
Model-Based EIS Performability Analysis

N.D. de Wet P.S. Kritzinger

CS04-01-00
January 26, 2004

DNA Laboratory
Department of Computer Science

University of Cape Town
Private Bag, RONDEBOSCH

7701 South Africa
e-mail: {ndewet,psk}@cs.uct.ac.za

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCT Computer Science Research Document Archive

https://core.ac.uk/display/232195777?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

In this paper we propose a methodology for the modelling, verification and
performance evaluation of communication components of software for enter-
prise information systems. The methodology is centered upon model-driven
development using a subset of UML 2.0 diagrams. It is supported by the
proSPEX model processing tool which offers a simulation-based executable
verification environment. The model-based development of communication
components of wireless middleware solutions is discussed as a motivational
example.

Keywords: UML 2.0, Protocol Engineering, Tool Integration, Verification,
Performance Analysis, Performability



1 Introduction

The use of middleware, of which wireless middleware is a specialized subset,
has been acknowledged as the principal means of simplifying distributed ap-
plication building in the enterprise[1]. In recent years a number of wireless
middleware products [3, 4, 5] have emerged that use proprietary network pro-
tocols when traversing low bandwidth wireless links. Here we consider the
verification and performance evaluation 1 of the communication components
of such middleware products using UML 2.0 and model-driven development.

It is generally accepted that software for enterprise information systems
(EIS) needs to be validated and verified. However ensuring that such soft-
ware both adheres to specifications and is error free is not sufficient when
developing quality software. Performance is a fundamental quality attribute
of any software and performance analysis is often neglected in the software
engineering life-cycle[8]. It has also been accepted that the primary source
of performance failures are due to architectural and design problems that
can be detected at the early stages of the design process[7].

In this work we introduce a methodology for the modelling and per-
formability analysis of communication components of software for EIS. The
methodology involves the use of a subset of UML 2.0 diagrams to model
the architecture and protocol interactions of a communication component.
The modelling process itself can be supported by the use of design patterns
for protocol system architecture[2]. The model is created in a commercial
model editing tool, Telelogic Tau G2, and verified using this tool. Following
the Tau-based verification a collaboration diagram depicting a simulation
scenario is created by the user as a basis for defining system workloads. The
proSPEX (protocol Software Performance Engineering using XMI) tool then
imports the model using its filters to Tau G2. It then executes the model,
hence providing dynamic verification, and gives network performance mea-
sures to the user.

In Sect. 2 we discuss the validation, verification and performance eval-
uation of communication components of software for EIS. Model-driven de-
velopment using UML 2.0 is outlined in Sect. 3. Performance modelling and
evaluation is discussed in Sect. 4, while in Sect. 5, we describe the proSPEX
methodology. The proSPEX tool architecture is discussed in Sect. 6 while
concluding remarks are made in Sect. 7.

1In this paper we refer to verification and performance evaluation as performability
analysis[6], a term encompassing both performance and reliability (or dependability).

1



2 Validation,Verification and Performance

The communication components of middleware used in EIS software is par-
ticularly susceptible to both errors and performance problems due to the
complexity of interactions in application and network layer protocols. These
errors and performance problems tend to arise primarily due to the tempo-
ral dependencies among the participating processes. It is generally accepted
that network layer protocols used in middleware for EIS software and the
interaction protocols among EIS components should be specified using for-
mal languages[12, 15, 17, 14], thereby allowing high level design verification.
Examples of such languages are the Process Meta Language (PROMELA,
the system description language of SPIN[13, 12]), the Specification and De-
scription Language (SDL) and Estelle.

UML could also be used as a specification language, however it is a
general-purpose language without formal semantics. As a work-around a
common approach is to map a subset of UML diagrams to existing formal
methods[18, 19, 20] in order to allow automated analysis. An alternative
approach is to merge UML with a formal language, as has been done in
the International Telecommunication Union Recommendation Z.109 titled
”SDL Combined with UML”[21]. Z.109 is a UML profile meaning that it
specializes UML using stereotypes, tagged values, constraints and notational
elements.

Having established that a communication component is error free, the
next step in performability analysis (the construction of quality software)
is performance analysis. The formally specified network and component in-
teraction protocols would be analyzed by either analytic evaluation, experi-
mentation or simulation. In proSPEX, the tool supporting our methodology,
we use process-based discrete event simulation and statistical performance
evaluation. Simulation has the advantage of being able to evaluate protocol
performance according to given metrics as well as being useful in aiding in
the understanding of protocol interactions[16].

3 Model-Driven Development

Model-driven development2 is an approach to software development in which
the resultant implementation is automatically generated from models. In or-
der to realize model-driven development one needs graphical programming
abilities which is the ability to program directly in the modelling language.

2”The model is the implementation”[22]

2



SDL has been used as a model-driven development language for some time
in the telecommunication industry. Part of the attraction of SDL stems
from the availability of specialized abstractions, such as signalling, that are
useful in model-driven communication software development. The merger of
UML 2.03 and SDL, via the ITU-T Z.109 Recommendation[21], is a power-
ful realization4 of model-driven development geared towards communication
software development.

Using UML 2.0 as a language for model-driven development of commu-
nication software is appealing due to it being an evolution of the de facto
UML 1.x standard. This evolution has been driven by the need to ad-
dress deficiencies of UML 1.x noted since UML was first proposed in 1997.
These deficiencies include a lack of formal semantics, inadequate semantics
definition[22] and excessive size. Of the enhancements offered by UML 2.0,
the architectural modelling capabilities are of particular importance when
conducting model-driven development of communication components. The
architectural modelling capabilities of UML 2.0 are based on mature lan-
guages such as SDL and ROOM (Real-Time Object-Oriented Modelling).

Model-driven development of communication components of wireless mid-
dleware implementations using UML 2.0 merged with SDL is appealing due
to SDL being a formal language with useful protocol engineering abstrac-
tions. The appeal also derives from the fact that the language and its higher
level abstractions are target-language-independent [21]. This means that fol-
lowing verification and validation of a component programming language
code such as C, C++ or Java could be generated.

4 Performance Modelling and Evaluation

The performance analysis of communication components specified in a model-
driven development language such as UML 2.05 requires a clear definition of
the semantics of time regardless of the analysis method used. For example it
should be clear whether signal transfer over connectors that do not traverse
network links take time. Unfortunately such semantics are not not always
clearly defined.

In this work, simulation-based performance analysis is conducted to
predict a communication system’s performance. More specifically, we use

3Adopted as an official OMG standard specification in June 12, 2003
4The Telelogic Tau G2 tool uses such a merger.
5Henceforth when we refer to UML 2.0 it is assumed to be specialized for communica-

tion software development by the ITU-T Z.109 UML profile.

3



Figure 1: The proposed methodology supported by the simulation-based
proSPEX performance analysis tool.

process-based discrete event simulation. In such simulation the event list of
the simulation scheduler contains processes and the order within the event
list (or scheduler queue) is determined by the time of the next events in
the processes’ event sequences. In addition the processes interact with each
other through message passing and other simulation primitives in order to
realize the operational path of the system. The semantics of time is there-
fore embedded within the implementation of the simulation scheduler and
simulation primitives. Naturally the semantics of time embedded in simu-
lators must be validated, in the sense that the semantics must be shown to
produce performance predictions that can be relied upon.

5 The proSPEX Methodology

The proposed methodology for the modelling, verification and performance
evaluation of communication components of software for enterprise infor-
mation systems is presented in Fig. 1. The steps in our methodology are
outlined below.

Requirements Definition: The first step is to establish the requirements

4



of the communication component. In the case of a wireless middleware
product a primary requirement would be to use the available bandwidth as
efficiently as possible. Following requirement definition we identify6 or de-
sign suitable network and application layer inter-component protocols. UML
2.0 use case and sequence diagrams could be used to to aid understanding
but this is not required when constructing the simulation model, as can be
seen in Fig. 1.

Architecture Specification: The next step is to use a combination of UML
2.0 class and architecture diagrams (with ports, connectors and interfaces)
to design the architecture. The use of design patterns for protocol system
architecture[2] is recommended at this stage. The focus of this stage is to
identify the active classes and their interfaces.

Behaviour Specification: Following the architectural specification we
specify the detailed behavior of active classes by implementing state ma-
chines using statechart diagrams. As discussed in section 3, we use spe-
cialized communication abstractions derived from SDL in this model-driven
development process. Once this stage is complete the software is verified
using facilities provided by the model editing tool, in our case Telelogic Tau
G2.

Simulation Scenario Specification: Once the software has been verified
the performance analysis phase commences which starts with the modelling
of the environment of the communication component. That is, we create
client and server (or peer) active classes and their associated state ma-
chines. A collaboration diagram is then drawn up illustrating a simulation
scenario which in combination with the statechart diagrams of the client(s)
and server(s) serve as the workload. This scenario would indicate the number
of clients and servers and also network link characteristics (loss probability,
bandwidth and delay distribution). Once the scenario has been completed
the proSPEX tool user imports the model and runs the simulation until the
desired level of confidence in the result has been reached.

Results: The results7 given to the user include network and software
performance measures. Network performance measures include through-
put, average packet delay, service data unit transfer time and delay jitter.
Software performance measures such as inter-process connector throughput,
mean and maximum process queue lengths, discarded signals and timer in-
formation (such as expired timeouts) are given. These measures would then
prompt the user to either change the simulation parameters or the model

6Requests for Comments (RFC) documents could be used here.
7Note that work on the proSPEX analysis component is ongoing.

5



itself.

6 The proSPEX Tool Architecture

In this section we give a general overview of the proSPEX tool architecture
and certain technical issues encountered when translating a UML 2.0 model
to an executable simulation representation. We also motivate our design
decisions and report on the manner in which we overcame challenges.

With proSPEX our intention was to create a model-processing tool and
not a model editor since developing an editor would deviate from the primary
objective of the project. Telelogic Tau G2 offered an XML-based model file
format which was sufficient for our purposes, although an XML Metadata
Interchange (XMI) 2.0 standard file format would have been preferable. The
use of XML-based technologies, such as XPath (a language for addressing
parts of an XML document) eased the conversion to simulation models.

We were faced with the option of either developing a process-based
discrete event simulator from the ground up or to use existing simula-
tion packages. A review of the available simulation packages showed that
Simmcast[16], an object-oriented framework for network simulation, would
be ideal. Simmcast is specifically intended to be used in research environ-
ments with limited resources, as the excerpt from [16] shows:

...the complete development of a dedicated simulation tool from
scratch is not practical, since the amount of resources dispensed
in such a project would detract the researcher’s focus from the
project.

Simmcast offers extensible building blocks (such as nodes, paths, net-
work and packet) that are combined to describe the simulated network en-
vironment. Nodes, each of which are uniquely identified by an integer and
contains at least one thread of execution, are the fundamental interacting
entities and are connected via paths. The user extends the Node class, via
inheritance and places protocol logic and simulation action primitives (such
as send, receive, setTimer, sleep) in the extended class.

Despite offering a framework with extendible building blocks we found
the need to extend the list of simulation action primitives in order to accom-
modate required actions such as process creation and termination. Simmcast
does not offer such primitives since a Simmcast simulation experiment is de-
fined using a simulation description file that specifies the network topology
and startup parameters.

6



Figure 2: The proSPEX architecture.

An additional technical issue that had to be overcome in the translation
process involved addressing. During the translation from an UML 2.0 model
to a (modified) Simmcast simulation model we had to map concepts such
as Pid (process identifier) expressions8, which can either be self, parent,
offspring or sender, to Simmcast simulation code.

In the Simmcast code generation process we found the need to use tem-
plates, as can be seen in Fig. 2. The templates are fed into a text templating
engine (the Velocity Template Engine[24]) in order to insert dynamic content
into prewritten Simmcast source code. Text templating engines are essen-
tial tools in code generation as they solve the problem of inserting dynamic
content into prewritten text.

7 Conclusion

The verification and validation of formally specified communication software
has been accepted as being vital in overcoming the complexity of interactions
in application and network layer protocols. In this work we have argued that

8These expressions are derived from SDL and incorporated into UML 2.0 via the ITU-T
Z.109 Recommendation

7



in addition to correctness, performance is a vital quality attribute of commu-
nication software. In support of this view we have presented a model-driven
methodology for the performability analysis of the communication compo-
nents of software for EIS. This methodology is supported by the proSPEX
performance analysis tool.

In developing our methodology we found that UML 2.0 class, archi-
tecture and state chart diagrams were necessary to define the architecture
and behaviour of communication software. The use of patterns for com-
munication software architecture proved to be useful in the model-driven
development of the architectural aspects of network and application layer
protocols. We found that simulation scenarios and network parameters (loss
probability, bandwidth and delay distributions) could be specified by using
UML 2.0 collaboration diagrams.

In addition to presenting our methodology we have highlighted the archi-
tectural aspects of the proSPEX tool which takes advantage of XML-based
application integration and an extendible simulation framework, namely
Simmcast. We found it necessary to extend the set of simulation primi-
tives offered by Simmcast in order to allow for dynamic node (or active
class) creation and termination. At the same time we found that the UML
2.0 communication abstractions, offered by extending UML 2.0 with SDL
actions, map readily to Simmcast simulation primitives.

We have used and extended an existing simulation framework and fo-
cused our efforts on building a model-processor and not an editor. We hope
for these aspects to serve as an example of the efficient use of resources in
the research environment. Ongoing work on proSPEX includes development
on the trace analysis component and user interface.

References

[1] Emmerich, W.: Software engineering and middleware: A roadmap. In:
Proceedings of the conference on The fututure of Software engineering.
ACM Press, New York, USA (2000) 117–129

[2] Parssinen, J., Turunen, M.: Patterns for Protocol System Architecture.
In: Pattern Languages of Programs (PLoP) Conference (2000)

[3] Softwired: Softwired Inc. Pure Java messaging solutions for electronic
business. Available: http://www.softwired-inc.com/ (2004)

8



[4] BROADbeam: Mobile application development, wireless
software development: BROADbeam Homepage. Available:
http://www.broadbeam.com/index.asp (2004)

[5] SpiritSoft: Go Beyond JMS. Available: http://www.spiritsoft.com
(2004)

[6] Avizienis, A., Laprie, J.-C. and Randell, B. Fundamental concepts of
dependability. In: Proc. of the 3rd Information Survivability Workshop,
(2000), 7–12

[7] Smith, C.U., Woodside, M. Performance Validation at Early Stages
of Software Development. Position paper. Performance 99, Istanbul,
Turkey, (1999)

[8] Pooley, R. Software Engineering and Performance: A Road-map. In:
Proceedings of the conference on The future of Software Engineering,
Limerick, Ireland, ACM Press (2000) 189–199

[9] Hoeben, F. Using UML models for Performance Calculation. In: Pro-
ceedings of the Second International Workshop on Software and perfor-
mance, Ottawa, Ontario, Canada, ACM Press (2000) 77–82

[10] Merseguer, J., Campos, J. Exploring Roles for the UML Diagrams in
Software Performance Engineering. Proceedings of the 2003 International
Conference on Software Engineering Research and Practice (SERP’03),
Las Vegas, Nevada, USA, CSREA Press (2003) 43–47

[11] Smith, C.U., Williams, L.G. Performance Solutions: A Practical Guide
to Creating Responsive, Scalable Software. Reading, MA, Addison-
Wesley (2002)

[12] Sircar, S., Kott, A. Enterprise Architecture Analysis using an Architec-
ture Description Language. In: Proceedings of DARPA Symposium on
Advances in Enterprise Control, Minneapolis, MN (2000)

[13] Holzmann, G. Design and Validation of Computer Protocols. Prentice
Hall, (1991)

[14] X. Logean, F. Dietrich, J.-P. Hubaux, S. Grisouard, and P.-A. Etique.
On applying formal techniques to the development of hybrid services:
Challenges and directions. IEEE Communications Magazine, 37(7):132–
138, July (1999)

9



[15] Holzmann, G.J. Protocol Design: Redefining the State of the Art. IEEE
Software, 9(1):17–22, January (1992)

[16] Muhammad, H., Barcellos, M. Simulating Group Communication Pro-
tocols Through an Object-Oriented Framework. In: Proceedings of the
35th Annual Simulation Symposium, San Diego, IEEE (New York), 14–
18, (2002)

[17] Steppler, M. Performance Analysis of Communication Systems For-
mally Specified in SDL. Proceedings of the First International Workshop
on Software and Performance (WOSP98), ACM Press, 49–62, (1998)

[18] Bernardi, S., Donatelli, S., Merseguer, J.From UML Sequence Dia-
grams and Statecharts to Analysable Petri Net Models. Proceedings of
the Third International Workshop on Software and Performance, Rome,
Italy, ACM Press, New York, 35–45, (2002)

[19] McUmber, W.E., Cheng, B. H. C. A General Framework for Formaliz-
ing UML with Formal Languages. Proceedings of the 23rd international
conference on Software engineering, Toronto, Canada, IEEE Computer
Society, 433–442, (2001)

[20] Lavazza, L., Quaroni, G., Venturelli, M. Combining UML and Formal
Notations for Modelling Real-Time Systems. Proceedings of the 8th Eu-
ropean Software Engineering Conference, 2001, Vienna, Austria, ACM
Press, New York, 196–206, (2001)

[21] Bjorkander, M. Graphical Programming Using UML and SDL. IEEE
Computer, Vol. 33, No. 12, December (2002)

[22] Selic, B. Brass Bubbles: An Overview of UML 2.0 (and MDA). Tuto-
rial presented at OTS’2003 18-19 June 2003. Available: http://lisa.uni-
mb.si/cot/ots2003/predkonferenca/, June 26, (2003)

[23] P. Stevens. Small-scale XMI programming: a revolution in UML tool
use? In: Proceedings of the workshop on XML Software Engineering
2001. Available: http://www.dcs.ed.ac.uk/home/pxs/XMI/, July 21,
(2003)

[24] The Apache Jakarta Project: Velocity. Available:
http://jakarta.apache.org/velocity/ (2004)

10


