9 research outputs found

    Voice Packet Performance Estimation through Step Network Using OPNET

    Full text link
    VoIP transfer voice over networks such as LAN. This technology is growing rapidly due to support of existing network infrastructure at low cost. Various simulations have been done and it is observed that by increasing the VoIP client, packet length and traffic arrival rate the performance of step network affected. In the current work packet dropped, packet received, voice traffic sent and end-to-end delay is estimated for various queuing disciplines like PQ, FIFO and WFQ. It is depicted that queuing disciplines effects the applications performance and utilization of resources.Comment: 2018 IEEE 3rd International Conference on Computing, Communication and Security (ICCCS). arXiv admin note: text overlap with arXiv:1701.0479

    Formal Model Engineering for Embedded Systems Using Real-Time Maude

    Full text link
    This paper motivates why Real-Time Maude should be well suited to provide a formal semantics and formal analysis capabilities to modeling languages for embedded systems. One can then use the code generation facilities of the tools for the modeling languages to automatically synthesize Real-Time Maude verification models from design models, enabling a formal model engineering process that combines the convenience of modeling using an informal but intuitive modeling language with formal verification. We give a brief overview six fairly different modeling formalisms for which Real-Time Maude has provided the formal semantics and (possibly) formal analysis. These models include behavioral subsets of the avionics modeling standard AADL, Ptolemy II discrete-event models, two EMF-based timed model transformation systems, and a modeling language for handset software.Comment: In Proceedings AMMSE 2011, arXiv:1106.596

    A Rewriting-Logic-Based Technique for Modeling Thermal Systems

    Full text link
    This paper presents a rewriting-logic-based modeling and analysis technique for physical systems, with focus on thermal systems. The contributions of this paper can be summarized as follows: (i) providing a framework for modeling and executing physical systems, where both the physical components and their physical interactions are treated as first-class citizens; (ii) showing how heat transfer problems in thermal systems can be modeled in Real-Time Maude; (iii) giving the implementation in Real-Time Maude of a basic numerical technique for executing continuous behaviors in object-oriented hybrid systems; and (iv) illustrating these techniques with a set of incremental case studies using realistic physical parameters, with examples of simulation and model checking analyses.Comment: In Proceedings RTRTS 2010, arXiv:1009.398

    Model Checking Classes of Metric LTL Properties of Object-Oriented Real-Time Maude Specifications

    Full text link
    This paper presents a transformational approach for model checking two important classes of metric temporal logic (MTL) properties, namely, bounded response and minimum separation, for nonhierarchical object-oriented Real-Time Maude specifications. We prove the correctness of our model checking algorithms, which terminate under reasonable non-Zeno-ness assumptions when the reachable state space is finite. These new model checking features have been integrated into Real-Time Maude, and are used to analyze a network of medical devices and a 4-way traffic intersection system.Comment: In Proceedings RTRTS 2010, arXiv:1009.398

    Modelling and Verification of Large-Scale Sensor Network Infrastructures

    Get PDF
    Large-scale wireless sensor networks (WSN) are increasingly deployed and an open question is how they can support multiple applications. Networks and sensing devices are typically heterogeneous and evolving: topologies change, nodes drop in and out of the network, and devices are reconfigured. The key question we address is how to verify that application requirements are met, individually and collectively, and can continue to be met, in the context of large-scale, evolving network and device configurations. We define a modelling and verification framework based on Bigraphical Reactive Systems (BRS) for modelling, with bigraph patterns and temporal logic properties for specifying application requirements. The bigraph diagrammatic notation provides an intuitive representation of concepts such as hierarchies, communication, events and spatial relationships, which are fundamental to WSNs. We demonstrate modelling and verification through a real-life urban environmental monitoring case-study. A novel contribution is automated online verification using BigraphER and replay of real-life sensed data streams and network events by the Cooja network simulator. Performance results for verification of two application properties running on a WSN with up to 200 nodes indicate our framework is capable of handling WSNs of that scale

    Modelling and Analysis for Cyber-Physical Systems: An SMT-based approach

    Get PDF

    Programming and symbolic computation in Maude

    Full text link
    [EN] Rewriting logic is both a flexible semantic framework within which widely different concurrent systems can be naturally specified and a logical framework in which widely different logics can be specified. Maude programs are exactly rewrite theories. Maude has also a formal environment of verification tools. Symbolic computation is a powerful technique for reasoning about the correctness of concurrent systems and for increasing the power of formal tools. We present several new symbolic features of Maude that enhance formal reasoning about Maude programs and the effectiveness of formal tools. They include: (i) very general unification modulo user-definable equational theories, and (ii) symbolic reachability analysis of concurrent systems using narrowing. The paper does not focus just on symbolic features: it also describes several other new Maude features, including: (iii) Maude's strategy language for controlling rewriting, and (iv) external objects that allow flexible interaction of Maude object-based concurrent systems with the external world. In particular, meta-interpreters are external objects encapsulating Maude interpreters that can interact with many other objects. To make the paper self-contained and give a reasonably complete language overview, we also review the basic Maude features for equational rewriting and rewriting with rules, Maude programming of concurrent object systems, and reflection. Furthermore, we include many examples illustrating all the Maude notions and features described in the paper.Duran has been partially supported by MINECO/FEDER project TIN2014-52034-R. Escobar has been partially supported by the EU (FEDER) and the MCIU under grant RTI2018-094403-B-C32, by the Spanish Generalitat Valenciana under grant PROMETE0/2019/098, and by the US Air Force Office of Scientific Research under award number FA9550-17-1-0286. MartiOliet and Rubio have been partially supported by MCIU Spanish project TRACES (TIN2015-67522-C3-3-R). Rubio has also been partially supported by a MCIU grant FPU17/02319. Meseguer and Talcott have been partially supported by NRL Grant N00173 -17-1-G002. Talcott has also been partially supported by ONR Grant N00014-15-1-2202.Durán, F.; Eker, S.; Escobar Román, S.; NARCISO MARTÍ OLIET; José Meseguer; Rubén Rubio; Talcott, C. (2020). Programming and symbolic computation in Maude. Journal of Logical and Algebraic Methods in Programming. 110:1-58. https://doi.org/10.1016/j.jlamp.2019.100497S158110Alpuente, M., Escobar, S., Espert, J., & Meseguer, J. (2014). A modular order-sorted equational generalization algorithm. Information and Computation, 235, 98-136. doi:10.1016/j.ic.2014.01.006K. Bae, J. Meseguer, Predicate abstraction of rewrite theories, in: [36], 2014, pp. 61–76.Bae, K., & Meseguer, J. (2015). Model checking linear temporal logic of rewriting formulas under localized fairness. Science of Computer Programming, 99, 193-234. doi:10.1016/j.scico.2014.02.006Bae, K., Meseguer, J., & Ölveczky, P. C. (2014). Formal patterns for multirate distributed real-time systems. Science of Computer Programming, 91, 3-44. doi:10.1016/j.scico.2013.09.010P. Borovanský, C. Kirchner, H. Kirchner, P.E. Moreau, C. Ringeissen, An overview of ELAN, in: [77], 1998, pp. 55–70.Bouhoula, A., Jouannaud, J.-P., & Meseguer, J. (2000). Specification and proof in membership equational logic. Theoretical Computer Science, 236(1-2), 35-132. doi:10.1016/s0304-3975(99)00206-6Bravenboer, M., Kalleberg, K. T., Vermaas, R., & Visser, E. (2008). Stratego/XT 0.17. A language and toolset for program transformation. Science of Computer Programming, 72(1-2), 52-70. doi:10.1016/j.scico.2007.11.003Bruni, R., & Meseguer, J. (2006). Semantic foundations for generalized rewrite theories. Theoretical Computer Science, 360(1-3), 386-414. doi:10.1016/j.tcs.2006.04.012M. Clavel, F. Durán, S. Eker, S. Escobar, P. Lincoln, N. Martí-Oliet, C.L. Talcott, Two decades of Maude, in: [86], 2015, pp. 232–254.Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı́-Oliet, N., Meseguer, J., & Quesada, J. F. (2002). Maude: specification and programming in rewriting logic. Theoretical Computer Science, 285(2), 187-243. doi:10.1016/s0304-3975(01)00359-0Clavel, M., & Meseguer, J. (2002). Reflection in conditional rewriting logic. Theoretical Computer Science, 285(2), 245-288. doi:10.1016/s0304-3975(01)00360-7F. Durán, S. Eker, S. Escobar, N. Martí-Oliet, J. Meseguer, C.L. Talcott, Associative unification and symbolic reasoning modulo associativity in Maude, in: [121], 2018, pp. 98–114.Durán, F., Lucas, S., Marché, C., Meseguer, J., & Urbain, X. (2008). Proving operational termination of membership equational programs. Higher-Order and Symbolic Computation, 21(1-2), 59-88. doi:10.1007/s10990-008-9028-2F. Durán, J. Meseguer, An extensible module algebra for Maude, in: [77], 1998, pp. 174–195.Durán, F., & Meseguer, J. (2003). Structured theories and institutions. Theoretical Computer Science, 309(1-3), 357-380. doi:10.1016/s0304-3975(03)00312-8Durán, F., & Meseguer, J. (2007). Maude’s module algebra. Science of Computer Programming, 66(2), 125-153. doi:10.1016/j.scico.2006.07.002Durán, F., & Meseguer, J. (2012). On the Church-Rosser and coherence properties of conditional order-sorted rewrite theories. The Journal of Logic and Algebraic Programming, 81(7-8), 816-850. doi:10.1016/j.jlap.2011.12.004F. Durán, P.C. Ölveczky, A guide to extending Full Maude illustrated with the implementation of Real-Time Maude, in: [116], 2009, pp. 83–102.S. Escobar, Multi-paradigm programming in Maude, in: [121], 2018, pp. 26–44.Escobar, S., Meadows, C., Meseguer, J., & Santiago, S. (2014). State space reduction in the Maude-NRL Protocol Analyzer. Information and Computation, 238, 157-186. doi:10.1016/j.ic.2014.07.007Escobar, S., Sasse, R., & Meseguer, J. (2012). Folding variant narrowing and optimal variant termination. The Journal of Logic and Algebraic Programming, 81(7-8), 898-928. doi:10.1016/j.jlap.2012.01.002H. Garavel, M. Tabikh, I. Arrada, Benchmarking implementations of term rewriting and pattern matching in algebraic, functional, and object-oriented languages – the 4th rewrite engines competition, in: [121], 2018, pp. 1–25.Goguen, J. A., & Burstall, R. M. (1992). Institutions: abstract model theory for specification and programming. Journal of the ACM, 39(1), 95-146. doi:10.1145/147508.147524Goguen, J. A., & Meseguer, J. (1984). Equality, types, modules, and (why not?) generics for logic programming. The Journal of Logic Programming, 1(2), 179-210. doi:10.1016/0743-1066(84)90004-9Goguen, J. A., & Meseguer, J. (1992). Order-sorted algebra I: equational deduction for multiple inheritance, overloading, exceptions and partial operations. Theoretical Computer Science, 105(2), 217-273. doi:10.1016/0304-3975(92)90302-vR. Gutiérrez, J. Meseguer, Variant-based decidable satisfiability in initial algebras with predicates, in: [61], 2018, pp. 306–322.Gutiérrez, R., Meseguer, J., & Rocha, C. (2015). Order-sorted equality enrichments modulo axioms. Science of Computer Programming, 99, 235-261. doi:10.1016/j.scico.2014.07.003Horn, A. (1951). On sentences which are true of direct unions of algebras. Journal of Symbolic Logic, 16(1), 14-21. doi:10.2307/2268661Katelman, M., Keller, S., & Meseguer, J. (2012). Rewriting semantics of production rule sets. The Journal of Logic and Algebraic Programming, 81(7-8), 929-956. doi:10.1016/j.jlap.2012.06.002Kowalski, R. (1979). Algorithm = logic + control. Communications of the ACM, 22(7), 424-436. doi:10.1145/359131.359136Lucanu, D., Rusu, V., & Arusoaie, A. (2017). A generic framework for symbolic execution: A coinductive approach. Journal of Symbolic Computation, 80, 125-163. doi:10.1016/j.jsc.2016.07.012D. Lucanu, V. Rusu, A. Arusoaie, D. Nowak, Verifying reachability-logic properties on rewriting-logic specifications, in: [86], 2015, pp. 451–474.Lucas, S., & Meseguer, J. (2016). Normal forms and normal theories in conditional rewriting. Journal of Logical and Algebraic Methods in Programming, 85(1), 67-97. doi:10.1016/j.jlamp.2015.06.001N. Martí-Oliet, J. Meseguer, A. Verdejo, A rewriting semantics for Maude strategies, in: [116], 2009, pp. 227–247.Martí-Oliet, N., Palomino, M., & Verdejo, A. (2007). Strategies and simulations in a semantic framework. Journal of Algorithms, 62(3-4), 95-116. doi:10.1016/j.jalgor.2007.04.002Meseguer, J. (1992). Conditional rewriting logic as a unified model of concurrency. Theoretical Computer Science, 96(1), 73-155. doi:10.1016/0304-3975(92)90182-fMeseguer, J. (2012). Twenty years of rewriting logic. The Journal of Logic and Algebraic Programming, 81(7-8), 721-781. doi:10.1016/j.jlap.2012.06.003Meseguer, J. (2017). Strict coherence of conditional rewriting modulo axioms. Theoretical Computer Science, 672, 1-35. doi:10.1016/j.tcs.2016.12.026J. Meseguer, Generalized rewrite theories and coherence completion, in: [121], 2018, pp. 164–183.Meseguer, J. (2018). Variant-based satisfiability in initial algebras. Science of Computer Programming, 154, 3-41. doi:10.1016/j.scico.2017.09.001Meseguer, J., Goguen, J. A., & Smolka, G. (1989). Order-sorted unification. Journal of Symbolic Computation, 8(4), 383-413. doi:10.1016/s0747-7171(89)80036-7Meseguer, J., & Ölveczky, P. C. (2012). Formalization and correctness of the PALS architectural pattern for distributed real-time systems. Theoretical Computer Science, 451, 1-37. doi:10.1016/j.tcs.2012.05.040Meseguer, J., Palomino, M., & Martí-Oliet, N. (2008). Equational abstractions. Theoretical Computer Science, 403(2-3), 239-264. doi:10.1016/j.tcs.2008.04.040Meseguer, J., & Roşu, G. (2007). The rewriting logic semantics project. Theoretical Computer Science, 373(3), 213-237. doi:10.1016/j.tcs.2006.12.018Meseguer, J., & Roşu, G. (2013). The rewriting logic semantics project: A progress report. Information and Computation, 231, 38-69. doi:10.1016/j.ic.2013.08.004Meseguer, J., & Skeirik, S. (2017). Equational formulas and pattern operations in initial order-sorted algebras. Formal Aspects of Computing, 29(3), 423-452. doi:10.1007/s00165-017-0415-5Meseguer, J., & Thati, P. (2007). Symbolic reachability analysis using narrowing and its application to verification of cryptographic protocols. Higher-Order and Symbolic Computation, 20(1-2), 123-160. doi:10.1007/s10990-007-9000-6C. Olarte, E. Pimentel, C. Rocha, Proving structural properties of sequent systems in rewriting logic, in: [121], 2018, pp. 115–135.Ölveczky, P. C., & Meseguer, J. (2007). Semantics and pragmatics of Real-Time Maude. Higher-Order and Symbolic Computation, 20(1-2), 161-196. doi:10.1007/s10990-007-9001-5Ölveczky, P. C., & Thorvaldsen, S. (2009). Formal modeling, performance estimation, and model checking of wireless sensor network algorithms in Real-Time Maude. Theoretical Computer Science, 410(2-3), 254-280. doi:10.1016/j.tcs.2008.09.022Rocha, C., Meseguer, J., & Muñoz, C. (2017). Rewriting modulo SMT and open system analysis. Journal of Logical and Algebraic Methods in Programming, 86(1), 269-297. doi:10.1016/j.jlamp.2016.10.001Şerbănuţă, T. F., Roşu, G., & Meseguer, J. (2009). A rewriting logic approach to operational semantics. Information and Computation, 207(2), 305-340. doi:10.1016/j.ic.2008.03.026Skeirik, S., & Meseguer, J. (2018). Metalevel algorithms for variant satisfiability. Journal of Logical and Algebraic Methods in Programming, 96, 81-110. doi:10.1016/j.jlamp.2017.12.006S. Skeirik, A. Ştefănescu, J. Meseguer, A constructor-based reachability logic for rewrite theories, in: [61], 2018, pp. 201–217.Strachey, C. (2000). Higher-Order and Symbolic Computation, 13(1/2), 11-49. doi:10.1023/a:1010000313106A. Ştefănescu, S. Ciobâcă, R. Mereuta, B.M. Moore, T. Serbanuta, G. Roşu, All-path reachability logic, in: [36], 2014, pp. 425–440.Tushkanova, E., Giorgetti, A., Ringeissen, C., & Kouchnarenko, O. (2015). A rule-based system for automatic decidability and combinability. Science of Computer Programming, 99, 3-23. doi:10.1016/j.scico.2014.02.00

    Twenty years of rewriting logic

    Get PDF
    AbstractRewriting logic is a simple computational logic that can naturally express both concurrent computation and logical deduction with great generality. This paper provides a gentle, intuitive introduction to its main ideas, as well as a survey of the work that many researchers have carried out over the last twenty years in advancing: (i) its foundations; (ii) its semantic framework and logical framework uses; (iii) its language implementations and its formal tools; and (iv) its many applications to automated deduction, software and hardware specification and verification, security, real-time and cyber-physical systems, probabilistic systems, bioinformatics and chemical systems
    corecore