19 research outputs found

    Security protocols suite for machine-to-machine systems

    Get PDF
    Nowadays, the great diffusion of advanced devices, such as smart-phones, has shown that there is a growing trend to rely on new technologies to generate and/or support progress; the society is clearly ready to trust on next-generation communication systems to face today’s concerns on economic and social fields. The reason for this sociological change is represented by the fact that the technologies have been open to all users, even if the latter do not necessarily have a specific knowledge in this field, and therefore the introduction of new user-friendly applications has now appeared as a business opportunity and a key factor to increase the general cohesion among all citizens. Within the actors of this technological evolution, wireless machine-to-machine (M2M) networks are becoming of great importance. These wireless networks are made up of interconnected low-power devices that are able to provide a great variety of services with little or even no user intervention. Examples of these services can be fleet management, fire detection, utilities consumption (water and energy distribution, etc.) or patients monitoring. However, since any arising technology goes together with its security threats, which have to be faced, further studies are necessary to secure wireless M2M technology. In this context, main threats are those related to attacks to the services availability and to the privacy of both the subscribers’ and the services providers’ data. Taking into account the often limited resources of the M2M devices at the hardware level, ensuring the availability and privacy requirements in the range of M2M applications while minimizing the waste of valuable resources is even more challenging. Based on the above facts, this Ph. D. thesis is aimed at providing efficient security solutions for wireless M2M networks that effectively reduce energy consumption of the network while not affecting the overall security services of the system. With this goal, we first propose a coherent taxonomy of M2M network that allows us to identify which security topics deserve special attention and which entities or specific services are particularly threatened. Second, we define an efficient, secure-data aggregation scheme that is able to increase the network lifetime by optimizing the energy consumption of the devices. Third, we propose a novel physical authenticator or frame checker that minimizes the communication costs in wireless channels and that successfully faces exhaustion attacks. Fourth, we study specific aspects of typical key management schemes to provide a novel protocol which ensures the distribution of secret keys for all the cryptographic methods used in this system. Fifth, we describe the collaboration with the WAVE2M community in order to define a proper frame format actually able to support the necessary security services, including the ones that we have already proposed; WAVE2M was funded to promote the global use of an emerging wireless communication technology for ultra-low and long-range services. And finally sixth, we provide with an accurate analysis of privacy solutions that actually fit M2M-networks services’ requirements. All the analyses along this thesis are corroborated by simulations that confirm significant improvements in terms of efficiency while supporting the necessary security requirements for M2M networks

    Availability by Design:A Complementary Approach to Denial-of-Service

    Get PDF

    Responsible AI and Analytics for an Ethical and Inclusive Digitized Society

    Get PDF
    publishedVersio

    Smart and Secure Augmented Reality for Assisted Living

    Get PDF
    Augmented reality (AR) is one of the biggest technology trends which enables people to see the real-life surrounding environment with a layer of virtual information overlaid on it. Assistive devices use this match of information to help people better understand the environment and consequently be more efficient. Specially, AR has been extremely useful in the area of Ambient Assisted Living (AAL). AR-based AAL solutions are designed to support people in maintaining their autonomy and compensate for slight physical and mental restrictions by instructing them on everyday tasks. The discovery of visual attention for assistive aims is a big challenge since in dynamic cluttered environments objects are constantly overlapped and partial object occlusion is also frequent. Current solutions use egocentric object recognition techniques. However, the lack of accuracy affects the system's ability to predict users’ needs and consequently provide them with the proper support. Another issue is the manner that sensitive data is treated. This highly private information is crucial for improving the quality of healthcare services. However, current blockchain approaches are used only as a permission management system, while the data is still stored locally. As a result, there is a potential risk of security breaches. Privacy risk in the blockchain domain is also a concern. As major investigation tackles privacy issues based on off-chain approaches, there is a lack of effective solutions for providing on-chain data privacy. Finally, the Blockchain size has been shown to be a limiting factor even for chains that store simple transactional data, much less the massive blocks that would be required for storing medical imaging studies. To tackle the aforementioned major issues, this research proposes a framework to provide a smarter and more secure AR-based solution for AAL. Firstly, a combination of head-worn eye-trackers cameras with egocentric video is designed to improve the accuracy of visual attention object recognition in free-living settings. A heuristic function is designed to generate a probability estimation of visual attention over objects within an egocentric video. Secondly, a novel methodology for the storage of large sensitive AR-based AAL data is introduced in a decentralized fashion. By leveraging the power of the IPFS (InterPlanetary File System) protocol to tackle the lack of storage issue in the Blockchain. Meanwhile, a blockchain solution on the Secret Network blockchain is developed to tackle the existent lack of privacy on smart contracts, which provides data privacy at both transactional and computational levels. In addition, is included a new off-chain solution encapsulates a governing body for permission management purposes to solve the problem of the lost or eventual theft of private keys. Based on the research findings, that visual attention-object detection approach is applicable to cluttered environments which presents a transcend performance compared to the current methods. This study also produced an egocentric indoor dataset annotated with human fixation during natural exploration in a cluttered environment. Comparing to previous works, this dataset is more realistic because it was recorded in real settings with variations in terms of objects overlapping regions and object sizes. With respect to the novel decentralized storage methodology, results indicate that sensitive data can be stored and queried efficiently using the Secret Network blockchain. The proposed approach achieves both computational and transactional privacy with significantly less cost. Additionally, this approach mitigates the risk of permanent loss of access to the patient on-chain data records. The proposed framework can be applied as an assistive technology in a wide range of sectors that requires AR-based solution with high-precision visual-attention object detection, efficient data access, high-integrity data storage and full data privacy and security

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    General Catalog 2007-2009

    Get PDF
    Contains course descriptions, University college calendar, and college administrationhttps://digitalcommons.usu.edu/universitycatalogs/1127/thumbnail.jp

    General Catalog 2009-2010

    Get PDF
    Contains course descriptions, University college calendar, and college administrationhttps://digitalcommons.usu.edu/universitycatalogs/1128/thumbnail.jp
    corecore