194 research outputs found

    Cell libraries and verification

    Get PDF
    Digital electronic devices are often implemented using cell libraries to provide the basic logic elements, such as Boolean functions and on-chip memories. To be usable both during the development of chips, which is usually done in a hardware definition language, and for the final layout, which consists of lithographic masks, cells are described in multiple ways. Among these, there are multiple descriptions of the behavior of cells, for example one at the level of hardware definition languages, and another one in terms of transistors that are ultimately produced. Thus, correct functioning of the device depends also on the correctness of the cell library, requiring all views of a cell to correspond with each other. In this thesis, techniques are presented to verify some of these correspondences in cell libraries. First, a technique is presented to check that the functional description in a hardware definition language and the transistor netlist description implement the same behavior. For this purpose, a semantics is defined for the commonly used subset of the hardware definition language Verilog. This semantics is encoded into Boolean equations, which can also be extracted from a transistor netlist. A model checker is then used to prove equivalence of these two descriptions, or to provide a counterexample showing that they are different. Also in basic elements such as cells, there exists non-determinism reflecting internal behavior that cannot be controlled from the outside. It is however desired that such internal behavior does not lead to different externally observable behavior, i.e., to different computation results. This thesis presents a technique to efficiently check, both for hardware definition language descriptions and transistor netlist descriptions, whether non-determinism does have an effect on the observable computation or not. Power consumption of chips has become a very important topic, especially since devices become mobile and therefore are battery powered. Thus, in order to predict and to maximize battery life, the power consumption of cells should be measured and reduced in an efficient way. To achieve these goals, this thesis also takes the power consumption into account when analyzing non-deterministic behavior. Then, on the one hand, behaviors consuming the same amount of power have to be measured only once. On the other hand, functionally equivalent computations can be forced to consume the least amount of power without affecting the externally observable behavior of the cell, for example by introducing appropriate delays. A way to prevent externally observable non-deterministic behavior in practical hardware designs is by adding timing checks. These checks rule out certain input patterns which must not be generated by the environment of a cell. If an input pattern can be found that is not forbidden by any of the timing checks, yet allows non-deterministic behavior, then the cell’s environment is not sufficiently restricted and hence this usually indicates a forgotten timing check. Therefore, the check for non-determinism is extended to also respect these timing checks and to consider only counterexamples that are not ruled out. If such a counterexample can be found, then it gives an indication what timing checks need to be added. Because current hardware designs run at very high speeds, timing analysis of cells has become a very important issue. For this purpose, cell libraries include a description of the delay arcs present in a cell, giving an amount of time it takes for an input change to have propagated to the outputs of a cell. Also for these descriptions, it is desired that they reflect the actual behavior in the cell. On the one hand, a delay arc that never manifests itself may result in a clock frequency that is lower than necessary. On the other hand, a forgotten delay arc can cause the clock frequency being too high, impairing functioning of the final chip. To relate the functional description of a cell with its timing specification, this thesis presents techniques to check whether delay arcs are consistent with the functionality, and which list all possible delay arcs. Computing new output values of a cell given some new input values requires all connections among the transistors in a cell to obtain stable values. Hitherto it was assumed that such a stable situation will always be reached eventually. To actually check this, a wire is abstracted into a sequence of stable values. Using this abstraction, checking whether stable situations are always reached is reduced to analyzing that an infinite sequence of such stable values exists. This is known in the term rewriting literature as productivity, the infinitary equivalent to termination. The final contribution in this thesis are techniques to automatically prove productivity. For this purpose, existing termination proving tools for term rewriting are re-used to benefit from their tremendous strength and their continuous improvements

    PAFSV: A Formal Framework for Specification and Analysis of SystemVerilog

    Get PDF
    We develop a process algebraic framework PAFSV for the formal specification and analysis of IEEE 1800TM SystemVerilog designs. The formal semantics of PAFSV is defined by means of deduction rules that associate a time transition system with a PAFSV process. A set of properties of PAFSV is presented for a notion of bisimilarity. PAFSV may be regarded as the formal language of a significant subset of IEEE 1800TM SystemVerilog. To show that PAFSV is useful for the formal specification and analysis of IEEE 1800TM SystemVerilog designs, we illustrate the use of PAFSV with a multiplexer, a synchronous reset D flip-flop and an arbiter

    Specification and Verification of Synchronous Hardware using LOTOS

    Get PDF
    This paper investigates specification and verification of synchronous circuits using DILL (Digital Logic in LOTOS). After an overview of the DILL approach, the paper focuses on the characteristics of synchronous circuits. A more constrained model is presented for specifying digital components and verifying them. Two standard benchmark circuits are specified using this new model, and analysed by the CADP toolset (Cæsar/Aldébaran Development Package)

    Formally-Based Design Evaluation (extended version)

    Get PDF
    This paper investigates specification, verification and test generation for synchronous and asynchronous circuits. The approach is called DILL (Digital Logic in LOTOS). DILL models are discussed for synchronous and asynchronous circuits. Relations for (strong) conformance are defined for verifying a design specification against a high-level specification. An algorithm is also outlined for generating and applying implementation tests based on a specification. Tools have been developed for automated test generation and verification of conformance between an implementation and its specification. The approach is illustrated with various benchmark circuits as case studies

    Extended update plans

    Get PDF
    Formal methods are gaining popularity as a way of increasing the reliability of systems through the use of mathematically based techniques. Their domain is no longer restricted to purely academic environments and examples, as they are slowly moving into industrial settings. The slow rate at which this transition takes place is mainly due to the perceived difficulty of formalising the behaviour of systems. While this is undoubtedly true, it is not the case with all formal methods. Update Plans are a powerful formalism for the description of computer architectures and intermediate to low-level languages. They are a declarative specification language with an underlying imperative machine model. The descriptions using Update Plans are clear, compact, intuitive, unambiguous and simple to read. These characteristics allow for the minimisation of possible errors at early stages of the development process even before a verification takes place. In this thesis an overview of the Update Plans formalism is given and a number of realworld applications is shown. The investigation of the application area focuses on computer architectures for which various specifications already exist. The comparison of Update Plan specifications to other specifications provides a useful insight into the strengths and shortcomings of the formalism. The shortcomings, in particular the lack of synchronisation primitives and modularity, are addressed by the development and evaluation of several syntactic and semantic extensions described in this thesis. The extended formalism is also compared to other specification languages and conclusions are drawn

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Timing model derivation : static analysis of hardware description languages

    Get PDF
    Safety-critical hard real-time systems are subject to strict timing constraints. In order to derive guarantees on the timing behavior, the worst-case execution time (WCET) of each task comprising the system has to be known. The aiT tool has been developed for computing safe upper bounds on the WCET of a task. Its computation is mainly based on abstract interpretation of timing models of the processor and its periphery. These models are currently hand-crafted by human experts, which is a time-consuming and error-prone process. Modern processors are automatically synthesized from formal hardware specifications. Besides the processor’s functional behavior, also timing aspects are included in these descriptions. A methodology to derive sound timing models using hardware specifications is described within this thesis. To ease the process of timing model derivation, the methodology is embedded into a sound framework. A key part of this framework are static analyses on hardware specifications. This thesis presents an analysis framework that is build on the theory of abstract interpretation allowing use of classical program analyses on hardware description languages. Its suitability to automate parts of the derivation methodology is shown by different analyses. Practical experiments demonstrate the applicability of the approach to derive timing models. Also the soundness of the analyses and the analyses’ results is proved.Sicherheitskritische Echtzeitsysteme unterliegen strikten Zeitanforderungen. Um ihr Zeitverhalten zu garantieren müssen die Ausführungszeiten der einzelnen Programme, die das System bilden, bekannt sein. Um sichere obere Schranken für die Ausführungszeit von Programmen zu berechnen wurde aiT entwickelt. Die Berechnung basiert auf abstrakter Interpretation von Zeitmodellen des Prozessors und seiner Peripherie. Diese Modelle werden händisch in einem zeitaufwendigen und fehleranfälligen Prozess von Experten entwickelt. Moderne Prozessoren werden automatisch aus formalen Spezifikationen erzeugt. Neben dem funktionalen Verhalten beschreiben diese auch das Zeitverhalten des Prozessors. In dieser Arbeit wird eine Methodik zur sicheren Ableitung von Zeitmodellen aus der Hardwarespezifikation beschrieben. Um den Ableitungsprozess zu vereinfachen ist diese Methodik in eine automatisierte Umgebung eingebettet. Ein Hauptbestandteil dieses Systems sind statische Analysen auf Hardwarebeschreibungen. Diese Arbeit stellt eine Analyse-Umgebung vor, die auf der Theorie der abstrakten Interpretation aufbaut und den Einsatz von klassischen Programmanalysen auf Hardwarebeschreibungssprachen erlaubt. Die Eignung des Systems, Teile der Ableitungsmethodik zu automatisieren, wird anhand einiger Analysen gezeigt. Experimentelle Ergebnisse zeigen die Anwendbarkeit der Methodik zur Ableitung von Zeitmodellen. Die Korrektheit der Analysen und der Analyse-Ergebnisse wird ebenfalls bewiesen
    • …
    corecore