the information is contained in the
model.)

In Rhapsody, the primary provided interface (i. e. the first one of an ordered
list, which will in many cases be the only one) gives its name to the contract.
The required interface is associated with the provided interface by (ab)using a
<< Usage >> dependency (which is Rhapsody’s replacement for the << use >>
depedency defined in the UML standard). Thus, the BrewingUnit contract is
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Fig. 2. Contract Representation

represented in the model as seen in figure 2 (all operations listed are event
receptions, some of them with parameters). Additional provided interfaces would
be represented as superclasses of the primary one, additional required interfaces
would be linked to by additional << Usage >> dependences.

Although provided interfaces export functionality and required interfaces im-
port functionality on a concrete level (operations and event receptions), the de-
signer should think on the more abstract level of contracts: Via a port, a module
either exports or imports a service specified by a contract. Such a service may
involve communication—e. g., sending events—in both directions. When export-
ing a service, the port is given the contract itself; when importing the service,
the port is given the reversed contract. Thus, with non-reversed and reversed
contracts, ports are directed, either exporting or importing. In the example of
figure 1, the module BrewingUnitController exports the service BrewingUnit
via the control port, and imports the services Press, Relay and Flow via the
ports brewingPress, waterPump, and brewingFlow, respectively.

Links between ports establish client/server relationships: A port exporting
a service can be linked to a port of another module importing the same service
(same contract, but reversed). The exporting module is the server, the import-
ing module is the client in this relationship. Please note that a module can
participate in different relationships and thus be client and server at the same
time. In the example, a BrewingUnitController instance will be a server of the
BrewingUnit service, but a client of the Press, Relay, and Flow services.

Interface Design In our embedded system project, module interfaces were
specified primarily in terms of events (event signals, used for signalling) and ac-
cessor methods for getting values (data signals, used for status tests). Traditional
procedural interfaces with method calls were used only for special modules, e. g.,
for data transformations. With an asynchronous, event-based communication
paradigm, it is natural for services to involve bidirectional communication in
order to realise request-response patterns.
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2.2 Module Implementations

The primary module concept is that of classes with ports. A class implements a
module exporting and importing services via its ports, which are the interfaces
of the module.

A module implementation is realised in one the following ways:

Behavioural The services implemented by the module are realised in terms of
a state machine and/or attributes and operations.

Compositional The module is realised by an internal structure of module in-
stances which are parts of the module, interconnected, and connected to the
ports of the module. The module will be called a composite module.

Wrapper for External Code As a variant of the first case, external code
written in the target language (i. e. C++) is used to implement the ser-
vices of the module instead of behaviour described within the UML model.
Some wrapping (e. g., conversion between events and other mechanisms) has
to be done on the UML level in order to adapt arbitrary C++ classes to the
module interface concept.

An example for the first case is the BrewingUnitController class of figure 1,
which implements, in a reactive, state-based way, the service of figure 2 against
three other services. There is a state diagram attached to this class. An example
for a composite module is the ControlLogic subsystem in figure 3, which is
realised by an instance of BrewingUnitController in connection with instances
of other modules. The third case will appear, for example, in implementations
of the Keyboard and Display services (imported by the ControlLogic module
of figure 3) relying on device drivers provided as external code.

Although hybrids of the three cases are possible, we prefer their clear sepa-
ration. For example, behavioural modules with an internal structure (combining
the first two cases) are discouraged by the lack of internal ports (which were avail-
able in ROOM [8]) for visibly connecting sub-modules to the composition-level
behaviour of their parent. In our approach, the composition-level behaviour will
be encapsulated into an additional sub-module. Appreciating the behavioural
added-value by making it an independent module and keeping the mechanisms
of module composition simple also makes the recombination of modules easier.

It should be noted that the result of implementing all modules of a system is
an executable model which already contains the system implementation. Code
generation from the model is the first step of an automated build process re-
sulting in binary code. Thus, architectural design does not produce something
separate from the final implementation; they are naturally kept in sync.

2.3 Variant Design

In the IDESA methodology, variant design is a matter of architecture design and
module implementation for a system family. It is not a matter of file branching
and configurations in a configuration management system. The complete system
family is designed with a single UML model containing all module and system
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Fig. 3. Composite Module

variants. A system variant is a particular system composition selecting from
module variants.

The design of module variants is (in abstract terms) a matter of different
implementations for the same interface. Concretely, where modules are classes
and module interfaces are ports, the same service (specified by a contract) is
exported by different modules. For the client of the service, the modules are
exchangeable.1

In a system family, some services will be implemented by only one module.
They belong to the invariant system parts across the system family. Other ser-
vices will be implemented alternatively by several modules, which thus become
variant modules (or module variants—of an abstract module identified with the
service)2. For an example, see section 3.3.

1 It should be noted that, practically, the contracts guarantee the service merely on a
syntactical level. Ensuring that a module really provides the functionality and the
required quality of a service is a matter of module testing against a more complete
specification of the service. Currently, the Rhapsody suite supports automated ex-
ecution of tests specified by sequence diagrams (unfortunately not covering timing
constraints).

2 There may exist services which are not the main services of the modules implement-
ing them (such as standardised interfaces to alarm or power management), or which
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Remark on Inheritance Sometimes, the object-oriented concept of inheri-
tance is proposed for building module variants (e. g., in the OMOS methodology
[12]). An abstract class inherited by several implementation classes represents
the interface of the module while the implementation classes represent the mod-
ule variants.

Unless the interface of the abstract class is purely defined in terms of ports,
this concept clashes with our notion of module interfaces (see section 2.1). And
even if it is defined in this way, the inheritance relationship will never be used
by the clients of the module (since they connect to the ports, not to the module
class directly). The property that the abstract class is the superclass of all its
implementation classes will be of no use. The only remaining purpose of inher-
itance will be implementation inheritance. And this is a concept which should
be used only after enough thought. We recommend rather the following:

If there is invariant functionality sharable between two variant modules, this
functionality should be factored out to a separate module exporting a service
imported by both module variants.

2.4 Packages vs. Subsystems

The problem of organising the application modules into what is called packages
in UML is not a proper issue of software architecture, but related to it. The
hierarchical decomposition of a system into modules is enabled by composite
modules (cf. section 2.2); subsystems at intermediate levels of decomposition are
represented by modules with an internal structure. There seems to be a simi-
larity between packages and subsystems, but packages simply collect modules,
while subsystems instantiate modules and thus configure a system from possible
variants3. Packages can be used to group a service contract with all modules
impementing it, thus representing one functionality of the system.

Subsystems, in most cases, simply aggregate module instances and their pro-
vided/required services (see, e. g., figure 3, where the ControlLogic subsystem
aggregates and connects five module instances, exports two services and imports
nine). Thus, their purpose is to ‘multiply’ after the system has been ‘factorised’.
While the set of elementary modules (the ‘factors’), including all variants, reflects
the whole system family, subsystem modules instantiate particular modules for
particular services and thus configure a system. A top-level module represents a
particular system variant. Figures 5 and 6 in section 3 show two different variants
of a system.

have the granularity of a single signal (such as those defined in the framework for
communication modelling mentioned in section 1). In these cases, the modules im-
plementing these services are not necessarily alternatives to each other and would
not be considered as variants.

3 It should be mentioned that the UML concept of subsystems as a special case of
packages is not supported by Rhapsody.
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3 Architecture Design for Embedded Control Software

The IDESA demonstrator application was part of the control software of an in-
dustrial coffee machine, the electronics of which is made by TLON. We highlight
some elements of its software architecture, that was designed using the approach
described in section 2. Although the architecture is naturally application-specific,
it may contain some general architectural design patterns useful also for other
systems.

3.1 Overview of the Application

Figure 4 shows the top-level package structure organising the application mod-
ules. It separates different kinds of control logic.

Fig. 4. Control Logic Architecture
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The operations of the coffee machine for producing coffee products, hot wa-
ter, steam etc. as well as for self-cleaning and similar tasks are collectively called
the ‘process’. The process consists of the working together of devices like cof-
fee grinders, pumps, valves and a special unit, the ‘brewing unit’, which works
like a press and a cooking pot. The process is developed and defined by pro-
cess engineers and essentially falls into a set of procedures (like making a coffee
product or cleaning the machine) that are executed on request and let the ma-
chine go idle after their termination (package Procedures). The mechanics and
the electrical operation of the devices themselves is the domain of mechanical
and electrical engineers and is reflected in the control software by device drivers
(package Machine).

Several physical states of the machine are critical to remember even after
a restart of its control (e. g., whether a detergent for cleaning the machine is
inside the brewing unit, in which case no coffee brewing is allowed). Therefore,
the machine control has to store some persistent data (package State), to which
also belong some statistics (counters) and several operation parameters that can
be modified by the user or by service personnel4.

In principle, all operations of the process can fail for some reasons. For exam-
ple, a failure of the water supply causes water dosing to fail, or pulling the drawer
(grounds container) raises an exception condition interrupting the process and
aborting some operations. Therefore, the machine control has to handle a lot
of error conditions while controlling the process. Since Rhapsody does not yet
support UML’s built-in notion of exceptions and ours is an even higher-level one
(process engineering level), a collection of application-specific exception handling
mechanisms has been implememented (package Alarms).

For interaction with the user, the coffee machine disposes of several keys
(buttons) for taking user input (collectively called the ‘keyboard’) and displays
information via LEDs and a small text display (package Console). All top-level
control, distinguishing several modes of operation (includig a ‘standby’ mode),
starting and stopping procedures, reacting to user requests and alarms etc. is
the purpose of package Control.

3.2 Layers

From the world of information systems, there is a well-known pattern of a three-
layer architecture. The three layers are (from top to bottom):

1. Presentation (user interface)
2. Application logic (business logic)
3. Persistency (database)

Clear interfaces between the layers separate the three different concerns.

4 Parameter modification (interactively at the machine or via a LonWorks network
interface) has been left out of the demonstrator and is therefore not reflected in the
architecture.
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For control systems with user interfaces, the same three layers can be recog-
nised, only that the third layer is replaced (or rather extended) by the interface
to the controlled process. Instead of (or in addition to) persistently stored data,
the state of a technical process is manipulated by the application. The resulting
three layers are:

1. user interface
2. control logic
3. process interface || database

Both the package structure of the UML model (organising the modules) and
the system architecture (hierarchically decomposing the system into modules,
cf. section 2.4) are related to the idea of layers. In the IDESA demonstrator,
the mapping of the top-level package structure to the layers is visualised in the
layout and the comments of the package diagram in figure 4. The top-level system
decomposition into subsystem modules reflects the four parts of the three layers
directly (figure 5).

Fig. 5. Target System Variant
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The distinction between control logic and user/process interface is not always
unique when the logic of device drivers is considered. This subject is treated in
more detail in section 3.3.

3.3 Abstract Devices

Both the process interface and the user interface were defined in terms of devices.
Every device (such as relays, valves, or switches) provides a particular service to
the control logic. Regarding process behaviour, groups of such primitive devices
may be recognised as realising ‘higher-level’ services and may be regarded as
abstract devices (such as a brewing unit).

For every primitive device, the software contains a driver module, imple-
mented with the help of external code (cf. section 2.2). Driver modules access
and encapsulate hardware I/O interfaces. An abstract device is implemented by
a controller module using the services of more concrete devices (i. e. primitive
devices or other abstract devices) for implementing the service of the abstract de-
vice. In the example of figure 1, the abstract brewing unit device is implemented
by a BrewingUnitController on top of three other devices.

The controller part of an abstract device localises the part of the control
logic which handles the functionality represented by the abstract device. By a
hierarchy of abstract devices, the overall control logic can be reduced to the
top-level behaviour covering the whole machine.

Our design pattern of abstract devices is related to some other design issues:

Simulation and Variants For primitive devices, in addition to the driver
module, a simulator module may implement the same service, by simulation
instead of really driving the device. For such a device, two different variant
modules (the driver and the simulator) are designed.

A controller module for an abstract device is invariant in this sense. It can
either control the real devices (via the drivers), or the simulated devices, or
a combination of both. The result is a driver or a simulator for, or a mixed
implementation of, the abstract device.

The possible multiplication of variants for sub-devices is a strong reason why
the controller of an abstract device is designed as an independent module instead
of designing the abstract device as an aggregation of sub-modules glued together
by some control logic.

Layered Architecture In layered architecture design as described in section
3.2, the control logic is separated from the process interface and the user inter-
face. These border lines are blurred somehow by the concept of abstract devices.

Services and drivers of primitive devices clearly belong to either the process
interface or the user interface. Abstract devices have a hybrid nature. Viewed as
devices, they have to be separated from the control logic; seeing their controllers,
they are rather a part of the control logic.
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With respect to the package hierarchy of the model, abstract devices can
be assigned to either layer (we included them to the Machine package like the
primitive devices). With respect to the top-level system decomposition reflecting
the layers by subsystem modules, the controllers of abstract devices share with
the proper control logic of the middle layer that they are invariant with respect
to the distinction between drivers and simulators (i. e. for the system variants
‘target’ and ‘simulation’). Therefore, in our model, they belong to the control
logic subsystem (see the BrewingUnitController instance in the example in
figure 3), while the drivers (or simulators) of primitive devices belong to the
subsystems for the user interface and for the process interface (or process, in
the simulation case). This makes the control logic subsystem (ControlLogic)
completely invariant, but the user interface (Console) and the process interface
(Machine) subsystems largely variant (see figures 6 and 5).

Fig. 6. Simulation System Variant
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3.4 Simulators and Test Interfaces

In our methodology, device simulators replace device drivers in a system config-
uration for the purpose of validating the control logic using the devices without
the need of having the device hardware (or even the I/O interfaces) available.

From the perspective of the control logic, a device simulator implements
the same service as the corresponding driver. It models the possible states of
the device and reacts correspondingly. Since the physical device may physically
interact with its environment (e. g., a key may be pressed by the user, or the
display may optically show a message to the user), simulator modules need some
additional interfaces in order to simulate these interactions.

For this purpose, we introduced the pattern of test interfaces. They allow to
stimulate and to observe the simulator (i. e. ‘pressing’ a key, or ‘looking’ at a
display, for example) and even to inject faults for simulating error conditions.
The test interfaces can be connected to different kinds of testing environments.
On the system level (see figure 6), we connected them to a GUI application
simulating graphically the user interface and some parts of the process hardware
for interactive tests. We used the same ports also for automated testing based
on sequence diagrams with Rhapsody’s Test Conductor add-on. Separating the
simulator models from the test drivers stimulating the behaviour for a particular
test case carries over the concept of modularisation to the development of the
test equipment.

Please note, that system integration for the development host (the simula-
tion variant) aggregates the test interfaces to the top-level. In contrast, system
integration for the target hardware leaves the top-level system module without
any interfaces, because all I/O is handled through the device drivers, which are
internal modules, directly accessing and encapsulating the I/O resources.

4 Conclusion

The UML 2.0 port concept together with composite (structured) classes provides
a useful instrument for designing modular software and product families. A clear
separation between module interfaces and module implementations can be es-
tablished, where modules are self-contained in the sense that they have explict
interfaces for exporting and importing functionality (services) and there are no
implicit assumptions of a module on its context. Different variants of a module
implement the same services in different ways. A system variant is a system con-
figuration selecting from module variants, where composite classes instantiate
and aggregate modules and their provided services to subsystems and finally the
top-level system.

From our experience with designing a real-world system, modular design of
the control logic of an embedded system is not only possible but significantly
improves the understanding of the system by forcing the separation of concerns.
The design patterns recognised from developing the example system include a
variant of the three-layer architecture for information systems and a notion of
abstract devices.
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Device drivers relying on hardware input/output and real devices can easily
be replaced by device simulators which are variant implementations of the same
services. Test interfaces to the simulators allow for both interactive and auto-
mated system tests for the control logic on the development computer and carry
over the concept of modularisation to the development of the test equipment.
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Abstract. Modeling variability in product lines (PL) has received a lot
of attention in recent years, building on the idea that product could be
automatically derived from a PL through model transformations, at least
for its static architecture (e.g. class diagrams). This paper proposes to go
beyond these static aspects by also addressing the behavioral aspect of
software product lines. Inspired by the way UML2.0 sequence diagrams
can be algebraically composed, we propose to specify PL behavioral re-
quirements as algebraic expressions extended with constructs to specify
variability. Then we propose a two stages approach to synthesize de-
tailed behavior for each product member in the PL. The first stage uses
abstract interpretation of the variability operators in scenarios to get be-
havior specialization of the PL according to a given decision criteria. The
second stage uses statechart synthesis from product expressions. We de-
scribe the interest of our method on a well known case study, and briefly
discusses its implementation in a prototype tool.

1 Introduction

The Software Product Line approach (also called Product Family), have received
a great attention in last years. Several product line approaches concerning the
entire software life cycle (requirements, design, development, testing, and evolu-
tion) have been proposed.

Capturing and specifying requirements in software development is a very
important activity. Several notations and formalisms such as Use Cases and sce-
narios are now very popular for single products development. In the PL context,
most works [7, 2, 21, 13] extend UML Use Cases with variability mechanisms to
document PL requirements. They introduce variability into the textual descrip-
tion of Use Cases. In addition to textual templates, Use Cases can be illustrated
by means of interactions between system objects using scenarios such as UML
sequence diagrams.

While scenarios capture requirements in the early stage of the development
process, statecharts [8] are often used for a more detailed design, as they are
closer to the implementation. The idea of synthesizing statecharts out of a col-
lection of scenarios has thus received a lot of attention in the context of single
� This work has been partially supported by the ITEA project ip02009, FAMILIES in

the Eureka Σ! 2023 Programme
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products development. However, no work proposes statecharts synthesis from
PL requirements. In this paper we propose an algebraic approach that generates
statecharts from PL scenarios, thus fostering a better traceability between PL
requirements and the detailed design. We specify PL requirements as algebraic
expressions on basic UML2.0 sequence diagrams, where variability is introduced
by means of three new algebraic constructs. Our synthesis approach is defined
in two steps: we first define an algebraic way to derive product expressions from
PL ones and then statecharts are generated by transforming product scenarios
given as an expression into a composition of statecharts.

This paper is organized as follows: Section 2 shows, through the well known
Banking Product Line (BPL) [1] example, how PL requirements are specified
using UML2.0 sequence diagrams. Section 3 describes our synthesis approach
and illustrates it on the BPL example. Section 4 discusses the implementation
and the interest of our approach. Section 5 presents related works.

2 Product Lines Requirements as UML2.0 Sequence
Diagrams

Capturing and specifying requirements is often a preliminary task during soft-
ware development. Several notations such as Use Cases and Scenarios have been
proposed to document and formalize systems requirements. To be useful in the
PL context, these formalisms should allow for the expression of variability in
requirements. Variabilities are characteristics that may vary from a product to
another one. In this Section we use scenarios represented as UML2.0 sequence
diagrams (SDs) to specify PL behavioral requirements. Variabilities are intro-
duced by means of three mechanisms: optionality, variation and virtuality [25].
We take advantage from UML2.0 SDs and their composition operators to spec-
ify PL scenarios as algebraic expressions extended by algebraic constructs for
variability. Before showing how PL requirements are specified using UML2.0 se-
quence diagrams, we first present an example that will be used throughout the
paper.

2.1 Running example
Throughout this paper, we reuse the example of a Banking Product Line (BPL)
as described in [1]. It is a set of products providing simple functionalities to
clerks in the banking domain. It provides four main functionalities:
– Creation of accounts: customers are able to open simple accounts but must do

so with a minimum balance. Account can have an associated limit specifying
to what extent a customer can overdraw money.

– Money deposit on accounts.
– Money withdrawal from accounts.
– Currency exchange calculation(exhange from and to Euro).

Variability in the BPL example concerns the support of overdrawing to a set limit
and the currency exchange calculation. Table 1 shows four different products
members of the BPL. The BS1 product for example supports limits on accounts
and does not support exchanges calculation.
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Table 1. The Banking PL Members

Product Limit support Exchange calculation

BS1 YES NO
BS2 NO NO
BS3 NO YES
BS4 YES YES

2.2 UML2.0 sequence diagrams

Sequences diagrams (SDs) have been extended in UML2.0 [6] by means of com-
position operators. This allows the specification of more elaborated behaviors
than in UML 1.4, which contain alternatives, loops, and so on. In fact, UML
2.0 sequence diagrams can be considered as the algebraic composition of simple
interactions, that will be called basic Sequence Diagrams hereafter.
Figure 1 shows basic SDs defining possible scenarios for the Banking PL. To
simplify the presentation, we only show here a portion of the BPL excluding
SDs related to exchange calculation. The sequence diagram Deposit for example
describes the interaction of Clerk actor and two objects Bank and Account to
deposit money on an account.

Fig. 1. UML2.0 Sequence Diagrams for the Banking PL

UML2.0 basic SDs can be composed in composite SDs called combined inter-
action using a set of operators called interaction operators [6]. We will only use
three fundamental operators: seq, alt, and loop. The seq operator specifies a
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weak sequence between the behaviors of two operand SDs. The alt operator de-
fines a choice between a set of interaction operands. The loop operator specifies
an iteration of an interaction. For all these operators, each operand is either a
basic or a combined SD.

The combined SD BPLPortion in Figure 2 shows how basic SDs for the BPL
are related. It refers to basic interactions using the ref operator. BPLPortion
specifies that there are three main alternative behaviors for requirements of BPL
members: (1) Account creation (2) Deposit on account (3) Withdraw from ac-
count, this last functionality is described using the combined SD WithdrawFromAccount.
Following UML2.0 notations [6], combined SDs are defined by rectangles which
left corner is labelled by an operator (alt, seq, loop). Operands for sequence
and alternative are separated by dashed horizontal lines. Sequential composition
can also be implicitly given by the relative order of two frames in a diagram.
For example, in the SD BPLPortion basic SD CreateAccountOk is referenced
before SD SetLimit. This is equivalent to the expression CreateAccountOk seq
SetLimit.

2.3 Variability
As shown in [25], variability can be specified in UML2.0 sequence diagrams
using simple stereotypes and tagged values. We briefly describe here three of
these mechanisms, interested readers can consult [25] for more detail:
– Optional interaction. A sequence diagram can be defined as optional. This

means that the interaction specified by this SD is only supported by some
products.

– Variation interaction. A variation SD is a SD that encloses a set of SDs
variants. For any given product, only one SD variant will be present.

– Virtual interaction. A virtual SD in a PL means that the interaction
specified by this SD can be redefined and refined for a specific product by
another SD.

Combined SD in Figure 2 shows two variability mechanisms: optionality and
variation.

– As some products of the BPL do not support overdraft, a stereotype
<<optionalInteraction>> is added to the basic SD SetLimit.

– There are two interaction variants when withdrawing from an account: with-
draw with balance and limit checking, and withdraw with balance checking
only. The SD Withdraw is defined with the <<variation>> stereotype.
The two SDs WithdrawWithLimit and WithdrawWithoutLimit are variants,
which is indicated by the <<variant>> stereotype (See the WithdrawFromAccount
in Figure 2)

2.4 Algebraic Specification
From UML2.0 Combined SDs, an algebraic representation can easily be obtained.
Combined SDs can be considered as expressions on basic SDs composed by
interaction operators [6]. We call these expressions References Expressions for
SD.
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Fig. 2. The UML2.0 Combined Sequence Diagrams for the BPL

Definition 1. A reference expression for sequence diagrams (noted RESD here-
after) is an expression of the form1:
<RESD>::=<PRIMARY> ( "alt" <RESD> |"seq" <RESD>)*
<PRIMARY>::=E∅ | <IDENTIFIER> | "("<RESD>")" |

"loop" "(" <RESD> ")"
<IDENTIFIER>::= ([”6”,"a"-"z","A"-"Z"]|["0"-"9"])*

seq, alt and loop are the SD operators mentioned above. E∅ is the empty
expression that defines a Sequence Diagram without interaction.

So far, this algebraic framework does not contain means to specify variability.
We introduce three algebraic constructs that correspond to the three variability
mechanisms presented above. This allows defining optional, variation and virtual
expressions.
Definition 2. The optional expression (OpE) is specified in the following form:
OpE ::= "optional" <IDENTIFIER> "[" <RESD> "]"
where <IDENTIFIER> refers to the name of the optional part and the <RESD>
refers to its corresponding expression.

Notice that the same SD can be referred several times as optional in PL-
RESD, but that the optional part name can be different for each occurrence. The

1 We use a notation close to EBNF (Extended Backus-Naur Form) to define reference
expressions.
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optional part name is defined as a tagged value associated to the <<optionalInteraction>>
stereotype (see Figure 2, tagged values are represented in UML2.0 as notes). For
the BPL example, optionality of the interaction SetLimit is specified by the
expression: optional settingLimit [SetLimit]
Definition 3. A Variation expression (VaE) is defined as follows:
VaE::= "variation" <IDENTIFIER> "[" <RESD> "," <RESD> ("," <RESD>)*
"]"

For example, the variation interaction Withdraw in Figure 2 encloses two inter-
action variants. It is specified algebraically as follows:
variation Withdraw [ WithdrawWithLimit, WithdrawWithoutLimit ]
Definition 4. Virtual expressions (ViE) are specified as:
ViE ::= "virtual" <IDENTIFIER> "[" <RESD> "]"

The SD BPLPortion of Figure 2 can be algebraically represented by the follow-
ing expression:

EBPLPortion = loop( Deposit alt CreateAccount seq (CreateAccountOk
seq (optional settingLimit [ SetLimit ]) alt CreateAccountFailled)
alt variation Withdraw [ WithdrawWithLimit, WithdrawWithoutLimit ]
seq ( WithdrawOk alt WithdrawFailled))

Hence, algebraic expressions including variability will be defined by expres-
sions of the form:
<RESD-PL>::=<PRIMARY-PL> ( "alt" <RESD-PL> | "seq" <RESD-PL>)*
<PRIMARY-PL>::=E∅ | <IDENTIFIER> | "("<RESD-PL>")" |

"loop" "(" <RESD-PL> ")" | VaE | OpE |ViE

3 Synthesizing Products Behaviors

In the previous Section, we have specified PL behavioral requirements using sce-
narios represented as UML2.0 SDs enriched with variability mechanisms. Sce-
narios are not the only way to describe software behaviors, statecharts [8], for
example, are another formalism that is often used to depict the behavioral as-
pect of systems. However, if scenarios capture requirements in the early stage
of the development process, statecharts models are more dedicated to detailed
design phases as they are closer to an implementation (some tools such as Rhap-
sody [11] generate code from them). Furthermore scenarios and statecharts differ
on their nature: scenarios capture interactions between a set of objects, and stat-
echarts represent the internal behavior of a single object. Statecharts synthesis
out of a collection of scenarios has received a lot of attention in the context
of single products development [14, 15, 17, 22]. So far, the proposed solutions do
not consider the PL aspects. In this section, we propose an algebraic approach
to synthesize product statecharts from PL scenarios. Variability is resolved by
deriving the PL-RESD into a set of RESDs, one for each product, then state-
charts are generated by transforming product scenarios given as an RESD into
a composition of statecharts.
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3.1 Product Expressions derivation

The first step towards product behaviors synthesis is to derive the corresponding
product expressions from PL-RESD. As shown previously, PL-RESDs include a
set of variation points. Derivation needs some decisions (or choices) associated to
these variation points to produce a specific product RESD. A decision model [1]
is used to capture and record decision resolution associated to each product
member in the PL.

Definition 5. A decision model (noted hereafter DM) for a product P is a set
of pairs (namei, Res), where namei designates a name of an optional, variation
or virtual part in the PL-RESD and Res is its decision resolution related to the
product P . Decision resolutions are defined as follows:

– The resolution of an optional part is either TRUE or FALSE.
– For a variation part with E1, E2, E3.. as expression variants, the resolution

is i if Ei is the selected expression.
– The resolution of a virtual part is a refinement expression E.

The derivation of products expressions from EBPLPortion needs decision reso-
lutions for the optional expression settingLimit and for the variation expression
Withdraw. The BS1 product supports limit on accounts. This requires the pres-
ence of the SetLimit SD and the choice of the WithdrawWithLimit SD variant
which is the first variant expression. So, the BS1 product decision model is:
DM1 ={(settingLimit, TRUE), (Withdraw, 1)}. The decision model for the
BS2 product is: DM2 ={(settingLimit, FALSE), (Withdraw, 2)}

The derivation can be seen as a model specialization through abstract inter-
pretation of a generic PL expression PLE in DMi context, where DMi is the
decisions model related to a specific product. For each variability mechanism,
the interpretation in a specific context is quite straightforward:

1. Interpreting an optional expression means deciding on its presence or not in
the product expression. This is defined as:

〚 optional name [ E ] 〛DMi =
{
E if (name, TRUE) ∈ DMi
E∅ if (name, FALSE) ∈ DMi

Note that the empty expression is a neutral element for the sequential and
the alternative composition. It is also idempotent for the loop, i.e:

– E seq E∅ = E ; E∅ seq E = E
– E alt E∅ = E ; E∅ alt E = E
– loop (E∅) =E∅.

This allows us to replace a complete part of a PL-RESD by E∅ when this
part should be removed.

2. Interpreting a variation expression means choosing one expression variant
among its possible variants. This is defined as:
〚 variation name [ E1, E2,.. ] 〛DMi = Ej if (name, j) ∈ DMi
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3. Interpreting virtual expressions means replacing the virtual expression by
another expression:
〚 virtual name [ E ] 〛DMi = E’ if (name, E′) ∈ DMi, E otherwise

The BS1 product expression EBS1 is obtained by the interpretation of the EBPLPortion

in the DM1 context: EBS1 = 〚EBPLPortion 〛DM1

The derivation of the BS1 product with a decision model given by context DM1

produces the following expression :

EBS1 = loop( Deposit alt CreateAccount seq (CreateAccountOk seq
SetLimit alt CreateAccountFailled) alt
WithdrawWithLimit seq ( WithdrawOk alt WithdrawFailled))

The expression obtained for product BS2 is:

EBS2 = loop( Deposit alt CreateAccount seq
(CreateAccountOk alt CreateAccountFailled) alt
WithdrawWithoutLimit seq ( WithdrawOk alt WithdrawFailled))

3.2 Statecharts Generation

The derived product expression are expressions without variability, i.e expres-
sions that only compose basic SDs by interaction operators: alt, seq, and
loop. The second step of our synthesis approach aims at generating statecharts
for objects in each derived product at the detailed design level. Product scenarios
are translated into statecharts using the method proposed in [24].

We generate flat statecharts, i.e. statecharts without hierarchy. Figure 3
shows examples of flat statecharts, in which states represented by double cir-
cled states are called junction states. Junction states will have an additional role
during statechart composition. Transitions are labelled e/a where e is a trig-
gering event and a is an action. ST∅ refers to an empty statechart, containing
a single state which is at the same time an initial and a junction state (see
statechart ST∅ in Figure 3).

Statecharts operators. Our algebraic framework for statecharts composition
is inspired from the algebraic composition of UML2.0 sequence diagrams. We
have formalized three statechart operators: seqs, alts and loops respectively
for the sequential composition, the alternative and the iteration of statecharts.
We briefly describe these operators in the rest of this section, the complete
formalization can be found in [24]:

Sequence (seqs). The sequential composition of two statecharts is a statechart
that describes the behavior of the first operand followed by the behavior of the
second one. Figure 3 shows the sequential composition of the ST1 and ST2.
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Fig. 3. Flat statecharts

Alternative (alts). The statechart resulting from the alternative composition
describes a choice between the behaviors of its operands. See for example ST1
alts ST2 in Figure 3.

Loop (loops). This operator defines iteration of a statechart. Figure 3 shows
the iteration of the ST2.
As for sequence diagrams, we algebraically describe statecharts composition with
reference expressions.
Definition 6. A Reference expression for statecharts (noted REST hereafter)
is an expression of the form:
<REST>::=<PRIMARY-REST> ( "alts" <REST> | "seqs" <REST>)*
<PRIMARY-REST>::=ST∅ | <IDENTIFIER> | "("<REST>")"

| "loops" "(" <REST> ")"

Generation process. Using our algebraic framework for statecharts, translat-
ing product UML sequence diagrams to statecharts can easily be defined in two
steps. First flat statecharts are generated from basic sequence diagrams and then
product RESD is mapped to RESTs:

Basic sequence diagrams. The first step of our synthesis algorithm is to generate
a statechart P (S, O) depicting the behavior of O in S for each object O and each
SD S in the system. We do not detail here the algorithm computing P (SD, O),
which can be found in [24]. To summarize, this algorithm is a projection of
SDs on object lifelines. Receptions in the SD become events in the statechart
and emissions become actions. For a transition associated to a reception, the
action part will be void, and for transitions associated to actions, the event part
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will be empty. The generated statechart contains a single junction state that
corresponds to the state reached when all events situated on an object lifeline
have been executed. When an object does not participate in a basic SD, the
algorithm generates an empty statechart. Figure 4 illustrates the synthesis of
the statechart associated to the Bank from the Deposit basic SD.

Fig. 4. Statechart synthesis from basic SD

Combined sequence diagram. Once we have obtained a collection of statecharts
through projections of basic SDs, we can combine them with the same alge-
braic operators used for SD reference expressions. For each object O, a REST is
constructed by replacing in the RESD seq, alt, and loop respectively by stat-
echarts operators seqs, alts, and loops, and each reference to a SD S by the
statechart P (S, O). From the REST obtained, a statechart can be built using
statechart composition operators.

Let us apply this construction method to the combined SD for the BS1 prod-
uct. The Bank’s REST, called RESTBS1 is described below. Figure 6 shows the
statechart obtained from this REST.

RESTBS1 = loops( P(Deposit, Bank) alts P(CreateAccount, Bank) seqs

(P(CreateAccountOk, Bank) P(SetLimit, Bank) alts

P(CreateAccountFailled, Bank)) alts P(WithdrawWithLimit, Bank)
seqs ( P(WithdrawOk, Bank) alts P(WithdrawFailled, Bank)))

The same method can be applied for the BS2 product. An expression EBS2

is produced from the generic expression, and then transformed into the state-
chart composition expression RESTBS2 defined below. Figure 5 shows the Bank
statechart obtained from RESTBS2. Note that as BS1 and BS2 only differ on the
presence or not of an overdrawing limit, the synthesized statecharts will be very
similar, and differ only on some transitions. The differences between the stat-
echarts obtained for product BS1 and BS2 are illustrated in Figure 6 by grey
zones.
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createAccount (custID, bal) / create (custID)

/ deposit (bal)

/ insufficientMessage ()

depositOnAccount (accID, amount)

/ deposit (amount)

withdrawFromAccount (accID, amount)

/ verifyBalance (amount)

sufficientBalance () / withdraw () / withdrawOk ()

/ withdrawOkMessage ()

insufficientBalance ()

withdrawFailledMessage ()

Bank

Fig. 5. The Bank Statechart in the BS2 product

RESTBS2 = loops( P(Deposit, Bank) alts P(CreateAccount, Bank) seqs

(P(CreateAccountOk, Bank) alts P(CreateAccountFailled, Bank))
alts P(WithdrawWithoutLimit, Bank) seqs ( P(WithdrawOk, Bank)
alts P(WithdrawFailled, Bank)))

createAccount (custID, bal) / create (custID) / deposit (bal)

/ insufficientMessage ()

depositOnAccount (accID, amount)

/ deposit (amount)

withdrawFromAccount (accID, amount)

/ verifyBalance (amount) / verifyLimit (amount)

sufficientBalance () / withdraw () / withdrawOk ()

/ withdrawOkMessage ()

insufficientBalance ()

withdrawFailledMessage ()

/ setLimit()

Bank

Fig. 6. The Bank Statechart in the BS1 product
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4 Implementation and discussion

A prototype tool of the proposed approach has been implemented in Java. PL-
RESDs and decision models are specified in textual formats [12]. A more com-
plete description of this prototype can be found in [23]. We have used our ap-
proach for a complete BPL case study with fourteen basic SDs. Table 2 shows
statistics (number of states and transitions) on the generated statecharts for the
Bank object in each BPL member.

Table 2. States and transitions for the generated Bank statechart

# States # Transitions

BS1 12 16
BS2 10 14
BS3 13 19
BS4 15 21

A Flexible Approach. Defining statecharts synthesis from UML2.0 SDs as a
mapping from RESD to RESTs gives a certain flexibility to the synthesis pro-
cess: any modification (adding or removing a SD for example) of the RESD only
lightly influences the synthesis process. It is only sufficient to modify (adding
or removing the corresponding statechart) the RESTs, thus fostering a better
traceability between the requirements and the detailed design. To illustrate this,
let us consider again the BS1 product with a new functionality for currency
exchange calculations. This is described by three new basic SDs: SetCurrency,
ConvertToEuro and ConvertFromEuro [23]. The new BS1 RESD is obtained
from the older one by adding references to new SDs as follows:

RESTBS1 = loop( Deposit alt CreateAccount seq (CreateAccountOk seq
SetLimit seq SetCurrency alt CreateAccountFailled) alt
WithdrawWithLimit seq ( WithdrawOk alt WithdrawFailled)
alt ConvertToEuro alt ConvertFromEuto)

The new Bank’s REST is obtained from the older one by adding the syn-
thesized statecharts from the three basic SDs. We keep the same composition
information added in the new BS1 RESD:

RESTnewBS1 = loops( P(Deposit, Bank) alts P(CreateAccount, Bank) seqs

(P(CreateAccountOk, Bank) seqs P(SetLimit, Bank) seqs

P(SetCurrency, Bank) alts P(CreateAccountFailled, Bank))
alts P(WithdrawWithLimit, Bank) seqs ( P(WithdrawOk, Bank)
alts P(WithdrawFailled, Bank)) alts P(ConvertFromEuro, Bank)

alts P(ConvertToEuro, Bank))
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PL Engineering process. The proposed approach can easily be integrated
into the general PL process [18]. It fulfills two important objectives in PL: Do-
main engineering and Application Engineering [4]. The integration of variability
into scenarios with PL-RESD allows for the definition of generic requirements,
which brings a new contribution to domain engineering. Derivation of a specific
product and then of specific statecharts is a step towards detailed design phases.
Standard approaches such as [9] can be used to generate applications from the
synthesized statecharts. As a part of synthesis can be reused during statechart
generation, our approach clearly deserves reuse in application engineering. In ad-
dition to variabilities and derivation, a PL is characterized by a set of constraints
that define variation points dependencies such as presence or mutual exclusion
relationships. We have not considered in this paper PL constraints, however
in [25] we have proposed the use of the OCL (Object Constraints Language) to
manage PL constraints in class and sequence diagrams.

5 Related work

This section briefly compares our work with other approaches related to vari-
ability integration in requirements, and to statechart synthesis from scenarios.

Requirements Mo deling i n Pro duct Lines. Few approaches model variabil-
ity in requirements using scenarios. Gomaa [5] introduces variability in UML col-
laboration diagrams with three stereotypes <<kernel>>, <<optional>>
and <<variant>>. These stereotypes are also defined for use cases and class
diagrams. While we explicitly formalize the derivation process, Gommaa et al
do not describe how the introduced stereotypes are used to derive products ar-
chitectures. Atkinson et al. [1] introduces the stereotype <<variant>> which
can be applied to messages in sequence diagrams and to statecharts. In our ap-
proach, variability is only introduced in scenarios which are more close to users
understanding than statecharts. Most approaches on PL requirements rely on
Use Cases rather than on scenarios to formalize PL requirements including vari-
ability. Halmans et al. [7] presents a detailed study on requirements engineering
for product lines, and extends Use Cases with stereotypes to specify variabil-
ity. Use Cases are described using templates. Bertolino [2] introduces tags to
describe variability in a textual description of uses cases. Massen [21] extends
the UML Use Case meta-model to allow variability. John [13] tailors Use Case
diagrams and textual use cases to support PL requirements specification. Even if
the textual description through templates, used by the previous work, is a good
way to document PL requirements, sequence diagrams are more operational and
as shown with our approach detailed design can be generated from them. Hau-
gen et al. [10] also use UML2.0 sequence diagrams to specify requirements. They
introduce a new operator called xatl to distinguish between mandatory and
potential behaviors. A potential behavior represent a variant of a mandatory
behavior. This is close to our variation construct where interaction variants
correspond to the potential behaviors.
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Statecharts Synthesis from scenarios for single products. Several ap-
proaches for Statechart synthesis from scenarios have been proposed this last
decade. This section gives a brief overview of some of them. Note however that
all of these approaches are dedicated to synthesis for a single product, and do
not consider synthesis for several products. Due to the poor expressive power
of UML1.x sequence diagrams, the proposed solutions for statecharts synthe-
sis [14, 15, 17, 22] often use additional information or ad hoc assumptions for
managing several scenarios. For example, Whittle et al. [22] enriches messages
in sequence diagrams with pre and postconditions given in OCL (Object Con-
straints Language) which refer to global state variables. State variables identify
identical states throughout different scenarios and guide the synthesis process.
Our approach does not use variables, and structures the statecharts and tran-
sitions thanks to information provided by lifeline orderings and SD operators.
Koskimies et al. [15] uses Biermann-Krishnaswamy algorithm [3] which infers
programs from traces. This work establishes a correspondence between traces and
scenarios and between programs and statecharts. In [17, 14] it is also proposed to
use interactive algorithms to generate statecharts from UML1.x sequences dia-
grams. Several other approaches [19, 20, 16] study state machines synthesis from
Message Sequence charts (MSC) [12], a scenario formalism similar to sequence
diagrams. MSCs allow composition of basic scenarios (bMSCs) with High-Level
Message Sequence Charts (HMSC). This composition mechanism is very close
to current SD in UML 2.0 and our approach can be used to generate statecharts
from MSCs.

6 Conclusion

In this paper we have proposed an approach to derive product behaviors from
PL requirements. Firstly algebraic construct are introduced to specify variability
in UML2.0 sequence diagrams. Then, we use interpretations of the algebraic
expressions to resolve variability and derive product expressions. The derived
expressions are then transformed into a set of statecharts. The introduction of
variability can be used to factorize common behaviors in different products, and
should then facilitate domain engineering phases. As discussed in [24], statecharts
synthesis should be more considered as a step towards implementation rather
than as a definitive bridge from user requirements to code. However, some parts
of the synthesis can be reused from a product to another, hence facilitating reuse
during application engineering.
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<<aspect>>
Logging

<<extend>>( accountOP )

Deposit
Extension point

accountOP

Withdraw

Extension point
accountOP

<<aspect>>
CheckingAmount

<<extend>>( accountOP )

<<extend>>( accountOP ) <<extend>>( accountOP )

ClientConsult
balance

Extension point
accountOP
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Account

- balance: Integer
- no : String
- pwd : String

+ withdraw( m:Integer)
+ deposit( m:Integer)
+ consultBalance (): Integer

+ accountOP (a:Account; op:String,
m: Integer):Boolean

<< pointcut >>
AccountOP LogFile

+ writeOp (op:String; a:Account; m:Integer; d:Date)
+ deleteOp (op:String; a:Account; m:Integer; d:Date)
+ displayOp (d: date)

Application GUI

<<crosscut_call>>

<<aspect>>
CheckingAmount

- limit : Integer = 1000

+ <<before>> accountOP (a:Account, op: String, m:Integer): Boolean

<<aspect>>
Logging

+ <<before>> accountOP (a:Account; op:String, m: Integer):Boolean

Aspect Composition Rules

pre soft (TimeValidationAspect ::accountOP (...),
LoggingAspect ::accountOP (...))

cond soft (TimeValidationAspect ::accountOP (...),
LoggingAspect ::accountOP (...))
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<<entity>>
Account

- balance: Integer
- no : String
- pwd : String

+ withdraw( m:Integer)
+ deposit( m:Integer)
+ consultBalance (): Integer

<<entity>>
LogFile

+ writeOp (op:String; a:Account; m:Integer; d:Date)
+ deleteOp (op:String; a:Account;

m:Integer; d:Date)
+ displayOp (d: date)

<<crosscut_call>>

<<aspect>>
CheckingAmount

- limit: Integer

+ <<before>> accountOP (a:Account, op: String,
m:Integer): Boolean

Aspect Composition Rules

pre soft (TimeValidationAspect ::accountOP (...),
LoggingAspect ::accountOP (...))

cond soft (TimeValidationAspect ::accountOP (...),
LoggingAspect ::accountOP (...))

<<control>>
DepositControler

<<boundary>>
Deposit_ GUI

<<entity>>
Account

+ withdraw( m:Integer)
+ deposit( m:Integer)
+ consultBalance (): Integer

<<body>>
   deposit( m:Integer){
       if aspectCheckingAmount.accounOP (self, "deposit", m)==true
       then

aspectLogging.accountOP (self, "deposit", m)
super.deposit (m)

    }

<<http_ servlet >>
DepositControler

<<Client_page>>
Deposit

<<server_page>>
Deposit

<< buidt >>

<<submit>>

BasicAccount

- balance: Integer
- no : String
- pwd : String

+ withdraw( m:Integer)
+ deposit( m:Integer)
+ consultBalance (): Integer

<<aspect>>
Logging

+ <<before>> accountOP (a:Account; op:String,
m: Integer):Boolean

PIM
in

Aspect- UML

PSM
for a

JSP plateform

Aspect_ CheckingAmount

<<control>>
CheckingAmount

- limit: Integer

+ <<before>> accountOP (a:Account,
                          op: String, m:Integer): Boolean

aspectCheckingAmount

Aspect_Logging

<<entity>>
LogFile

+ writeOp (op:String; a:Account; m:Integer; d:Date)
+ deleteOp (op:String; a:Account; m:Integer; d:Date)
+ displayOp (d: date)

<<control>>
Logging

+ <<before>> accountOP (a:Account; op:String,
m: Integer):Boolean

aspectLogging

+ accountOP (a:Account; op:String,
m: Integer):Boolean

<< pointcut >>
AccountOP
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