12,310 research outputs found

    Towards an understanding of the consequences of technology-driven decision support for maritime navigation

    Get PDF
    The maritime industry is undergoing a transformation driven by digitalization and connectivity. There is speculation that in the next two decades the maritime industry will witness changes far exceeding those experienced over the past 100 years. While change is inevitable in the maritime domain, technological developments do not guarantee navigational safety, efficiency, or improved seaway traffic management. The International Maritime Organization (IMO) has adopted the Maritime Autonomous Surface Ships (MASS) concept to define autonomy on a scale from Degrees 1 through 4.\ua0 Investigations into the impact of MASS on various aspects of the maritime sociotechnical system is currently ongoing by academic and industry stakeholders. However, the early adoption of MASS (Degree 1), which is classified as a crewed ship with decision support, remains largely unexplored. Decision support systems are intended to support operator decision-making and improve operator performance. In practice they can cause unintended changes throughout other elements of the maritime sociotechnical system. In the maritime industry, the human is seldom put first in technology design which paradoxically introduces human-automation challenges related to technology acceptance, use, trust, reliance, and risk. The co-existence of humans and automation, as it pertains to navigation and navigational assistance, is explored throughout this thesis. The aims of this thesis are (1) to understand how decision support will impact navigation and navigational assistance from the operator’s perspective and (2) to explore a framework to help reduce the gaps between the design and use of decision support technologies. This thesis advocates for a human-centric approach to automation design and development while exploring the broader impacts upon the maritime sociotechnical system. This work considers three different projects and four individual data collection efforts during 2017-2022. This research took place in Gothenburg, Sweden, and Warsash, UK and includes data from 65 Bridge Officers (navigators) and 16 Vessel Traffic Service (VTS) operators. Two testbeds were used to conduct the research in several full mission bridge simulators, and a virtual reality environment. A mixed methods approach, with a heavier focus on qualitative data, was adopted to understand the research problem. Methodological tools included literature reviews, observations, questionnaires, ship maneuvering data, collective interviews, think-aloud protocol, and consultation with subject matter experts. The data analysis included thematic analysis, subject matter expert consultation, and descriptive statistics.\ua0The results show that operators perceive that decision support will impact their work, but not necessarily as expected. The operators’ positive and negative perceptions are discussed within the frameworks of human-automation interaction, decision-making, and systems thinking. The results point towards gaps in work as it is intended to be done and work as it is done in the user’s context. A user-driven design framework is proposed which allows for a systematic, flexible, and iterative design process capable of testing new technologies while involving all stakeholders. These results have led to the identification of several research gaps in relation to the overall preparedness of the shipping industry to manage the evolution toward smarter ships. This thesis will discuss these findings and advocate for human-centered automation within the quickly evolving maritime industry

    Towards a new generation of security requirements definition methodology using ontologies

    No full text
    International audienceIn recent years, security in Information Systems (IS) has become an important issue, and needs to be taken into account in all stages of IS development, including the early phase of Requirement Engineering (RE). Recent studies proposed some useful approaches for security requirements definition but analysts still suffer from a considerable lack of knowledge about security and domain field. Ontologies are known to be wide sources of knowledge. We propose in this research to include ontologies into the requirements engineering process. Ontologies are factors in achieving success in requirements elicitation of high quality

    Automated Functions: Their Potential for Impact Upon Maritime Sociotechnical Systems

    Get PDF
    The shipping industry is evolving towards an unknown and unpredictable future. There is speculation that in the next two decades the maritime industry will witness changes far exceeding those experienced over the past 100 years. The rapid development of artificial intelligence (AI), big data, automation and their impacts upon fully autonomous ships have the potential to transform the maritime industry. While change is inevitable in the maritime domain, automated solutions do not guarantee navigational safety, efficiency or improved seaway traffic management. Such dramatic change also calls for a more systematic approach to designing, evaluating and adopting new solutions into a system. Although intended to support operator decision-making needs and reduce operator workload, the outcomes might create unforeseen changes throughout other aspects of the maritime sociotechnical system. In the maritime industry, the human is seldom put first in technology design which paradoxically introduces human-automation challenges related to technology acceptance, use, trust, reliance and risk. The co-existence and challenges of humans and automation, as it pertains to navigation and navigational assistance, is explored throughout this licentiate.\ua0This thesis considers the Sea Traffic Management (STM) Validation Project \ua0as the context to examine low-level automation functions intended to enhance operator (both Navigators and Vessel Traffic Service Operators) navigational safety and efficiency. The STM functions are designed to improve information sharing between ships and from ship to shore such as: route sharing, enhanced monitoring, and route crosschecking. The licentiate is built on two different data collection efforts during 2017-2018 within the STM Validation project. The functions were tested on two user groups: Bridge Officers and Vessel Traffic Service Operators. All testing was completed in high-fidelity bridge simulators using traffic scenarios developed by subject matter experts.The aim of this licentiate is to study the impact of low levels of automation on operator behavior, and to explore the broader impact upon the maritime sociotechnical system. A mixed-method approach was selected to address these questions and included the following: observations, questionnaires, numerical assessment of ship behavior, and post-simulation debrief group sessions. To analyze and discuss the data, grounded theory, subject matter expert consultation, and descriptive statistics were used. The results point towards a disruption in current working practices for both ship and shore operators, and an uncertainty about the overall impact of low-level automation on operator behaviour. Using a sociotechnical systems approach, gaps have been identified related to new technology testing and implementation. These gaps relate to the overall preparedness of the shipping industry to manage the evolution towards smarter ships. The findings discussed in this licentiate aim to promote further discussions about a quickly evolving industry concerning automation integration in shipping and the potential impact on human performance in safety critical operations

    Submarine Cables: Issues of Maritime Security, Jurisdiction, and Legalities

    Get PDF
    This paper delves into the complex issues surrounding submarine cables, vital for global communication and data exchange. These issues include maritime security, legal jurisdictions, and broader legalities. Because submarine cables are located deep in the world's oceans, they face numerous security threats such as sabotage, illegal fishing, and deep-sea mining, highlighting the need for comprehensive maritime security measures. Legal Jurisdiction over these cables, especially those outside territorial waters, is equally complicated. Different international norms and regulations contribute to a fragmented legal landscape, creating jurisdictional authority and regulatory compliance ambiguities. Moreover, international laws offer inconsistent solutions to cable damage, repair, and maintenance, adding further complexity. This paper examines these interconnected issues, analyzing the existing regulatory frameworks and their effectiveness in addressing submarine cables' security and legal challenges. We provide a nuanced understanding of this essential infrastructure's vulnerabilities and propose recommendations for enhanced legal frameworks, increased international cooperation, and improved security measures. This comprehensive study is particularly relevant in the current era of digital interconnectedness, where reliable, secure, and uninterrupted international data flows are crucial. We hope this paper will stimulate further discussion and research in this critical yet often underestimated international law and global security area

    Investigating the relevance of effectiveness of cybersecurity measures in the Philippine maritime industry

    Get PDF

    ECHO Information sharing models

    Get PDF
    As part of the ECHO project, the Early Warning System (EWS) is one of four technologies under development. The E-EWS will provide the capability to share information to provide up to date information to all constituents involved in the E-EWS. The development of the E-EWS will be rooted in a comprehensive review of information sharing and trust models from within the cyber domain as well as models from other domains

    Studying Control Processes for Bridge Teams

    Get PDF
    Several technological advances have been seen the maritime domain to achieve higher operational efficiency and to address the generally recognised causes of most maritime accidents. The International Maritime Organization (IMO) endorses the use of best available technology to “drive continuous improvement and innovation in the facilitation of maritime traffic” in line with the goal of sustainable development. It is commonly acknowledged that modern technology revolutionized marine navigation, and presently it has a large potential to increase safety in navigation. However, the incorporation of new technologies in support of navigation also brought unforeseen critical consequences, contributing to unsafe practices, or even to accidents or incidents. Several issues were associated with human factors. To properly address the adoption of the newest technology in support of safe navigation, IMO established the e-navigation concept, currently under implementation. The complexity of the maritime socio-technical system requires novel theoretical foundations, since many of the present framework rely on the analysis of accidents. The design of complex maritime navigation system must take place on several levels, providing different perspectives over the system problems. The evaluation and design of technologies envisaged by the e-navigation concept requires a better understand of how teams perform the navigation work in the pursuit of safe navigation. This study attempts to provide a better understanding on how maritime navigation is currently done on-board, considering the overarching elements and their interactions. In maritime navigation safety is a transverse issue, and that is why we need to know the conditions for safe navigation to improve the design of ship navigation control. The work supporting this thesis was focused on: (i) understanding how navigation is done and to perceive by the practitioners, (ii) understanding interactions between humans and technological interfaces, and (iii) understanding the relevant soft skills for the navigation functions. To address these topics, data was collected from expert practitioners such as navigators, pilots and instructors, thru semi structured interviews and questionnaires. The mains contribution of this study lies in presenting a framework of maritime navigation, exploring the control processes in the different levels of the maritime socio-technical system. In the view of safe operations, interactions between stakeholders are clarified, trying to determine how they influence safe navigation. This systemic view is then analysed from the perspective of the ship, considering it as a Joint-cognitive system (JCS). It is proposed that this JCS comprises 5 control levels: reactive, proactive, planning, strategic and political-economical. Planning is considered a fundamental process in the maritime Socio-technical system, because it facilitates the interactions between the different control level. It also increases the integrity of communications and enhances the predictability of the different control agents. New directions are proposed to improve the design of navigation system, recommending new roles for human and automated agents, and presenting a new conceptual navigation display.info:eu-repo/semantics/publishedVersio

    Maritime spatial planning in South Africa : a nexus between legal, economic, social and environmental agendas

    Get PDF

    Assessing maritime cyber security awareness in navies of the Gulf of Guinea countries: a case study of Ghana

    Get PDF
    • …
    corecore