

Cell libraries and verification

Citation for published version (APA):
Raffelsieper, M. (2011). Cell libraries and verification. [Phd Thesis 1 (Research TU/e / Graduation TU/e),
Mathematics and Computer Science]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR717717

DOI:
10.6100/IR717717

Document status and date:
Published: 01/01/2011

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR717717
https://doi.org/10.6100/IR717717
https://research.tue.nl/en/publications/88cfaa5f-429e-421b-b786-be82bd7e2d31

Cell Libraries and Verification

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magnificus, prof.dr.ir. C.J. van Duijn, voor een

commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen

op woensdag 2 november 2011 om 16.00 uur

door

Matthias Raffelsieper

geboren te Recklinghausen, Duitsland

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. H. Zantema
en
prof.dr.ir. J.F. Groote

Copromotor:
dr. M.R. Mousavi

c© 2011 Matthias Raffelsieper

IPA dissertation series 2011-15

The work in this thesis has been carried out under the auspices of the research school
IPA (Institute for Programming research and Algorithmics).

A catalogue record is available from the Eindhoven University of Technology Library
ISBN: 978-90-386-2799-1

http://www.win.tue.nl/ipa

Contents

Preface iii

1 Introduction 1

2 Introduction to Cell Libraries 7
2.1 Different Views of a Cell . 7
2.2 Transistor Netlist . 8
2.3 Verilog Simulation Description . 11

3 Equivalence Checking in Cell Libraries 15
3.1 Semantics of VeriCell . 16
3.2 Encoding VeriCell into Boolean Transition Systems 26
3.3 Equivalence Checking VeriCell and Transistor Netlist Descriptions 29
3.4 Experimental Results . 30
3.5 Summary . 31

4 Efficient Analysis of Non-Determinism in Cell Libraries 33
4.1 Order-Independence of VeriCell Descriptions 34
4.2 Order-Independence of Transistor Netlists 44
4.3 Using Non-Determinism to Reduce Power Consumption 61
4.4 Summary . 71

5 Relating Functional and Timing Behavior 75
5.1 Timing Checks . 76
5.2 Module Paths . 83
5.3 Summary . 92

6 Productivity Analysis by Context-Sensitive Termination 95
6.1 Term Rewriting, Specifications, and Productivity 96
6.2 Productivity of Orthogonal Specifications 103
6.3 Productivity of Non-Orthogonal Specifications 113
6.4 Proving Productivity of Hardware Cells 119
6.5 Summary . 123

7 Productivity Analysis by Outermost Termination 125
7.1 Proving Productivity by Balanced Outermost Termination 125
7.2 Transformational Outermost Termination Analysis 131
7.3 Summary . 149

8 Conclusion 151

i

Contents

Bibliography 155

Summary 163

Curriculum Vitae 165

A Nangate Open Cell Library License 167

ii

Preface

While finishing my diploma thesis at the RWTH Aachen, I was approached by my
then supervisor Jürgen Giesl whether I would be interested in a PhD position in
Eindhoven. Thanks to one the regular TeReSe meetings, that in Aachen were dubbed
the “Dutch term rewriting community meetings” (including Aken), I was able to
meet in Eindhoven with my future supervisors Hans Zantema and Jan Friso Groote,
and also with Chris Strolenberg who would be involved in the ValiChip project. Due
to the friendly atmosphere and the interesting ValiChip project, that would combine
theory with practical applications from the hardware domain, I accepted the position
and moved to Eindhoven.

In the beginning, it took me some time to become acquainted with the hardware
domain, in particular cell libraries, that was to be the topic of my research. However,
both Chris Strolenberg and Jan-Willem Roorda of the industrial partner Fenix Design
Automation gave me good pointers, for which I am very thankful. Furthermore, I am
grateful for their expert input during the rest of the ValiChip project, which led to
the research questions treated in this thesis. It was quite sad that the economic crisis
did not spare Fenix Design Automation, so that it had to go out of business in 2009.

I would also like to thank my daily supervisors and (co-)promotors Hans Zantema
and MohammadReza Mousavi, who both gave me good advice and helpful technical
feedback. Especially, I appreciated their different backgrounds which complemented
each other well and that I could always walk into their offices with any problems
I had. It was a pleasure working together with both Hans and Mohammad, and
resulted in numerous co-authored publications which form the basis of this thesis.

My second promotor was Jan Friso Groote, head of the OAS group and the later
MDSE section. He entrusted my daily supervision with Hans and Mohammad, which
I believe was a wise choice. I enjoyed working in his group, and profited from the
discussions I had with him.

The constructive comments and suggestions I received from the members of
my thesis committee, Twan Basten, Hubert Garavel, Jürgen Giesl, Jan Friso Groote,
MohammadReza Mousavi, and Hans Zantema, helped to improve the text substantially.
I am therefore indebted to the aforementioned people for carefully reviewing my
manuscript. Also, I would like to thank Wan Fokkink for agreeing to serve as an
opponent in the defense.

During the last four years, I enjoyed meeting numerous people, mostly as members
of the MDSE section, on joint projects, at conferences, and through the IPA research
school. I really appreciated the inspiring conversations I had with them, which
sometimes also went beyond just technical discussions.

Finally, I want to thank my family and friends. I feel deep gratitude towards you
for supporting me both before and throughout my PhD period. Thank you.

Matthias Raffelsieper, September 2011

iii

Chapter 1
Introduction

Electronic devices have become ubiquitous in modern life. This trend is expected to
continue, with devices becoming even faster and even smaller at the same time. Such
a development would not have been possible without the tremendous advances in
the implementation of digital logic. Moore’s Law [Moo65, Sch97], which states that
the transistor count of integrated circuits doubles approximately every 18 months,
continues to explain these trends, despite having been declared expired a number of
times. The most prominent force driving Moore’s law is technology scaling; smaller
structures consume less power and operate faster. Furthermore, as more transistors
are available, there is more opportunity to parallelize computations, thereby leading
to another performance improvement.

Due to the increase in transistor count, the functionality implemented in a specific
piece of hardware become larger and more complex. Thus, techniques are sought to
verify hardware correct, as bugs are inevitable once a certain size or complexity of
the hardware design has been reached. One approach to guarantee correct behavior
is by testing. However, testing can only investigate a limited number of test cases,
thus there can still be untested corner cases in which the device does not function
properly. Formal verification is another approach that is not limited to pre-conceived
test cases. Instead, it tries to mathematically prove that a model of the device behaves
as expected under all circumstances. This approach of formally verifying correctness
is the technique used in this thesis to guarantee correctness of hardware devices.
Guaranteeing correctness is especially important for hardware, since more and more
safety-critical applications make use of it, where a failure can be devastating.

Computer hardware is nowadays mainly designed in a top-down fashion: First,
high level descriptions are created which are iteratively refined into a gate-level
description (consisting only of simple logic functions and registers) and finally
into transistors. This last refinement step, going from gates to transistors, is often
performed using cell libraries, which are a collection of basic building blocks, called
cells, that are both described at a higher abstraction level and at the level of transistors.
Hence, it is vital for the correct functioning of a hardware design that these libraries
are correct and always describe the same behavior. The main focus of this thesis is
to present methods that formally prove different cell descriptions to be consistent
with each other. In this way, a hardware design that works correctly at a higher
description level is guaranteed to still be correct when implemented. Additionally,
some techniques are presented to analyze other aspects of cells, such as power
consumption and stabilization, i.e., that always stable output values are computed.

1

1. Introduction

Consistency Checking in Cell Libraries

The first technique presented in this thesis verifies that both the simulation level
description of cells and the transistor implementations correspond to each other. If
this were not the case then a device that seemed to be implemented correctly in
simulation runs could fail when implemented as hardware. To faithfully represent
both descriptions, the simulation description and the transistor netlist, it is imperative
that all possible behaviors that could occur are also present in the model created
for them. Otherwise, the model is not general enough and might therefore hide
inconsistent behaviors. In the considered cell libraries, a source of non-determinism,
i.e., the possibility of multiple behaviors, is a race between inputs that are changed
simultaneously. Due to physical effects, such changes are not perfectly synchronized,
but arrive in some random order. Such non-determinism is undesired as the final result
of a computation cannot be predicted anymore. Most simulators for Verilog [IEE06],
a commonly used hardware description language, only implement one fixed order
of considering inputs to maximize performance. This however is not backed by the
behavior of real hardware; thus it might lead to a mismatch between the simulation
and the real behavior.

Faithfully modeling all possible behaviors of hardware descriptions is addressed
in this thesis by two methods. First, a formal semantics for a subset of Verilog, large
enough to cover most cells from industrial cell libraries, is presented that allows
for all possible behaviors. If such a model can be verified to always correspond to
the transistor netlist implementation, then also any simulation will do so, since it
is contained in the possible behaviors modeled. Implementing and checking such a
semantics is however usually very inefficient. Thus, the method only implements one
possible behavior. To guarantee that this restriction is not hiding allowed behavior,
this thesis presents an efficient technique to analyze non-determinism of cell libraries,
both for simulation and transistor level descriptions. If it can be established that the
behavior is the same for all possible input orders, then the modeled behaviors and
the actually possible behaviors are the same.

Energy consumption of chips has become a very prominent issue lately for
numerous reasons. The high integration level of hardware is causing thermic problems
if too much heat is produced, which could possibly destroy the chip. Also, mobile
applications are ever growing, which are powered by batteries. In these mobile
devices, long battery life is desirable, however the weight of the batteries is also
limited. Therefore, in mobile applications, energy consumption is a key factor. To
analyze the power consumed by a cell, the cell is usually triggered with a large
number of input sequences (all input sequences, if possible) in every possible state
of the cell and its power consumption is being measured. This thesis proposes a
way to reduce the number of required power characterizations by making use of the
non-determinism analysis. To this end, the analysis is extended to also consider the
number of wires charged when some inputs are changed. Then, only those situations
have to be measured where these chargings differ, i.e., for situations resulting in the
same power consumption, only one representative has to be considered. A related
technique does not determine equal power consumption, but instead the computation
that consumes the minimal amount of power without affecting functionality. By
enforcing this computation, one can therefore save power without affecting the cell’s
externally visible behavior. This again makes use of the extended non-determinism
analysis, and selects among functionally equivalent computations the one consuming
the minimal amount of power.

2

Hardware descriptions are not only required to be correct from a functional
perspective, but also timing must be verified. In case a cell does not satisfy certain
timing assumptions, such as independence of the arrival order of certain inputs
or stability of outputs, then it cannot be used in designs requiring precisely these
assumptions. Timing descriptions are often decoupled from the functional description,
however timing and functioning are of course highly related. This link is taken
into account in this thesis. It is observed that non-determinism in cells, as already
introduced above, has a relation to the constraints on stability windows of its inputs,
called the setup and hold times in hardware description languages such as Verilog.
These constraints on the inputs of a cell rule out certain sources of non-determinism,
thus a cell, which can behave non-deterministically, becomes deterministic when these
constraints are satisfied. Therefore, the analysis of non-determinism takes timing
information into account. On the contrary, if a cell is found to be non-deterministic
even when considering the timing information, then it might be the case that the cell
has not been characterized sufficiently, i.e., that additional timing restrictions have to
be imposed.

Another requirement on a chip design is that it meets certain desired performance
goals. Because hardware designs are mostly synchronous (with respect to a clock
signal), all computations have to be finished before the next cycle. Otherwise, old or
intermediate values would be used, thereby invalidating the functionality. From a cell
level perspective, it is therefore interesting to check how long a change at some input
signal takes until all output signals of the cell have reached their final response value.
Using this information, one can then go up the design hierarchy to approximate the
performance of the complete chip design using the timing information of the cells.
For this purpose, each cell is accompanied by a number of module paths, which are
paths from input to output signals associated with delays. However, as in the case of
setup and hold times, these module paths are not linked to the functional description
of the cell, i.e., they could possibly not reflect the actual behavior of the cell. In
this thesis, a method is presented to check whether both are describing the same
cell, by requiring that the module paths and the functional description correspond to
each other. This is done on the one hand by verifying that a specified module path
exists in the cell, i.e., that a change in the specified input can have an effect on the
value of the specified output. If this were not the case, then the module path would
describe unobservable behavior, and thus overconstrain the design of the whole chip.
In the worst case, a chip design could be found not to meet the desired performance
goals due to such a false path. On the other hand, one wants to make sure that for
every possible path through a cell timing information is specified, since otherwise
no delay is considered and therefore the performance is overapproximated. To this
end, a technique is described that enumerates all possible paths through a cell where
a changing input can have an effect on the value of an output. Therefore, delays
have to be determined for these paths. This allows to ensure that all possible delay
behaviors have been considered.

Hardware and Streams

To compute output values from some input values, hardware implemented as transistor
netlist is often employing feedback loops, where the output of some function is also
being used as its input. This way, for example, on-chip memories (such as flip-flops)
are implemented. Thus, it is also interesting to study whether such computations will
eventually produce a stable output value, or whether they keep looping forever. This

3

1. Introduction

question is, on an abstract level, the same as that of productivity of streams. There,
one is given with a system to compute a stream, i.e., an infinite sequence of (output)
values, and is interested whether each of its elements is eventually stable. Hardware
can be viewed as a stream function, which has a number of input streams from which
it then computes a number of output streams. In this thesis, productivity of streams
is studied on a very abstract level, namely that of Term Rewrite Systems. This is a
very basic, but powerful technique to describe computations by a number of rules. In
this setting, productivity has already been studied before. Some of the previous work
abstracted away the concrete values or were restricted to deterministic specifications
only. This is different in techniques for checking productivity presented in this thesis,
which especially allow arbitrary Boolean streams. Thereby, productivity analysis can
be used to prove stabilization of hardware circuits for arbitrary sequences of input
values. Removing the approximations however comes with a price, in this case the
question whether a given specification is productive or not becomes undecidable.
Despite this negative theoretical result, there are numerous systems for which an
answer can be given. This is based on the advances in termination analysis, for
which nowadays powerful automatic tools are available. Thus, the approach is to
transform the productivity question into a termination question, so that existing tools
can be employed.

Structure of the Thesis

This thesis first gives a brief introduction into the functional descriptions encountered
in cell libraries in Chapter 2. As stated above, these will be the main focus of
this thesis. Chapter 3, which is based on [RRM09], then presents a technique,
together with an implementation and an evaluation thereof, to verify that both
simulation description and transistor netlist description of a hardware cell describe
the same functional behavior. There, it is observed that cells can behave non-
deterministically. This is the topic of investigation in Chapter 4, which is based
on [RMR+09, RMZ10, RMZ11, RM11]. There, techniques are presented that identify
non-determinism that can lead to different functional behavior, and techniques to
identify functionally equivalent behavior that differs in power consumption. All of
these techniques have been implemented and have been evaluated on industrial cell
libraries. In Chapter 5 some non-functional descriptions are considered, namely timing
checks and module paths. As already discussed above, they do have a connection
to the functional descriptions, in that they also describe functional behavior. The
chapter presents techniques to verify that the functional behavior described by these
non-functional descriptions is consistent with the simulation description. Also these
techniques were implemented and evaluated for industrial cell libraries. They were
previously described in [RMR+09, RMZ10, RMZ11, RMS10].

Productivity is studied in Chapters 6 and 7, which, as already mentioned above,
can be used to prove stabilization of hardware circuits. In Chapter 6, which presents
work from [ZR10a, Raf11], productivity is proven using context-sensitive termination
analysis. The approach is also applicable to non-orthogonal specifications, which
are natural when checking stabilization of hardware. For both orthogonal and non-
orthogonal specifications a tool has been developed that tries to automatically prove
productivity. An example application of the latter tool is presented in Section 6.4,
where it is proven that an implementation of a scanable D flip-flop taken from an
industrial cell library always computes a stable next state.

4

The technique presented in Chapter 7 was previously presented in [RZ09, ZR10b]
and relies on outermost termination to prove productivity. For that purpose, it
also presents a transformation from outermost termination problems into standard
termination problems, such that state-of-the-art termination provers can be used. This
transformation has been implemented in a tool which participated in the outermost
category of the annual termination competition 2008 [Wal09] (see [MZ07] for more
details on the termination competition), proving some examples outermost terminating
for which no other tool was able to do so.

Finally, the thesis is concluded in Chapter 8, where also some possible topics for
future work are discussed.

5

Chapter 2
Introduction to Cell Libraries

A cell library is a collection of different combinatorial and sequential elements,
called cells, that are used to realize larger chip designs. Examples of combinatorial
elements are logic functions such as an and gate or an xor gate, whereas sequential
elements, such as a flip-flop, provide some kind of memory. Ultimately, a cell is
described as a number of lithographic masks, that are read by a wafer stepper to
produce the physical implementation of the final chip. Hence, this description is
the most important from a manufacturer’s point-of-view. However, for a designer
working at a higher abstraction level this description is useless, as it does not allow
to evaluate the function of the designed chip. Thus, cells are also described from a
functional perspective to allow simulation of the final design.

A cell library is typically used by compilers that take as input a higher-level
description of a chip design and create a netlist description containing numerous
instances of the available cells. Cell libraries are usually provided by external sources
and are specifically designed and optimized for a single production technique. To
simplify the layout of cells in a chip, all cells have the same height and their power
supply connections are at the top and at the bottom. Thereby, cells can be aligned in
rows and their power supplies can be connected easily.

In order to produce a final chip design, multiple constraints have to be met,
such as timing, total area of the silicon required to implement the chip, constraints
regarding power consumption, and more. Furthermore, the chip design should of
course implement the desired functionality. To check whether these requirements
are satisfied for a concrete chip design, different kinds of information are needed.
For example, timing closure, the process of repeatedly altering a chip design until it
meets its timing constraints, needs detailed information about the timing behavior
of the chip’s components, i.e., the cells. In contrast, the verification that the logic
is correct does not need any timing information; instead the precise computation is
interesting. Such pieces of information, relevant to certain parts of the chip design
process, are stored in so called views in the cell library.

2.1 Different Views of a Cell

For a single cell, a cell library contains numerous different descriptions of it. In
this thesis, these are divided into functional descriptions, that describe the logic
operations performed by the cell, and non-functional descriptions, that describe other
aspects such as timing, layout, or power consumption. The thesis’ main focus is

7

2. Introduction to Cell Libraries

on the functional descriptions, non-functional ones are only considered later and
with respect to a functional description. Therefore, in the remainder of this chapter,
the functional descriptions will be explained further. They can be subdivided into
transistor netlists and simulation descriptions. A transistor netlist of a cell describes
the transistors that are present in the physical implementation of that cell and the
interconnections among the transistors. Thus, such a description is very close to the
finally manufactured chip. On the other hand, a simulation description only models
the functional behavior, but is not required to model the exact working of the physical
implementation. Thus, in such a simulation description special constructs offered by
the language are frequently being used, an example being the User Defined Primitives
(UDPs) of Verilog [IEE06]. These help to speed up simulations, but are not easily
mapped into a hardware implementation. This thesis will only cover simulation
descriptions in a subset of the commonly used language Verilog [IEE06]. However,
with some adaptations also other languages, such as VHDL [IEE09], could be used
instead.

2.2 Transistor Netlist

Ultimately, any chip design will be implemented using transistors for the logic. A
transistor netlist describes these transistors and how they are connected. In the current
CMOS (Complementary Metal Oxide Semiconductor) design style, two different
kinds of transistors are used, PMOS (P-channel Metal Oxide Semiconductor) and
NMOS (N-channel Metal Oxide Semiconductor). In a very rough abstraction, both
can be seen as switches, where an NMOS transistor conducts between its source and
drain whenever the gate has a high voltage (which is interpreted as a logic 1). A
PMOS transistor on the other hand is conducting between source and drain whenever
the gate voltage is low (representing a logic 0). MOS transistors also have a fourth
connection, called bulk or substrate, which defines the reference for the gate voltage,
but is usually not of relevance in integrated circuits such as cells.

The description of a cell in terms of a transistor netlist is then a number of PMOS
and NMOS transistors, together with a number of connections between source, drain,
and gate terminals of these transistors, implementing the logic of the cell. Since this
is implemented in CMOS style, the logic in the p-doped part and in the n-doped part
are complementary (hence the ‘C’), meaning that a conducting path exists through
the PMOS transistors to the high voltage rail (also called Vdd, carrying a logic 1)
only if there is no conducting path through the NMOS transistors to the low voltage
rail (also called Vss and carrying a logic 0), and vice versa. If this were not the case,
then a direct connection between high and low voltage rail would exist, giving a
short-circuit which would burn the chip.

A transistor netlist description is usually given in the input language of the
tool SPICE (Simulation Program with Integrated Circuits Emphasis) [NP73]. In
contrast to the SPICE tool, the exact working of a transistor is not of importance in
this thesis and a transistor is, as already explained above, simply viewed as a switch.
Thus, in this thesis, a logic function is read from a SPICE netlist.

An example of a (simplified) SPICE netlist taken from a cell library is presented
in Figure 2.1. It shows the transistors of a D flip-flop taken from the Nangate Open
Cell Library [Nan08]. First, it defines two global signals, the high voltage source VDD
and the low voltage source VSS. After that, the subcircuit named DFF_X1 is defined,
which has as interface the input signals CK and D, the output signals Q and QN,

8

Transistor Netlist

.GLOBAL VDD

.GLOBAL VSS

.SUBCKT DFF_X1 CK D Q QN VDD VSS
M_instance_184 VSS CK net_000 VSS NMOS
M_instance_191 net_001 net_000 VSS VSS NMOS
M_instance_197 VSS net_004 net_002 VSS NMOS
M_instance_204 net_003 D VSS VSS NMOS
M_instance_209 net_004 net_000 net_003 VSS NMOS
M_instance_215 net_005 net_001 net_004 VSS NMOS
M_instance_220 VSS net_002 net_005 VSS NMOS
M_instance_226 net_006 net_004 VSS VSS NMOS
M_instance_230 net_007 net_001 net_006 VSS NMOS
M_instance_236 net_008 net_000 net_007 VSS NMOS
M_instance_240 VSS net_009 net_008 VSS NMOS
M_instance_246 net_009 net_007 VSS VSS NMOS
M_instance_254 VSS net_007 QN VSS NMOS
M_instance_261 Q net_009 VSS VSS NMOS
M_instance_267 VDD CK net_000 VDD PMOS
M_instance_274 net_001 net_000 VDD VDD PMOS
M_instance_281 VDD net_004 net_002 VDD PMOS
M_instance_288 net_010 D VDD VDD PMOS
M_instance_293 net_004 net_001 net_010 VDD PMOS
M_instance_299 net_011 net_000 net_004 VDD PMOS
M_instance_305 VDD net_002 net_011 VDD PMOS
M_instance_311 net_012 net_004 VDD VDD PMOS
M_instance_316 net_007 net_000 net_012 VDD PMOS
M_instance_322 net_013 net_001 net_007 VDD PMOS
M_instance_327 VDD net_009 net_013 VDD PMOS
M_instance_333 net_009 net_007 VDD VDD PMOS
M_instance_339 VDD net_007 QN VDD PMOS
M_instance_346 Q net_009 VDD VDD PMOS
.ENDS

Figure 2.1: Simplified SPICE netlist of a D flip-flop taken from the Nangate Open
Cell Library

9

2. Introduction to Cell Libraries

and the two voltage sources. Inside the body of the subcircuit, which ends at the
keyword .ENDS, the transistors are defined. Every transistor is assigned a name,
which has to start with the letter M. After the name of a transistor, its four connections
are given, which are drain, gate, source, and bulk. The bulk connection is not of
importance here, and it is always connected to the corresponding voltage rail (VSS
for NMOS transistors, VDD for PMOS transistors). Finally, the type of the transistor
is given. In the actual SPICE descriptions, there are additional parameters given after
the type in the form of equations, describing physical properties of the transistor.
However, these parameters are not of importance when viewing transistors as switches.
As an example, the first line M_instance_184 VSS CK net_000 VSS NMOS
instantiates an NMOS transistor that connects the low voltage rail VSS to the internal
signal net_000 in case the interface signal CK is high. Together with the PMOS
transistor M_instance_267 VDD CK net_000 VDD PMOS, which connects
the high voltage rail VDD to net_000 in case CK is low, it forms an inverter which
provides the logic negation of signal CK on signal net_000.

Viewing transistors as switches has already been done by Bryant [Bry87]. In that
paper, an algorithm is given to create from a given transistor netlist a description
consisting of Boolean equations. These equations describe the logic function of the
transistor netlist and hence are taken as the netlist’s semantics in the remainder of
this thesis. For the example netlist given in Figure 2.1, the following equations are
created after simplification (where the logic “and” conjunction ∧ binds stronger than
the logic “or” disjunction ∨, as usual):

net_004 ≡ ¬CK∧¬D ∨ CK∧ net_004
net_009 ≡ ¬CK∧ net_009 ∨ CK∧ net_004
Q ≡ ¬CK∧ ¬net_009 ∨ CK∧¬net_004
QN ≡ ¬CK∧ net_009 ∨ CK∧ net_004

In these equations, it can be observed that the equations for variables net_004
and net_009 implement two latches, with inverted enable signals. The latch net_004
outputs the negated value of input D if the clock input CK is 0 and it keeps its old
value if the clock input CK is 1. For the latch net_009, the old output value is kept
if the clock input CK is 0 and it sets its output value to the value of net_004 if the
clock input CK is 1. The output Q is assigned the negated value of net_009, since
the two transistors M_instance_261 and M_instance_346 form an inverter
with Q as output and net_009 as input. Finally, the output QN always has the same
value as net_009, as it is the negation of net_007, which in turn is the negation of
net_009. Therefore, the output QN always is the negation of output Q, as expected.

Note that the method of [Bry87] to extract equations from SPICE netlists works
with ternary values, where the third value X denotes “an uninitialized network state
or an error condition caused by a short circuit or charge sharing” as is described
in [Bry87]. However, it can easily be detected that an equation never outputs the
value X. This was used above; thus the variables can only be one of the binary
values 0 and 1.

10

Verilog Simulation Description

2.3 Verilog Simulation Description

To allow simulations of a chip design implemented as cells without resorting to sim-
ulating the numerous transistors, cells are also described at a higher abstraction level.
For this purpose, the standardized hardware description language Verilog [IEE06] is
often employed. However, the Verilog language allows for descriptions at various
abstraction levels, hence only a certain subset of this language is used. This subset
is called VeriCell in the rest of this thesis and is described below. It differs from
other subsets of Verilog, such as for example the synthesizable register-transfer level
subset described in [IEE05], in that it does not cover behavioral descriptions. Instead,
VeriCell focuses on the constructs found in cell library descriptions such as built-in
and user-defined primitives, which are not contained in other subsets of Verilog.

The values that signals can take in a VeriCell description are the ternary
constants T = {0, 1,X}. Here, the values 0 and 1 behave like the values false and
true of the Boolean values B, respectively. The third value X is usually understood
as representing an unknown value, however the Verilog standard defines it as a third
logic value unrelated to both 0 and 1. It should be remarked that the language
Verilog also allows a fourth value Z, which represents a high impedance. However,
for the VeriCell subset of Verilog this value is equivalent to the value X. This
can easily be seen for the considered built-in primitives from Tables 7-3 and 7-4 in
the Verilog standard [IEE06]. For user-defined primitives, this is explicitly stated
in [IEE06, Clause 8]. Therefore, the value Z is not considered any further.

Furthermore, VeriCell descriptions contain single-bit variables (e.g., CK, D)
ranging over T, built-in primitives (e.g., not, and), and user-defined primitives
(UDPs). All of these components are defined in a single module, which constitutes
the cell. As an example, the VeriCell description of a D flip-flop taken from the
Nangate Open Cell Library [Nan08] is given in Figure 2.2. This description has been
simplified by leaving out some details that are not of relevance here and writing it in
a more compact form.

The example cell is defined in the module named DFF_X1. In parentheses,
the interface of the module is defined, which are those variables connecting the
module to its environment. The example module has two inputs, the variables CK
and D, and two outputs, variables Q and QN, declared in the input and output
lines, respectively. After these declarations, instances of primitives are created. In
VeriCell, it is required that every primitive instance has a unique output variable,
i.e., no two primitive instances share a common output. Primitives not and buf are
built-in primitives. The built-in primitive of buf copies the input (the last argument)
to its output (the first argument), whereas the buit-in primitive not provides the
negation of the input on its output. Further built-in primitives that are allowed in the
VeriCell subset are and, nand, or, nor, xor, and xnor, all of which behave as
suggested by their name. The syntax and semantics of all of these built-in primitives
is defined formally in [IEE06, Clause 7].

The line seq43(IQ, nextstate, CK) instantiates a User Defined Primitive
(UDP), whose function has to be defined in the source code. This is done between
the keywords primitive and endprimitive. The UDP is first given a name,
in this case seq43, which is used in modules to instantiate it. Afterwards, the
declaration of the interface and the direction of the variables (input or output) is
declared, as is the case for modules. It should be noted that UDPs must always have
exactly one output, which must always be the first argument. The number of inputs is
allowed to be arbitrary in this thesis (at least one), which corresponds to the general

11

2. Introduction to Cell Libraries

primitive seq43 (IQ, nextstate, CK);
output IQ; reg IQ;
input nextstate, CK;

table
// nextstate CK : @IQ : IQ

0 r : ? : 0;
1 r : ? : 1;
0 * : 0 : 0;
1 * : 1 : 1;

* ? : ? : -;
? f : ? : -;

endtable
endprimitive

module DFF_X1 (CK, D, Q, QN);
input CK, D;
output Q, QN;

seq43(IQ, nextstate, CK);
not(IQN, IQ);
buf(Q, IQ);
buf(QN, IQN);
buf(nextstate, D);

endmodule

Figure 2.2: Simplified VeriCell description of a D flip-flop taken from the Nangate
Open Cell Library

definition of UDPs in the Verilog standard. Note that the standard allows simulators
to impose an upper bound on the number of UDP inputs (which must be at least 9),
but this does not change the treatment of UDPs presented in this thesis and makes
it independent from any specific implementation. The declaration reg Q indicates
that the UDP is sequential, i.e., the UDPs output does not only depend on the values
of the inputs, but also on the previous value of the output, which therefore has to be
stored. After the declarations, the logic function of the UDP is defined by means
of a table. This table has a column for each input of the UDP, a column separated
by a colon for the previous output value, and another column separated by a colon
to denote the new output value. The idea of such a row is that whenever the actual
input values match the entries of that row and the previous output value matches
the entry in that column of the row, then the new output value is set to the value
specified in the last column.

Entries in the input column can either match a single value (called level specifi-
cation) or a transition of values (called edge specification). For example, the level
specification 0 matches exactly that value, whereas the level specification ? matches
any value. To match transitions, the first option is to use the syntax (kl) with level
specifications k and l. Then, an input changing from an old value v ∈ T to a new
value w ∈ T is matched by the specification (kl) if v 6= w, v is matched by k, and

12

Verilog Simulation Description

w is matched by l. It should be noted that the requirement v 6= w is not demanded
in the Verilog standard [IEE06], but is imposed by all Verilog simulators that were
tested. Additional abbreviations of common edge specifications exist. In the example,
the specification r is an edge specification (rising edge), which is equivalent to the
edge specification (01). Other edge specifications used there are f (falling edge)
which is equivalent to (10), and * , which is equivalent to (??) (i.e., a transition
from some value to any other value). Any row in a UDP may contain at most one
edge specification. If there exists an edge specification, then the whole row is called
edge-sensitive. Otherwise, if there are only level specifications, the row is called
level-sensitive.

Since the new value of the output is yet to be determined, the column matching
the previous output value may only use level specifications. Finally, the last column,
denoting the new output value, may only contain single value level specifications,
which are the specifications 0, 1, and x. Additionally, it is permitted to put the
special specification -, which can be read as “no change”. This specification indicates
that the old value of the output is also the new value of the output. As an example,
the last row ? f : ? : - of the UDP shall be considered. This row states that if
the input CK makes a transition from 1 to 0, then regardless of values of the signal
nextstate and the previous output value the new output value is the same as
the old output value. Here, it can be seen that adding the specification - can make
a UDP definition more compact. If it were not allowed, then one could remove
the - by expanding the previous output value specification ? to all three single value
specifications 0, 1, and x and then copying the same value into the last column, so
that one would replace for example the last row by the following three rows:

? f : 0 : 0;
? f : 1 : 1;
? f : x : x;

To evaluate a UDP, one therefore searches for a matching row in its table, and
takes the output that is denoted in that rows last column. If none of the rows of a
UDP matches, then the standard defines the new output to be X. In case multiple
rows match, the standard imposes some rules to select the row to be used. These
rules will be explained in full detail later in Section 3.1.

The syntax of Verilog, and hence also that of the VeriCell subset, is defined
formally in the standard [IEE06]. However, the semantics is not defined formally. In
the case of VeriCell descriptions, the exact semantics of UDPs, which is described
informally in [IEE06, Clause 8], is ambiguous. Hence, to be able to verify VeriCell
descriptions, a formal semantics is defined in Section 3.1 which is used throughout
this thesis.

13

Chapter 3
Equivalence Checking in

Cell Libraries

As explained in the previous chapter, cell libraries contain multiple functional
descriptions for each cell. Therefore, it should be ensured that every cell has the
same behavior in all of these descriptions. If this is not the case, then a design that
worked for example in a simulation might fail when produced as a chip, incurring
huge costs.

This chapter addresses the problem of verifying that the functional description
given in Verilog (or, more precisely, in the VeriCell subset introduced in Section 2.3)
exhibits the same behavior as the transistor netlist description. This chapter is based
on [RRM09] and presents an operational semantics for VeriCell and encodes it into
Boolean equations. Together with the Boolean equations created from the transistor
netlist, which are extracted using the algorithm of [Bry87] as discussed in Section 2.2,
equivalence can be checked using a model checker, such as for example the NuSMV
model checker [CCG+02] or the Cadence SMV model checker [McM97], which are
specialized on transition systems described as Boolean equations.

The syntax of Verilog, and therefore also the syntax of the VeriCell subset, is
formally defined in the IEEE Verilog standard [IEE06]. However, the semantics of
this language is left ambiguous in certain parts. It is only explained how certain
example situations should be treated, which leaves room for different interpretations.
Quite a few publications exist that try to fill the semantic gap, for example in [Dim01,
Gor95, HBJ01]. However, they usually address higher level constructs and not
those elements found in cell libraries; especially, they do not consider the User
Defined Primitives (UDPs). An approach covering some aspects of UDPs is reported
in [WW98]. This approach, however, is mainly geared towards an encoding of Verilog
into gate level networks (via Ordered Ternary Decision Diagrams, OTDDs). To that
end, [WW98] uses heuristics/pattern recognition to detect more complex functions,
such as multiplexers and xor gates, in the Verilog description. The encoding itself is
however not formalized and hence it is unclear how the problems that were identified
in the semantics given below are dealt with. An example are multiple inputs to a cell
changing at the same time, which gives rise to non-deterministic behavior, as will be
shown. Furthermore, the goal of [WW98] was to create correct-by-construction gate
level descriptions, whereas here the goal is to enable formal verification of given
Verilog cells.

15

3. Equivalence Checking in Cell Libraries

1 module flip_flop (q, d, ck, rb);
2 output q; input rb, d, ck;
3
4 not (ckb, ck);
5 latch (iq , d , ck , rb);
6 latch (qint, iq, ckb, rb);
7 buf (q, qint);
8 endmodule
9
10 primitive latch (Q, D, CK, RB);
11 output Q; reg Q; input D, CK, RB;
12 table
13 // D CK RB : Q : Q’
14 0 (?1) ? : ? : 0;
15 1 (?1) 1 : ? : 1;
16 ? (?0) ? : ? : -;
17 ? * 0 : 0 : -;
18 ? ? (?0) : ? : 0;
19 ? 0 (?1) : ? : -;
20 0 1 (?1) : 0 : -;
21 1 1 (?1) : ? : 1;
22 * 0 ? : ? : -;
23 * ? 0 : 0 : -;
24 (?0) 1 ? : ? : 0;
25 (?1) 1 1 : ? : 1;
26 endtable
27 endprimitive

Figure 3.1: VeriCell description of a resettable flip-flop

Traditional equivalence checking techniques used for higher level descriptions,
e.g., those based on [vE00], are not applicable to this problem, as they rely on certain
structures (for example a synchronous gate-level model and a given set of flip-flops)
to perform matching and to apply retiming. However, in the presented setting of cell
libraries, no such generic structures exist and the elements are custom made.

3.1 Semantics of VeriCell

The language VeriCell is a subset of the Verilog Hardware Definition Language,
which is defined in the IEEE standard 1364-2005 [IEE06]. It was already explained in
Section 2.3 that VeriCell consists of the built-in primitives, user defined primitives
(UDPs), and of modules that define the interconnection of these primitives. An
example VeriCell program is given in Figure 3.1, which defines a flip-flop that can
be reset.

In the remainder only sequential UDPs will be considered, i.e., UDPs that may
contain edge specifications matching input transitions and which furthermore may
match the previous value of the output in order to determine their next output value,
cf. Section 2.3. This is a syntactic restriction and does not influence the semantics:
any combinational UDP can be converted into a sequential UDP by ignoring the
previous value of the output, which can be achieved by adding a new penultimate

16

Semantics of VeriCell

entry ? in every row. For sequential UDPs, the full syntax given in the standard is
included in the syntax of VeriCell. Below however, the handling of initial UDP
output values is not presented, since it is a rarely used feature and can easily be
accommodated by adjusting the initial configuration in which evaluations start.

Preliminaries

The semantics of VeriCell is defined in an operational style by transforming
configurations. In order to define the semantics, first some notations used in the
remainder of the section are introduced.

All variables in Verilog can have one of the four values Z, 0, 1, or X. However,
for the primitives allowed in the VeriCell subset of Verilog, the values Z and X
always have the same meaning, representing an unknown value. Therefore, only the
ternary values T = {0, 1,X} are considered. Here, the values 0 and 1 correspond to
the values false and true of the Booleans B, respectively. The value X is intended
to represent an unknown Boolean value. Hence, the usual Boolean operations are
extended in a pessimistic way, i.e., ¬X = X, 0 ∧ X = 0, 1 ∧ X = X, and X ∧ X = X.
All other basic Boolean functions on ternary values can be derived from these
definitions. Note however that the Verilog standard [IEE06] defines the value X to
be a third value, unrelated to the Boolean values 0 and 1. In this thesis, its intended
interpretation is that it stands for an unknown Boolean value; however there are
even different interpretations in different application domains. For example, the
value X also be viewed as a “don’t care” during synthesis, see for example [Tur03]
for an in-depth discussion of the problems with the value X that occur in higher-level
Verilog descriptions. In VeriCell, problems with the value X occur since it can be
explicitly matched by UDPs. Hence, a UDP can behave completely different from
when an X value is instantiated arbitrarily with either 0 or 1. Thus, the semantics
presented here treats the value X as a separate third value, which is exactly the
same as in the Verilog standard. A single ternary value y ∈ T is also called a level,
whereas a pair of two ternary values (yp, y) ∈ T× T, representing a transition, is
also called an edge.

Given a VeriCell program, let UDPs (UDPsn) denote the set of UDPs in the
program (that have exactly n inputs). The set Prims denotes the set of all primitives
that are used in the program, comprising both UDPs and built-in primitives.

Multiple inputs of a UDP can change simultaneously, even if the inputs of the
complete cell are required to only change one at a time. Since UDPs only allow one
input to transition, this is treated by considering the changing inputs sequentially. This
order is assumed to be subject to influences that are not under the designer’s control,
hence the order is assumed to be random. To represent these orders, permutations are
used. For a given number n ∈ N of inputs, Πn denotes the set of all permutations
of the set {1, . . . , n}. To also be able to represent parts of a permutation, these are
generalized to lists. A list ` ∈ Ln is a sequence of numbers from the set {1, . . . , n}
without duplicates, and the set Ln represents all such lists. The empty list is denoted
by nil, a list having first element j and a tail list `′ is denoted by j : `′. As a
notational convention, it is allowed to leave out the trailing nil of a non-empty list,
thus, for example, the list 1 : 2 : nil may also be written as 1 : 2. The length of a list
is the number of elements it contains. This can be defined inductively by |nil| = 0
and |j : `′| = 1 + |`′|. Then, permutations are those lists π ∈ Ln with |π| = n. A
list ` = j1 : · · · : j|`| ∈ Ln can be constructed by concatenating two lists `1, `2 ∈ Ln,
denoted `1++`2, if `1 = j1 : . . . jk and `2 = jk+1 : · · · : j|`| for some 1 ≤ k ≤ |`|.

17

3. Equivalence Checking in Cell Libraries

Next, the semantics of the primitives is defined. This semantics specifies the
output value of a primitive given the previous and current values of the inputs and
the previous value of the output, which can be expressed by a denotation function.
Afterwards, this semantics is lifted to capture the instantiation of primitives and their
interconnections. The latter takes the form of deduction rules.

Output Value of Primitives

For the semantics of built-in primitives the straight-forward intuitive semantics given
in [IEE06, Tables 7-3 and 7-4] is formalized. However, no such definition exists for
UDPs, which therefore will be given below. Then, at the end of this sub-section, the
built-in primitives are included to create an evaluation function for both built-in and
user defined primitives.

Non-Deterministic Output Value Computation of UDPs

The idea of a UDP is to look up the corresponding output value in the table that
is given in its declaration for given previous and current values of its inputs and
its previous output value, as described in the Verilog standard [IEE06, Clause 8].
The standard requires that level-sensitive rows take precedence over edge-sensitive
rows, i.e., if there are both a level-sensitive and an edge-sensitive row applicable
to the current input values, then the output is determined by the level-sensitive
row. For example, consider a UDP containing the two rows (0?) : 0 : 1
and 1 : ? : 0. If the previous output value of this UDP is 0 and the input
changes from 0 to 1 then both rows are applicable. But due to the above-mentioned
requirement the output must always be 0, since this is the output of the level-sensitive
row.

However, the standard does not define how to handle the case of multiple inputs
changing at the same time. To this end, the outcome of several Verilog simulators such
as CVer [Pra07], ModelSim [Men08], VeriWell [Wel08], and Icarus [Wil07] were
compared (unfortunately, some simulators such as Verilator [Sny08] do no support
UDPs). It was observed that each of these simulators implements a slightly different
semantics for UDPs, where the open source simulator CVer and the commercial
simulator ModelSim provide the outcome that is consistent with what is specified
in the standard and also closest to the intuition of the designers. One particular
difference is the order used by the simulators to evaluate multiple changing inputs.
The selection of such an order is not required for the semantics presented here, hence
the semantics allows for each of the different simulator behaviors in this respect.

Ultimately, the concrete order used for evaluation should not be affecting the
computation results in cases where it cannot be controlled. Otherwise, a simulator
that always chooses exactly one order of evaluating changing inputs cannot faithfully
model the behavior of the finally produced chip, where the input changes might occur
in different orders at different times. This problem is addressed in Chapters 4 and 5,
which present analysis techniques to guarantee equivalent behavior for all possible
orders.

The level specifications 0, 1, and x that may occur in a truth table of a primitive
directly correspond to the ternary values 0, 1, and X, respectively. Hence, for
l ∈ {0,1,x} and y ∈ T, the predicate match(l, y) is defined to be true if and only
if l and y correspond. This is formally defined in Table 3.1. The additional level
specifications b and ? are syntactic sugar, where the first one corresponds to both 0

18

Semantics of VeriCell

Table 3.1: Matching of UDP specifications to inputs

yp, y, op ∈ T, e ∈ T× T, i1, . . . , in ∈ T ∪ (T× T)
match(0, y) .= y = 0 match(1, y) .= y = 1
match(x, y) .= y = x match(b, y) .= match(0, y) ∨match(1, y)
match(?, y) .= true

match((vw), (yp, y)) .= yp 6= y ∧match(v, yp) ∧match(w, y)
match(r, e) .= match((01), e)
match(f, e) .= match((10), e)
match(* , e)

.= match((??), e)
match(p, e) .= match((01), e) ∨match((0x), e) ∨match((x1), e)
match(n, e) .= match((10), e) ∨match((1x), e) ∨match((x0), e)

matchRow(s1. . .sn:sn+1:o, (i1, . . . , in), op)
.=∧

1≤j≤n
match(sj , ij) ∧match(sn+1, o

p)

and 1 and the latter one corresponds to all of the ternary values. Thus, match(b, y)
is true if and only if y is either 0 or 1, whereas match(?, y) is always true, regardless
of the value of y.

An edge specification in a UDP has the general form (vw), where v and w are
level specifications. Given two values yp, y ∈ T, the predicate match((vw), (yp, y))
is defined to be true if and only if match(v, yp) and match(w, y) are true and
yp 6= y. This latter requirement, which states that indeed a transition must take
place, is left ambiguous by the standard, however it is enforced by all simulators of
Verilog that were tested, listed previously. The remaining edge specifications r, f,
p, n, and * are expressed using the above and their definitions as given in [IEE06,
Table 8-1], as can be seen in Table 3.1. For example, for the rising specification r
the predicate match(r, (yp, y)) is true if and only if match((01), (yp, y)) is true,
which in turn is true if and only if yp is 0 and y is 1, whereas match(* , (yp, y)) =
match((??), (yp, y)) is true if and only if yp and y are different values.

The above matching of single values is combined into a predicate matchRow
that checks whether a row of a UDP is applicable for a certain vector of inputs.
This predicate, whose formal definition is given in Table 3.1, has as first argument a
row of a UDP, in which at most one edge specification may occur. As the second
argument, it takes a tuple that contains both levels and edges, where there must be
at most one edge. This tuple must have the same length as the number of inputs
of the UDP. The last argument of matchRow is the previous output value, which
must be a level. It follows from the definition of match that a level specification
only matches a level and an edge specification only matches an edge. Therefore, the
row matches the inputs if all level inputs have been matched by a level specification
and the edge specification, in case the row is edge-sensitive, matches an edge at
the same position in the vector of inputs. Furthermore, there must be at most
one edge in the inputs, since there is at most one edge specification allowed in a
row. To illustrate this, consider the UDP from Figure 3.1. For the input values
D = 1, CK = (1, 0), and RB = 1, the previous output value Q = 0, and the
row in line 16, it holds that matchRow(? (?0) ? : ? : -, (1, (1, 0), 1), 0) is

19

3. Equivalence Checking in Cell Libraries

true. But if the input CK is the level 0 and the other values are kept equal, then
matchRow(? (?0) ? : ? : -, (1, 0, 1), 0) is false since match((?0), 0) is
false (this even holds when identifying 0 with (0, 0), since it is required that the
values are different for an edge to match, as discussed previously).

The output of a UDP row is given by the ternary value that corresponds to
the level specification in the last column. Additionally, the special symbol “-” is
also allowed there. This value indicates that no change happens, i.e., the output
value is the same as the previous output value. Thus, the row ? * 0 : 0 : -
occurring in line 17 of the flip-flop example in Figure 3.1 could also be written as
? * 0 : 0 : 0, as was already discussed in Section 2.3.

Using this and the matching of rows, it would be desired to construct a function
that computes the output of a UDP given the previous and current values of the
inputs and the previous value of the output. For this purpose, the Verilog standard
does define two rules that govern the selection of a row when computing a new
output value. The first requirement is that level-sensitive rows take precedence over
edge-sensitive rows, as already mentioned above. The second requirement is that two
rows of the same type (i.e., either both level-sensitive or both edge-sensitive with
the edge in the same column) that are both applicable to some inputs and previous
output, must not disagree on the output value.

These rules however are not precise enough to induce a function for the com-
putation of a UDP’s next output value. If multiple inputs of a UDP change at the
same time, then it is not clear how to handle this. In order for the semantics to be
as general as possible, it is therefore assumed that non-deterministically an order is
chosen and according to this order the changed inputs are considered one change at a
time. Hence, the semantics of a UDP is defined to be a function that is parametrized
by the current UDP, the previous and current values of the inputs, the previous output
value, and some order. Such an order is given by a permutation of the numbers
from 1 to n that dictates the order of checking the inputs whether their values have
changed. This gives the following signature of the evaluation function J·K for a UDP
udp ∈ UDPsn: J·K : UDPsn × (T× T)n × T× Ln → T. Here, permutations are
generalized to lists without duplicates, to allow for the below recursive definition,
given some previous and current input values ip1, i1, . . . , ipn, in ∈ T, some previous
output op ∈ T, and some list j : ` ∈ Ln:

Judp, ((ip1, i1), . . . , (ipn, in)), op, nil K .= op

Judp, ((ip1, i1), . . . , (ipn, in)), op, j : ` K .=
Judp, ((ip1, i1), . . . , (ij , ij), . . . , (ipn, in)), o′, `K

The next output value o′ is defined as follows. If ipj = ij , then o′ = op, i.e.,
the value remains unchanged. Otherwise, o′ is defined to be the correspond-
ing output value of either a level-sensitive row r of the UDP udp for which
matchRow(r, (ip1, . . . , ij , . . . , ipn), op) is true, or o′ is the corresponding output
value of an edge-sensitive row r of the UDP for which matchRow(r, (ip1, . . . ,
(ipj , ij), . . . , ipn), op) is true and for all level-sensitive rows r′ of the UDP the property
matchRow(r′, (ip1, . . . , ij , . . . , ipn), op) is false. If no such row exists, then the next
output value o′ is defined to be X.

As an example, consider the user defined primitive latch given in Figure 3.1.
Its output value shall be determined for the input values D = (1,X), CK = (1, 0),
and RB = (1, 1) and the previous output value Q = 0. If the order π = 2 :
1 : 3 is used, then the first intermediate output value is 0, since line 16 satisfies

20

Semantics of VeriCell

matchRow(? (?0) ? : ? : -, (1, (1, 0), 1), 0), as already illustrated before.
Now the previous value of CK is updated and the change of input D is considered.
Here, line 22 matches, giving a next output value Q = 0. Finally, since the input
RB did not change, this is also the output of this instance given these inputs, the
previous output, and the considered order.

However, when changing the order to π′ = id = 1 : 2 : 3, then the following
computation gives as new output value X, which shows that the order can change the
result of a computation.

Jlatch, ((1,X), (1, 0), (1, 1)), 0 , 1 : 2 : 3 K
= Jlatch, ((X,X), (1, 0), (1, 1)),X, 2 : 3 K (no match, default)
= Jlatch, ((X,X), (1, 1), (1, 1)),X, 3 K (line 16 matches)
= Jlatch, ((X,X), (1, 1), (1, 1)),X, nil K (3rd input unchanged)
= X

Thus, UDPs can behave differently depending on the order in which input changes
are processed. This order is chosen non-deterministically, which therefore also
makes the evaluation of UDPs non-deterministic. As mentioned previously, this is
investigated further in Chapters 4 and 5. Chapter 4 presents an efficient technique
to guarantee that the output value of a UDP is independent of the concrete order
chosen. This however is not the case very often, since certain order-dependencies
such as the above, where the relative order of the clock and data inputs matters, are
expected. This information is contained in the timing checks, which constrain the
possible orders and are therefore incorporated into the analysis of order-independence
in Chapter 5.

Output Value Computation of Built-In Primitives

Finally, the function J·K is extended to also incorporate the semantics of built-in
primitives. In this way, a function J·K : Prims× (T×T)n×T×Ln → T is obtained,
that uses the semantics of the built-in primitives as given in [IEE06, Table 7-3 and
Table 7-4]. Note that all built-in primitives are combinational, therefore the list
indicating the order of evaluating inputs, the previous input values, and the previous
output value can simply be ignored for them. This can be seen in their definitions
show below, which use only the operations ∧ and ¬ extended to the ternary values T,
as given in the Preliminaries. There, the previous input values ip1, i

p
2 ∈ T and the

previous output value op ∈ T, as well as the orders πj ∈ Πj for j = 1, 2 are ignored;
the output values are only computed from the input values i1, i2 ∈ T.

Jbuf,
(
(ip1, i1)

)
, op, π1K

.= i1

Jnot,
(
(ip1, i1)

)
, op, π1K

.= ¬ i1
Jand,

(
(ip1, i1), (i

p
2, i2)

)
, op, π2K

.= i1 ∧ i2
Jnand,

(
(ip1, i1), (i

p
2, i2)

)
, op, π2K

.= ¬(i1 ∧ i2)
Jor,

(
(ip1, i1), (i

p
2, i2)

)
, op, π2K

.= i1 ∨ i2
.= ¬(¬i1 ∧ ¬i2)

Jnor,
(
(ip1, i1), (i

p
2, i2)

)
, op, π2K

.= ¬(i1 ∨ i2)
.= ¬i1 ∧ ¬i2

Jxor,
(
(ip1, i1), (i

p
2, i2)

)
, op, π2K

.= i1 ⊕ i2
.= ¬

(
¬(i1 ∧ ¬i2) ∧ ¬(¬i1 ∧ i2)

)
Jxnor,

(
(ip1, i1), (i

p
2, i2)

)
, op, π2K

.= ¬(i1 ⊕ i2)
.= ¬(i1 ∧ ¬i2) ∧ ¬(¬i1 ∧ i2)

The Verilog standard allows for an arbitrary number of output variables for the
buf and not primitives, and an arbitrary number of input values (at least 1) for

21

3. Equivalence Checking in Cell Libraries

the built-in primitives and, nand, or, nor, xor, and xnor. Multiple output
variables are treated by copying the primitive instantiations, so that every instantiation
has exactly one output variable. If only a single input value is given for any of
the (normally binary) primitives, then this input value is also the output value.
More than 2 input values provided for such a primitive are treated by repeating the
evaluations multiple times, for example, Jand,

(
(ip1, i1), (i

p
2, i2), (i

p
3, i3)

)
, op, π3K =r

and,
(
Jand

(
(ip1, i1), (i

p
2, i2)

)
op, π2K, (ip3, i3)

)
, op, π2

z
= i1 ∧ i2 ∧ i3, where the

order π2 ∈ Π2 can be chosen arbitrarily, since it is ignored.

Simulation Semantics

After having defined how to evaluate a single primitive, the semantics of a com-
plete VeriCell program is given. Such a program usually contains a number
of instantiations of primitives. As already noted above, the possible values of
variables are the ternary values in T. To keep track of such values in a cur-
rent configuration, variable valuations are defined. A variable valuation val is
a partial function mapping identifiers to values from T. If for some identifier
x the value val(x) is not defined, then it defaults to X. A variable valuation
is denoted as a set of pairs of identifiers and values, e.g., {(x, 0)} represents
the variable valuation that maps the identifier x to 0 and all other identifiers to
the default value X. To update variable valuations, the operation juxtaposition is
used. Given two variable valuations val1 and val2, this operation is defined as
val1 val2(x) = val2(x) if val2(x) is defined, otherwise val1 val2(x) = val1(x).
For example, {(d, 0), (ck, 1)} {(ck,X), (rb, 0)} = {(d, 0), (ck,X), (rb, 0)}.

The simulation semantics of Verilog is sketched in [IEE06, Clause 11], however
it does not deal with the details of when and how to update values. For example,
it is not defined when a transition of a variable can be observed by primitives
that have this variable as an input. Therefore, when the simulation semantics
sketched in [IEE06, Clause 11] is ambiguous, the formal semantics is based on the
observations of simulators. As stated before, the choices regarding ambiguities match
the interpretation used by CVer and ModelSim.

The execution is split into three different phases, namely, execute, update and
time-advance. Execute and update phases are performed iteratively until the current
state is stabilized. Only then, the time-advance phase advances the global simulation
clock. In the execute phase, all active primitives, i.e., primitives for which an input
has changed its value, compute their new output values. The output values are
stored in a separate location and are not directly used for the evaluation of other
primitives, thereby modeling a parallel execution of the primitives. In the update
phase, which follows the execute phase, all these values are stored as the new values
of the variables. This can again make primitives active, in this case another execute
phase is performed.

For example, in the module flip_flop shown in Figure 3.1 a change of the
variable d might result in a change of the variable iq. Since this variable is used
as an input to another primitive instantiation with the output variable qint, this
primitive will be activated and executed. The computation is repeated until no more
updates are pending and no primitives are active anymore. Then, the third phase,
called time advance phase, is entered in which the global simulation time advances
and new inputs are applied. These can again activate primitives in the program, since

22

Semantics of VeriCell

Table 3.2: Deduction Rules for the Semantics of VeriCell Programs

(ex)
π ∈ Πn

〈t, prev, cur , act] {p(o, i1, . . . , in)}, up〉E →
〈t, prev, cur, act, up {(o, Jp, ((prev(i1), cur(i1)),

. . . , (prev(in), cur(in))), cur(o), πK)}〉E

(ex-up)
〈t, prev, cur , ∅, up〉E → 〈t, cur , cur , ∅, up〉U

(up)
up 6= ∅

〈t, prev, cur , ∅, up〉U →
〈t, prev, cur up, sens(cur , cur up), ∅〉U

(up-ex)
act 6= ∅

〈t, prev, cur , act, ∅〉U → 〈t, prev, cur , act, ∅〉E

(time) 〈t, prev, cur , ∅, ∅〉U →
〈t+ 1, cur , cur −−−→int+1, sens(−→int,

−−−→int+1), ∅〉E

for example the input d might be assigned a different value, so that the execute phase
is entered again.

Configurations, i.e., operational states of the simulation semantics, comprise a
natural number t, denoting the current simulation time, and the previous and the
current valuations of variables in the module, denoted by prev and cur , respectively.
Another component of a configuration is a set act of primitive instantiations that
have to be evaluated due to the change of some input. Furthermore, a third variable
valuation up is contained that collects the updates to be performed. Finally, in order
to distinguish the current phase, a flag called phase is introduced that is either E for
Execute or U for Update. The flag phase does not model the time-advance phase,
since this phase it is modeled as a transition from an update to an execute phase. A
configuration is written as 〈t, prev, cur , act, up〉phase.

Initially, a Verilog program starts in a configuration where the time is 0, all
variables have the value X, no primitives are active, and no updates have to be
executed, which is denoted by 〈0, ∅, ∅, ∅, ∅〉U . Starting in this initial configuration,
the deduction rules presented in the remainder of this section are used to transform a
current configuration into a next configuration until this is not possible anymore.

It is assumed that a sequence −→in1,
−→in2, . . . of variable valuations called input

vectors is given. These variable valuations only assign values to the external inputs
declared in the module of the VeriCell program. They are applied whenever the
simulation time is allowed to advance.

The operational semantics of a VeriCell program is defined by the deduction
rules given in Table 3.2.

23

3. Equivalence Checking in Cell Libraries

In the execution phase, an active primitive is non-deterministically chosen, exe-
cuted, and removed from the set of active primitives. This is expressed by rule (ex)
in Table 3.2. There, π is an arbitrarily chosen order for the evaluation of inputs.
Note that this order may differ for each evaluation of a primitive.

When no more active primitives exist then the simulation changes into the update
phase. During this change the current transitions of variables are cleared, since all
primitives having a changed variable as input have been executed. The new previous
values are contained in the cur variable valuation, hence this variable valuation will
be used as the new previous variable valuation, as can be seen in rule (ex-up) in
Table 3.2.

In the update phase, the new output values are written back into the current
variable values. Furthermore, all primitives are activated that have a changed variable
as one of their inputs. This is accomplished by the rule (up) in Table 3.2, where it is
required that up 6= ∅, i.e., there must be pending updates. The function sens computes
for two variable valuations the set of primitives that have a changed variable as an
input. Formally, this function is defined as sens(val1, val2) = {p(o, i1, . . . , in) ∈
Prims | ∃1 ≤ j ≤ n : val1(ij) 6= val2(ij)}.

When all updates have been performed, then the execute phase is entered again if
there are active primitives. This is expressed in the rule (up-ex) in Table 3.2, which
is only applicable if act 6= ∅. Otherwise, if there are no active primitives, then time
advances and the new input values are applied. Furthermore, the new previous values
are the current values, because the current state is stable and any present changes can
be disregarded. The changed inputs can however activate primitives. To determine
these, the function sens is used again in the rule (time) in Table 3.2.

If no input vector −−−→int+1 is available anymore, then the simulation terminates.
The trace of output values generated by a certain trace of input vectors is defined to
consist of the values in the stable states, i.e., states in which the time can advance or
simulation terminates.

To illustrate this semantics, the example given in Figure 3.1 is considered again.
Let −→in1 = {(d, 0), (ck, 1)} and −→in2 = {(d, 1)} be the external inputs for time steps
1 and 2, respectively. These inputs allow the following simulation starting from the
initial configuration, where latch is abbreviated to l:

〈0, ∅, ∅, ∅, ∅〉U
Time Advance, applying inputs −→in1, and activating instantiations

→〈1, ∅, {(d, 0), (ck, 1)}, {l(iq,d,ck,rb), not(ckb,ck)}, ∅〉E
Execution of l(iq, d, ck, rb) with order 4 : 3 : 2 : 1

→〈1, ∅, {(d, 0), (ck, 1)}, {not(ckb,ck)}, {(iq, 0)}〉E
Execution of not(ckb,ck)

→〈1, ∅, {(d, 0), (ck, 1)}, ∅, {(iq, 0), (ckb, 0)}〉E
Execute → Update with clearing of edges

→〈1, {(d, 0), (ck, 1)}, {(d, 0), (ck, 1)}, ∅, {(iq, 0), (ckb, 0)}〉U
Updating values of iq and ckb, activating l(qint, iq, ckb, rb)

→〈1, {(d, 0), (ck, 1)}, {(d, 0), (ck, 1), (iq, 0), (ckb, 0)},
{l(qint,iq,ckb,rb)}, ∅〉U

Update → Execute

→〈1, {(d, 0), (ck, 1)}, {(d, 0), (ck, 1), (iq, 0), (ckb, 0)},

24

Semantics of VeriCell

{l(qint,iq,ckb,rb)}, ∅〉E
Execution of l(qint, iq, ckb, rb) with order 1 : 2 : 3 : 4

→〈1, {(d, 0), (ck, 1)}, {(d, 0), (ck, 1), (iq, 0), (ckb, 0)}, ∅, {(qint,X)}〉E
Execute → Update, clearing edges

→〈1, {(d, 0), (ck, 1), (iq, 0), (ckb, 0)}, {(d, 0), (ck, 1), (iq, 0), (ckb, 0)},
∅, {(qint,X)}〉U

Updating value of qint which activates no instantiations

→〈1, {(d, 0), (ck, 1), (iq, 0), (ckb, 0)},
{(d, 0), (ck, 1), (iq, 0), (ckb, 0), (qint,X)}, ∅, ∅〉U

Time Advance, applying inputs −→in2, and activating instantiations

→〈2, {(d, 0), (ck, 1), (iq, 0), (ckb, 0), (qint,X)},
{(d, 1), (ck, 1), (iq, 0), (ckb, 0), (qint,X)}, {l(iq,d,ck,rb)}, ∅〉E

→ . . .

→〈2, {(d, 1), (ck, 1), (iq,X), (ckb, 0), (qint,X)},
{(d, 1), (ck, 1), (iq,X), (ckb, 0), (qint,X)}, ∅, ∅〉U

This simulation terminates in the last configuration, since only two input vectors
were given. The observed trace of values is given by variable valuations rep-
resenting the current values in the two stable configurations that were reached,
which are those configurations where the time-advance rule is applicable (or no
more inputs are available). Thus, the observed trace of the above simulation con-
sists of the three valuations ∅, {(d, 0), (ck, 1), (iq, 0), (ckb, 0), (qint,X)}, and
{(d, 1), (ck, 1), (iq,X), (ckb, 0), (qint,X)}.

Also the simulation semantics allows non-determinism, namely the choice of the
primitive instance to be executed next in rule (ex) of Table 3.2. The rule (ex-up)
however, that switches from the Execute into the Update phase, is only applicable
when all instances have been executed. Furthermore, the results of executing the
instances are not directly written back into the state, but instead they are collected in
the update variable valuation. Because it is assumed that every variable is used as
output of at most one primitive, this valuation is the same regardless of the order of
executing primitives. This restriction could also be removed. The Verilog standard
defines that in case of multiple primitives providing a value for a single variable, a
resolution function should be applied. This resolution function should therefore be
included in the rule (ex) of Table 3.2. All resolution functions are combinational,
thus including them would still create the same update valuation regardless of the
order of execution.

Hence, the non-determinism in choosing a primitive instance to execute next
does not have an influence on the computed results. For this reason, the presented
VeriCell semantics does not define an order. A simulator implementing this
semantics may simply choose one order of executing primitive instances without
affecting the resulting trace of stable values.

25

3. Equivalence Checking in Cell Libraries

3.2 Encoding VeriCell into Boolean Transition Systems

To convert a VeriCell program into a Boolean Transition System (BTS), i.e., a
transition system with vectors of Booleans as configuration, first the ternary values
have to be represented as Booleans. For this purpose, a dual-rail encoding of these
values as in [Bry87] is used, where each variable v is interpreted as a pair of Boolean
variables (vL, vH). The first variable vL represents whether the variable v might be
0, the second variable vH represents whether v might be 1. Then, for the constants
in T it holds that that 0 = (true, false), 1 = (false, true), and X = (true, true). The
fourth value Z = (false, false) is considered to be illegal and will never arise as a
result of the encoding presented in this section. For every variable v occurring in
the module of the VeriCell program, another pair of variables vp = (vpL, v

p
H) is

introduced, which represents the previous value of the variable. These are required
to detect edges, i.e., certain transitions from a specified old value to a new value.

To combine Boolean and ternary values, the implication operation →: B ×
T → T is defined for a ternary value y ∈ T as false→ y = X and true→ y = y.
Furthermore, a meet operator u : T× T→ T is defined as (uL, uH) u (vL, vH) =
(uL ∧ vL, uH ∧ vH) and (in)equality of ternary values is defined as (uL, uH) 6=
(vL, vH) = ¬

(
(uL, uH) = (vL, vH)

)
= (uL⊕vL)∨(uH⊕vH) for all ternary values

(uL, uH), (vL, vH) ∈ T (where ⊕ denotes the Boolean xor operation, defined as
false⊕ x = x and true⊕ x = ¬x for x ∈ B). Note that by this definition the value
X is a neutral element for u, i.e., X u y = y for all ternary values y.

Encoding of UDPs

To encode the UDPs of a VeriCell program, first the matching of row patterns has
to be encoded. This can be done in a straightforward way. For level specifications,
an encoding to match a ternary variable v = (vL, vH) is defined as follows:

L(0, v) .= vL ∧ ¬vH L(b, v) .= vL ⊕ vH
L(1, v) .= ¬vL ∧ vH L(?, v) .= true
L(x, v) .= vL ∧ vH

For edges, only the case of an edge specification of the form (ab), with a and b
being level specifications, has to be considered since all other edge specifications can
be expressed as disjunctions of edge specifications having this shape, cf. Table 3.1.
The encoding works by simply matching the two level specifications against the
previous and the current value of the input. Furthermore, as discussed already in
Section 2.3, it has to be expressed that really a change has occurred. This can be
encoded by requiring the previous and the current value to be different. Putting this
together, the encoding of an edge specification for pairs vp, v of ternary variables
representing the previous and the current values, respectively, is defined as follows:

E((ab), vp, v) .= (vp 6= v) ∧ L(a, vp) ∧ L(b, v)

These encodings are then used to encode the evaluation of rows contained in a
UDP. If r = s1 . . . sn : sn+1 : sn+2 is a row from a UDP with n inputs, let r|j denote
the j-th column of this row, i.e., r|j = sj for all 1 ≤ j ≤ n+ 2. For such a row r,
the encoding P is true if and only if the row matches when considering a changed
input value at some position 1 ≤ j ≤ n. In case r is a level sensitive row, then P is
defined as follows, where o is the previous output value, and where

−→
ip = (ip1, . . . , ipn)

26

Encoding VeriCell into Boolean Transition Systems

and
−→
i = (i1, . . . , in) are the previous and current inputs, respectively:

P (r, o,
−→
ip ,
−→
i , j) .=

∧
1≤m≤n
m 6=j

L(r|m, ipm) ∧ L(r|j , ij) ∧ L(r|n+1, o)

For an edge-sensitive row r, the encoding P (r, o,−→ip ,−→i , j) is defined similarly, only
there L(r|j , ij) has to be replaced by E(r|j , ipj , ij).

Using the encoding P to determine whether a row is applicable, another encoding
Row can be defined. The purpose of this encoding is to determine an output value
w.r.t. some row, given the previous and current input values and the previous output
value. Here, the property holds that the output of this encoding is X in case the row
is not applicable. Again, the number 1 ≤ j ≤ n denotes the position where a change
in input values is currently being considered.

Row(r, o,
−→
ip ,
−→
i , j) .= P (r, o,

−→
ip ,
−→
i , j)→ O(r, o)

Above, the value O(r, o) is the corresponding ternary value to the level specification
in the last column of the row, or it is o if the last column of the row contains the
symbol “-”. As an example, this encoding is applied to the first row of the UDP
latch in line 14 of Figure 3.1, where a change in the input ck is considered (i.e.,
j = 2):

Row(0 (?1) ? : ? : 0, iq, (dp,ckp,rbp), (d,ck,rb), 2) =
dpL ∧ ¬d

p
H ∧ ((ckpL ⊕ ckL) ∨ (ckpH ⊕ ckH)) ∧ ¬ckL ∧ ckH → (1, 0)

In Section 3.1 it was noted that the order of evaluating multiple changed inputs is
not fixed by the standard. Hence, there the order was a parameter of the semantics.
Experience shows that a naive enumeration of all possible orders immediately results
in an intractable state-space. Therefore, in this section, the order of evaluating
changed input coordinates is fixed to be the reverse order of inputs as given in
the definition of a UDP. This corresponds to the behavior exhibited by most of
the considered simulators. In Chapter 4 (more precisely, in Section 4.1), analysis
techniques will be presented that guarantee independence of the outcome from the
concrete evaluation order. Usually this independence is desired, as otherwise the
computation result depends on the non-deterministic choices.

The idea of the UDP encoding is to check recursively for a changed input at the
current position of the input. If the currently considered input has changed, then the
previous output is updated to the new output and the recursion continues for the next
position. Otherwise, when the current input is unchanged, then also the output value
remains unchanged and the recursion directly advances to the next position.

Formally, given an instance of a UDP udp ∈ UDPsn with output variable o,
previous inputs

−→
ip = (ip1, . . . , ipn), and current inputs

−→
i = (i1, . . . , in), the encoding

Judp, o,
−→
ip ,
−→
i KB×B = Judp, o,

−→
ip ,
−→
i , nKB×B is defined as follows for 1 ≤ j ≤ n:

Judp, o,
−→
ip ,
−→
i , 0KB×B

.= o

Judp, o,
−→
ip ,
−→
i , jKB×B

.=
(
(ipj = ij)→ Judp, o,

−→
ip ,
−→
i , j − 1KB×B

)
u
(
(ipj 6= ij)→ Judp, o′,

−→
ip ′,
−→
i , j − 1KB×B

)
In the previous values

−→
ip ′ the changed value ij replaces the previous value ipj , i.e.,−→

ip ′ = (ip1, . . . , ij , . . . , ipn). Furthermore, the value of o′ is the corresponding value

27

3. Equivalence Checking in Cell Libraries

that results from the UDP when considering the change in input j. For this purpose,
let rl1, . . . , rlkl be all level-sensitive rows of the UDP and let re1,j , . . . , reke,j be all
edge-sensitive rows of the UDP that have an edge specification in column j. Then,
the value of o′ is defined to be the following:

o′
.=

d

1≤jl≤kl
Row(rljl , o,

−→
ip ,
−→
i , j)

u

[(
¬
∨

1≤jl≤kl
P (p(rljl), o,

−→
ip ,
−→
i , j)

)
→

d

1≤je≤ke
Row(reje,j , o,

−→
ip ,
−→
i , j)

]
Since this definition consists of meets of implications, the output will be X, i.e.,
(true, true), if none of the rows is applicable. This is as required in the standard.

Encoding of Cells

To encode the behavior of a module representing a cell, one could encode the
simulation rules given in Section 3.1. However, a much simpler encoding is possible
when restricting to VeriCell programs that do not contain delays. Under this
assumption, the new values can directly be written back into the current variables,
when the equations that result from the encoding are evaluated in parallel. This leads
to an encoding which only needs the two dual-rail pairs prevj and curj for all of the
n+m variables of the module (which is assumed to contain n primitive instantiations
and m external inputs) and furthermore m dual-rail pairs inpj for n < j ≤ n+m
that represent the external inputs to the module.

The next value for a variable prevj simply has to copy the current value of the
variable, so that it represent the previous value in the next iteration. Hence, for all
1 ≤ j ≤ n+m the new value of prevj , which is denoted with a prime, is defined as
follows:

prev′j
.= curj

For the current variables, two cases have to be distinguished. In case the variable
curj is an output of a primitive instantiation pj (which are assumed to be the first n
variables), i.e., if 1 ≤ j ≤ n, then the following definition is used.

cur ′j
.= Jpj , curj , prev(in(pj)), cur(in(pj))KB×B

In this definition, it is assumed that prev(in(pj)) and cur(in(pj)) are vectors of
ternary variables and constants that represent the previous and current values of the
inputs to pj , respectively.

The second case computes the new value of an input. New input values are only
applied when the current state is stable and time is allowed to advance. To detect this,
a formula time_may_advance is defined that is true if the current state is stable. As
defined in Table 3.2, a state is stable if there are no more active primitives and no
more updates that have to be executed. In the presented encoding, updates directly
take place in the current variables. Therefore, only active primitive instantiations
have to be detected. There are no more active instantiations if there are no changed
values, i.e., the previous and the current values are the same.

time_may_advance .=
∧

1≤j≤n+m
prevj = curj

Using this formula, the update of the inputs can be encoded. As stated before,
the inputs may only be updated if the current state is stable, otherwise the old value

28

Equivalence Checking VeriCell and Transistor Netlist Descriptions

has to be kept. This is formalized in the definition below, where n < j ≤ n+m:

cur ′j
.= ¬time_may_advance → curj
u time_may_advance → [inpj]T

In the above definition, [inpj]T maps the illegal pair (false, false) to the pair
(true, true), representing that the value Z behaves like the value X in the VeriCell
subset of Verilog. Formally, it is defined as [v]T

.= (vL∨¬(vL∧vH), vH∨¬(vL∧vH))
for every dual-rail pair v = (vL, vH). In this way, [(false, false)]T = (true, true) = X
and [y]T = y for every y ∈ T.

The presented encoding implements the decution rules shown in Table 3.2. To see
this, one can identify the values in the next iteration, denoted with a prime above, and
the set of updates up in the rules. These updates are only applied when all primitives
have been evaluated. Furthermore, the explicit set of active primitives is not needed,
since a primitive that is evaluated twice with the same values for its inputs will
always return the same output value. This holds for built-in primitives since these are
combinational (i.e., they implement a function of the input values only), but also for
UDPs since they simply output their currently stored value if no input has changed
(thus, in a second evaluation with the same input vector, the previously computed
value is returned). Finally, detecting that the simulation time may be advanced is
performed by determining whether all signals in the cell have become stable. If this is
the case, then there cannot be any active primitives. Otherwise, another computation
implementing the execute-update cycle of the rules in Table 3.2 is performed. Note
that if those rules eventually apply the time advance rule, then this will also be the
case in the above encoding: If there are no active primitives anymore, then the only
signals that might still be different are those that are not used as input to any other
primitive. Therefore, evaluating the presented encoding for one more iteration will
set the previous values to the current values, hence the time can be advanced in this
iteration by applying new input values.

3.3 Equivalence Checking VeriCell and Transistor Netlist
Descriptions

The encoding presented in the previous section is used to translate Verilog descriptions
into the input language of a symbolic model checker. The target application of this
encoding is equivalence checking between the Verilog descriptions and the transistor
netlist descriptions contained in a cell library, which is described in this section. To
automatically create a transition system from a transistor netlist, standard techniques
exist [Bry87, PJB+95]. These will result directly in a next state function, i.e., applying
the transition function to a state results in the next stable state.

This is different for the Boolean Transition Systems created from VeriCell
descriptions: Here, a stable state only exists if time may advance. Therefore, the
property to be verified is that for all stable states the outputs are equal. Furthermore,
the comparison of the outputs should be restricted to those outputs different from X,
since the value X is regarded as a “don’t-care”. Finally, the model checking approach
should support the assumption that at most one external input changes in every step
of the global simulation time. This assumption, together with some more conditions
on the usage of variables in the cell, can ensure deterministic computations. This
assumption however will be refined later when the timing checks are considered in
Chapter 5. Since not changing the inputs will not trigger any change in a current

29

3. Equivalence Checking in Cell Libraries

stable state, it is equivalent to require that exactly one input is changing every time
the simulation time advances.

The LTL formula asserting that netlist and Verilog descriptions are equivalent,
i.e., both implement the same functional behavior for non-X values, is then expressed
as follows, where outputs is a set of corresponding pairs of outputs in the Verilog
description and the transistor netlist:(

G one_input_changes
)
→(

G time_may_advance →(∧
(ov,ot)∈outputs

ov 6= X ∧ ot 6= X→ ov = ot
))

The formula expressing that exactly one input changes per timestep, called
one_input_changes above, is expressed as shown below:

one_input_changes .=∨
n<j≤n+m

(
([inpj]T 6= curj) ∧

∧
n<i≤n+m

i6=j

([inpi]T = cur i)
)

Finally, also a property should be added stating that a stable state will always
eventually be reached. This can be expressed as an LTL formula in the following
way, again using the formula time_may_advance to indicate whether a current state
is stable: (

G one_input_changes
)
→
(
G F time_may_advance

)
In case the restriction to input traces where only one input is allowed to change

per time step is not desired, the requirement (G one_input_changes) can be removed
from the above formulas.

3.4 Experimental Results

As an example set, the Nangate Open Cell Library [Nan08] was chosen due to
its public availability and the contained cells were checked for equivalence. For
this purpose, an optimized version of the encoding given in Section 3.2 (where
some common subterms were identified and constants propagated) was used to
create Boolean Transition Systems from the VeriCell descriptions, and a simplified
implementation of [Bry87] was used to extract a transition system from the transistor
netlist descriptions. These automatically generated transition systems were then
used as input, together with the LTL formulas as described in the previous section,
for the symbolic model checkers NuSMV [CCG+02] version 2.4.3 and Cadence
SMV [McM97] version 10-11-02p46. NuSMV was run with cone-of-influence
reduction and dynamic reordering, whereas Cadence SMV was used in its default
settings. All of these experiments were performed on a Pentium 4 with 3 GHz having
1 GB of RAM and running Linux.

Almost all cells of the Open Cell Library are described in the VeriCell language,
except for the cells TBUF, TINV, and TLAT which use the primitive bufif0. This
primitive is currently not supported, since it distinguishes between X and Z and has
non-deterministic behavior for certain input combinations. Also, the cells ANTENNA
and FILLCELL were omitted, since they do not implement any functionality. Finally,
the cells LOGIC0 and LOGIC1, which are supposed to provide constant values, were

30

Summary

not considered, as no transition system could be extracted from the transistor netlists
given in the cell library.

All considered cells in the Nangate Open Cell Library can be shown equivalent
when only changing one input in every time step. Of these 43 cells in the library
that were considered, 42 were shown equivalent using Cadence SMV in less than
one second. For the last cell, namely the cell SDFFRS, it took about 2.0 seconds to
prove equivalence. When using NuSMV, the results are slightly worse, only 38 of
the cells were shown equivalent within one second and the proofs of another 4 cells
took between 2 and 4 seconds. Again, the cell SDFFRS took the most time with
7.8 seconds. Optimizing the desired properties specifically for NuSMV, by converting
the equivalence property into an invariant checking problem and by creating a CTL
formula for the property that always eventually a stable state is reached, then 40 cells
were shown equivalent within one second and 2 of the remaining 3 cells were shown
equivalent within 2 seconds. However, the cell SDFFRS still required approximately
4.1 seconds.

Another experiment conducted was to compare the flip-flop example given in
Figure 3.1 with the cell DFFR taken from the Nangate Open Cell Library, which also
is a flip-flop with reset. However, using the presented encoding an error trace could
be found by both considered model checkers. Such a trace can easily be mapped
back to a counterexample in the two cells. This counterexample shows that for the
Nangate cell the input already becomes visible at the output at the positive edge of
the clock, whereas the flip-flop from Figure 3.1 requires another negative edge (in
fact, it implements a flip-flop that is clocking in a data value on a falling edge of the
clock). Hence, these two flip-flops are not equivalent and must not be exchanged for
one another.

Finally, experiments were run with a subset of sequential cells taken from an
industrial cell-library provided by Fenix Design Automation. For all of these 26 cells,
equivalence could be proven when considering only one input to change in every time
step. Using Cadence SMV, 12 of these cells could be shown equivalent in less than
one second. Of the remaining 14 cells, 9 took less than 2 seconds and the remaining
5 cells took between 3 and 15 seconds. For NuSMV the results are comparable when
using the optimized encoding of the properties: 12 cells took less than one second,
7 of the remaining 14 cells took less than 2 seconds, and the remaining 7 cells took
between 2 and 15.5 seconds.

3.5 Summary

This chapter presented a semantics for the VeriCell subset of Verilog that is
commonly used in cell libraries. Thereby, VeriCell descriptions can automatically
be converted into Boolean transition systems. These transition systems can then
be used for model checking, of which one application is the equivalence checking
between Verilog descriptions and corresponding transistor netlists contained in a
cell library. This check runs fully automatically and requires no user intervention.
Thereby, one can ensure that the Verilog description exhibits the same behavior as
the implementation in silicon.

In the VeriCell subset of Verilog, the values X and Z have the same behavior,
as required by the standard. However, as already described in Section 3.4, there
are also cells using primitives such as bufif0, which can distinguish these two
values. Thus, it would be interesting to extend the VeriCell subset to also include

31

3. Equivalence Checking in Cell Libraries

these built-in primitives. Including these primitives is not straightforward, as they
introduce another source of non-determinism: the standard requires for certain input
combinations that the output of bufif0 can be either 0 or Z, for example. Such
non-determinism cannot be ruled out by the timing checks presented in Chapter 5,
thus also the encoding would have to become non-deterministic.

Another possible extension of the presented encoding are delayed updates, which
do not cause a new value to be updated directly, but only after some specified amount
of simulation time has passed. Incorporating delays into the formal semantics is
straightforward, however these rules have to be encoded in the transition systems as
well. The problem here is that the simulation time should not be represented in the
encoding, since it would otherwise make the state space infinite. A possible solution
would be to use variables counting down the number of time advance steps required
before an update may take place. The practical relevance of delays seems low, as
none of the cells considered during the experiments contained such delays. Hence, an
implementation of this extension is not justified by the considered practical examples.

Equivalence of a VeriCell and a transistor netlist description was considered to
hold when non-X values are equal. There are however other notions of equivalence
that could be considered. For example, it could be the case that only during a
“power-up” phase the behavior is different, which corresponds to the alignability
equivalence of Pixley [Pix92]. However, these types of counterexamples were not
observed in the considered examples.

Finally, Section 3.1 showed that the order of considering changed inputs of
UDPs can influence the output of a UDP. When only using the fixed order of most
simulators, which was used for the encoding in Section 3.2, then it can prevent
finding counterexamples, i.e., situations where VeriCell description and transistor
netlist description behave differently. This is especially interesting since bugs that
stem from such an order dependence may not be found using simulators that use
a fixed order. In the next chapter of this thesis, an efficient analysis technique is
presented that addresses this problem. If order-independence of the UDP holds, then
it is safe to only encode the simulator order. Otherwise, the internal state of the
cell is not uniquely determined, which is undesired and should be removed. Such a
removal is often possible by means of timing checks that impose restrictions on the
environment of a cell. These will be discussed later in Chapter 5.

32

Chapter 4
Efficient Analysis of

Non-Determinism in Cell Libraries

Non-determinism in some functional behavior allows to make arbitrary choices during
a computation. This can have an effect on the resulting values, so that multiple
possible behaviors arise, which is generally undesired. In Section 3.1 of the previous
chapter it was illustrated that even in basic structures such as cells, non-determinism
exists that can influence the values that are computed. This non-determinism is not
accounted for in simulators; they just use an arbitrarily fixed resolution of the non-
determinism to obtain a single execution trace. Thereby, many plausible behaviors
may be hidden during simulation, only to reappear in the final layout and thereby
jeopardizing correctness of the overall design.

An exhaustive search over all possible execution paths could theoretically solve this
problem, ensuring that the behavior is equivalent regardless of the non-deterministic
choices made. In practice, however, such a naive approach often leads to an
intractable (symbolic) state space. To alleviate this problem, two main techniques
are used: language-based restrictions to rule out irrelevant or impossible executions
and reduction techniques, which only consider a fraction of the overall state space
but still provide a sound result. In this chapter, techniques of the latter type, i.e., the
reduction to a smaller problem, are presented. The main inspiration for the presented
techniques stem from confluence checking techniques in term rewriting, see for
example [BN98, Ter03] for an introduction. Extending the presented techniques by
language-based restrictions in the form of Verilog timing checks will be considered
later in Chapter 5.

In Section 4.1, which is based on [RMR+09], the problem observed in the previous
chapter, viz. the possible order-dependence of UDPs, will be treated. However, to
keep the technique as general as possible, the exact UDP semantics as was presented
in Section 3.1 is generalized. Only two properties of the UDP output computation are
being used, which therefore eases adoption for different languages having a similar
overall structure of the computation.

The non-determinism of UDPs depends on the exact order of treating changed
inputs. This reflects that inputs do not change exactly simultaneously, but with a small,
non-deterministic delay relative to each other. Thus, also for transistor netlists, the
computations might lead to different outcomes if different orders of applying changed
inputs are used. This non-determinism is considered by the analysis techniques in
Section 4.2, first presented in [RMZ10] and later extended in [RMZ11]. Again, for

33

4. Efficient Analysis of Non-Determinism in Cell Libraries

these techniques the exact details of transistor netlists are abstracted away as much
as possible, to enable more general applicability. To this end, transistor netlists are
viewed as a transition system with vectors of inputs changing one coordinate at a
time. Transistor netlists do not have an initial state, instead a computation may start
in any state. When requiring order-independence for all states, then also transient
initial states, i.e., states that only can be part of an initial computation but can
never be reached again, are considered. However, these initial states often lead to
order-dependence, since the transistor netlist has not yet been initialized correctly.
Therefore, the analysis presented in Section 4.2 also includes a way to disregard
these spurious order-dependencies.

Non-determinism leading to different computation results is undesired, as dis-
cussed above. However, non-determinism that does not affect the functional behavior
can be useful, since it adds a “dont-care” dimension: Among the different possible
computations, one can choose the computation that is optimal with respect to some
other design goal. In Section 4.3, which is based on [RM11], power consumption is
considered as such a design goal to optimize. In case computations exist that behave
equivalently, but there is one computation that consumes less power, then one should
change the design to force this computation to be chosen. Thereby, functionality of
the design is not affected, but power consumption is reduced.

Another application area where non-determinism that does not affect the functional
behavior can be put to use is power characterization, which is also described in
Section 4.3. To determine the power consumption of a cell, multiple input patterns
have to be simulated and the power consumption has to be measured for each. To
reduce the number of input patterns required, the non-determinism analysis, that
detects equivalent behaviors, is extended to also take abstract power consumption
into account. Then, for different input patterns that always consume the same amount
of abstract power, it is sufficient to only measure one of these equivalent patterns,
since the others will exhibit the same power consumption.

4.1 Order-Independence of VeriCell Descriptions

Preliminaries

The representation in Section 3.1 of the permutations Πn as a special instance of
the lists Ln, which contain numbers between 1 and n without duplicates, will also
be used in this section. Additionally, the well known representation of permutations
as the composition of adjacent transpositions will be used. A transposition is
a permutation (a b) ∈ Πn and is defined as (a b) (j) = j for all 1 ≤ j ≤ n,
j /∈ {a, b}, (a b) (a) = b, and (a b) (b) = a. Such a transposition is called adjacent
if b = a + 1. Composition of permutations will be denoted by juxtaposition, i.e.,
(π1 π2) (x) = π1(π2(x)).

The semantics of UDPs as presented in Section 3.1 will be used here, too.
However, the full formal definition is not required in this section, and can even be
generalized. The previous and current input values are still represented as a vector of
pairs of ternary values, i.e., Iudp =

(
T× T

)n for a UDP udp with n inputs. In the
remainder, the subscript udp will be dropped whenever the UDP is clear from the
context. Accessing a certain element of a vector ~i =

(
(ip1, i1), . . . , (ipn, in)

)
∈ I is

done by projection functions: For 1 ≤ j ≤ n, ρpj (~i) = ipj and ρj(~i) = ij . To modify
such a vector, substitutions are defined. A substitution is denoted by σ = [ap1 :=

34

Order-Independence of VeriCell Descriptions

v1, . . . , a
p
k := vk, b1 := w1, . . . , bl := wl], where a1, . . . , ak, b1, . . . , bl ∈ {1, . . . , n},

v1, . . . , vk, w1, . . . , wl ∈ T, and it holds that if ai = aj or bi = bj , then i = j.
Applying a substitution to a vector is denoted ~iσ and is defined as ρpj (~iσ) = vj if
jp := vj ∈ σ, ρj(~iσ) = wj if j := wj ∈ σ, and ρpj (~iσ) = ρpj (~i), ρj(~iσ) = ρj(~i) in
the respective other cases.

The computation of the next output value is abstracted into functions Φj : I×T→
T for 1 ≤ j ≤ n. These functions consider the j-th input as changed and take into
account the precedence of level-sensitive over edge-sensitive rows, as described in
Section 3.1. This level of detail is not required here. Instead, only two properties
about these functions are required, which are given next. The first requirement is
that an unchanged j-th input implies that the output value is unchanged, too. This
property clearly holds for the concrete semantics defined in Section 3.1.

Property 4.1.1. Let 1 ≤ j ≤ n and let ~i ∈ I such that ρpj (~i) = ρj(~i). Then for all
op ∈ T, Φj(~i, op) = op.

The second requirement on these functions is that they must only consider the
previous output values, except for the position where the change is being considered.
Intuitively, this expresses that the other changes have not yet occurred, thus they
are not visible yet, or they have already occurred, hence the previous value has
already been updated. This of course also holds for the concrete semantics defined
for UDPs in Section 3.1, since in the definition of J·K the predicate matchRow is
only used with the previous input values, except for coordinate j. To make this
requirement formal, it is required that a change on any other position does not affect
the computation.

Property 4.1.2. Let 1 ≤ j ≤ n, let 1 ≤ k ≤ n with k 6= j, let ~i ∈ I , and let
v, op ∈ T. Then Φj(~i, op) = Φj(~i[k := v], op).

Using the abstract functions Φj and substitutions to update the input values, the
evaluation function J·K : UDPsn × I × T× Ln → T from Section 3.1 is defined as
follows:

Judp,~i, op, nil K .= op

Judp,~i, op, j : ` K .= Judp,~i [jp := ρj(~i)],Φj(~i, op), `K

In the remainder, the considered UDP will often be clear from the context. Hence,
in these cases the argument udp will be dropped, thus instead of Judp,~i, op, `K the
notation J~i, op, `K will be used.

Order Dependency Analysis

A UDP is said to be order-dependent, if there are two orders of evaluating it that
lead to different results. Otherwise, if the order of evaluation does not affect the final
outcome, it is said to be order-independent. Below, this intuitive property is made
formal.

Definition 4.1.3. A UDP with n inputs is called order-independent, iff J~i, op, πK =
J~i, op, π′K for all ~i ∈ I , op ∈ T, and π, π′ ∈ Πn. Otherwise, the UDP is called
order-dependent.

35

4. Efficient Analysis of Non-Determinism in Cell Libraries

1 primitive ff_en(q, d, ck, en);
2 output q; reg q;
3 input d, ck, en;
4
5 table
6 // d ck en : q : q+
7 0 (01) 1 : ? : 0;
8 1 (01) 1 : ? : 1;
9 ? (10) ? : ? : -;
10 * ? ? : ? : -;
11 ? ? 0 : ? : -;
12 ? ? * : ? : -;
13 endtable
14 endprimitive

Figure 4.1: UDP implementing a D Flip-Flop with Enable

This definition is illustrated next by means of an example. Consider the UDP
ff_en shown in Figure 4.1. This UDP is order-dependent, which can be seen for
~i =

(
(0, 1), (0, 1), (1, 1)

)
(i.e., both inputs ck and d change from 0 to 1 while en

stays constant 1), op = X, π = 1 : 2 : 3, and π′ = 2 : 1 : 3. For the order π, the
change of input d is considered first, which does not change the output due to line 10.
Afterwards, input ck changes its value, where now line 8 is applicable and sets the
new output value to 1. This is also the final output value, since input en does not
change its value. For the order π′ however, the change of input ck is considered first.
Here, still the old value of input d is visible, hence line 7 is used, which sets the
output value to 0. The change of d, considered next, does not change this value, due
to line 10. Finally, again the non-changing value of en does not affect the output
value, so that 0 is the final output value for this order.

When only the relative behavior of the two inputs d and en is relevant, i.e.,
the value of input ck is considered stable, then the UDP ff_en of Figure 4.1
is order-independent, since it holds that J

(
(ckp, ckp), (dp, d), (enp, en)

)
, op, πK =

J
(
(ckp, ckp), (dp, d), (enp, en)

)
, op, π′K for all values ckp, dp, d, enp, en, op ∈ T and

all orders π, π′ ∈ Πn. Naively, this can be checked by enumerating all possible pairs
of orders π, π′, but that is overly complicated. It is easy to see that a comparison
with the identity permutation id, defined as id(j) = j for all 1 ≤ j ≤ n, is sufficient.

Lemma 4.1.4. A UDP with n inputs is order-independent iff J~i, op, πK = J~i, op, idK
for all ~i ∈ I , op ∈ T, π ∈ Πn.

Proof. The “only if”-direction is a trivial consequence of Definition 4.1.3. The
“if”-part follows from the transitivity of equality.

Thus, instead of enumerating all pairs of orders, of which there are O((n!)2)
many, all permutations have to be enumerated only once, giving a complexity of O(n!)
comparisons. As will be shown in the remainder of this section, this complexity can
be reduced even further, to a quadratic number of comparisons. To this end, the
commuting diamond property is introduced. Informally, this property expresses that
the order of two given inputs does not influence the output.

36

Order-Independence of VeriCell Descriptions

~i, op

~i[ip := ρj(~i)], oj ~i[jp := ρk(~i)], ok

~i[ip := ρj(~i), jp := ρk(~i)], o

j k

k j

Figure 4.2: Commuting Diamond Property

Definition 4.1.5. Let udp ∈ UDPsn.
Inputs 1 ≤ j, k ≤ n, j 6= k are said to have the commuting diamond property,

denoted j �udp k, iff for all ~i ∈ I , op ∈ T:

Judp,~i, op, j : kK = Judp,~i, op, k : jK

The commuting diamond property is a well-known property from term rewriting,
e.g., given in [BN98, Section 2.7.1]. The idea is that every two one-step rewrites
(evaluations) can be joined again by executing the respective other step. Graphically,
this is depicted in Figure 4.2, where only the inputs and the output value are denoted.
The solid lines are universally quantified, whereas the dashed lines are existentially
quantified.

Considering one-step evaluation as a rewrite step, the commuting diamond
property implies confluence in the induced term-rewrite system, i.e., the final state
(and hence especially the output) is unique regardless of the order of considering
inputs.

This section proves the stronger result that, in the special case of UDP evaluation,
the commuting diamond property and confluence coincide. This relies on the
semantics of UDPs, or, more precisely, on Properties 4.1.1 and 4.1.2, and does not
hold in the general setting of term rewriting. For sake of completeness, the proof of
sufficiency of the commuting diamond property is also given below.

The formal definition of the commuting diamond property amounts to checking
that in case of two simultaneous changes in the input, both orders of considering
them lead to the same output. To put such evaluations into longer evaluations, where
more elements exist in the list of input numbers to be considered, the following
lemma shows that this does not change the behavior.

Lemma 4.1.6. For a UDP with n inputs, ~i ∈ I , op ∈ T, and a list `1++`2 ∈ Ln
with `1 = k1 : . . . : k|`1|,

J~i, op, `1++`2K = J~i[kpr := ρkr (~i) | 1 ≤ r ≤ |`1|], J~i, op, `1K, `2K.

Proof. Induction is performed on |`1|.
If |`1| = 0, then `1 = nil, J~i, op, `1K = op, and~i[kpr := ρkr (~i) | 1 ≤ r ≤ |`1|] =~i.

Hence, J~i, op, `1++`2K = J~i, op, `2K = J~i, J~i, op, `1K, `2K.
Otherwise, let |`1| > 0 and `1 = k1 : ` with ` = k2 : . . . : k|`1|. Then

J~i, op, `1K = J~i, op, k1 : `K = J~i[kp1 := ρk1(~i)], o′, `K for o′ = Φk1(~i, op). Furthermore,

37

4. Efficient Analysis of Non-Determinism in Cell Libraries

J~i, op, `1++`2K = J~i, op, k1 : `++`2K = J~i[kp1 := ρk1(~i)], o′, `++`2K. The induction
hypothesis is applicable to `, which proves the theorem:

J~i, op, `1++`2K
= J~i[kp1 := ρk1(~i)], o′, `++`2K
IH= J~i[kp1 := ρk1(~i)][kpr := ρkr (~i) | 2 ≤ r ≤ |`1|], J~i[k

p
1 := ρk1(~i)], o′, `K, `2K

= J~i[kpr := ρkr (~i) | 1 ≤ r ≤ |`1|], J~i[k
p
1 := ρk1(~i)], o′, `K, `2K

= J~i[kpr := ρkr (~i) | 1 ≤ r ≤ |`1|], J~i, op, `1K, `2K

The main technical lemma, given next, states that the commuting diamond
property is a necessary and sufficient condition to be able to swap the order of two
inputs in a longer computation.

Lemma 4.1.7. Consider a UDP with n inputs and let j : k : ` ∈ Ln.
Then j � k holds, iff for all ~i ∈ I and op ∈ T, J~i, op, j : k : `K = J~i, op, k : j : `K.

Proof. In the “only if”-direction, the following two computations have to be consid-
ered:

J~i, op, j : k : `K = J~i[jp := ρj(~i), kp := ρk(~i)], o , `K
J~i, op, k : j : `K = J~i[jp := ρj(~i), kp := ρk(~i)], o′, `K

Lemma 4.1.6 allows to split these computations, and because i � j holds by
assumption, o = J~i, op, j : kK = J~i, op, k : jK = o′. Since the remaining computation
is the same, the “only-if” direction has been proven.

To show the “if”-direction, let j 6 � k. Then ~i ∈ I and op, o, o′ ∈ T exist such
that:

o = J~i, op, j : kK 6= J~i, op, k : jK = o′

Define ~i′ = ~i[r := ρpr(~i) | 1 ≤ r ≤ n, r /∈ {j, k}], i.e., set all current values to
their previous values except for those on positions j and k. Due to Property 4.1.2
it still holds that o = J~i′, op, j : kK and o′ = J~i′, op, k : jK. Applying Lemma 4.1.6
gives the following two evaluations:

J~i′, op, j : k : `K = J~i′[jp := ρj(~i), kp := ρk(~i)], o , `K
J~i′, op, k : j : `K = J~i′[jp := ρj(~i), kp := ρk(~i)], o′, `K

By the requirements on lists in Ln, all remaining elements in ` are neither j
nor k. Formally, let ` = k1 : . . . : k|`| : nil, then kr /∈ {j, k} for all 1 ≤ r ≤ |`|.
Hence, ρpkr (~i

′) = ρkr (~i′) holds by construction of ~i′ for all 1 ≤ r ≤ |`|. This allows
to repeatedly apply Property 4.1.1 to prove this lemma:

J~i′, op, j : k : `K = J~i′[jp := ρj(~i), kp := ρk(~i)], o , `K
= o
6= o′

= J~i′[jp := ρj(~i), kp := ρk(~i)], o′, `K
= J~i′, op, k : j : `K

The above lemma is used to prove the main theorem of this section, showing
that order-independence is equivalent to all pairs of inputs having the commuting
diamond property.

38

Order-Independence of VeriCell Descriptions

Theorem 4.1.8. A UDP with n inputs is order-independent, iff for all pairs of
numbers 1 ≤ j < k ≤ n it holds that j � k.

Proof. To show the “only if”-direction, let j 6 � k. Define list ` = 1 : . . . : j − 1 :
j+1 : . . . : k−1 : k+1 : . . . : n : nil. Then by construction both π = j : k : ` ∈ Πn

and π′ = k : j : ` ∈ Πn. Lemma 4.1.7 shows that ~i ∈ I and op ∈ T exist such that
J~i, op, j : k : `K 6= J~i, op, k : j : `K, which proves that the UDP is order-dependent.

To show the “if”-direction, assume that j � k for all 1 ≤ j < k ≤ n. Let π ∈ Πn

with π = (a1 a1+1) · · · (aq aq+1). Induction on q is performed to prove the property
of Lemma 4.1.4.

If q = 0, then π = id and hence trivially J~i, op, πK = J~i, op, idK.
Otherwise, let π′ = (a1 a1+1) · · · (aq−1 aq−1+1). Then for ~i′ = ~i[π(r)p :=

ρπ(r)(~i) | 1 ≤ r < aq], o = J~i, op, π(1) : . . . : π(aq−1)K, and ` = π(aq+2) : . . . :
π(n) the following holds due to Lemmas 4.1.6 and 4.1.7, since π′(aq) � π′(aq+1)
by assumption:

J~i, op, πK = J~i, op, π′ (aq aq+1)K
= J~i′, o, π′(aq+1) : π′(aq) : `K
= J~i′, o, π′(aq) : π′(aq+1) : `K

Furthermore, for all 1 ≤ m ≤ n with m /∈ {aq, aq + 1}, π(m) = π′(m).
Therefore, by Lemma 4.1.6, J~i′, o, π′(aq) : π′(aq+1) : `K = J~i, op, π′K. By the
induction hypothesis J~i, op, π′K = J~i, op, idK holds, which proves the theorem.

Coming back to the problem stated at the beginning of this section, this theorem
presents a method to check order-independence of UDPs in just O(n2) function
comparisons. To this end, for every pair 1 ≤ j < k ≤ n of inputs two BDDs
representing the functions J~i, op, j : kK and J~i, op, k : jK are constructed, which are
then compared for equality. If every such pair of functions is equal, then order-
independence of the UDP can be concluded, due to the above theorem. If however
two functions are found that compute different outputs, then their xor describes
the counterexample states and hence the UDP is order-dependent. Furthermore,
the construction in the proof of Lemma 4.1.7 allows to conclude that there is a
previous output value and an input vector in which only the currently considered
inputs are changed that lead to two different outputs depending on the order of the
two considered inputs.

When applying this method to the UDP ff_en of Figure 4.1, then one finds,
among others, also the previously described example for the input pair d and ck
where both inputs change from 0 to 1.

For the pair d and en however, no order-dependence exists, as mentioned above.
This is intuitively true because both changes in d and en will simply keep the current
output value, since the output of a flip-flop is only changed on a positive edge of the
clock. Due to the symbolic approach, this is checked within fractions of a second.

Verifying Counterexamples

Above, it was presented how to check order-independence of a UDP efficiently.
However, a found counterexample, i.e., a situation in which two different orders of
evaluating changed inputs lead to different output values of a UDP, might be spurious.
On one hand, this is due to the fact that Verilog has a predetermined initial state,

39

4. Efficient Analysis of Non-Determinism in Cell Libraries

in which all signals have the value X, as was described in Chapter 3. From this
initial state not all counterexample states have to be reachable. On the other hand,
the analysis of UDPs assumes that all inputs to a UDP can change independently
of each other. However, the logic driving these inputs in a module might prevent
certain combinations. Therefore, the idea is to do a reachability analysis, to determine
whether a found counterexample is spurious or not in a concrete cell instantiating
the analyzed UDP.

Required Permutations for Reachability Analysis

Whether a counterexample is spurious depends on whether its starting state is reachable
from the initial state of the whole cell. In contrast to the approach presented in
Chapter 3, here all possible execution traces have to be considered, instead of just
those that correspond to the order chosen by a simulator. As in that chapter, every
evaluation of a UDP is treated as being independent of the others, i.e., for every
evaluation of a UDP the order might be a different one from the order used in
another evaluation. This models the behavior of uncontrollable external influences
that determine the order.

Since non-determinism creates the possibility of a huge state space to explore,
the amount of non-determinism in the generated model should be kept as small as
possible. Therefore, not all orders are generated, but only as many orders as needed
for the UDP to exhibit all different behaviors. A UDP always computes the same
output value whenever two swapped input positions in the order have the commuting
diamond property. Therefore, a set of equivalence classes is created with respect
to the transitive closure of swapping neighboring inputs that have the commuting
diamond property. For example, if 2 � 3 holds, then the permutations 2 : 3 : 1 and
3 : 2 : 1 are in the same equivalence class and only one of them has to be considered.

Definition 4.1.9. For a UDP with n inputs, the relation ↔ on Πn is defined as
π ↔ π′, iff a 1 ≤ k < n exists such that π = π′ (k k+1) and π′(k) � π′(k + 1).

The equivalence relation ≡ on Πn is then defined as the reflexive transitive
closure of ↔.

This equivalence relation can then be used to partition the set of all permuta-
tions into equivalence classes. These equivalence classes still capture all required
permutations.

Lemma 4.1.10. Consider a UDP with n inputs. For all ~i ∈ I , op ∈ T, and all
permutations π ≡ π′ ∈ Πn it holds that J~i, op, πK = J~i, op, π′K.

Proof. Let π ≡ π′. Then π = π′ (a1 a1+1) · · · (aq aq+1) for some a1, . . . , aq ∈
{1, . . . , n − 1} with πr−1(ar) � πr−1(ar + 1) for all 1 ≤ r ≤ q, where for every
0 ≤ r < q, πr = π′ (a1 a1+1) · · · (ar ar+1). Induction on q is performed.

If q = 0, then π = π′, which directly shows the desired property.
Otherwise, π = πq−1 (aq aq+1). Because of πq−1(aq) � πq−1(aq+1), Lem-

mas 4.1.6 and 4.1.7, can be applied, yielding for ~i′ =~i[π(r)p := ρπ(r)(~i) | 1 ≤ r <
aq], o = J~i, op, π(1) : . . . : π(aq−1)K, and ` = πq−1(aq+2) : . . . : πq−1(n),

J~i, op, πK = J~i, op, πq−1 (aq aq+1)K
= J~i′, o, πq−1(aq+1) : πq−1(aq) : `K
= J~i′, o, πq−1(aq) : πq−1(aq+1) : `K.

40

Order-Independence of VeriCell Descriptions

Furthermore, since π(r) = πq−1(r) for all 1 ≤ r < aq, J~i′, o, πq−1(aq) :
πq−1(aq+1) : `K = J~i, op, πq−1K because of Lemma 4.1.6. Hence, the induction
hypothesis can be applied to show that J~i, op, πK = J~i, op, πq−1K = J~i, op, π′K.

These equivalence classes are used next to implement the non-deterministic
reachability check. It uses only one permutation from each equivalence class, since
the above lemma states that all possible behaviors of the UDP are thereby considered.

Non-Deterministic Reachability Analysis

In order to check reachability, the approach of Section 3.2 is followed in encoding
the problem as a Boolean Transition System (BTS), which is a transition system with
vectors of Booleans as states. However, in contrast to Section 3.2, here all possible
behaviors of the UDPs are allowed. For this purpose, the required permutations of
the previous section are used and only these are encoded in a (non-deterministic)
transition relation. This transition relation is defined as the conjunction of the
following formulas for each UDP udp with output o (and next output value o′) in
the cell: ∨

π∈Πn
/
≡udp

o′ ↔ Judp,~i, o, πKB×B

To make these formulas work on Booleans, the dual-rail encoding of the ternary
values is used again, where 0 = (true, false), 1 = (false, true), and X = (true, true).
Furthermore, (vL, vH) ↔ (wL, wH) = (vL ↔ wL) ∧ (vH ↔ wH). The dual-rail
encoding J·KB×B of UDPs is a straight-forward modification of the dual-rail encoding
given in Section 3.2, where instead of modeling the simulator order, the order given
as extra argument is encoded.

Using such a non-deterministic BTS, the reachability problem can be expressed
in the input language of the NuSMV model checker [CCG+02]. The property to be
verified is the negation of the counterexample states. This way, a trace is obtained,
leading to a counterexample state, in case an order-dependent UDP can exhibit this
behavior in an execution.

Therefore, the LTL formula to be checked for a pair j and k of order-dependent
inputs is the following, where, by slight abuse of notation, j 6 � udp k shall denote the
set of all counterexample states for this pair:

G ¬

 ∨
s∈j 6 �udpk

s


As an example, the UDP ff_en given in Figure 4.1 is extended with an

asynchronous reset signal, as shown in Figure 4.3. This UDP ff_en_rst behaves
like the UDP ff_en when rst is 0, but forces the output to be 0 when rst is 1.

For this UDP, a counterexample is found for the inputs d and rst. However,
this counterexample depends on the previous output value being 1 or X and the input
rst having the previous value 1. Such a configuration is not reachable, since setting
the input rst to 1 in some previous state always results in the value 0 for the output.
This is verified by the NuSMV model checker, reporting that none of the reachable
states is a counterexample state.

Considering inputs ck and en, a set of counterexample states is found. When
applying the encoding and checking reachability, a trace to a counterexample state is

41

4. Efficient Analysis of Non-Determinism in Cell Libraries

primitive ff_en_rst(q, d, ck, en, rst);
output q; reg q;
input d, ck, en, rst;

table
// d ck en rst : q : q+

0 (01) 1 ? : ? : 0;
1 (01) 1 0 : ? : 1;
? (10) ? 0 : ? : -;

* ? ? 0 : ? : -;
? ? 0 0 : ? : -;
? ? * 0 : ? : -;
? ? ? 1 : ? : 0;
? ? ? * : 0 : 0;

endtable
endprimitive

Figure 4.3: UDP implementing a D Flip-Flop with Enable and Reset

produced, where the previous output is 1, inputs d and rst are 0, and both inputs ck
and en change from 0 to 1. This indeed may lead to two different outputs of the
UDP, since either the output remains unchanged if the enable signal en is still 0
while the change in the clock ck is processed, or the output takes on the value 0
from the input d if the enable signal is first set to 1 and then the rising edge of ck
is considered.

Experimental Results

Practical applicability of the method was tested on the Nangate Open Cell Li-
brary [Nan08]. It contains 12 different cells that instantiate a sequential UDP and
that are in the VeriCell subset of Verilog. All experiments were conducted on a
Linux PC containing an Intel Pentium 4 3.0GHz processor and 1GB RAM.

The results are shown in Table 4.1, where the first column gives the name of
the (sequential) cell, the second column gives the number of UDP input pairs, and
the third column shows the number of pairs that were found to be order-dependent.
For such input pairs, the BTS encoding presented above was used to create input
files for the NuSMV model checker [CCG+02], to check whether the found order-
dependencies of the UDP are reachable from the initial state of the cell. When
allowing the external inputs of the cell to be all possible values from T, then a
counterexample state, which exhibits order-dependent behavior, can be reached for all
found order-dependencies, as can be seen in the 4th column of Table 4.1. However,
quite a few of these counterexamples are due to the value X being allowed as external
input, something that cannot happen in a hardware implementation. When restricting
the external inputs of the cell to be binary, i.e., either 0 or 1, but still allowing
the internal signals to have any value from T, then a number of counterexamples
are not reachable anymore, as can be seen in the 5th column of Table 4.1. Thus,
when the environment of a cell is restricted to provide binary values, then these
order-dependencies will never occur.

42

Order-Independence of VeriCell Descriptions

Table 4.1: Order-Independence of VeriCell descriptions in the Nangate Open Cell
Library

Cell # Inp. # Ord- # Reach # Reach Time Time
Pairs Dep Prs T B T [s] B [s]

CLKGATE 1 1 1 1 0.10 0.10
CLKGATETST 2 1 1 1 0.12 0.12
DFF 1 1 1 1 0.12 0.05
DFFR 3 3 3 2 0.61 0.47
DFFS 3 3 3 2 0.97 0.28
DFFRS 6 6 6 4 4.21 8.03
DLH 1 1 1 1 0.10 0.11
DLL 1 1 1 1 0.10 0.11
SDFF 1 1 1 1 1.43 0.58
SDFFR 3 3 3 2 4.11 3.00
SDFFS 3 3 3 2 2.63 3.42
SDFFRS 6 6 6 4 15.01 23.77

Table 4.2: Comparing Approaches for Checking Order-Independence of VeriCell
descriptions in the Nangate Open Cell Library

Cell # Inp. # Orders Times [s] Times [s]
Pairs Thm. 4.1.8 Lem. 4.1.4

CLKGATE 1 1 0.01 / 0.10 0.01 / 0.12
CLKGATETST 2 5 0.01 / 0.12 0.02 / 0.16
DFF 1 1 0.01 / 0.05 0.01 / 0.14
DFFR 3 5 0.01 / 0.47 0.02 / 0.61
DFFS 3 5 0.01 / 0.28 0.02 / 0.59
DFFRS 6 23 0.01 / 8.03 0.34 / 27.06
DLH 1 1 0.01 / 0.11 0.01 / 0.12
DLL 1 1 0.01 / 0.11 0.02 / 0.12
SDFF 1 1 0.01 / 0.58 0.01 / 1.06
SDFFR 3 5 0.01 / 3.00 0.07 / 11.07
SDFFS 3 5 0.01 / 3.42 0.10 / 11.13
SDFFRS 6 23 0.02 / 23.77 0.44 / > 3600

Finally, the 6th and 7th columns of Table 4.1 show the time it took NuSMV to
check reachability when the inputs were allowed to take values from T and when
they were allowed to take values from B = {0, 1}, respectively. It can be observed
that the time taken for the verification is reasonably small, only for the largest cell
SDFFRS the verification took more than 10 seconds.

To assess the efficiency of the presented method based on Theorem 4.1.8, it is
compared to a naive approach based on Lemma 4.1.4, and the time it takes to compute
order-dependencies and to model check the reachability of possible counterexample
states is measured. For these experiments, the external inputs are restricted to be
binary. The results are shown in Table 4.2, where the first column gives the name

43

4. Efficient Analysis of Non-Determinism in Cell Libraries

of the cell, the second the number of input pairs that had to be checked, and the
third column shows the number of permutations that had to be compared with the
identity permutation. In the fourth column, the first number shows the time it took to
compute the order-dependent counterexample states using the commuting diamond
property; the second number shows the time it took NuSMV to check reachability
of such order-dependent states, which is the same as in Table 4.1. The last column
shows first the time it took to compute order-dependent states by comparing all orders
with the identity permutation. Second, it displays the time taken by NuSMV to check
reachability of such order-dependent states.

A first observation is that checking order-independence of UDPs is extremely fast,
regardless of the approach. However, when it comes to model-checking reachability of
the candidate counterexample states, the approach based on the commuting diamond
property significantly outperforms the naive approach. Particularly for the largest cell
SDFFRS the model checking timed out after one hour when investigating all possible
orders, whereas it was finished within 24 seconds using the commuting diamond
property.

These results can be explained by two factors. First, the naive exploration of the
state space has to investigate all possible orders that are not behaving in the same
way as the identity permutation for the method based on Lemma 4.1.4. Thus, the
transition relation is far more complex. Second, for orders that are equivalent to
each other but not to the identity permutations, counterexamples are created for every
order that all have to be checked. Such equivalences are factored out in the approach
based on Theorem 4.1.8, both for the transition relation and for the counterexamples,
due to the much more fine-grained commuting diamond property.

4.2 Order-Independence of Transistor Netlists

In the previous section, it was presented how order-dependence, leading to non-
determinism of VeriCell descriptions, can be checked for UDPs. The same problem,
i.e., different orders of applying input changes leading to different computation results,
also exists for transistor netlists. Hence, this section presents a technique to analyze
order-independence of transistor netlists.

In transistor netlists there is no initial state in which evaluations start. Instead,
any state might be initial. Therefore, the reachability check presented in the previous
section, which checks that a found order-dependence can actually occur in the cell,
is not applicable for transistor netlist descriptions. But still, also in transistor netlists
order-dependencies exist that are not relevant. These order-dependencies only occur
in transient initial states, i.e., they can only occur once at the beginning and never
thereafter. Thus, the long-run behavior of the transistor netlist should be analyzed.
To do so, this section first presents an approximation of the long-run behavior,
by requiring a pre-determined number of predecessors for a state from which an
order-dependence is observed. This approximates the states reachable from a strongly
connected component (SCC) of the transition system, in which all states are reachable
from each other and therefore describe the long-run behavior. Analyzing the SCCs
further, it is then shown that requiring one predecessor state is exactly the restriction
to the long-run behavior of transistor netlists.

44

Order-Independence of Transistor Netlists

Preliminaries

Transistor netlists are abstracted to vector-based transition systems, whose main
feature is the representation of inputs, considered to be labels of the transitions, as
vectors containing a fixed number of elements.

Definition 4.2.1. Let S be a finite set of states and U be a finite set of input values.
A vector-based transition system over states S and input domain U with n inputs

is defined as a 3-tuple T = (S, I, δ), where I = Un and δ : S × I → P(S).

In the above definition, P(S) denotes the power-set of S. Note that no initial
state is defined, instead an evaluation is allowed to start in any arbitrary state from S.
In the rest of this section, only vector-based transition systems will be considered.
Hence, they will also be referred to simply as transition systems.

Next, a few properties of vector-based transition systems and a graph representation
as a relation on the states, labeled with the current input vector, are defined.

Definition 4.2.2. Let T = (S, I, δ) be a vector-based transition system.
Transition system T is called deterministic, iff for all ~i ∈ I and all s ∈ S,

|δ(s,~i)| = 1. Otherwise, it is called non-deterministic. The transition system T is
called deadlock-free, iff for all ~i ∈ I and all s ∈ S, |δ(s,~i)| ≥ 1.

The transition relation −→ ⊆ S× I×S is defined as s
~i−→T s

′ iff s′ ∈ δ(s,~i). It is
allowed to leave out the subscript T if the transition system is clear from the context.

Composition of transitions is denoted s0
~i1−→ ◦

~i2−→ s2 for states s0, s2 ∈ S and is

defined iff a state s1 ∈ S exists such that s0
~i1−→ s1

~i2−→ s2.

Substitutions are defined similar to the substitutions used in Section 4.1, however
here no previous values are used. Therefore, a substitution is denoted by σ = [a1 :=
w1, . . . , ar := wr] for pairwise disjoint a1, . . . , ar ∈ N and w1, . . . , wr ∈ U , and
is defined for a vector ~v = (v1, . . . , vz) ∈ Uz as the mapping σ(~v) = (v′1, . . . , v′z)
where v′j = w if j := w ∈ σ and v′j = vj otherwise. Again, application of a
substitution is also written as ~vσ = σ(~v). Projections are defined accordingly as
ρj(~v) = vj for 1 ≤ j ≤ z.

The sets Ln and Πn are also as defined in Section 4.1, i.e., all lists without
duplicates and all permutations (lists π of length |π| = n) over the numbers 1, . . . , n,
respectively. Given a list, the function sort : Ln → Ln returns this list sorted.

Order-Independence Analysis of Vector-Based Transition Systems

As in Section 4.1, the inputs of a transistor netlist are assumed to change one at a
time. Thus, not all possible evaluations of a vector-based transition system have to
be considered, but only those where this restriction holds.

Definition 4.2.3. A (possibly infinite) trace s1
~i1−→ s2

~i2−→ s3
~i3−→ · · · of a vector-based

transition system T = (S, I, δ) with I = Un is called one-input restricted, iff for
all j ∈ N \ {0} it holds that dH(~ij ,~ij+1) ≤ 1, where dH = |{1 ≤ j ≤ n | ρj(~i1) 6=
ρj(~i2)}| denotes the Hamming distance [Ham50].

A one-input restricted trace therefore comprises successive steps sj
~ij−→ sj+1

~ij+1−−−→
sj+2 such that ~ij+1 =~ij [aj := vj] for some 1 ≤ aj ≤ n and some value vj ∈ U .

45

4. Efficient Analysis of Non-Determinism in Cell Libraries

The following example shows that, in general, all possible interleavings of input
changes can differ from changing all inputs at the same time. This is because a
one-input restricted trace still sees some old input values and gradually updates the
state values.

Example 4.2.4. Let T = (S, I, δ) be the following deterministic transition system,
where S = B = {0, 1}, I = B2, and the transition function δ is illustrated below (the
transition labeled B2 is a shorthand for the 4 transitions each with a label in B2):

0 1(0,0) , (1,1)
(0,1) , (1,0)

B2

Consider the different traces when transitioning from input vector (0, 0) to (1, 1):

(0) (0,0)−−−→ (0) (1,0)−−−→ (1) (1,1)−−−→ (1)
(0) (0,0)−−−→ (0) (0,1)−−−→ (1) (1,1)−−−→ (1)
(0) (0,0)−−−→ (0) (1,1)−−−→ (0)

Here, it can be observed that both of the possible one-input restricted traces lead
to the same final state (1), whereas the trace directly applying both of the new values
results in a different final state (0).

In the remainder of this section, only the interleaving semantics, represented
by one-input restricted traces, will be considered. Hence, for each vector-based
transition system T , its interleaving interpretation T I is defined in such a way that,
by construction, at most one input is triggered in each step.

Definition 4.2.5. Let T = (S, I, δ) be a vector-based transition system with I = Un.
The corresponding one-input restricted vector-based transition system is defined as
T I = (S × I, {1, . . . , n} × U, δI), where (s,~i) ∈ S × I is also denoted by s;~i and
where the transition function δI : (S × I)× {1, . . . , n} × U → P(S × I) is defined
as δI(s;~i, j, v) = {s′;~i[j := v] | s′ ∈ δ(s,~i[j := v])}.

Also for T I a transition relation is defined, where s;~i j−→ s′;~i′ iff s′;~i′ ∈ δI(s;~i, j, v)
with v = i′j for ~i′ = (i′1, . . . , i′n). Note that by looking at the position j in ~i and ~i′
the change in the input (second component v of the label) can be recovered. Hence,
only the position is shown on the label and the actual value of the changing input is
left out.

This definition allows to represent a one-input restricted trace in the form s1;~i1
j1−→

s2;~i2
j2−→ . . . , where the numbers j1, j2, . . . indicate the triggered inputs in the

corresponding steps. Using the construction given above, any one-input restricted
trace of the transition system T can be translated into a trace of T I and vice versa.
Therefore, a transition system T and its corresponding one-input restricted transition
system T I will be used interchangeably. In the following example, the transition
system T I for the transition system T of Example 4.2.4 is presented.

Example 4.2.6. For the transition system T = (S, I, δ) of Example 4.2.4, T I =
(S × I, I, δI), where S × I = B × B2 and δI is defined as shown in Figure 4.4
(dashed and bold lines are to be considered just like normal lines; they will be used
to illustrate other concepts in subsequent examples). For the sake of brevity, the
input vector components are concatenated. Furthermore, it should be mentioned

46

Order-Independence of Transistor Netlists

0;01

0;00

0;10

0;11

1;01

1;00

1;10

1;11

1,2

1

21,2

1

2

1,2

1

2

1

2

1,2

1

2

1,2

1

2

1,21

2

1,2

1

2

1,2

Figure 4.4: Transition System T I for Example 4.2.4

that a label such as 1, 2 does not denote a vector, but is a representation of the two
separate transitions labeled by 1 and 2, respectively.

To illustrate the construction that leads to the above graph, consider the state
0;00, which represents the state 0 in T that was reached with the input vector 00.
When considering the successor states of this state by changing the first input, two
possibilities exist, either setting the first input to 0 or to 1. When setting it to 0,
one obtains the same input vector 00, and since 0 00−→T 0 one gets the transition
0;00 1−→ 0;00 in T I . When setting the first input to 1, input vector 10 must be
considered, which implies in T I the transition 0;00 1−→ 1;10, due to the transition
0 10−→T 1 in T .

It was already mentioned previously that in the target application of vector-based
transition systems created from transistor netlists, transient initial states are common.
This is the case since after “boot-up” a transistor netlist may be in any arbitrary state.
Such a transient state is one that can only occur once and never be reached again.
Since these states are of little practical relevance, the property kR is defined that
determines whether a state has at least k predecessors. Furthermore, this property
ensures that input vectors which could not have been used to arrive in a certain state
are ruled out.

Definition 4.2.7. Let T = (S, I, δ) be a vector-based transition system with n inputs.
For k ∈ N, kRT ⊆ S × I is the smallest relation containing all combinations
s;~i ∈ S × I of a state and input such that there exist s1;~i1, . . . , sk;~ik ∈ S × I and
j1, . . . , jk ∈ {1, . . . , n} satisfying s1;~i1

j1−→ · · · jk−1−−−→ sk;~ik
jk−→ s;~i.

47

4. Efficient Analysis of Non-Determinism in Cell Libraries

Instead of s;~i ∈ kRT , also the notation kRT (s;~i) will be used in the following,
where the subscript T is left out if the transition system is clear from the context. In
case kR(s;~i) holds, then the state s;~i is said to be k-step reachable.

Next, the single-step transitions of the interleaving semantics are combined to
obtain traces in which different permutations of applying input are used. For this
purpose, the transition relation introduced below is labeled with a permutation of
positions to indicate the order in which the inputs are triggered. Furthermore, the
relation is restricted to those states that are k-step reachable.

Definition 4.2.8. Let T = (S, I, δ) be a transition system, s, s′ ∈ S, ~i, ~i′ ∈ I = Un,
and ` ∈ Πn with ~i = (i1, . . . , in), ~i′ = (i′1, . . . , i′n), and ` = j1 : . . . : jn. For the
transition system T I , the transition relation −→→k labeled by the permutation ` is
defined as s;~i `−→→k s

′;~i′ iff kR(s;~i) and there exist states s1;~i1, . . . , sn+1;~in+1 ∈ S×I
such that s;~i = s1;~i1

j1−→ s2;~i2
j2−→ . . .

jn−1−−−→ sn;~in
jn−→ sn+1;~in+1 = s′;~i′.

This is not the only way to define the combination of considering input events;
one could also allow for applying a certain event zero or more times. This will
be treated later in this section, where it will be shown that all different variants of
the above definition lead to the same conclusion as far as order-independence is
concerned.

To illustrate the relation −→→k, first consider the state 0;01 in the transition system
T I of Example 4.2.6, which is also depicted in Figure 4.4. As can be seen in the
figure, there are no incoming arcs for this state. Hence, for any k > 0, it holds
that 0;01 6 `−→→k s;~i for any s;~i ∈ S × I and ` ∈ Π2, since kR(0;01) does not hold.
Next, consider the state 0;00. For any k ∈ N, the state 0;00 is k-step reachable, for
example by repeating 0;00 1−→ 0;00 k times. Thus, 0;00 1:2−−→→k 1;11 holds due to the
bold path in Figure 4.4. Furthermore, also 0;00 2:1−−→→k 1;11 holds because of the
dashed path in Figure 4.4. Hence, in this case it does not matter in which order these
two changing input values are evaluated.

In general, this shall be determined for all states and all possible orders of input
changes, i.e., the problem is whether the state reached after applying a number of
input changes is the same regardless of the chosen order of their application. If this
is the case, the transition system is called order-independent.

Definition 4.2.9. Given a transition system T = (S, I, δ) with n inputs, relation −→→k

is called order-independent, iff `−→→k = `′−→→k for all `, `′ ∈ Πn.

However, as was the case for UDPs in Lemma 4.1.4, it can easily be seen that
not all pairs of permutations have to be considered. One of them can, for example,
be fixed to be the identity permutation, which in the considered list representation is
equal to the sorted permutation.

Lemma 4.2.10. For a transition system T = (S, I, δ) with n inputs, relation −→→k is
order-independent, iff `−→→k = sort(`)−−−−→→k for all ` ∈ Πn.

Proof. Follows from the transitivity of equality.

Hence, one could check order-independence of −→→k by constructing all of these
n! relations and comparing them for equality. However, following the basic idea of
Section 4.1, this check should be reduced to a quadratic number of comparisons.

48

Order-Independence of Transistor Netlists

The approach relies on the structure of the computation, only treating one input
change at a time, and on two properties of the functions computing the next output
value when considering a single input as changed: The first (rather modest) property
required to check order-independence efficiently is deadlock freedom. In the target
application area of transistor netlist hardware descriptions, this is very natural since
a hardware circuit will always compute some values from its inputs. The second
property is that when there is no change in the considered input, then also the output
of that evaluation step remains unchanged. In other words, it is required that the
twofold application of the same input vector results in the same state as applying the
input vector only once. This property, which is similar to Property 4.1.1 required for
UDPs, is expressed formally below.

Fixed-Point Property. Let T = (S, I, δ) be a transition system with n inputs. T has
the fixed-point property iff for all s1, s2, s3 ∈ S, all 1 ≤ j, j′ ≤ n, and all ~i, ~i′ ∈ I:
If s1;~i

j−→ s2;~i′
j′−→ s3;~i′, then s3 = s2.

For a deadlock-free transition system satisfying the fixed-point property, order-
independence is equivalent to checking the equality of two specific relations for all
pairs of inputs. This is expressed in the k-step reachable diamond property, which
is defined next.

Definition 4.2.11. Let T = (S, I, δ) be a vector-based transition system with n
inputs.

Two inputs 1 ≤ j, j′ ≤ n with j 6= j′ are said to have the k-step reachable
diamond property, denoted j �

k

� j′, iff s;~i j−→ ◦ j′−→ s′;~i′ ⇐⇒ s;~i j′−→ ◦ j−→ s′;~i′ for all
s;~i , s′;~i′ ∈ S × I satisfying kR(s;~i).

The k-step reachable diamond property is similar to the commuting diamond
property for UDPs in Definition 4.1.5, except that it also requires k-step reachability of
the state that starts the diamond. Thus, this property is also similar to the commuting
diamond property known from term rewriting [BN98], but here it is not required to
hold globally. Instead, it is only required for a subset of states, namely those having
at least k predecessors.

Using the k-step reachable diamond property, order-independence of the relation
−→→k of a vector-based transition system can be checked. This is proven in the next
lemma.

Lemma 4.2.12. Let T = (S, I, δ) be a vector-based transition system with n inputs.
The transition relation −→→k is order-independent, if j �

k
� j′ for all 1 ≤ j < j′ ≤ n.

Proof. Assume that j �
k

� j′ holds for each pair 1 ≤ j < j′ ≤ n. It will be proven that
the property of Lemma 4.2.10 holds, i.e., that `−→→k = sort(`)−−−−→→k for every ` ∈ Πn.
To this end, let ` = j1 : · · · : jn. Induction is performed on the number of swaps
required in the Bubble-Sort algorithm to sort list `.

If no swaps are required, then ` = sort(`) and therefore the lemma vacuously
holds.

Otherwise, let `′ = j1 : · · · : jr+1 : jr : · · · : jn be the list obtained after the first
swap performed by the Bubble-Sort algorithm. Using the k-step reachable diamond
property, one obtains for all k-step reachable states s;~i that

s;~i jr−→ ◦ jr+1−−−→ s′;~i′ ⇐⇒ s;~i jr+1−−−→ ◦ jr−→ s′;~i′. (�)

49

4. Efficient Analysis of Non-Determinism in Cell Libraries

Let s1;~i1
`−→→k s2;~i2 for some s1;~i1, s2;~i2 ∈ S × I . This is by Definition 4.2.8

equivalent to kR(s1;~i1) and s1;~i1
j1−→ ◦ · · · ◦ jn−→ s2;~i2. Thus, for every state s;~i of

this trace, kR(s;~i) holds. This allows to apply (�) to this trace, showing the following
equivalences:

s1;~i1
`−→→k s2;~i2

⇐⇒ s1;~i1
j1−→ ◦ · · · ◦ jr−→ ◦ jr+1−−−→ ◦ · · · ◦ jn−→ s2;~i2

(�)⇐⇒ s1;~i1
j1−→ ◦ · · · ◦ jr+1−−−→ ◦ jr−→ ◦ · · · ◦ jn−→ s2;~i2

⇐⇒ s1;~i1
`′−→→k s2;~i2

Therefore, `−→→k = `′−→→k holds. Applying the induction hypothesis to `′ gives `′−→→k =
sort(`′)−−−−→→k, and since sort(`) = sort(`′) the desired property `−→→k = sort(`)−−−−→→k has
been proven.

In the next lemma, it is proven that also the other direction of Lemma 4.2.12
holds. For this, however, the restriction to deadlock-free transition systems having
the fixed-point property is required.

Lemma 4.2.13. Let T = (S, I, δ) be a deadlock-free vector-based transition system
with n inputs having the fixed-point property. Then j �

k
� j′ holds for all 1 ≤ j < j′ ≤ n

if the transition relation −→→k is order-independent.

Proof. To prove the lemma, assume towards a contradiction that for some 1 ≤ j <
j′ ≤ n, j �

k

� j′ does not hold, i.e., there exist s;~i , s1;~i′ ∈ S × I such that kR(s;~i),
s;~i j−→ ◦ j′−→ s1;~i′, and not s;~i j′−→ ◦ j−→ s1;~i′ (or vice versa, but that case is symmetric
to the considered one by exchanging the indices j and j′).

Define lists ` = j : j′ : `tl and `′ = j′ : j : `tl, where `tl = 1 : · · · : j−1 :
j+1 : · · · : j′−1 : j′+1 : · · · : n. Then, both ` and `′ are permutations by
construction. Because the transition system is deadlock-free, there exists a state
s′1;~i′ ∈ S × I such that s;~i `−→→k s′1;~i′, i.e., s;~i

j−→ ◦ j′−→ s1;~i′
`tl−→ s′1;~i′, where

the relation 1−→ ◦ · · · ◦ j−1−−→ ◦ j+1−−→ ◦ · · · ◦ j′−1−−−→ ◦ j′+1−−−→ ◦ · · · ◦ n−→ is abbreviated
with `tl−→. The fixed-point property can be applied repeatedly to the steps of `tl−→,
which shows that s1 = s′1. Assume s;~i `′−→→k s1;~i′. Then there exists a state

s2;~i′ ∈ S× I such that s;~i j′−→ ◦ j−→ s2;~i′
`tl−→ s1;~i′. Applying the fixed-point property

repeatedly to this trace yields s2 = s1. This however contradicts the assumption that
s;~i j′−→ ◦ j−→ s1;~i′ does not hold, which was to be proven.

Lemmas 4.2.12 and 4.2.13 are combined into the main theorem of this section,
stating that the k-step reachable diamond property is equivalent to order-independence
of the relation −→→k for a deadlock-free transition system satisfying the fixed-point
property. Hence, the global property of order-independence can be checked by only
considering a local property, namely the k-step reachable diamond property. Here,
local refers to the fact that for the k-step reachable diamond property, only a constant
number of steps (k steps to reach an initial state and two steps on each side) have
to be considered, whereas for order-independence the number of inputs n linearly
affects the number of steps to be considered.

50

Order-Independence of Transistor Netlists

Theorem 4.2.14. Let T = (S, I, δ) be a deadlock-free vector-based transition system
having the fixed-point property, and let I = Un. Then the transition relation −→→k is
order-independent, iff j �

k
� j′ for all 1 ≤ j < j′ ≤ n.

Proof. Soundness follows from Lemmas 4.2.12 and completeness from Lemma 4.2.13.

Note that the theorem, unlike the corresponding Theorem 4.1.8 in Section 4.1,
requires only deadlock-freedom and the fixed-point property; it does not need the extra
requirement of Property 4.1.2 that a new input value, for an input that is not currently
considered, does not change the computation. This is the case because evaluations of
a vector-based transition systems do not store a copy of the new input values, instead
the input vector is changed only at the positions of the currently considered pair of
inputs in Definition 4.2.11 of the k-step reachable diamond property.

Both deadlock-freedom and the fixed-point property are only requirements in
Lemma 4.2.13, i.e., order-independence of a vector-based transition system that does
not satisfy either of the two properties can still be proven by Lemma 4.2.12. However,
the implication in the other direction does not hold anymore, thus the diamond
property is strictly stronger than order-independence for such transition systems. This
is demonstrated below, where counter-examples to order-independence are given,
witnessing that deadlock-freedom and the fixed-point property cannot be dropped
in the “only-if”-direction of Theorem 4.2.14. The first counter-example shows the
effect of dropping deadlock-freedom.

Example 4.2.15. Let T = (B2,B3, δ) be the transition system whose transition
function δ is depicted below, where the components of the state and input vectors
are concatenated.

00 01 10 11

000 001 011

This transition system satisfies the fixed-point property, since in any state an input
vector leading to that state cannot be applied again. Furthermore, −→→1 is order-
independent, since there is no path of length 4 and hence any trace starting in a
one-step reachable state will deadlock. However, 2 �

1
� 3 is not satisfied: For example,

in state 01 together with the input vector 000 it holds that 00;001 3−→ 01;000 (thus,
the state is 1-step reachable) and 01;000 3−→ 10;001 2−→ 11;011. However, no state
s;~i ∈ S× I exists such that 01;000 2−→ s;~i, hence the requirement of Definition 4.2.11
is not satisfied.

Note that for the above example, it is crucial to have I = B3 and not I = B2

by removing the first input component. This is because if I = B2 was used,
Definition 4.2.8 would only concern paths of length 3 (the initial step and two changes
of the inputs), hence the above would be a counterexample to order-independence
with k = 1.

The above example will always eventually deadlock, since every state can be
reached at most once. Thus, the behavior after at most 3 steps will be deadlocking,
which is always order-independent since there are no successor states which could
be different. By increasing k to 2, order-independence of the above example can be

51

4. Efficient Analysis of Non-Determinism in Cell Libraries

proven, as now a counter-example to the commuting diamond property would have to
be of length 4 (2-step reachable plus applying the two inputs). It will be shown later
that by iteratively increasing k, the approximation of the long-run behavior improves.

The next example shows that also the fixed-point property cannot be removed in
the “only-if”-direction of Theorem 4.2.14.

Example 4.2.16. Let T = (B3,B3, δ) be the transition system whose transition
function δ is defined as illustrated below:

000 001

010

011

100

101

110 111B3

001

010

B3 \ {001, 010}

B3

B3

B3

B3

B3

B3

This transition system is deterministic and hence deadlock-free, however it does
not satisfy the fixed-point property, since for example 010;001 1−→ 100;001 2−→ 110;001
and 100 6= 110. Furthermore, relation −→→1 is order-independent:

• For any state s ∈ B3 \ {000, 111}, any input vectors ~i, ~i′ ∈ B3, and any
permutation ` ∈ Π3, s;~i

`−→→1 110;~i′.

• For any state s′ ∈ B3, any input vectors~i, ~i′ ∈ B3, and any permutation ` ∈ Π3

it holds that 000;~i 6 `−→→1 s
′;~i′, since no s0;~i0 ∈ B3 × B3 and no 1 ≤ j ≤ 3 exist

such that s0;~i0
j−→ 000;~i.

• For any input vectors ~i, ~i′ ∈ B3 and any permutation ` ∈ Π3, 111;~i `−→→1 111;~i′.

However, for the state 001 ∈ B3 one observes that 000;100 1−→ 001;000 and the
two traces 001;000 3−→ 010;001 2−→ 100;011 and 001;000 2−→ 011;010 3−→ 101;011
exist, which shows that 1 �

1
� 2 does not hold.

Also for this example, it is sufficient to increase k to 2 to prove order-independence.

Triggering Inputs Multiple Times

Definition 4.2.8 restricts the lists indicating the order of triggering inputs to permuta-
tions of the numbers from 1 to n. A natural generalization is to also allow inputs
being triggered more than once, or, generalizing even further, to only require those
inputs to be triggered at least once, whose values in the initial and the final input
vectors are different. Both of these generalizations are formally defined below. To
formulate them, the set Ln, containing lists where each of the numbers from 1 to
n may occur at most once, is generalized to the set Ln, which contains all lists of
numbers between 1 and n. Thus, Ln (Ln, since for example 1 : 1 : 2 ∈ L2 but
1 : 1 : 2 /∈ L2. In the below definitions, to ease presentation, a list is also viewed as
the set of elements it contains.

52

Order-Independence of Transistor Netlists

Definition 4.2.17. Let T = (S, I, δ) be a transition system with I = Un, let k ∈ N,
let s;~i , s′;~i′ ∈ S × I , and let ` = j1 : · · · : jz ∈ Ln with j ∈ ` for all 1 ≤ j ≤ n.

Relation −→→(1)
k for the transition system T I is defined as s;~i `−→→(1)

k s′;~i′ iff kR(s;~i)
and s;~i j1−→ ◦ · · · ◦ jz−→ s′;~i′.

Relation −→→(1)
k is called order-independent, iff `−→→(1)

k = `′−→→(1)
k for all `, `′ ∈ Ln

with j ∈ ` for all 1 ≤ j ≤ n and `′ being a permutation of `.

Definition 4.2.18. Let T = (S, I, δ) be a transition system with I = Un, let
k ∈ N, let s;~i , s′;~i′ ∈ S × I where ~i = (i1, . . . , in) and ~i′ = (i′1, . . . , i′n), and let
` = j1 : · · · : jz ∈ Ln with {1 ≤ j ≤ n | ij 6= i′j} ⊆ `.

Relation −→→(2)
k is defined as s;~i `−→→(2)

k s′;~i′ iff kR(s;~i) and s;~i j1−→ ◦ · · · ◦ jz−→ s′;~i′.
The relation−→→(2)

k is called order-independent, iff `−→→(2)
k = `′−→→(2)

k for all `, `′ ∈ Ln
with {1 ≤ j ≤ n | ij 6= i′j} ⊆ ` and `′ being a permutation of `.

It can easily be seen from the above definitions that −→→(0)
k ⊆ −→→(1)

k ⊆ −→→(2)
k ,

where −→→k is also denoted by −→→(0)
k . To illustrate the two more general relations, it

holds for instance in Example 4.2.6 that 0;00 1:2:2−−−→→(1)
1 1;11 and 0;00 1:2:2−−−→→(2)

1 1;11,
whereas 0;00 61:2:2−−−→→1 1;11 since |1 : 2 : 2| = 3 6= 2. Furthermore, 0;00 1−→→(2)

1 1;10
but 0;00 61:nil−−→→(1)

1 1;10, since |1 : nil| = 1 < 2.
Also for −→→(1)

k and −→→(2)
k , only a single list has to be compared to its corresponding

sorted list, as was already observed for the relation −→→k in Lemma 4.2.10.

Lemma 4.2.19. Let T be a transition system with n inputs.
Relation −→→(1)

k is order-independent, iff `−→→(1)
k = sort(`)−−−−→→(1)

k for all ` ∈ Ln with
j ∈ ` for all 1 ≤ j ≤ n.

Relation −→→(2)
k is order-independent, iff `−→→(2)

k = sort(`)−−−−→→(2)
k for all ` ∈ Ln with

{1 ≤ j ≤ n | ij 6= i′j} ⊆ `.

Proof. Follows from transitivity of equality.

Again, the k-step reachable diamond property given in Definition 4.2.11 shall be
used to check whether these two generalized relations are order-independent or not.
Since −→→(0)

k ⊆ −→→
(1)
k ⊆ −→→

(2)
k , the “only-if” direction in the proof of Theorem 4.2.14

holds directly. Furthermore, the “if” direction of that proof, i.e., the proof of
Lemma 4.2.12, does not make use of the restriction to permutations, hence it also
holds for the relations −→→(1)

k and −→→(2)
k . This allows to conclude that if one of the

transition relations is order-independent, then all are, provided the transition system
is deadlock-free and satisfies the the fixed-point property. This is formally expressed
in the lemma below.

Lemma 4.2.20. For a deadlock-free transition system T = (S, I, δ) with n inputs that
satisfies the fixed-point property, relation −→→(a)

k with 0 ≤ a ≤ 2 is order-independent,
iff a 0 ≤ b ≤ 2 exists such that −→→(b)

k is order-independent.

Proof. The “only-if” direction holds trivially. For the “if” direction, assume −→→(b)
k is

order-independent. Then j �
k

� k holds for all 1 ≤ j < j′ ≤ m, otherwise such a pair
would constitute a counterexample to order-independence of −→→k due to the “only-if”

53

4. Efficient Analysis of Non-Determinism in Cell Libraries

direction of Theorem 4.2.14. Such a counterexample would also be a counterexample
to order-independence of −→→(1)

k and −→→(2)
k , since `−→→k = `−→→(1)

k = `−→→(2)
k for all ` ∈ Πn.

Hence, since the proof of Lemma 4.2.12 does not make use of the requirements
imposed onto list `, order-independence of −→→(a)

k has been proven.

Example 4.2.16 showed that the fixed-point property cannot be dropped for
order-independence of −→→k. This example still applies to −→→(1)

k . For relation −→→(2)
k

however, this is not a valid counterexample, since it cannot be assumed that a trace
has a certain (minimal) length, hence the traces showing that the one-step reachable
diamond property is violated in Example 4.2.16 is also a counterexample to order-
independence of −→→(2)

k . Indeed, the following lemma shows that order-independence
of −→→(2)

k only requires deadlock-freedom and the k-step reachable diamond property,
i.e., the fixed-point property is not required.

Lemma 4.2.21. For a deadlock-free transition system T = (S, I, δ) with n inputs
the relation −→→(2)

k is order-independent, iff j �
k
� j′ holds for all 1 ≤ j < j′ ≤ n.

Proof. The “if” direction follows from Lemma 4.2.12. To show the “only-if” di-
rection, assume s;~i j:j′−−→→(2)

k s1;~i′ and not s;~i j′:j−−→→(2)
k s1;~i′ for some s, s1 ∈ S,

~i = (i1, . . . , in), ~i′ = (i′1, . . . , i′n) ∈ I . By Definition 4.2.17 and Definition 4.2.5,
~i′ =~i[j := i′j , j

′ := i′j′] holds and therefore {1 ≤ j ≤ n | ij 6= i′j} = {j, j′}. Hence,
this provides a counterexample to order-independence of −→→(2)

k .

However, in case the transition system is deadlock-free and satisfies the fixed-point
property, then the relations −→→(a)

k with 0 ≤ a ≤ 2 are all equivalent to the relation
1:···:n−−−−→→k as will be shown in the theorem below.

Theorem 4.2.22. Let T = (S, I, δ) be a deadlock-free transition system with I = Un

satisfying the fixed-point property.
If −→→(b)

k is order-independent for some 0 ≤ b ≤ 2, then `−→→(a)
k = 1:···:n−−−−→→k for all

0 ≤ a ≤ 2 and all lists ` ∈ Ln satisfying the requirements of `−→→(a)
k .

Proof. Let −→→(b)
k be order-independent for some 0 ≤ b ≤ 2. Due to Lemma 4.2.20,

all relations −→→(a)
k are order-independent, i.e., `−→→(a)

k = sort(`)−−−−→→(a)
k for all lists ` ∈ Ln

that satisfy the requirements of −→→(a)
k . Hence, for a = 0 the theorem holds trivially.

For the remaining cases, let ` = j1 : · · · : j|`| be an arbitrary list satisfying the
requirements of −→→(a)

k . Define `′ = j1 : · · · : j|`| : j|`|+1 : · · · : j|`|+z such that
j ∈ `′ for all 1 ≤ j ≤ n and assume that the trace is starting with input vector
~i = (i1, . . . , in) and ending with input vector ~i′ = (i′1, . . . , i′n). By requirement
on the list `, {1 ≤ j ≤ n | ij 6= i′j} ⊆ `, thus ij|`|+r = i′j|`|+r for all 1 ≤ r ≤ z.
Furthermore, for any s′;~i′ ∈ S × I , a s′′;~i′ ∈ S × I exists due to deadlock-freedom
such that s′;~i′

j|`|+r−−−→ s′′;~i′ for all 1 ≤ r ≤ z. Hence, because ij|`|+r = i′j|`|+r and the
state s′ was reachable with input vector ~i′, the fixed-point property can be applied,
yielding s′′ = s′. Repeating this for all 1 ≤ r ≤ z shows that `′−→→(a)

k = `−→→(a)
k .

Because −→→(a)
k is order-independent, `′−→→(a)

k = sort(`′)−−−−→→(a)
k . Note that `′, and

therefore also sort(`′), might contain duplicates. However, for any computation

54

Order-Independence of Transistor Netlists

sequence of the form s0;~i0
j−→ s1;~i1

j−→ s2;~i2 that occurs as part of sort(`′)−−−−→→(a)
k , it

holds that ~i1 = ~i2, thus the fixed-point property can be applied again, showing
s1 = s2. Thereby, all duplicates from sort(`′) can be removed, which results in the

list 1 : · · · : n ∈ Ln. This proves the theorem, since `−→→(a)
k = `′−→→(a)

k = sort(`′)−−−−→→(a)
k =

1:···:n−−−−→→(a)
k = 1:···:n−−−−→→k.

To perform a macro-step of a deadlock-free transition system satisfying the fixed-
point property with an order-independent transition relation −→→(a)

k for a ∈ {0, 1, 2}
and possibly changing lists `, it therefore suffices to only consider the single relation
1:···:n−−−−→→k. This especially allows to reduce evaluations with lists of arbitrary length
to evaluation with the fixed length n. If the relation is also allowed to depend on the
input values, then it even suffices to only consider the changed inputs once, as the
unchanged inputs do not affect the final state.

Corollary 4.2.23. Let T = (S, I, δ) be a deadlock-free transition system with n
inputs which satisfies the fixed-point property, let s, s′ ∈ S, ~i = (i1, . . . , in), ~i′ =
(i′1, . . . , i′n) ∈ I , and 0 ≤ a ≤ 2 such that −→→(a)

k is order-independent. Define
`c = j1 : · · · : jz , where {j1, . . . , jz} = {1 ≤ j ≤ n | ij 6= i′j}.

Then for all lists ` ∈ Ln satisfying the requirements of `−→→(a)
k , s;~i `−→→(a)

k s′;~i′ iff
s;~i `c−→→(2)

k s′;~i′.

Proof. Follows from Theorem 4.2.22, since `−→→(a)
k = 1:···:n−−−−→→k = `c−→→(2)

k for all lists
` ∈ Ln that satisfy the requirements of `−→→(a)

k .

Restricting to Long-Run Behavior

As already stated previously, only the long-run behavior of a transition system is
interesting in the given context of hardware. Thus, states that only occur during the
initial phase should not be considered relevant for order-independence.

In the previous section, the parameter k was used to indicate the required length
of a path leading to a relevant counter-example state. Such a counter-example state
is the state from which two traces of applying inputs in different orders lead to two
different final states. In Examples 4.2.15 and 4.2.16 it was already shown that by
increasing this parameter, the previously found counter-examples could be ruled out,
thus proving the transition systems to be order-independent in the long-run.

In general, the long-run behavior mainly consists of states contained in the non-
trivial strongly connected components (SCCs) of the transition system, i.e., those
states which can occur infinitely often in a trace. An SCC is called non-trivial
if it contains at least one transition. Thereby, SCCs consisting of a single state
are disregarded except for those with a self-loop. In this setting, the notion of
order-independence has to be adapted. Previously, equal computations of length n
(the number of inputs) were required. However, when restricting to non-trivial SCCs,
using the same requirement gives rise to unwanted behavior, since a non-trivial
SCC might be left after an arbitrary number of steps, transitioning to states (not
belonging to any non-trivial SCC) that are eventually order-dependent. This problem
is demonstrated in the below example.

55

4. Efficient Analysis of Non-Determinism in Cell Libraries

Example 4.2.24. Consider a vector-based transition system T = (S, I, δ) with n
inputs having the shape sketched below.

SCC s s1 s2 · · · sz

s′1 s′12

s′2 s′21

j

j′

j′

j

It is assumed that z ≥ n, i.e., the path sticking out to the right is branching after
more than n steps when starting in the state s. This latter state s is assumed to be
deterministic, i.e., its successors are uniquely defined by the input vector applied.
Furthermore, s is contained in the non-trivial SCC on the left and the transition
system, when restricted to the states of that SCC, shall be order-independent.

If order-independence is considered to be the property that computations of
length n starting in a state of a non-trivial SCC always agree on the final state,
then also the full transition system is order-independent. This holds, because the
branching in state sz can only be reached after more than n steps by construction.

The above example is however undesired, as in the long-run behavior the SCC
may be traversed an unbounded number of times, until eventually the path through
s1 is taken, which might eventually give rise to order-dependent behavior. Thus, all
states reachable from some state contained in a non-trivial SCC should be order-
independent in the sense of Definition 4.2.9. This is expressed by the relation `−→→SCC,
which is defined as `−→→SCC = {(s;~i, s′;~i′) | s;~i `−→→0 s

′;~i′ and s0;~i0 −→∗ s;~i for some
s0;~i0 ∈ S′ and non-trivial SCC S′ of T I}. The order-independence property can then
again be expressed as `−→→SCC = sort(`)−−−−→→SCC. Applied to the above Example 4.2.24,
the desired order-dependence holds, since state sz−n+2 is reachable from state s
contained in a non-trivial SCC and gives rise to two order-dependent evaluations
ending in states s′12 and s′21, respectively.

To approach the relation −→→SCC, it is proved next that for a state s;~i ∈ S × I the
property kR(s;~i) is implied by the property k+1R(s;~i). Thus, the parameter k can
be increased iteratively to check for order-independence.

Lemma 4.2.25. Let T = (S, I, δ) be a transition system with n inputs.
The relation −→→k is order-independent, iff −→→k′ is order-independent for some

k′ ≤ k.

Proof. The “only-if” direction obviously holds by choosing k′ = k.
To prove the “if” direction, let −→→k′ be order-independent for k′ ≤ k. Thus,

s;~i `−→→k′ s
′;~i′ ⇐⇒ s;~i sort(`)−−−−→→k′ s

′;~i′ for all s;~i , s′;~i′ ∈ S × I such that k′R(s;~i).
Let s;~i ∈ S × I such that kR(s;~i). Then, there exist k predecessor states of s;~i,
hence also k′ ones for any k′ ≤ k. Therefore, it also holds that s;~i `−→→k s

′;~i′ ⇐⇒
s;~i sort(`)−−−−→→k s

′;~i′, which proves the lemma.

Since the set S of states is finite, a decision procedure can be devised that
determines whether the relation −→→SCC of a vector-based transition system is order-
independent or not. Let m = |S × I| be the number of states in T I . Then, a state
s;~i ∈ S × I is reachable from a state in a non-trivial SCC iff mR(s;~i) holds. In case
order-independence does not hold for such a state then it constitutes a counter-example

56

Order-Independence of Transistor Netlists

to order-independence of −→→SCC. Using the above lemma, an iterative approach can
be used, which stops as soon as order-independence for some k ≤ m has been proven
or a counter-example has been found.

Note however that only Lemma 4.2.12 may be used to conclude order-independence,
i.e., one must not use Lemma 4.2.13 to conclude order-dependence in case j �

k

� j′ does
not hold for some 1 ≤ j < j′ ≤ n. This is the case, since Lemma 4.2.13 additionally
requires deadlock-freedom and the fixed-point property. When also considering these
requirements, then any one-step reachable state has a self-loop, as shown next.

Lemma 4.2.26. Let T = (S, I, δ) be a deadlock-free vector-based transition system
with n inputs having the fixed-point property.

If for some s0;~i0, s;~i ∈ S × I and 1 ≤ j ≤ n, s0;~i0
j−→ s;~i, then s;~i j′−→ s;~i for

all 1 ≤ j′ ≤ n.

Proof. Let s0;~i0
j−→ s;~i. Since T is deadlock-free, there exists for every 1 ≤ j′ ≤ n

an s′ ∈ S such that s;~i j′−→ s′;~i. Hence, by the fixed-point property it holds that
s = s′.

Thus, in a vector-based transition system satisfying these two additional properties,
every state is contained in a non-trivial SCC and only one-step reachability has to be
considered. This is expressed formally in the below theorem.

Theorem 4.2.27. For a deadlock-free vector-based transition system T = (S, I, δ)
with n inputs satisfying the fixed-point property the relation −→→SCC is order-
independent, iff j �

1
� j′ for all 1 ≤ j < j′ ≤ n.

Proof. The “if” direction follows from Lemma 4.2.12.
The “only-if” direction is proved indirectly. To this end, assume j �

1
� j′ does

not hold for some 1 ≤ j < j′ ≤ n. Thus, by Lemma 4.2.13, −→→1 is not order-
independent, i.e., there exist states s;~i , s′;~i′ ∈ S × I and permutations `, `′ ∈ Πn

such that s;~i `−→→1 s
′;~i′ and not s;~i `′−→→1 s

′;~i′. Furthermore, s;~i is 1-step reachable,
i.e., there exists a predecessor s0;~i0 ∈ S × I and 1 ≤ j ≤ n such that s0;~i0

j−→ s;~i.
Hence, Lemma 4.2.26 can be applied to obtain that s;~i j′−→ s;~i for all 1 ≤ j′ ≤ n,
which implies that s;~i must be contained in a non-trivial SCC of T I . Therefore,
−→→SCC is not order-independent, which proves the theorem.

Similarly, also Theorem 4.2.14 can always be restricted to the one-step reachable
commuting diamond property.

Corollary 4.2.28. For a deadlock-free vector-based transition system T = (S, I, δ)
with n inputs satisfying the fixed-point property and k ∈ N, the relation −→→k is
order-independent, iff j �

1
� j′ for all 1 ≤ j < j′ ≤ n.

Proof. The “if” direction follows from Lemmas 4.2.12 and 4.2.25. The “only-if”
direction holds, because any state starting a counter-example to the one-step reachable
commuting diamond property is reachable from an SCC due to Theorem 4.2.27, thus
it is k-step reachable for any k ∈ N.

57

4. Efficient Analysis of Non-Determinism in Cell Libraries

00

01

10

11

00, 10, 11
01

00
01

10, 11
00

01, 10, 1100
01

10, 11

Figure 4.5: D flip-flop as a transition system

Application to Transistor Netlists

To show that the method presented in this section is indeed applicable to transistor
netlist representations of hardware cells, order-independence of the transistor netlist
descriptions contained in the Nangate Open Cell Library [Nan08] is investigated. For
this purpose, a netlist is represented as a set of fixed-point equations. These are the
result when applying the method of [Bry87], cf. Section 2.2.

To give a formal description of fixed-point equations, let VS and VI be two disjoint
sets of variables, whose values are in some domain U (usually the Booleans B or the
ternary values T). Furthermore, let m,n ∈ N, ~sv = (sv1, . . . , svm) ∈ V mS with all svj
pairwise disjoint, and ~iv = (iv1, . . . , ivn) ∈ V nI with all ivj pairwise disjoint. Then a
set E = {sv1 ≡ f1(~iv, ~sv), . . . , svm ≡ fm(~iv, ~sv)}, with functions fj : Un×Um → U
for 1 ≤ j ≤ m is called a set of fixed-point equations, iff all of these functions satisfy
the following local fixed-point property, requiring for all 1 ≤ j ≤ m, all ~i ∈ Un, and
all ~s ∈ Um that

fj(~i, ~s) = fj(~i, (f1(~i, ~s), . . . , fm(~i, ~s))).

Such a set of fixed-point equations is interpreted as a vector-based transition system

T (E) = (Um, Un, δ), where ~s
~i−→T (E) ~s′, with ~s′ = (s′1, . . . , s′m), iff s′j = fj(~i, ~s)

for all 1 ≤ j ≤ m. Again, the subscript T (E) is left out if the set of fixed-point
equations is clear from the context. Note that T (E) is deterministic, i.e., for every ~s

and every ~i there exists exactly one ~s′ such that ~s
~i−→ ~s′.

The following example presents the set of fixed-point equations extracted from
the transistor netlist of a D flip-flop.

Example 4.2.29. Consider the following set of fixed-point equations modeling a D
flip-flop, where VS = {iq, q}, VI = {ck,d}, and the domain of the values of these
variables are the Booleans B.

iq ≡ ¬ck∧ d ∨ ck∧ iq
q ≡ ck∧ iq ∨ ¬ck∧ q

These equations describe the transition system depicted in Figure 4.5, where the
state variables are concatenated in the order iq, q and the inputs in the order ck,d.

This transition system is deterministic, hence deadlock-free, and satisfies the fixed-
point property. Furthermore, it is order-dependent: for example, in state 00 it holds
that 00;10 1−→ 00;00 and 00;00 2−→ 10;01 1−→ 11;11, whereas 00;00 1−→ 00;10 2−→ 00;11.
This shows that it matters for a flip-flop whether first the data input d changes and

58

Order-Independence of Transistor Netlists

then the clock ck, which corresponds to the first trace and sets the output q to the
new value of input d, or vice versa, which corresponds to the second trace and sets
the output q to the old value of input d.

For the special case of a transition system that stems from a set of fixed-point
equations, the required global fixed-point property always holds, as will be shown
next.

Lemma 4.2.30. Every set of fixed-point equations has the fixed-point property.

Proof. Let E = {sv1 ≡ f1(~iv, ~sv), . . . , svm ≡ fm(~iv, ~sv)} be a set of fixed-point

equations and let ~s1;~ip
j−→ ~s2;~i

j′−→ ~s3;~i. Assume that ~s2 = (s2,1, . . . , s2,m) 6=
(s3,1, . . . , s3,m) = ~s3. Then 1 ≤ j ≤ m exists such that s2,j 6= s3,j .

By definition, ~s2 = (f1(~i, ~s1), . . . , fm(~i, ~s1)). Since E is a set of fixed-point
equations, the following furthermore holds for the j-th component:

s2,j = fj(~i, ~s1)
= fj(~i, (f1(~i, ~s1), . . . , fm(~i, ~s1))) = fj(~i, ~s2)

Also by definition, s3,j = fj(~i, ~s2) and hence s3,j = s2,j . This is a contradiction
to the initial assumption, which proves the lemma.

To check order-independence of such a set of fixed-point equations, the do-
main U , which is usually either the set of Booleans B or the ternary values T,
is encoded as Boolean vectors. Then for each pair of inputs, a pair of BDDs is
constructed, representing the two sides of the one-step reachable diamond prop-
erty in Definition 4.2.11, with k = 1. Thus, for every two input coordinates
1 ≤ j < j′ ≤ n and state coordinate 1 ≤ p ≤ m, a BDD representing the
function fp(~i[j := v, j′ := w], f(~i[j := v], f(~i, ~s))) and a BDD representing
fp(~i[j := v, j′ := w], f(~i[j′ := w], f(~i, ~s))) are constructed, for arbitrary values v
and w. Here, the abbreviation f(~i, ~s) =

(
f1(~i, ~s), . . . , fn(~i, ~s)

)
is used and it is

assumed for simplicity that the domain U is the set of Booleans (otherwise, two
vectors of BDDs are constructed, representing the encoding of the domain U).

If all such pairs of BDDs are equal, then order-independence has been proven
due to Theorem 4.2.14, since then j �

1
� j′ holds for all j 6= j′. Furthermore, by

Theorem 4.2.27, the transition system is order-independent for any state reachable
from a non-trivial SCC, which represent the long-run behavior. Otherwise, a set of
counterexample states is determined, which can be obtained by computing the xor of
the unequal BDDs. Particularly, for this application it was found that including the
one-step reachability into the requirement, i.e., restricting to the long-run behavior,
removes many spurious counterexamples, which were due to certain dependencies of
the internal signals on the input signals. This corresponds to a stabilization of the
netlist before applying the first input vector, i.e., all transistors are evaluated w.r.t.
the previous input vector until there are no more changes. Restricting to one-step
reachable states is incorporated into the above BDD construction by starting with the
state f(~i, ~s), which is a stable state due to Lemma 4.2.26.

Experimental Results

The presented method has been applied to the transistor netlists of the 12 sequential
cells in the Nangate Open Cell Library [Nan08], whose corresponding functional

59

4. Efficient Analysis of Non-Determinism in Cell Libraries

Table 4.3: Order-Independence of Transistor Netlists in the Nangate Open Cell
Library

Cell # State # Inp. # Ord- Time Time all
Vars Pairs Dep Prs �1� [s] orders [s]

CLKGATE 2 1 1 0.02 0.07
CLKGATETST 2 3 2 0.02 0.23
DFF 4 1 1 0.01 0.19
DFFR 4 3 2 0.02 0.26
DFFS 4 3 2 0.02 0.35
DFFRS 4 6 4 0.08 1.43
DLH 2 1 1 0.01 0.07
DLL 2 1 1 0.01 0.04
SDFF 4 6 3 0.08 1.70
SDFFR 4 10 4 0.16 18.17
SDFFS 4 10 4 0.14 18.05
SDFFRS 4 15 6 0.21 359.66

descriptions were used in the experiments presented in Section 4.1. All external
inputs to the cells were considered to be binary, i.e., to be either 0 or 1.

Table 4.3 shows the results of these experiments. In its first column, the name of
the cell is listed. The second column gives the number of state variables that resulted
from encoding the transistor netlist as vector-based transition system. Note that for
implementation reasons outputs are required to be a variable, i.e., they must not be a
combinational function of some state variables. This increases the number of state
variables in some cases. The third column of Table 4.3 presents the number of input
pairs that had to be checked for each state variable, and the fourth column gives the
number of pairs that were found to be order-dependent for some state variable. The
fifth column gives the overall time taken for the order-dependency analysis based on
comparing pairs of inputs and checking the one-step reachable commuting diamond
property. These times are contrasted with the last column, showing the time taken
to check order-independence by checking the property of Lemma 4.2.10, which
enumerates all possible orders.

It should be remarked that the number of input pairs considered is different from
the numbers that had to be considered in the VeriCell experiments of Section 4.1,
which were presented in Table 4.1. This is because in VeriCell, the UDPs can
be identified as the state holding elements, therefore only their inputs need to be
considered. In a transistor netlist, it is not straightforward to identify such elements,
hence all inputs are considered. Furthermore, this directly takes into account the
functions computing inputs to state holding elements, something that was only
considered during the reachability analysis for VeriCell descriptions.

As can be seen from the results, order-independence of transistor netlists can be
analyzed in less than a quarter of a second for every cell contained in an industrial
cell library, using the one-step reachable commuting diamond property. Therefore,
this analysis can for example be used as a fast preprocessing step to compute the
independence relation needed for partial order reduction [Pel98], which allows to
reduce the state space that has to be explored when checking other properties.

60

Using Non-Determinism to Reduce Power Consumption

When comparing these times with those it took for a naive approach to determine
order-independence, it can clearly be seen that the method based on the one-step
reachable commuting diamond property is far more scalable. For small cells, the
times for the naive approach, listed in the last column of Table 4.3, are still acceptable.
But for larger cells, these times quickly increase. Especially for the largest cell in
the Nangate Open Cell Library, the cell SDFFRS, it took the naive approach almost
6 minutes to analyze order-dependencies, whereas the improved approach only took
a fraction of a second.

4.3 Using Non-Determinism to Reduce Power Consumption

Non-determinism in cell libraries was considered undesired in the previous two
sections, since it can lead to different computation results. This section presents
a technique that makes use of the non-determinism contained in cell libraries, by
allowing a more efficient analysis of power consumption and by choosing among
functionally equivalent orders those that minimize the power consumption. This
analysis focuses on the transistor netlist descriptions of cells, since these are closest to
the final implementation. The technique could also be used for Verilog descriptions,
however there it is unclear what a good abstract measure of power consumption could
be. This is the case since most of the logic implemented by a cell is described as
UDP, which is not easily mapped to an implementation using transistors, which will
be the elements consuming power in the final chip.

Preliminaries

As in the previous Section 4.2, transistor netlists are represented as vector-based
transition systems. In such a transition system, only the one-input restricted traces are
of interest, i.e., only one input may change at a time, as was defined in Definition 4.2.3.
Thus, also in this section the one-input restricted vector-based transition system
representation T I of a vector-based transition system T , which was defined in
Definition 4.2.5, is re-used.

The order of evaluating changed inputs is given by permutations from Πn, which
is again seen as a subset of the lists Ln containing lists in which each of the numbers
occurs at most once. Given such a list ` = j1 : . . . jz ∈ Ln, a sublist of ` is defined
as `[a .. b] = ja : . . . jb for 1 ≤ a ≤ b ≤ z, and `[a] = `[a .. a] = ja.

Reducing Input Vector Orders for Power Analysis

An improvement in power analysis is achieved by grouping, in equivalence classes,
those orders that have the same power characteristics. For such orders, it is sufficient
to only consider one member of the equivalence class. Important for such equivalence
classes is to result in the same state in order not to affect the functionality of the
netlist. This was already dealt with in the order-independence analysis of vector-
based transition systems, presented in Section 4.2. To also take the dynamic power
consumption into account, a power-extended vector-based transition system is defined.

Definition 4.3.1. The power-extended vector-based transition system Tp = (Sp, I,
→p) of a vector-based transition system T = (S, I, δ) is defined Sp = R × S and

w;s
~i−→p w+p(s, s′);s′ for s

~i−→ s′. The function p : S×S → R computes a weighted
number of wire chargings given the source and target states.

61

4. Efficient Analysis of Non-Determinism in Cell Libraries

0;s0;~i0

w1
1;s1;~i1

w2
1;s2;~i2

w1
1 + w1

2;s12;~i12

w2
1 + w2

2;s21;~i21

j

j′

j′

j

?=

Figure 4.6: Evaluation of two input coordinates j and j′

The added first component of the states, a number, is used to sum the weights
of the charged wires (which are interpreted as the consumed power) during an
evaluation. The definition allows for weighted wire charging in order to cater for
node capacitance, by appropriately instantiating the function p. However, throughout
the rest of this section, the weights of all wire chargings are assumed to be equal.
Hence, in the remainder the sum of weights denotes the number of wire chargings.
Note that a vector-based transition system does not assume a particular shape of
the states, so a power-extended vector-based transition system is still a vector-based
transition system.

To determine the weights, initially the number in the newly added first component
is set to 0, indicating that no chargings have taken place yet. Next, two inputs are
selected (which are identified by their position in the input vector, as in the transition
system T I) and are applied in both possible orders. Finally, it is checked whether
the resulting states for the two orders are equal or not. Thus, for a state s0 that was
reached with an input vector ~i0, the evaluation starts in the state 0;s0;~i0. Then, the
two input changes, here denoted with substitutions [j := v′1] and [j′ := v′2] where
j 6= j′, are applied in both possible orders, leading to the two evaluations depicted
in Figure 4.6.

As indicated in Figure 4.6, it is then to be checked whether the two states
w1

1 + w1
2;s12;~i12 and w2

1 + w2
2;s21;~i21 are equal or not. First, it is noted that the

input vectors ~i12 and ~i21 are equal, as they are constructed by updating positions
j and j′ in ~i0 with the same values. Formally, this holds because for j 6= j′,
~i12 =~i0[j := v′1][j′ := v′2] =~i0[j′ := v′2][j := v′1] =~i21. Thus, only the remaining
parts of the states have to be compared. Checking that the states s12 and s21 are
equal is the same as order-independence, i.e., checking that the order of these two
inputs does not affect the functionality. By requiring that w1

1 + w1
2 = w2

1 + w2
2 , it is

additionally required that the order of the two inputs also does not cause different
power consumptions.

In the above check, only the order of two inputs was considered. However, by
extending the result of Section 4.2, it can be shown that checking order-independence
for two inputs is both necessary and sufficient to establish order-independence for
traces of full input length in transistor netlists. To denote such traces of full input
length, the relation −→→k given in Definition 4.2.8 is used again. In that definition, it
is required that the initial state is k-step reachable, to rule out transient initial states
that can only occur at boot-up and will never be reached again. However, as was
shown in Section 4.2, for transistor netlists it is sufficient to consider the case k = 1.

62

Using Non-Determinism to Reduce Power Consumption

A vector-based transition system T with n inputs is called order-independent, iff
for all π, π′ ∈ Πn it holds that π−→→k = π′−→→k, cf. Definition 4.2.9. To check order-
independence, the relation �k� was introduced in Definition 4.2.11, called the k-step
reachable commuting diamond property. It relates two input positions 1 ≤ j 6= j′ ≤ n,
if state s0;~i0 is k-step reachable and s0;~i0

j−→ ◦ j′−→ s12;~i12 iff s0;~i0
j′−→ ◦ j−→ s12;~i12.

This is similar to the situation depicted in Figure 4.6, where, in the general setting,
the first component summing the power consumption is removed, i.e., it is required
that the initial state s0;~i0 is k-step reachable and that the reached states s12 and s21
are equal.

It was shown in Theorem 4.2.14 that the k-step reachable commuting diamond
property is necessary and sufficient for order-independence of deadlock-free vector-
based transition systems that also have the fixed-point property. Deadlock-freedom
requires that for every current state and every possible input transition, a next state
can be computed. This is also the case for transistor netlists represented as power-
extended vector-based transition systems, as they always compute a next state for
any input vector. The second requirement, the fixed-point property, demands that
a reached state is stable; applying the same input vector twice does not result in a
different state as when the input vector is only applied once. Vector-based transition
systems constructed from a transistor netlist using the algorithm of [Bry87] always
have the fixed-point property, as was shown in Section 4.2. Since an unchanged state
means that also the number of wire chargings does not change, this also holds in for
power-extended vector-based transition systems. Therefore, in the remainder these
two requirements are assumed to always hold, without mentioning this explicitly.

To summarize, also for power-extended vector-based transition systems only pairs
of inputs have to be analyzed, instead of complete sequences, to determine order-
independence of the power-extended vector-based transition system. This entails
equivalent power consumption due to the construction of the states. Thereby, the
number of required checks is reduced drastically from n!, i.e., the number of all
permutations, to n2−n

2 , the number of all pairs of inputs. Furthermore, since the
transition systems considered in this section are always deadlock-free and have the
fixed-point property, it is sufficient to only consider one-step reachability instead of
k-step reachability.

Power-Equivalence Relation on Orders

Full order-independence of a power-extended vector-based transition system would
mean that all orders always have the same power consumption. Of course, this is
neither expected in any useful transistor netlist, nor is it of much practical relevance.
Therefore, an equivalence relation on orders is to be defined that groups together
those subsets of orders having the same number of wire chargings. This relation,
formally defined below, is called power independence.

Definition 4.3.2. Let T = (S, I, δ) be a vector-based transition system with n inputs.
The relation ↔T on Ln is defined as ` ↔T `′ iff the lists ` and `′ are equal

except for swapped positions `′[j + 1] = `[j] and `′[j] = `[j + 1], for which the
one-step reachable commuting diamond property holds (i.e., `[j] �

1
� `[j + 1]).

Using relation ↔T , the equivalence relation ≡T on Ln is defined as the reflexive
transitive closure of↔T . If ` ≡T `′, then ` and `′ are also called (power-)independent.

63

4. Efficient Analysis of Non-Determinism in Cell Libraries

`p

``′′

`′ ≡Tp `++j

j′j

j′ j

(a) j �
1
� j′

`p

``′′

`′ 6≡Tp `++j `++j

j′j

j′ j

(b) j 6�
1
� j′

Figure 4.7: Construction of the power-independence DAG

In the above definition, a general vector-based transition system is used. If this is
a power-extended one, then the relation is called power-independence, otherwise it is
only called independence of lists. For the power-independence relation the following
result holds, showing that it indeed groups together those orders that have equal
(functional and power consumption) behavior.

Lemma 4.3.3. Let Tp = (Sp, I,→p) be a power-extended vector-based transition
system with n inputs and let π, π′ ∈ Πn be power-independent.

Then for traces 0;s0;~i0
π−→→1 w1;s1;~i and 0;s0;~i0

π′−→→1 w2;s2;~i of Tp it holds that
w1 = w2 and s1 = s2.

Proof. Follows by an induction on the number of swapped input coordinates to reach
π′ from π.

Thus, to characterize a cell, one only has to choose one representative from
each power-independent equivalence class and measure the power consumption for
this order. All other orders in this equivalence class will have the same power
consumption and hence do not have to be considered.

To obtain the different orders that have to be considered, the so-called power-
independence DAG (directed acyclic graph) is constructed. It enumerates all equiva-
lence classes of the power-independence relation ≡Tp .

Definition 4.3.4. Let Tp = (Sp, I,→p) be a power-extended vector-based transition
system with n inputs.

The power-independence DAG Gi = (Vi,�−→i) of Tp is defined as Vi ⊆ Ln with
root nil ∈ Vi and for 1 ≤ j ≤ n with j /∈ `, ` �−→i `

′ for some unique `′ ≡Tp `++j.

Note that every edge ` �−→i `
′ with `′ ≡Tp `++j can be regarded as labeled by

input j. Hence, they will also be denoted `
j
�−→i `

′. However, these labels need not
be explicitly added, since this is always the single input by which the two lists of the
start and the end node of the edge differ.

64

Using Non-Determinism to Reduce Power Consumption

To construct the power-independence DAG Gi, one starts with the single root
of this DAG, nil, indicating that initially no inputs have been considered yet. The
construction of the DAG then proceeds in a breadth-first fashion: For every leaf
node ` (which is a node without outgoing edges) and every input j that has not yet
been considered (i.e., which is not contained in `), an edge is added to that leaf
node. The target node of this edge is determined by looking at the parent nodes of
the currently considered leaf. If there exist a parent node `p reaching the current
node ` with input j′, a node `′ reachable from the parent node `p with list j++j′,
and the inputs j and j′ are exchangeable, i.e., j �

1
� j′, then the edge is drawn to the

existing node `′. This is depicted in Figure 4.7 (a), where the dashed edge is added.
Otherwise, if one of the above conditions is violated (i.e., either the inputs cannot be
exchanged or the node `′ has not been generated yet), a new node `++j is created

and an edge drawn there. As an example, the case where for all `p
j:j′
�−→∗i `′ it holds

that j 6�
1
� j′ is depicted in Figure 4.7 (b). There, the dashed edge and the dashed node

are added to the DAG. This process finishes at leaves for which the list of considered
inputs contains every input exactly once. It can furthermore be shown that the above
construction always yields the power-independence DAG.

Next, it is proven that this DAG exactly distinguishes between the equivalence
classes of the power-independence relation ≡Tp .

Theorem 4.3.5. Let Tp be a power-extended vector-based transition system with n
inputs and let Gi = (Vi,�−→i) be its power-independence DAG.

Then, for all orders π1, π2 ∈ Πn, π1 and π2 are power-independent, iff there
exist paths nil

π1�−→∗i π and nil
π2�−→∗i π in Gi for some order π ∈ Πn.

Proof. To prove the “if” direction, one observes that due to the definition of the
power-independence DAG in Definition 4.3.4, all nodes on a path, when appending
the remaining considered inputs, are power-independent. This directly entails π1 ≡Tp
π ≡Tp π2.

The “only-if” direction is proved by an induction over the number of swappings
needed to reach π1 from π2. If there are none, then π1 = π2 and the theorem
trivially holds. Otherwise, the induction hypothesis can be applied to π2 and the
order π′ resulting from π1 by undoing the last swapping of j and j+1. This gives

two paths nil
π′

�−→∗i π and nil
π2�−→∗i π in the graph. Since the two swapped positions j

and j + 1 are power-independent, and the rest of the orders π1 and π′ are the same,
the two paths induced by these two orders must have the diamond shape due to the
requirement in Definition 4.3.4, proving that also a path nil

π1�−→∗i π exists.

Thus, to determine the power-independent orders of a given power-extended
vector-based transition system, its power-independence DAG is constructed. Due
to the above theorem, the lists contained in the leaves of the power-independence
DAG are representatives of the different equivalence classes of orders that have to
be considered for power characterization, i.e., only one of these orders has to be
measured to obtain the real power consumption of all equivalent orders. Therefore,
the number of leaves compared to the number of all possible orders is a measure for
the reduction obtained by this method.

65

4. Efficient Analysis of Non-Determinism in Cell Libraries

Selecting Orders to Minimize Power Consumption

Contrary to the goal above, where orders were identified that always have the same
dynamic power consumption, now orders shall be identified that are functionally
independent, i.e., they do not influence the computation of a next state, but may have
different power consumption. Then, by taking the order (one representative order
among the functionally equivalent orders) that consumes the least amount of power,
the dynamic power consumption of computing the next state can be reduced.

For this purpose, another DAG structure is defined to describe the different
possible orders, but now the nodes represent lists that are computing the same
next state, i.e., the inputs leading to such a shared node only need to have the
diamond property regarding the functionality and not necessarily regarding the power
consumption. Furthermore, each node is equipped with a back-pointer that determines
which input leads to less power consumption. Then, by traversing the DAG from
some leaf to the root following these back-pointers, one can construct the order
that computes the same next state but uses minimal power. Below, this intuition is
formalized.

Definition 4.3.6. Given a power-extended vector-based transition system Tp = (R×
S, I,→p) with n inputs, the power-sum DAG is defined as Gs = (Vs,�−→s, s),
where Vs ⊆ Ln, �−→s ⊆ Vs × Vs, and s ⊆ Vs × (S × I × I) × Vs. The root is
defined to be nil ∈ Vs.

The transition relation �−→s is defined for every ` ∈ Vs and every 1 ≤ j ≤ n as
` �−→s `

′ for some unique `′ such that `++j ≡T `′.
The back-pointer relation s is defined for every ` ∈ Vs, s;~i ∈ S × I , and

~i′ ∈ I as nil 6s;
~i;~i′
 s ` and, if ` 6= nil, ` s;

~i;~i′
 s `

′ for some unique `′ ∈ Vs with `′
j′

�−→s `,
`′ ≡T j1 : · · · : jh, and 0;s;~i j1−→p . . .

jh−→p ◦
j′−→p w;s′;~i′ for which w ∈ R is

minimal.

Note that the definition of the transition relation of DAG Gs uses independence
based on equal states, not the extended power-independence which also checks for
equal power consumption. Again, the transition relation can be understood as labeled
by an input position 1 ≤ j ≤ n, indicating the added input coordinate that has
been considered. This was already made use of in the definition of the back-pointer
relation, but this position can again be recovered as the single input coordinate by
which the two lists differ.

The construction of the power-sum DAG works similarly to the construction of the
power-independence DAG. For it, the auxiliary function wmin is used, which assigns
to every node and state and input transition the minimal weight that the resulting
state can be reached with, i.e., for ` ∈ Vs and s;~i;~i′ ∈ S × I × I , wmin(`, s;~i;~i′) = w

if 0;s;~i `′−→→1 w;s′;~i′ and w is minimal among all `′ ≡T `. This can be efficiently
read from the back-pointer relation. To complete the function, it is defined as

wmin(`, s;~i;~i′) =∞ if no `′ ∈ Vs exists such that ` s;
~i;~i′
 s `

′.
The construction starts with the root node nil and adds nodes in a breadth-first

fashion. At each step, for each leaf ` of the DAG, an edge is added for every input
position 1 ≤ j ≤ n that is not yet contained in `. If there exists a node `′ such that

`p
j′

�−→s `, `p
j++j′
�−−→s `

′, and j �
1
�T j′, then the edge `

j
�−→s `

′ is added. Otherwise,

a new node `++j is added to the DAG, and the edge `
j
�−→ `++j is added. This is

66

Using Non-Determinism to Reduce Power Consumption

nil

``min

`′

j′ j

w′
∗

w

∗

p′

(a) Before adding `
j
�−→s `

′

nil

``min

`′

j′ j

w′
∗

w

∗

p

(b) w + p < w′ + p′

Figure 4.8: Construction of the back-pointer relation in the power-sum DAG for
some state and input vector transition s;~i;~i′ ∈ S × I × I

the same construction that was illustrated for the power-independence DAG Gi in
Figure 4.7, only here the power consumption is not considered.

A sub-path of a path with minimal weight also is of minimal weight, otherwise
such a sub-path could be replaced by one with less weight, giving a contradiction to
the initial path having minimal weight. This is used during the construction of the

back-pointer relation. When an edge `
j
�−→s `

′ is added to the DAG, then `′ s;
~i;~i′
 s `

if s;~i `−→→1 s0;~i0
j−→ s′;~i′ and wmin(`, s;~i) + p(s0, s′) < wmin(`′, s;~i). Otherwise, s

is left unchanged. Note that if `′ is a new node, then the first case always applies,
since the sum is always smaller than ∞.

An illustration of the back-pointer construction is shown in Figure 4.8, where

the dashed edge `
j
�−→s `

′ is to be added. Initially, it is assumed that already a node

`min exists such that `′ s;
~i;~i′
 s `min, i.e., the power consumption is minimal if taking

the minimal path from the root nil to node `min, which is assumed to have weight w′,
and then extending it by considering coordinate j′, whose power consumption is
assumed to be p′. This situation is depicted in Figure 4.8 (a). Next, the node `
is considered. It should be noted that `′ ≡T `++j ≡T `min++j′, as otherwise the

edge `
j
�−→s `

′ would not be drawn. The weight of the minimal path from the root
nil to the node ` is denoted w and the power consumption of the step from ` to `′
is denoted p. In case w + p < w′ + p′, then a new minimal path for `′ has been
found via `, thus the back-pointer relation is updated as shown in Figure 4.8 (b).
Otherwise, the previous path of the back-pointers is still giving the minimal path

even after adding the edge `
j
�−→s `

′, so in that case the back-pointer relation remains
as depicted in Figure 4.8 (a).

It can be shown that the above construction yields exactly the power-sum DAG
Gs of a power-extended vector-based transition system. The following theorem shows
that this DAG identifies all orders that lead to the same state and constructs the order
consuming the minimal amount of power.

67

4. Efficient Analysis of Non-Determinism in Cell Libraries

Theorem 4.3.7. Let Tp = (R×S, I,→p) be a power-extended vector-based transition
system with n inputs and power-sum DAG Gs = (Vs,�−→s, s). Furthermore, let
π, π′ ∈ Πn be some orders and s;~i;~i′ ∈ S × I × I be some state together with
previous and next input vectors.

If nil
π
�−→∗s π′, then a path π′ = `n

s;~i;~i′
 s . . .

s;~i;~i′
 s `0 = nil exists and π ≡T

π′ ≡T π′′ for π′′ = j1 : · · · : jn ∈ Πn defined by `r = `r−1++jr for all 1 ≤ r ≤ n

such that 0;s;~i π′′−→→1 w;s′;~i′ and w is minimal.

Proof. Existence of the back-pointer path and hence of π′′ is guaranteed by the
(unique) existence of a successor w.r.t. s for every node that is not the root and
since `r 6= nil for every 1 ≤ r ≤ n. The property π ≡T π′ ≡T π′′ directly follows
from the definition of the transition relation of Gs. Finally, minimality of w follows
from the definition of the back-pointer relation of Gs.

Given a cell and its power-sum DAG Gs, one can obtain the order consuming the
least amount of power for a given state, input vector transition, and order π in which
the inputs are to be changed. This works by first traversing the DAG Gs according
to the order π, which will result in a leaf π′ of the DAG, satisfying π′ ≡T π. From
that leaf, the back pointer relation is followed upwards to the root, giving (in reverse
order, by taking the difference between the nodes along the back-pointer path) another
order π′′ with π′′ ≡T π′ ≡T π which consumes the least amount of power, as was
shown in Theorem 4.3.7. Enforcing this order π′′ can for example be done by adding
delays, which is also proposed in [RDJ96].

Implementation

The above techniques for grouping together orders that have equal power consumption
behavior and for determining functionally equivalent orders were implemented in a
prototype tool. This tool first parses a SPICE netlist and builds a symbolic vector-
based transition system from it using the algorithm of [Bry87], where states consist
of a vector of formulas, computing values from the set {0, 1,Z}. The values 0 and 1
correspond to the logic values false and true, respectively, and represent an active
path from a wire in the netlist to the low and high voltage rails, respectively. The
third value, Z, represents a floating wire that has neither a path to the low nor to the
high voltage rail. As initial state of the netlist, arbitrary values are allowed for all of
the wires. The inputs are restricted to the binary values 0 and 1.

The power consumption of a transition is computed by the function p in
Definition 4.3.1. In the implementation, this function is defined as p(~s, ~s′) =∣∣{1 ≤ j ≤ m | ρj(~s) = 0, ρj(~s′) = 1}

∣∣ for a netlist consisting of m wires, i.e., it
counts the number of wires that transition from 0 to 1.

Building the power-independence DAG is then performed by first computing
the diamond relation for all pairs of inputs (also taking power consumption into
account). This is done symbolically using BDDs, requiring a total of O(m · n2)
BDD comparisons for n inputs and m state variables: For every of the O(m2) pairs
of input variables and every of the n state variables, two BDDs are constructed.
The first computes the next state after applying the two inputs in one order, the
second BDD computes the next state after applying the inputs in the other order.
The currently considered pair of inputs has the power-extended diamond relation, iff
these pairs of BDDs are equal for all state variables and the total number of wire

68

Using Non-Determinism to Reduce Power Consumption

chargings is the same. From this information, the power-independence DAG can
finally be constructed, using the previously presented algorithm.

If the power-sum DAG is to be constructed, then the functional independence
relation has to be computed first for all pairs of inputs. This uses the method
presented in Section 4.2 and also requires O(m ·n2) BDD comparisons. To construct
the power-sum DAG, one needs to keep track of the state to which a list of input
coordinate changes leads, to be able to construct its back-pointer relation. For this
purpose, the symbolic transition relation is unrolled, i.e., a new transition relation
is created that computes, given a starting state and input vector, the state and input
vector after changing the inputs in the order of the currently considered node. This
is used to create a symbolic formula computing the number of wires charged when
adding another input to the list. Finally, a symbolic minimum is computed among
these formulas that indicates which parent node leads to minimal power consumption.

Experimental Results

The technique to reduce the number of considered orders and the technique to
select an equivalent order that consumes less power were applied to the open-source
Nangate Open Cell Library [Nan08]. For each of the contained netlists, the SPICE
source was parsed, a transition system created, and the power-independence DAG
or power-sum DAG built and traversed to enumerate all equivalence classes. All
of these experiments were conducted on a commodity PC equipped with an Intel
Pentium 4 3.0GHz processor and 1GB RAM running Linux.

Reducing Input Vector Orders

The results for reducing the number of considered orders with different functional or
power consumption behavior are presented in Table 4.4, where the first column gives
the name of the cell, the second column the number of inputs and wires, the third
column the number of all possible orders, and the fourth column shows the number
of different equivalence classes in the power-independence DAG together with the
time it took to construct it. Finally, the last column demonstrates the achievable
power reduction, to be explained below.

For combinational cells, marked with “(c)” in Table 4.4, the results show that
by constructing the power-independence DAG the number of orders that have to
be considered for power characterization of these cells cannot be reduced. This is
usually due to situations in which wires are in one order first discharged only to be
finally charged, whereas evaluating them in another order keeps the wires charged
during the whole evaluation. Thus, all possible orders have to be considered during
power characterization of these cells.

For sequential cells however, some larger savings can be observed, especially
for the larger cells. For example, in case of the largest cell in the library, the cell
SDFFRS, the number of orders to consider could be reduced from 720 to only 288,
which is a reduction by 60%. Especially for sequential cells these savings have an
effect, since for these cells the characterization not only has to take the possible input
combinations into account, but also the current internal state. Overall, when summing
up the absolute number of orders that have to be considered for the sequential cells,
a reduction by more than 47% is obtained. This is especially advantageous for the
large cells, as witnessed by the average of the reduction rates of sequential cells,
which is only slightly above 16%. So especially for large sequential cells with lots

69

4. Efficient Analysis of Non-Determinism in Cell Libraries

Table 4.4: Results for the Nangate Open Cell Library

Cell #I /W #Πm |Gi| / t [s] |Gs| : Avg / t [s]
AND2 (c) 2 / 3 2 2 / 0.37 1 : 2.5 / 0.37
AND3 (c) 3 / 4 6 6 / 0.46 1 : 3.5 / 0.47
AND4 (c) 4 / 5 24 24 / 0.60 1 : 4.5 / 0.66
AOI211 (c) 4 / 4 24 24 / 0.62 1 : 4.0 / 0.64
AOI21 (c) 3 / 3 6 6 / 0.44 1 : 2.5 / 0.45
AOI221 (c) 5 / 5 120 120 / 0.97 1 : 7.0 / 1.14
AOI222 (c) 6 / 6 720 720 / 1.79 1 : 9.5 / 5.57
AOI22 (c) 4 / 4 24 24 / 0.68 1 : 5.0 / 0.66
BUF (c) 1 / 2 1 1 / 0.33 1 : 0.0 / 0.27
CLKBUF (c) 1 / 2 1 1 / 0.25 1 : 0.0 / 0.29
CLKGATETST 3 / 13 6 6 / 0.68 4 : 3.7 / 0.71
CLKGATE 2 / 11 2 2 / 0.54 2 : 0.0 / 0.54
DFFRS 4 / 24 24 24 / 1.20 12 : 1.1 / 1.82
DFFR 3 / 19 6 4 / 0.78 4 : 0.0 / 0.90
DFFS 3 / 19 6 6 / 0.82 4 : 1.0 / 0.90
DFF 2 / 16 2 2 / 0.63 2 : 0.0 / 0.68
DLH 2 / 9 2 2 / 0.50 2 : 0.0 / 0.52
DLL 2 / 9 2 2 / 0.53 2 : 0.0 / 0.52
FA (c) 3 / 14 6 6 / 0.71 1 : 3.0 / 0.76
HA (c) 2 / 8 2 2 / 0.46 1 : 1.0 / 0.48
INV (c) 1 / 1 1 1 / 0.24 1 : 0.0 / 0.25
MUX2 (c) 3 / 6 6 6 / 0.52 1 : 4.0 / 0.53
NAND2 (c) 2 / 2 2 2 / 0.35 1 : 1.5 / 0.35
NAND3 (c) 3 / 3 6 6 / 0.44 1 : 2.5 / 0.44
NAND4 (c) 4 / 4 24 24 / 0.58 1 : 3.5 / 0.61
NOR2 (c) 2 / 2 2 2 / 0.35 1 : 1.5 / 0.36
NOR3 (c) 3 / 3 6 6 / 0.47 1 : 2.5 / 0.45
NOR4 (c) 4 / 4 24 24 / 0.58 1 : 3.5 / 0.63
OAI211 (c) 4 / 4 24 24 / 0.59 1 : 4.0 / 0.64
OAI21 (c) 3 / 3 6 6 / 0.47 1 : 2.5 / 0.45
OAI221 (c) 5 / 5 120 120 / 1.07 1 : 7.0 / 1.22
OAI222 (c) 6 / 6 720 720 / 1.80 1 : 9.5 / 5.61
OAI22 (c) 4 / 4 24 24 / 0.62 1 : 5.0 / 0.66
OAI33 (c) 6 / 6 720 720 / 1.77 1 : 8.0 / 4.79
OR2 (c) 2 / 3 2 2 / 0.37 1 : 2.5 / 0.38
OR3 (c) 3 / 4 6 6 / 0.46 1 : 3.5 / 0.47
OR4 (c) 4 / 5 24 24 / 0.59 1 : 4.5 / 0.66
SDFFRS 6 / 30 720 288 / 2.99 48 : 6.4 / 13.01
SDFFR 5 / 25 120 96 / 1.61 16 : 6.4 / 3.07
SDFFS 5 / 25 120 36 / 1.49 16 : 6.0 / 2.77
SDFF 4 / 22 24 18 / 1.04 8 : 6.0 / 1.33
TBUF (c) 2 / 5 2 2 / 0.38 1 : 3.0 / 0.39
TINV (c) 2 / 4 2 2 / 0.39 1 : 3.0 / 0.38
TLAT 3 / 12 6 6 / 0.63 2 : 3.0 / 0.67
XNOR2 (c) 2 / 5 2 2 / 0.41 1 : 2.0 / 0.41
XOR2 (c) 2 / 5 2 2 / 0.44 1 : 2.0 / 0.40

70

Summary

of possible orders the approach can reduce the number of orders that have to be
considered significantly.

Selecting Input Vector Orders

The technique to compute the functionally equivalent orders and a path back that
uses the minimal amount of power, by constructing the power-sum DAG, was also
evaluated on the open-source Nangate Open Cell Library [Nan08]. The results are
shown in the last column of Table 4.4, giving the number of equivalence classes
w.r.t. ≡T , the average number of maximal differences in wire chargings taken over
all equivalence classes, and the amount of time until the power-sum DAG was
constructed and the average computed from its leaves.

These results show that for combinational cells all orders lead to the same final
state, which is expected as the state is completely determined by the new input values.
For the sequential cells not all orders lead to the same final state, witnessed by
multiple leaves in the power-sum DAG. This happens because the computation can
depend on internally stored values, which might have different values when applying
the input changes in different orders, cf. Section 4.2.

Below, the selection of orders shall be illustrated by means of an example. For
this purpose, the scan logic of the cell SDFFRS is studied (which is also the same
in the cells beginning with SDFF). This logic is implemented as a mux that selects,
based on the value of the scan enable signal, between the data input and the scan
input. In case the scan enable signal changes from 0 to 1 and the data input changes,
then the corresponding back-pointer path in the power-sum DAG shows that it is
better to first change the scan enable signal and then change the data input, than vice
versa. This can be explained intuitively by the fact that while the scan enable signal
is 0, the mux is transparent to changes in the data input, so also wires connected to
transistors controlled by the mux output are affected. This is not the case anymore if
first the scan enable is changed to 1, so that the change in the data input cannot be
observed at the output of the mux. In case of the cell SDFFRS, choosing the first
order can cause 7 more wires to be charged than when using the second order.

Note that some correlation exists between the size of an equivalence class and
the achievable power reduction: The more possible orders there are the more likely it
is that another equivalent order with less power consumption exists. This can also be
observed in results of Table 4.4, where the largest differences occur for combinational
cells, which always have exactly one equivalence class.

4.4 Summary

This chapter presented techniques to efficiently analyze non-deterministic behavior,
that is still present in the functional descriptions of cells. Such non-determinism can
be an issue if it leads to different possible computation results. Both for VeriCell
and for transistor netlists, the analysis runs in a very short amount of time and is
not only able to prove presence or absence of different computation outcomes, but
it also provides a counterexample in case order-dependent behavior exists. Then,
additional constraints need to be imposed to still be able to use the cell in a larger
environment. These constraints will take the form of timing checks, and will be
presented in Section 5.1 of the next chapter.

Non-determinism that does not affect the functional behavior can be exploited to
optimize other design goals, such as the measurement and the reduction of power

71

4. Efficient Analysis of Non-Determinism in Cell Libraries

consumption. For this purpose, the non-determinism analysis was extended to be
power aware, by adding an abstract measure of the power consumed by a single
wire charging. This allows to create a partitioning of all orders for which the power
consumption has to be measured only for one element of each equivalence class.
Furthermore, functionally equivalent orders can be re-ordered in such a way that the
least amount of power is consumed.

A technique related to the presented reduction of executions of a hardware
definition language (in this case, the VeriCell subset of Verilog) is [HMMCM06],
which describes an application of dynamic partial-order reduction techniques to
efficiently explore all possible execution runs of a test-suite for parallel SystemC
processes. To this end, the code of parallel SystemC processes is analyzed and
non-commutative transitions are detected. Subsequently, all possible permutations of
non-commutative actions are considered in order to generate all schedules that may
possibly lead to different final states. The technique reported in [HMMCM06] is
comparable to the presented confluence-detection and -reduction techniques, however
it is used in [HMMCM06] for the purpose of testing instead of exhaustive model-
checking, as is the case here. The input language considered in [HMMCM06] is
very rich and hence requires some manual code instrumentation to cater for the
dynamic communication structure of parallel processes, which may be a restrictive
factor in industrial cases. In [KGG08], the approach of [HMMCM06] is enhanced
with slicing techniques and combined with static partial order reduction techniques.
Neither of the approaches reported in [HMMCM06, KGG08] claim the minimality
of the generated schedules. The non-determinism analysis in this thesis, however,
guarantees that each two generated schedules do produce different output from some
initial state. Thus, there is a formal justification for including both.

Order-independence analysis can be seen as computing the independence relation
that is sufficient to perform partial order reduction [Pel98]; but it goes beyond
ordinary independence relations by proving that, for the particular setting of UDPs
and transistor netlists (and, in general, for vector-based transition systems that are
deadlock-free and satisfy the fixed-point property), the presented criteria are also
necessary for partial order reduction, i.e., violating them results in order dependent
behavior leading to different states.

The analysis shares some basic ideas with the analysis of confluence in the
setting of term rewrite systems, see for example [BN98, Ter03] for an introduction.
Generally speaking, a system is confluent if any two computations can be joined again
after an arbitrary number of steps. For transition systems, this relation has already
been observed in [Kel75], where sufficient conditions for confluence of general
transition systems are given. In contrast to the presented work, [Kel75] requires the
transition system to be deterministic, whereas in Section 4.2 also non-determinism
is allowed, i.e., a state may have multiple successor states that are labeled with the
same input pattern. However, deadlock-freedom is required in Section 4.2 for every
state and every input pattern, which is not globally the case in [Kel75]. Furthermore,
one should note that the notion of order-independence is stronger than confluence;
confluence only requires the existence of a state in which two computations can be
re-joined, for order-independence it is required that the state reached after any of the
two computations is the same.

Power consumed by cells is also determined in [HKC00]. The authors present
an empirical algorithm, which also groups together different input vector transitions.
However, they group together different values of inputs, whereas the approach
in Section 4.3 groups together different orders of applying the same input vector.

72

Summary

Furthermore, the grouping in [HKC00] is made manually and afterwards all remaining
input vectors and orders are enumerated explicitly, as opposed to the symbolic
approach used in this thesis. Another approach that also uses a transition system model
of circuits is presented in [SLL97]. This approach builds an explicit representation of
the transition system, and hence has to combat the size of these transition systems by
simplifying the netlist, something which is not required in a symbolic representation
as is used here. A symbolic representation of cells for the purpose of power analysis
is also used in [BBR96]. There, the symbolic representation is used during simulation
of cells to determine the charge for each wire. The analysis of power-aware non-
determinism can be seen as a preprocessing step, as the number of orders is reduced
that later have to be simulated. Already in [RDJ96] it was observed that superfluous
transitions (called glitches) of signals increase the power consumption. There however,
glitches are detected by simulations, and are only considered at cell outputs. The
authors of [RDJ96] propose a number of techniques to reduce glitches. One of these
is the addition of delays to enforce a certain order of events, which is also what is
proposed in Section 4.3 to select a low power evaluation.

73

Chapter 5
Relating Functional and Timing

Behavior

Consistency of the different descriptions in a cell library is a prerequisite for obtaining
correct chip designs. This does not only apply to the functional descriptions, whose
equivalence was investigated in Chapter 3, but also to the consistency between
functional and non-functional descriptions. For example, if the timing information
is not consistent with the functional description, then it does not reflect the actual
behavior of a cell, which could lead to a non-functional chip in the end.

In this chapter, two forms of timing information are considered. The first are
timing checks. These checks describe certain assumptions about the environment of a
cell. For example, a $setup timing check describes the amount of time a data signal
is required to be stable before a clock edge may occur. The complementary timing
check is the $hold timing check, that describes the amount of time a data signal is
required to be stable after a clock edge. If a timing check is violated, an error is
raised during simulation and often also an erroneous behavior is exhibited. In the
rest of this chapter it is therefore assumed that the timing checks are never violated.
Thereby, the timing checks constrain the set of possibly simultaneously changing
inputs. Hence, timing checks are related to the order-independence considered in
Sections 4.1 and 4.2 of the previous chapter, where all possible simultaneous input
changes were considered. Section 5.1 therefore presents a way to incorporate the
restrictions imposed by timing checks into the non-determinism analysis. This section
is based on [RMR+09] and [RMZ10, RMZ11].

The second form of timing information that is considered in this chapter are
module paths, also known as timing arcs or delay arcs. In the remainder of this
chapter, the term module path is used, as is the case in the Verilog standard [IEE06,
Clause 14]. Such a module path assigns a time delay to a change that propagates
through a cell, i.e., a certain change in some input of the cell can cause a certain output
of the cell to change its value after the given amount of time. Hence, such a module
path does not only describe timing information, it also describes functional behavior,
namely the change in the output to occur. Therefore, also this functional behavior
should be consistent with the actual implementation. There are two possibilities
for module paths to be inconsistent: Either, the module path describes a change
propagation that can never occur, or a change can propagate through the cell for
which no delay is assigned. The first case leads to a so-called false path and could,
during timing closure, reject a correct design by imposing these incorrect constraints.

75

5. Relating Functional and Timing Behavior

Table 5.1: Timing Checks based on a stability window

$setup $hold $setuphold
$recovery $removal $recrem

In the second case, a path is forgotten. Simulators would treat this situation by
assigning no delay. This can cause further flaws in the subsequent design steps since
a simulation of such a circuit does not reflect its actual behavior.

To analyze the module paths of a cell, two techniques are presented in Section 5.2,
which is based on [RMS10]. The first considers all module paths specified, and
verifies that they actually describe behavior that can be exhibited by the cell’s
functional description. Otherwise, a false path was found. The second technique
enumerates all module paths of a cell. Thereby, one can check that all possible delay
behaviors of that cell have been considered.

5.1 Timing Checks

Timing checks provide a means to describe constraints that the environment of a cell
must satisfy in order to guarantee correct functioning of the cell. They are a part of
the Verilog language, described in [IEE06, Clause 15], and can be divided into two
classes. The first class contains timing checks that make use of a stability window,
which describes a span of time around a given reference event in which a specified
data event must not occur. An event is a specified transition of some signal in the
cell. The other class of timing checks describes timing assumptions by providing
limits on time differences between certain events. In this section, only timing checks
using a stability window are considered, since those based on time differences are
usually only specified for a single control signal, thus they only provide certain
implementation constraints but they do not affect the functional description.

In total, there are 6 timing checks in the Verilog language that are based on
a stability window. These are listed in Table 5.1. The two timing checks in the
last column however, $setuphold and $recrem, are just a combination of the
respective timing checks in the previous two columns. Thus, only the timing checks
in the first two columns will be explained below. Such a timing check has the
following general form:

$timing_check(reference_event, data_event, timing_check_limit[, [notifier]])

It should be remarked that due to historical reasons, the order of reference_event
and data_event is reversed for the $setup timing check. The notifier is optional and
specifies a signal that should be toggled in case a timing violation has been detected.
The reference_event specifies an event that enables the timing check, i.e., only when
this event is found, the check could report a timing violation. The data_event specifies
another event that must not occur in a certain time interval around the time when
the reference_event occurred. The particular time interval is specific to the concrete
timing check and its size is given by the timing_check_limit.

For the $setup timing check, a timing violation is found whenever the data_event
occurred less than timing_check_limit time units before the reference_event. For-
mally, if the reference_event occurs at time t, there must not be a data_event
in the open interval (t − timing_check_limit, t). For example, the timing check

76

Timing Checks

$setup(data, posedge clk, 10) requires that the signal data is stable at
least 10 time units before every positive edge of the signal clk, otherwise an error
is raised.

The $hold timing check is the dual of the $setup timing check. It reports
a timing violation in case the data_event occurs at most timing_check_limit time
units after the reference_event. Formally, if the reference_event occurs at time t, the
data_event must not occur in the half-open interval [t, t+ timing_check_limit). An
example of such a timing check is $hold(posedge clk, data, 5), requiring
the signal data to be stable every time the signal clk exhibits a positive edge, and
at least 5 time units afterwards.

The timing checks $removal and $recovery behave like the $setup and
$hold timing checks, respectively. Their purpose is purely syntactical; while
$setup and $hold timing checks are generally used with a clock signal as
reference_event and a data signal as data_event, the reference_event of the $removal
and $recovery timing checks is usually a control signal like clear, reset, and set,
while the data_event is usually a clock signal. Thus, for example the timing check
$recovery(negedge rst, posedge clk, 12) is equivalent to the tim-
ing check $hold(negedge rst, posedge clk, 12). For this reason, only
$setup and $hold timing checks will be considered in the remainder; however,
all statements apply to $removal and $recovery timing checks as well.

An event (either reference_event or data_event) has an optional event control,
determining which transitions are considered as an event. By default, if no event
control is specified, any change in value is considered an event. Possible restrictions
are posedge, negedge, and restrictions of the form edge[v1w1,v2w2, ...].
The latter lists as arguments the transitions that should be matched, where vi 6= wi ∈
{X, 0, 1} (the value Z is also allowed, but is treated in the same way as X). Then,
the restriction posedge is equivalent to edge[01, 0x, x1] and negedge is
equivalent to edge[10, x0, 1x]. Mandatory for an event specification is the
name of an input signal to the cell, for which the specified transitions cause this
event to occur. Finally, an optional condition (indicated by &&&) can be given that
further restricts when the event is considered to have occurred. Thus, the event
posedge clk occurs for positive edges of the clock, whereas d &&& cond occurs
for any transition of the signal d, provided the condition cond holds. Such a condition
can be either a single signal (or its negation), or an equality or disequality expression.
Conditions are divided into two classes, deterministic and non-deterministic conditions.
A deterministic condition, which is of the form s, ~s , s === v, or s !== v with
s being a signal name and v ∈ {0, 1}, holds when the condition evaluates to 1, i.e.,
it does not hold if the signal s has value X. Non-deterministic conditions are of
the form s == v or s != v, with s being a signal name and v ∈ {0, 1} and they
hold when the condition evaluates to 1 or X. Thereby, for example, both the events
d &&& ~rst and d &&& rst === 0 occur whenever the signal d changes and
signal rst has value 0, whereas the event d &&& rst == 0 occurs whenever
signal d changes and signal rst has either value 0 or value X.

Constraints Imposed by Timing Checks on Order-Independence
Analysis

As stated above, timing checks are added to assert a certain behavior of the system.
Otherwise, if this behavior is not encountered, an error is triggered. Hence, timing
checks can be regarded as describing illegal behavior.

77

5. Relating Functional and Timing Behavior

When analyzing order-independence of a VeriCell description, described in
Section 4.1, or of a transistor netlist, described in Section 4.2, one is only interested
in whether two inputs might change simultaneously. Thus, neither the actual time
limits nor the notifier variable are relevant for this purpose, as long as the time
window is non-empty. Hence, for analyzing order-independence, formally only the
restriction that the events of a $hold timing check may not occur simultaneously
in any execution is used. In practice however, a $hold timing check is usually
accompanied by a corresponding $setup timing check, thereby defining a stability
window extending to both sides of the reference event.

Timing Checks and VeriCell Order-Independence

In a VeriCell description, all sequential behavior is encoded in the UDPs, thus
only order-independence of UDPs has to be considered by the method presented in
Section 4.1. However, timing checks are specified for inputs, thus information about
the inputs of UDPs has to be inferred from these constraints.

For the combinational logic driving the inputs of a currently considered UDP,
it is required that it does not contain loops and it is assumed that it computes its
value instantaneously. Under these assumptions, functions in the external inputs and
the outputs of other UDPs (which are assumed to be external inputs) can be created.
These functions are then used as inputs of the UDP when checking the commuting
diamond property using the technique presented in Section 4.1. Thereby, behavior
that cannot occur due to functional dependencies of the UDP inputs is removed, and
furthermore the counterexample states, in which two different orders of evaluation
exist that lead to different final states, are expressed as formulas in these external
inputs to the cell.

If such counterexample states are found, all those states are removed from them
that violate one of the constraints imposed by the $hold timing checks. Then, if
for a certain pair of input signals no counterexample states exist anymore, the UDP
is order-independent in all of the allowed executions of the module. It should be
noted that this order-independence does not solely depend on the UDP anymore, but
also on the combinational logic and the timing checks present in the module that
instantiates the UDP. Thus, the cell that is described by the module computes its state
independent of the concrete order used to evaluate the UDP, provided the constraints
of the timing checks are satisfied.

As an example, the UDP from Figure 4.1 and an enclosing module defining a cell
dff_enb is given in Figure 5.1. This VeriCell description defines a D flip-flop
that is enabled when the input enb is low, and that is disabled when the input enb
is high. This is implemented by first negating, in line 21, the input enb to produce
an internal signal en which is then used in line 22 as input for the active-high UDP
implementation in ff_en.

It was already observed in Section 4.1 that the UDP ff_en has an order-
dependency between inputs d and ck. Intuitively, this holds because on a positive
edge of the clock either the clock changes first, thus the flip-flop still sees and stores
the old value of the data input d, or the data changes before the positive edge of the
clock, which makes the flip-flop store the new value of the data input d. However,
this situation is usually considered to be illegal for a D flip-flop, hence a designer is
likely to add, among others, the following timing checks:

$hold(posedge ck, negedge d, t1);
$hold(posedge ck, posedge d, t2);

78

Timing Checks

1 primitive ff_en(q, d, ck, en);
2 output q; reg q;
3 input d, ck, en;
4
5 table
6 // d ck en : q : q+
7 0 (01) 1 : ? : 0;
8 1 (01) 1 : ? : 1;
9 ? (10) ? : ? : -;
10 * ? ? : ? : -;
11 ? ? 0 : ? : -;
12 ? ? * : ? : -;
13 endtable
14 endprimitive
15
16
17 module dff_enb(q, d, ck, enb);
18 output q;
19 input d, ck, enb;
20
21 not(en, enb);
22 ff_en(q, d, ck, en);
23 endmodule

Figure 5.1: D Flip-Flop with Active-Low Enable

These timing checks rule out the behavior leading to the order-dependent coun-
terexample that was described above, since the data input is not allowed to change
simultaneously with the clock input anymore. When removing all counterexample
states in which the clock input ck exhibits a positive edge simultaneously to a change
of the data input d, no counterexamples remain. Therefore, the cell dff_enb has
no order-dependency for these two inputs under the constraints defined above. Note
that the two $hold timing checks could also be written as a single timing check
$hold(posedge ck, d, t), however this does not allow to specify different
time limits, something that might be useful when determining the minimal time
windows required by the implementation.

As explained above, the timing checks are incorporated into the order-dependence
analysis for VeriCell by removing all those counterexamples in which a $hold
timing check is violated. This way, illegal behavior of the environment is removed and
only legal behavior that respects the timing checks is considered. Still, reachability of
the counterexample states has to be determined, as was already done in Section 4.1,
since it is not guaranteed that from the initial state a counterexample state is reachable
and because outputs of other UDPs than the currently considered one are abstracted
into new external inputs.

However, this reachability analysis can be improved, by also taking the timing
checks into account. First, the non-deterministic next-state functions can be im-
proved, since they can be reduced to only those cases where the changing inputs are
order-independent under the added constraints. For example, in the cell shown in

79

5. Relating Functional and Timing Behavior

Figure 5.1, together with the timing checks given above, the inputs d and ck are
order-independent; the problematic cases must not be used as an input to the cell.
This enlarges the equivalence classes of orders exhibiting the same behavior when
restricting to legal behavior, thus decreasing the amount of non-determinism that has
to be considered in the reachability check. Second, a trace reaching a counterexample
state should be legal, i.e., it should respect all the timing checks. Hence, the LTL
property to be checked for all counterexample states of an order-dependent pair
j 6 �module

udp j′ (which includes the restrictions imposed by the timing checks) becomes
the following:

G ¬

hold_constraints ∧
∨

s∈j 6 �module
udp j′

s


In the above formula, the newly added state variable hold_constraints represents
that no state of the currently considered trace has violated any of the timing checks.
Thereby, the number of traces that have to be considered during reachability checking
is reduced to the legal traces.

Timing Checks and Transistor Netlist Order-Independence

Also for transistor netlists, some order-dependencies are expected and should not be
considered erroneous. For example, the dependency between the data input and the
clock input of a transistor netlist implementing a flip-flop, which was discussed above
for UDPs and was already found in the transistor netlist description considered in
Example 4.2.29, should not be considered an error. Thus, also for transistor netlists
timing checks should be considered.

As presented in Section 4.2, a vector-based transition system is created from
a transistor netlist and order-independence is checked there. To incorporate the
timing checks into this analysis, the conjunction of a BDD describing counterexample
states and a BDD describing all legal input combinations is taken, to rule out
those input combinations that are forbidden by the timing checks. This way, only
those counterexamples remain where the initial state is one-step reachable and the
counterexample is not contradicting the timing checks. Note that reachability of this
state does not have to be checked, since the transistor netlist is allowed to start up
in any arbitrary state. Furthermore, as a one-step reachable state is stable due to
Lemma 4.2.26, a possibly remaining counterexample state is also one-step reachable
when considering the timing checks; it is still possible to reach the state without
changing the value of any input (thus, no event can occur and therefore no timing
check can be violated).

Experiments

The restriction imposed by the timing checks, which describe illegal behavior, was
added to the analysis of order-independence of VeriCell descriptions, presented in
Section 4.1, and to the analysis of order-independence of transistor netlist descriptions,
which was presented in Section 4.2, using the approaches presented above. This
extended order-independence analysis was also evaluated on the Nangate Open Cell
Library [Nan08], which contains 12 sequential cells whose Verilog descriptions are
in the VeriCell subset. All of the experiments were conducted on a computer with
an Intel Pentium 4 processor with 3.0GHz and 1GB memory running Linux.

80

Timing Checks

Table 5.2: Reachability checking of order-independence of VeriCell descriptions
in the Nangate Open Cell Library considering timing checks

Cell # Inp. # Ord- # Reach Time [s] Time [s]
Pairs Dep Prs B Thm. 4.1.8 Lem. 4.1.4

CLKGATE 1 0 – – –
CLKGATETST 2 0 – – –
DFF 1 0 – – –
DFFR 3 2 0 0.31 1.13
DFFS 3 2 0 0.33 0.67
DFFRS 6 5 1 6.87 24.20
DLH 1 0 – – –
DLL 1 0 – – –
SDFF 1 0 – – –
SDFFR 3 2 0 4.17 11.77
SDFFS 3 2 0 4.77 10.71
SDFFRS 6 5 1 49.72 2541.60

VeriCell

The encoding of cells into Boolean Transition Systems, which was presented in
Section 4.1, was extended by the previously presented inclusion of timing checks.
For every cell, an input file for the NuSMV model checker [CCG+02] was created.
Still, the model checker found a reachable order-dependent state for all of the cells.
However, these counterexamples were due to the value X being allowed as an input
of the cell, something that is not possible in a hardware implementation. Hence,
the external inputs were restricted to be binary, i.e., to be either 0 or 1. The
internal signals were not restricted and were allowed to take any ternary value
from T = {0, 1,X}. The results for these experiments are shown in Table 5.2, where
the first column shows the name of the cell, the second column gives the number of
UDP input pairs, and the third column shows the number of pairs that were found to
be order-dependent. It can be observed from the table that only for 6 cells states exist
that can cause an order-dependency. For 4 of these cells none of the counterexample
states can be reached, hence the UDPs used in these cells with binary inputs are
order-independent. This can be seen in the fourth column of Table 5.2, which shows
the number of reachable counterexample states. Finally, the fifth and sixth columns
of the table present the time it took NuSMV to check reachability, where for the
times shown in the fifth column the approach of Theorem 4.1.8 was used, whereas
in the other case the naive approach of Lemma 4.1.4 was used.

For the last 2 cells, which are the cells DFFRS and SDFFRS implementing a
flip-flop (with scan logic) that can be set and reset, a counterexample state can still
be reached. The inputs that cause this behavior are in both cases the set and reset
inputs. When switching both from active to inactive, the order of this deactivation
determines the output of the cell. When deactivating the set signal first, then the
reset is still active, forcing the output to be 0. Otherwise, when first deactivating
the reset signal, the activated set signal will set the output to be 1. Looking at the
Verilog implementation, it seems that for this combination of inputs a $hold check
was forgotten, since a $setup check has been specified. This demonstrates that

81

5. Relating Functional and Timing Behavior

Table 5.3: Order-Independence of Transistor Netlists in the Nangate Open Cell
Library considering timing checks

Cell # State # Inp. # Ord- Time Time all
Vars Pairs Dep Prs �1� [s] orders [s]

CLKGATE 2 1 0 0.01 0.04
CLKGATETST 2 3 0 0.01 0.12
DFF 4 1 0 0.01 0.11
DFFR 4 3 0 0.04 0.31
DFFS 4 3 0 0.02 0.24
DFFRS 4 6 1 0.07 1.23
DLH 2 1 0 0.02 0.04
DLL 2 1 0 0.01 0.04
SDFF 4 6 0 0.03 1.05
SDFFR 4 10 0 0.07 7.38
SDFFS 4 10 0 0.07 7.51
SDFFRS 4 15 1 0.17 197.54

formal verification of these timing checks is needed and that the presented method is
able to indicate what timing checks might be missing.

Moreover, a proprietary cell library provided by a customer to Fenix Design
Automation was verified. This cell library was already suspected of containing an
issue related to non-determinism. Indeed, the order-independence analysis found
a reachable state from which two possible executions exist that lead to different
behavior. This counterexample is rather complex in nature and cannot be traced
back to or even be solved by adding timing checks. This shows that although timing
checks and order-dependence are related, the timing checks are not powerful enough
to rule out all possible order-dependent behavior.

The order-independence analysis based on the commuting diamond property and
the naive approach of Lemma 4.1.4, which enumerates all possible orders, were
extended by the presented inclusion of timing checks and were compared for the
12 sequential cells in the Nangate Open Cell Library [Nan08]. Again, the times it
took NuSMV to model check reachability of possible counterexample states was
measured for both versions. The experiments showed that the approach based on the
diamond property was consistently faster. Particularly for the largest cell SDFFRS
the model checking time could be reduced from more than 40 minutes to less than
50 seconds. For this cell, also NuSMV’s memory consumption was measured, which
decreased from more than 880 MB to ca. 110 MB.

Transistor Netlists

The order-independence analysis of Section 4.2, extended with the presented consider-
ation of timing checks, was also applied to the transistor netlists of the 12 sequential
cells in the Nangate Open Cell Library [Nan08], whose corresponding functional
descriptions were used in the above experiments for VeriCell descriptions. For each
of the cells the timing checks given in the corresponding Verilog module were used.
The results are shown in Table 5.3, where the first column shows the name of the
cell. In the second and third column, the number of state variables and the number

82

Module Paths

of input pairs are presented. Finally, the fourth and fifth column give the time it took
to check order-independence of the transistor netlist, using the approach based on the
one-step reachable commuting diamond property and the naive approach enumerating
all orders, respectively. It can be observed that analyzing order-independence was
still possible in less than 0.25 seconds for every cell in the library when using the
diamond property, whereas the naive approach still took more time, especially for
the larger cells.

With the timing checks ruling out illegal behavior, ten cells were proven to be
order-independent, when considering binary inputs. For two cells however, namely the
cells DFFRS and SDFFRS, a counterexample was found. This counterexample is the
same as the one found for the Verilog implementation above: there is no timing check
specified for the deactivation of the set and reset inputs, hence when deactivating both
at almost the same time the output value depends on whether the set is deactivated
first, leaving the reset still active, or whether the reset is deactivated first, leaving the
set still active. This problem might therefore really cause non-deterministic behavior,
which is undesired. The non-determinism can be resolved by adding a timing check
that disallows simultaneous disabling of both the set and reset inputs. Then, the
presented technique does not report any further order-dependencies.

5.2 Module Paths

This section analyzes the module paths of cells and presents techniques to guarantee
that they are consistent with the cell’s functional behavior. A module path assigns a
delay for a change of an input to propagate to an output, as defined in the Verilog
standard [IEE06, Clause 14]. The actual time values put on module paths are
irrelevant for the analyses presented in this section. Only necessity and realizability
of module paths is considered, i.e., the need and use of their presence or absence.
When considering all of the specified paths of a cell, one might get false paths during
the timing closure of a larger design composed of multiple cells, which might reject
correct designs. Therefore, the given module paths are checked for being feasible
within the functional description. Furthermore, a technique is presented to enumerate
all possible module paths of a cell. This forms the basis for any subsequent timing
analysis, i.e., one has to first determine whether a module path can actually occur or
not before the actual delays specified by module paths can be determined.

Since module paths are given in the Verilog description of a cell, this section
will focus on functional descriptions in the VeriCell subset which was introduced
in Section 2.3. However, since the functional description is kept rather abstract, the
techniques could also be extended to other functional descriptions. As equivalence
of the different functional descriptions is usually checked anyway, for example by
the method presented in Chapter 3, considering only VeriCell descriptions is not a
restriction.

Preliminaries

Consider the cell depicted in Figure 5.2, which shows the functional description of a
D flip-flop with active low reset in the VeriCell subset of Verilog and the module
paths of its timing specification. This cell is constructed from two instances of the
built-in primitives buf and not. Furthermore, it contains two instances of the User
Defined Primitive (UDP) latch, whose definition is given at the top of Figure 5.2.
This UDP implements a storage latch that is transparent when its ck input is 1 and

83

5. Relating Functional and Timing Behavior

primitive latch(q, d, ck, rb);
output q; reg q; input ck, d, rb;
table

// d ck rb : q : q’

* 0 ? : ? : - ;
? 0 1 : ? : - ;
0 1 ? : ? : 0 ;
1 1 1 : ? : 1 ;
? ? 0 : ? : 0 ;

endtable
endprimitive

module dffr(q, ck, d, rb);
output q; input ck, d, rb;
buf(q, qint);
latch(qint, iq, ck, rb);
latch(iq, d, ckb, rb);
not(ckb, ck);

specify
(negedge rb => (q +: 0)) = t_rst;
if (rb==1) (posedge ck => (q +: d)) = t_ck;

endspecify
endmodule

Figure 5.2: Verilog Source of a Resettable D Flip-Flop

that stores its current value if the ck input is 0. Additionally, it can be reset by
setting input rb to 0.

In the timing specification of the example cell dffr, given between the keywords
specify and endspecify, there are two module paths which are both edge-
sensitive paths, i.e., they are active whenever a certain change in an input is exhibited.
The first module path describes that when the reset has a falling edge (i.e., an edge
towards 0), then the output q changes its value after t_rst time units. The data
source expression+: 0 describes that the output will change its value to 0. Similarly,
the second module path defines that on a positive edge of the clock, the output q will
change its value to the value of d. However, this module path is a state-dependent
module path, since it only applies when the condition rb == 1 is true, as specified
in the if preceding the module path.

Such a cell with k inputs i1, . . . , ik, m outputs q1, . . . , qm, and n sequential
variables s1, . . . , sn is interpreted as a set of Boolean equations, using the semantics
presented in Chapter 3. All of these variables can take values from the ternary
values T = {0, 1,X}, where 0 and 1 correspond to the Boolean values false and
true, respectively, whereas X can be understood as representing an unknown value.
Let I denote the space of all possible inputs I = Tk, O denote all possible outputs
O = Tm, and S denote all possible states S = Tn × Tk, in which also the previous
values of the inputs are stored, denoted ip1, . . . , i

p
k, in order to detect transitions. For

z ∈ N and a vector ~v = (v1, . . . , vz) ∈ Tz , let ρj(~v) = vj again denote the projection

84

Module Paths

to the j-th component of that vector, for all 1 ≤ j ≤ z. This definition is lifted
to sets of vectors by defining ρj(V) =

⋃
~v∈V {ρj(~v)} for V ⊆ Tz and 1 ≤ j ≤ z.

Instead of (~s,~i) ∈ S the notation ~s;~i ∈ S will be used.
Because VeriCell programs might be non-deterministic, as already observed

in Chapter 3, the computation of stable next states is represented by the function
δ : I × S → P(S), with P(S) being the power set of states, computing for a given
input vector ~i ∈ I and state ~s;~ip ∈ S the set of all possible next states δ(~i, ~s;~ip).
Given a state ~s;~ip ∈ S, the function λ : S → O computes the values λ(~s;~ip) of
the outputs in that state. Extending δ and λ to sets of states is done in the natural
way: δ(~i, S′) =

⋃
s′∈S′ δ(~i, s′) and λ(S′) =

⋃
s′∈S′ λ(s′) for every S′ ⊆ S. As in

Chapter 3 and as stated in the Verilog standard [IEE06], the initial state s0 of a cell
is the state in which all variables have the value X.

A state ~s;~i ∈ S is called reachable if there exist states ~s1;~i1, . . . , ~sr;~ir ∈ S and
inputs ~i0, . . . ,~ir−1 ∈ I such that ~sr;~ir = ~s;~i and for all 0 ≤ j < r it holds that
δ(~ij , ~sj ;~ij) 3 ~sj+1;~ij+1. The constrained evaluation of δ for an input vector ~i ∈ I ,
state ~s;~ip ∈ S, and constraint values ~c ∈ Tk is defined as δ(~i ∧ ~c,~s;~ip) = δ(~i, ~s;~ip)
if for all 1 ≤ j ≤ k either ij = cj or cj = X. Otherwise, δ(~i ∧ ~c,~s;~ip) = ∅.

In the following, an edge specification edge ∈ {posedge,negedge,""} is
interpreted as the set of transitions that it matches. Here, as required in the Ver-
ilog standard [IEE06, Clause 14], also transitions to and from X are matched.
Thus, posedge = {(0, 1), (0,X), (X, 1)}, negedge = {(1, 0), (X, 0), (1,X)}, and
"" (the empty string) =* = {(u, v) | u 6= v} = posedge ∪ negedge.

Checking Module Paths

A module path describes a delay between an input and an output of the cell. There
are two basic types of module paths: simple paths and edge-sensitive paths. An
example of a simple path is (ck => q) = 10, expressing that a change of input ck
influences output q after a delay of 10 time units. An example of an edge-sensitive
path is (posedge ck => (q +: d)) = 12, expressing that a positive edge
of input ck affects the output q, which takes the value d (“+” indicates that the
value of d is passed in non-inverted form), after a delay of 12 time units.

Basic paths can be used to construct the state-dependent module paths, which are
module paths equipped with a condition. An example of a state-dependent module path
is if (rb == 1) (posedge ck => (q +: d)) = 12, which specifies the
same delay as the previous edge-sensitive path example, but this delay only occurs if
the condition rb == 1 holds. A condition is defined to hold if it does not evaluate
to 0, i.e., if it evaluates to either 1 or X.

Only state-dependent module paths will be considered in the following, since the
others can be expressed as such paths by simply adding “if (i==X)” for some
input i, as a comparison with the value X will always make the equality evaluate
to X.

Requirements for Simple Module Paths

A simple module path, as its name indicates, is the simplest form of specifying that
an input influences the value of an output. However, it is desirable that such an
effect does actually take place. For example, one could add the simple module path
(d => q) = 1; to the example in Figure 5.2, stating that a change of input d
affects the value of output q one time unit after the change of input d. However, the

85

5. Relating Functional and Timing Behavior

output of a flip-flop will never change as a result of only changing the data input; for
the output to change a positive edge of the clock is required. Hence this is a module
path that never occurs in practice, which might result in too severe restrictions in the
timing analysis such that a circuit using this flip-flop with the above module path
could fail to meet its timing requirements, although an implementation would never
suffer from this problem.

A formal definition of the requirements for a module path to be consistent with the
functional description shall be given next. For this purpose, a state-dependent simple
module path of the form if ((i1==c1) && . . .&& (ik==ck)) (ij p=> ql)
is considered, where p is called the polarity of the module path, with p ∈ Pol =
{+,- , ""} (where "" represents the empty string). The polarity expresses the
direction of the output change: For positive polarity (p = +), if the output changes,
then the change is into the same direction as the input. For negative polarity (p = -)
the output changes into the opposite direction of the input, if it does change. For
no polarity (p = "") the output is free to change into any direction. Note that any
(state-dependent) simple module path can be written in the above format, by inserting
X for cj when input ij is not constrained in the original module path.

The semantics of module paths imposes two constraints on the transition system
of cells. First, a state is required to be reachable in which the specified output will
change as a result of only changing the specified input. If this were not the case,
then the output would never change as a result of the changing input, hence this
module path would never be active and could be removed. The second constraint
deals with the polarity: If it is either + or -, then in case the output changes, it is
required to change into the direction specified by the polarity. Formally, these two
constraints are expressed as follows:

1. There exists a reachable state ~s;~ip ∈ S, a value v ∈ T, and an output value
λ′ ∈ ρl(λ(δ(~ip[j := v] ∧ ~c,~s;~ip))) such that λ′ 6= ρl(λ(~s;~ip)).

2. If p ∈ {+, -}, then for all reachable states ~s;~ip ∈ S, all values v ∈ T,
λ = ρl(λ(~s;~ip)), and every λ′ ∈ ρl(λ(δ(~ip[j := v] ∧ ~c,~s;~ip))) the following
holds:

• If p = + then

– If (ipj , v) ∈ posedge, then λ = λ′ or (λ, λ′) ∈ posedge
– If (ipj , v) ∈ negedge, then λ = λ′ or (λ, λ′) ∈ negedge

• If p = - then

– If (ipj , v) ∈ posedge, then λ = λ′ or (λ, λ′) ∈ negedge
– If (ipj , v) ∈ negedge, then λ = λ′ or (λ, λ′) ∈ posedge

Requirements for Edge-Sensitive Module Paths

An edge-sensitive module path specifies that a certain change of the input influences
the output. Hence, it is again required that this effect on the output does exist when
the input exhibits one of the specified transitions, like for simple module paths.
Furthermore, an edge-sensitive module path specifies the value of the output after
the change by means of the data source expression. It should also be verified that
this expression reflects the actual computation of the output value in the functional
description.

86

Module Paths

Again, two constraints have to be satisfied for a state-dependent edge-sensitive
module path, which can always be written in the form

if ((i1==c1) && . . .&& (ik==ck)) (edge ij => (ql p: d)),
with polarity p ∈ Pol = {+,- , ""} and edge ∈ {posedge,negedge,""}. The
first constraint is the same as constraint (1) for simple module paths, except that now
the input change must be one of the transitions contained in the specified edge. The
second constraint deals with the polarity and the data source expression specified in
an edge-sensitive module path. It is required that for positive or negative polarity p,
the output has the value of the data source expression or its negation, respectively,
whenever the input makes one of the specified transitions. Hence, the module path
must be realizable in some reachable state and its data source expression must
correspond to the output value in all reachable states triggering the module path.

Formally, constraint (1) is required to hold for one of the given input transitions
in edge and second, if p ∈ {+, -}, then for all reachable states ~s;~ip and values v ∈ T
with edge 3 (ipj v), it is required that ρl(λ(δ(~ip[j := v] ∧ ~c,~s;~ip))) = {q′l}, where
q′l = d if p = + and q′l = ¬d if p = -.

Reachability Checking of Module Paths

With the formal requirements of module paths as given above, realizability and
correctness can be checked in the functional implementation of the cell. For this
purpose, the VeriCell semantics of Chapter 3 is used to obtain a symbolic repre-
sentation of the cell’s functional description. A fixed-point construction is applied to
the presented semantics to create a function δ that computes, given a current stable
state and some new input vector, a next stable state. By definition, all variables
in Verilog initially have the value X. Starting from this state, a reachable state
is searched that satisfies condition (1). This search uses an implementation of a
symbolic simulator for symbolic transition systems described in terms of Boolean
equations. If no such state exists, then the input of the module path never affects the
output, hence this module path is infeasible and is reported to the user. Otherwise,
another reachability check is performed. This time, it checks whether from the initial
state another state can be reached in which a counterexample to the specified behavior
occurs. For simple module paths with specified polarity, such a counterexample is
a state where the output changes in the opposite direction of the polarity. In case
of an edge-sensitive module path with specified polarity, a reachable state is being
searched for in which one of the specified input transitions has been applied, but
the output does not have the value given by the data source expression. If such
a counterexample state is reachable, then the module path is flagged as incorrect.
Otherwise, the reachability check established that for all reachable states the data
source expression represents the value of the output, hence the module path correctly
reflects the functional behavior of the cell.

However, with the above notion of inconsistent module paths, usually only a very
small number of module paths are correct. This is usually due to the value X. Since
digital circuits only operate on two logical values (the Boolean values false and true),
this value is commonly interpreted as unknown in the two-valued logic. Then, for
example, a transition from 0 to X could either be a transition from 0 to 1 or no
transition at all. But the definition of the value X in the Verilog standard [IEE06]
defines it to be a third value unrelated to both 0 and 1 (see [Tur03] for an in-depth
discussion of the problems associated with the value X). In order to cope with
practical examples, and because in actual implementations the values will always

87

5. Relating Functional and Timing Behavior

be either true or false, the module paths may be strengthened, which interprets the
value X as the set {0, 1} and then filters out all transitions that do not express a change
in values. As an example, the edge specification posedge = {(0, 1), (0,X), (X, 1)}
shall be strengthened. Replacing all occurrences of X by both 0 and 1 gives the
set {(0, 1), (0, 0), (1, 1)}. When filtering out the non-changing transition (0, 0) and
(1, 1), only the binary transition (0, 1) remains.

Furthermore, also conditions can be strengthened: Previously, and as required
by the Verilog standard [IEE06], a condition was active if it evaluates to either 1 or
to X. In the strengthened condition, it is required that both sides of an equation are
equal. For comparisons with Boolean values, this again amounts to viewing X as
either 0 or 1.

These two strengthenings can be enabled by two options passed to the reachability
checking procedure. Then, the requirements as described above are checked for the
strengthened module paths. If they are consistent with the functional description,
then they faithfully specify the behavior of the functional description, under the
condition that the strengthenings hold.

In case of the example cell dffr shown in Figure 5.2, both non-strengthened
module paths are inconsistent with the functional description. The first module path
(negedge rb => (q +: 0)) specifies that the output q changes to the value 0
if the input rb exhibits one of the transitions that are considered a negedge.
Looking at the table of the UDP latch in Figure 5.2 one can observe that the
output is set to 0 when input rb is 0. However, as defined in the preliminaries of
this section, also the transition (1,X) is contained in negedge, hence the value of
input rb after this transition is X. For this transition, the value of output q will be
set to X, since none of the rows of UDP latch match in this case. Similarly for the
second module path if (rb==1) (posedge ck => (q +: d)): The data
value is only latched if the clock has value 1, but the posedge also matches if it
changes from 0 to X. Furthermore, for this module path the condition rb == 1 is
true if input rb is either 1 or X, since X == v is true for all values v. If however the
input rb has the value X, then the data input will not be latched since it is unclear
whether the reset is active or not. Hence, in this case the data source expression
does not always correspond to the value of the output q, even when restricting to
binary values for input ck. Strengthening the condition, which requires that both of
its sides have equal values, activates this module only when the reset signal rb has
value 1. With these two strengthenings, the data source expression does express the
value of the output q, as intended.

Deriving Module Paths

When given a cell library, all possible module paths have to be specified, otherwise
the simulation will use no delay and therefore might not faithfully model the real
implementation. Hence, a method is desirable to automatically extract all possible
module paths from a functional description.

To determine module paths for a given cell, it is first described as a set of Boolean
equations, using the VeriCell semantics introduced in Chapter 3. This gives for
every signal in the cell an equation computing its next output value from the current
values of the inputs to the primitive driving the wire. Such a primitive might either
be a built-in primitive or a combinational UDP, which then results in a combinational
equation, or a sequential UDP, for which also the current output value is considered

88

Module Paths

as an input, i.e., this is modeled as a feedback loop. Then, again a fixed-point is
constructed to obtain equations that describe the stable next values.

Using these equations, each triple of posedge or negedge, input, and output of
the given cell is considered. Given such a triple, a formula is constructed describing
those states for which the specified input makes a transition matched by the edge
specification and for which the output changes its value. Furthermore, the formula
requires the remaining inputs to remain unchanged, since the influence of the single
input on the output is to be determined.

Formally, for a triple (edge, j, l), reachability of a state ~s;~ip is checked, for which
v ∈ T, (ipj , v) ∈ edge, and λ′ ∈ ρl(λ(δ(~ip[j := v], ~s;~ip))) with λ′ 6= ρl(λ(~s;~ip)).
This reachability check is performed using a symbolic simulator. If no such state is
reachable, then the considered input transitions never have an effect on the currently
considered output, and hence there should not be a module path. Otherwise, if such
a reachable state can be found, then the considered transition of the input can change
the output value and therefore a module path should exist for this configuration. In
that case a symbolic simulation of the specified transitions in the edge specification
is performed for the currently considered output. This approximates the data source
expression for the module path. It is only an approximation, since only two input
vectors are simulated: One where the currently considered input has the previous
value of its transition and one where the currently considered input has the new value
after the transition. Such a transition might occur at any time, therefore the state in
which the symbolic simulation starts is allowed to be arbitrary. This however includes
unreachable states, i.e., states which are never reached during the operation of the
cell. To simplify the data source expression, unreachable states are removed. For
this purpose, the found data source expression is converted into its sum-of-products
representation. Then, reachability is checked for every product (representing a state).
If one of these states is unreachable, then it can never contribute to the value of the
output, and hence it can be removed. The final data source expression is therefore
constructed from the reachable products and the found module path is output to the
user.

Experimental Results

The presented methods for checking feasibility of module paths and for deriving
module paths from functional descriptions were applied to cells taken from the
Nangate Open Cell Library [Nan08] and to cells from proprietary cell libraries
provided by the industrial partner Fenix Design Automation. In the remainder of this
section, the main focus is on the results obtained for the Nangate Open Cell Library,
due to its public availability, and only brief comments are made on the observations
for proprietary cells.

Checking Module Paths

The results of checking the module paths contained in the Nangate Open Cell Library
are shown in Table 5.4. Columns “Cell” and “# MPs” give the name (marked by “(c)”
for combinational cells) and the number of module paths in that cell, respectively;
“Direct” specifies how many module paths hold directly without any strengthening,
“Edge” is the number of consistent module paths when strengthening the edge, “Cond”
is the number of consistent module paths when strengthening the condition, and
“Cond & Edge” is the number of consistent module paths when strengthening both

89

5. Relating Functional and Timing Behavior

Table 5.4: Checking module paths in the Nangate Open Cell Library

Cell # MPs Direct Edge Cond Cond &
Edge Time [s]

AND2 (c) 2 2 2 2 2 0.11
AND3 (c) 3 3 3 3 3 0.12
AND4 (c) 4 4 4 4 4 0.12
AOI21 (c) 5 5 5 5 5 0.13
AOI211 (c) 8 8 8 8 8 0.13
AOI22 (c) 12 12 12 12 12 0.14
AOI221 (c) 15 15 15 15 15 0.16
AOI222 (c) 21 21 21 21 21 0.25
BUF (c) 1 1 1 1 1 0.08
CLKBUF (c) 1 1 1 1 1 0.10
CLKGATE 1 1 1 1 1 0.17
CLKGATETST 1 1 1 1 1 0.19
DFF 2 0 2 0 2 0.20
DFFR 6 0 4 0 6 0.24
DFFS 6 0 4 0 6 0.24
DFFRS 14 4 6 4 14 0.41
DLH 2 1 2 1 2 0.20
DLL 2 1 2 1 2 0.20
FA (c) 18 18 18 18 18 0.14
HA (c) 6 6 6 6 6 0.12
INV (c) 1 1 1 1 1 0.08
MUX2 (c) 6 6 6 6 6 0.13
NAND2 (c) 2 2 2 2 2 0.12
NAND3 (c) 3 3 3 3 3 0.12
NAND4 (c) 4 4 4 4 4 0.12
NOR2 (c) 2 2 2 2 2 0.11
NOR3 (c) 3 3 3 3 3 0.12
NOR4 (c) 4 4 4 4 4 0.13
OAI21 (c) 5 5 5 5 5 0.12
OAI211 (c) 8 8 8 8 8 0.13
OAI22 (c) 12 12 12 12 12 0.14
OAI221 (c) 15 15 15 15 15 0.16
OAI222 (c) 22 22 22 22 22 0.26
OAI33 (c) 19 19 19 19 19 0.26
OR2 (c) 2 2 2 2 2 0.11
OR3 (c) 3 3 3 3 3 0.12
OR4 (c) 4 4 4 4 4 0.13
SDFF 2 0 0 0 2 0.21
SDFFR 6 0 4 0 6 0.35
SDFFS 6 0 4 0 6 0.32
SDFFRS 14 4 6 4 14 0.87
XNOR2 (c) 4 4 4 4 4 0.12
XOR2 (c) 4 4 4 4 4 0.12

90

Module Paths

the condition and the edge. Note that after strengthening either the edge or the
condition, module paths that are readily consistent remain consistent. Also, module
paths that are consistent after strengthening either the edge or the condition remain
consistent after strengthening both. The final column “Time [s]” gives the time in
seconds required for checking all module paths of that cell.

The strengthenings were tried in the order of the columns, i.e., if a module
path was found to be inconsistent with the functional description, first the edge
specification was replaced by an edge that does not contain any X values, and if
this module path was still inconsistent the condition was strengthened, first with the
general edge specification, then with the strengthened edge.

As it can be seen in the results, none of the module paths in the library were found
to be inconsistent with the functional description of the cell when both strengthenings
are used, since the numbers in the column “Cond & Edge” are the same as the total
number of module paths in column “# MPs”. For the combinational cells, marked
with “(c)” in the table, all module paths were directly realizable. In case of the
sequential cells, it was never sufficient to only strengthen the condition. Module
paths that still were inconsistent after strengthening the edge required strengthening
of the condition and of the edge. This can be seen in the results, as the numbers
in the column “Direct” are always equal to the numbers in the column “Cond”. It
should be stressed again that these strengthenings reflect a misconception between
the semantics implied by the Verilog standard and the common perception of Verilog
designers.

A final observation is that the time it took to check all module paths in a cell is
negligible, as shown in the last column of Table 5.4. Hence, this check can easily be
done before doing timing analysis of larger circuits using such a cell library.

For the cells from the proprietary cell libraries, it was also observed that the
time taken to check all module paths was usually small. Only for 2 cells, each
having 224 module paths, checking the module paths took up to 19 seconds. How-
ever, for the proprietary cells quite a number of module paths were inconsistent
with the functional description, even after strengthening. For example, in a cell
containing a scanable flip-flop, the scan logic was forgotten in the data source
expression of a module path, i.e., the scan-enable input was assumed to be al-
ways 0. Another reason for module path inconsistency was the assumption that all
inputs to a cell are binary, i.e., either 0 or 1. An example of this is the module
path (posedge CK => (Q +: !SE&D | SE&SI)), which was specified for
another scanable flip-flop with clock input CK, data input D, scan-enable SE and
scan-input SI. The idea is that when SE is 0 then the value of D will become visible
at the output Q, whereas the output value will be the value of SI if the input SE is 1.
However, in this case a non-pessimistic multiplexer was used to select between D
and SI. This multiplexer also outputs 1 when both D and SI are 1, even when SE
is X. Then however, the data source expression does not describe the behavior of
the circuit, since it evaluates to X whereas the flip-flop outputs a 1. Hence, such a
module path is only consistent with the functional description if one strengthens even
more to allow only binary input values, which can also be done in the implementation.
Another possibility to make the module path consistent is the description of this
non-pessimistic behavior of the multiplexer, by using the data source expression
!SE&D | SE&SI | D&SI.

91

5. Relating Functional and Timing Behavior

Deriving Module Paths

Also the method for the derivation of module paths was applied to the Nangate Open
Cell Library and to proprietary cell libraries provided by the industrial partner Fenix
Design Automation. Here, the inputs were always restricted to be binary, i.e., either 0
or 1. For the combinational cells, it found the expected dependency of all inputs
on the outputs. More interesting are the results for the sequential cells, for which,
as a representative, the output for the cell SDFFRS from the Nangate Open Cell
Library shall be given, describing a scanable flip-flop with active-low reset RN and
active-low set SN (where the data source expressions were modified slightly to be
more readable):

(posedge CK => (Q +: RN & (!SN | !SE&D | SE&SI)));
(posedge CK => (QN +: SN & (!RN | !SE&!D | SE&!SI)));
(negedge RN => (Q +: 0));
(posedge RN => (Q +: !SN));
(negedge RN => (QN +: SN));
(negedge SN => (Q +: RN));
(negedge SN => (QN +: 0));
(posedge SN => (QN +: !RN));

The above output gives all module paths that were found in the cell. In
that output, the module paths on a positive edge of the clock CK for the out-
put Q and the inverted output QN are contained, as expected. Also the module
paths for negative edges of inputs RN and SN on the two outputs are expected,
which describe the reset and set functionality, respectively. However, what at first
seems surprising are the two module paths (posedge RN => (Q +: !SN))
and (posedge SN => (QN +: !RN)), which correspond to the deactivation
of the reset and set signals, respectively. When looking at the functional description
of this cell, one sees that it sets both outputs Q and QN to 0 if both reset and set are
active (i.e., when both RN and SN are 0). When either set or reset is deactivated, then
the respective other signal is still active, and for just one active signal the outputs Q
and QN are the inverses of each other. Hence, these module paths do exist in the
cell, something that could easily be overlooked.

5.3 Summary

This chapter presented techniques to check that also the timing specification of a cell,
given as timing checks and module paths, are consistent with the functional behavior
of the cell.

Section 5.1 considered timing checks, which enforce certain restrictions on
the environment of a cell. It was shown that they have a relation with the order-
independence analysis presented in Chapter 4, since they rule out input changes
occurring simultaneously. Thus, both the order-independence analysis of Verilog
simulation descriptions and that of transistor netlists were extended to only investigate
situations where the timing checks are respected. These extended order-independence
analyses were applied on industrial cell libraries and were able to prove order-
independence for most of them. Therefore, after analyzing order-independence,
the equivalence check presented in Chapter 3 only needs to encode the simulator
order, since it is ensured that non-deterministic behavior does not lead to different
computation results when respecting the constraints imposed by the timing checks.

92

Summary

Furthermore, the experiments showed that an order-dependency can often be removed
by a timing check, i.e., an order-dependency that remains after restricting to the
allowed behavior is a sign that the environment of a cell is not restricted sufficiently.
However, it was also observed that order-dependencies exist that cannot be solved by
adding any number of timing checks.

Section 5.2 described a method for checking module paths against the functional
description of cells contained in a cell library. This method is useful to achieve
timing closure by identifying infeasible module paths. Furthermore, it showed a
technique to extract module paths from a functional description of a cell. This method
complements the first one, which allows to remove module paths, by identifying
module paths that have not been considered before and therefore would lead to no
delay being used during simulation. Both these methods were implemented and it
was shown that they are applicable to industrial cell libraries.

Using symbolic execution for detecting paths has been studied in various domains,
see for example [DKMW94, DB95]. The main goal of these studies has been to
make the calculation of delays or worst case execution times more precise. For
example, in [DKMW94] an accurate timing analysis for combinational circuits is
introduced. There, timing information is modeled as distributed delays, i.e., a delay
is assigned to every gate computing a logic function. This is different from the
module paths, which only provide a delay value for a complete path from some input
to an output, possibly traversing multiple logic gates. The goal of [DKMW94] is to
compute the maximal delay that can occur in the combinational logic which is not a
false path, i.e., that is functionally realizable.

In [DB95], symbolic simulation is used to verify the timing of FSM models of
sequential circuits. For every such FSM, setup and hold constraints are imposed
on the input signals and distributed delays are specified for the output signals. The
goal of this work is to detect timing violations, which occur when the distributed
delays cause transitions to occur during the setup/hold times, for some fixed clocking
scheme. This requires some extra assumptions on the structure of circuits to make
the timing verification feasible. Using these assumptions, the work in [DB95] then
traces transitions through the circuit, which is similar to the presented derivation of
existing module paths in a cell.

The work of [PBE+09] also observed that module paths / timing arcs describe
both functional and timing behavior. This property of module paths is used there to
investigate the problem of crosstalk, i.e., physically close wires affecting each other.
The crosstalk analysis assigns Boolean variables to all module paths indicating whether
they are active or not. Then, Boolean constraints are added that describe functional
dependencies between different module paths, e.g., a module path can only be active
if a module path in the preceding cell is active. Finally, these constraints are solved
by a combination of a SAT solver and a timing solver. As can already be observed
from the above summary, this crosstalk analysis crucially depends on all possible
module paths of a cell to be listed and to accurately reflect the functionality of the
cell. Otherwise, if module paths are missing or incorrect, the analysis of [PBE+09]
does not consider the actual behavior. Hence, the correspondence of the module
paths and the functional behavior, as was investigated in Section 5.2, is a precondition
for such a technique to work.

93

Chapter 6
Productivity Analysis by

Context-Sensitive Termination

Nowadays, computations are not performed in batch anymore, where one would first
provide all required input values from which then some output values are computed
eventually. Instead, working with digital devices has become much more interactive,
by steadily providing new inputs from which output is computed over and over again.
In the setting where all input values are provided once at the beginning, termination
is a desired property. It guarantees that, regardless of the input values, some output
values are computed after a finite amount of time. However, in the latter setting,
where sequences of input values are provided, termination, deadlock, and livelock
are considered harmful, as any of them would mean that no further values can be
computed and the computation is stuck. Instead, it should be the case that always
eventually a next output value is computed. This property is known as productivity
and shall be studied in this chapter.

Productivity is the property that a given set of computation rules computes a
desired infinite object, such as a stream of output values. A stream can be seen
as a mapping from the natural numbers to some value domain, which can also be
understood as describing an infinite list. However, also for other structures infinite
objects are of interest, such as for example the Stern-Brocot Tree [Ste58, Bro61]
(see [Hay00] for a detailed description of its history), which is an infinite search
tree containing all positive rational numbers. Also, mixtures of finite and infinite
structures can occur, a prominent example being lists in the programming language
Haskell [Pey03], which can be finite (by ending with a sentinel “[]”) or can go on
forever. For this reason, the techniques for proving productivity presented in this
chapter are not restricted to streams, instead they are also applicable to these more
general structures.

Also for hardware cells it is desired that always a next stable value is eventually
computed. Thus, techniques proving productivity can be used to assert this, which
was implicitly assumed in the previous chapters. However, the input values of cells
are often not specified and are left up to the concrete environment in which a cell is
being used. To overcome this problem, the concrete sequences of input values are
abstracted away by allowing all possible sequences. Thereby, one can guarantee that
the cell computes stable values, regardless of the environment in which it is being
used.

95

6. Productivity Analysis by Context-Sensitive Termination

In Section 6.1 the problem of productivity is stated formally. For this purpose,
Term Rewrite Systems (TRS) [BN98, Ter03] are being used, which describe rules
to perform computations. Certain restrictions on the term rewrite systems have to
be imposed to make the analysis of productivity feasible. These restrictions are
combined in the definition of proper specifications. In the literature, only orthogonal
specifications have been considered. This however conflicts with the idea of allowing
all possible input sequences, since orthogonality requires the computations to be
deterministic. Therefore, the restriction to orthogonal specifications is ultimately
removed. Section 6.2, which is based on [ZR10a], first considers orthogonal spec-
ifications and presents a technique to prove their productivity by context-sensitive
termination. Then in Section 6.3, which is based on [Raf11], the previous results are
extended by removing the restriction to orthogonal, i.e., deterministic, specifications.
This allows to prove stabilization of hardware cells, as illustrated in Section 6.4.

6.1 Term Rewriting, Specifications, and Productivity

Term Rewriting [BN98, Ter03] is a theoretical model of computation, where steps of
a computation are made by successively applying rules. These rules are given as
pairs of terms, which are syntactic constructions consisting of constants and function
symbols, together with variables that can be substituted by other terms. Even though
it is a rather simple model, it is both Turing complete and still easily understandable,
whereas for Turing machines [Tur36] the latter is arguably not the case.

To describe a Term Rewrite System (TRS), first the notion of (finite) term is
formalized. A term is either a variable x from some countably infinite set V , or it
is inductively constructed using a function symbol f from some given set Σ (called
signature). For every function symbol f , the function ar assigns an arity to it (denoted
ar(f) = n, which informally speaking is the number of arguments that f requires).
Then, a term is constructed by applying f to ar(f) = n terms t1, . . . , tn to form the
term f(t1, . . . , tn). Note that n can also be 0, in that case f is also called a constant.
The set T (Σ,V) denotes the smallest set such that it contains all terms constructed
according to the above rules. Given a non-variable term t = f(t1, . . . , tn), the root
symbol of that term is denoted root(t) = f .

Terms can be interpreted as trees, where the nodes are labeled with either a
variable or a function symbol and the children are the arguments of the function
symbol. A subterm of a term is identified by a word from N∗ that indicates the
path traversed in the tree to arrive at the subterm. Not all words of N∗ identify a
subterm, since function symbols have fixed arities and also variables do not have any
arguments. Hence, the set Pos(t) ⊆ N∗ denotes the set of all positions occurring in a
term t. This set is defined as Pos(x) = {ε} for all x ∈ V and Pos(f(t1, . . . , tn)) =
{ε} ∪ {i.p | 1 ≤ i ≤ ar(f), p ∈ Pos(ti)} for a term f(t1, . . . , tn) ∈ T (Σ,V). Here,
ε denotes the empty word. The subterm t|p identified by some position p ∈ Pos(t)
is defined as t|ε = t and f(t1, . . . , tn)|i.p = ti|p. Positions can be partially ordered,
where for p, p′ ∈ Pos(t), p ≤ p′ if p′ = p.p̂ for some p̂ ∈ Pos(t|p). Otherwise, if
neither p ≤ p′ nor p′ ≤ p, p and p′ are independent, denoted p ‖ p′. Subtraction of
positions is defined for p, p′ ∈ Pos(t) with p ≤ p′ as p′−p = p̂ if p′ = p.p̂. Replacing
a subterm t|p by another term t′ is denoted t[t′]p and is defined as t[t′]ε = t′ and
f(t1, . . . , tn)[t′]i.p = f(t1, . . . , ti[t′]p, . . . , tn). Finally, a ground term is a term
that does not contain any variables, which is a term t ∈ T (Σ, ∅), also denoted as
t ∈ T (Σ).

96

Term Rewriting, Specifications, and Productivity

To replace variables by other terms, substitutions are used. A substitution is a
mapping σ : V → T (Σ,V), which assigns every variable a term that it is replaced with.
Often, a variable is replaced by itself, i.e., no effective change is made to a variable.
If the domain dom(σ) = {v ∈ V | σ(v) 6= v} of a substitution σ is finite, it will be
denoted σ = {x1 := t1, . . . , xk := tk} with pairwise disjoint variables xi ∈ V and
ti ∈ T (Σ,V) for i = 1, . . . , k, which defines the substitution σ(xi) = ti and σ(y) = y
for all y /∈ {x1, . . . , xk}. Application of a substitution σ to a term t is denoted tσ
and defined as xσ = σ(x) for all x ∈ V and f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ) for all
f(t1, . . . , tn) ∈ T (Σ,V). A term t′ is matched by another term t if a substitution σ
exists such that tσ = t′.

Terms can also be sorted. In that case, every function symbol is not assigned
an arity, but a type. Let S = {s1, . . . , sk} be a set of sorts and let V =

⊎k
j=1 Vsj

with all Vsi , Vsj pairwise disjoint. Then, ty(f) = sn1
1 × · · · × s

nk
k → sj is the

function assigning the type to every function symbol f ∈ Σ. This means that f
requires n1 argument terms of sort s1, n2 arguments of sort s2, etc. A term is
of sort sj , if it either is a variable x ∈ Vsj , or it is a term f(t1, . . . , tn) with
ty(f) = sn1

1 × · · · × s
nk
k → sj . In the latter case, the function symbol f is also

said to be of sort sj . Having sorts also allows to partition the signature Σ into
pairwise disjoint sets Σsj , where f ∈ Σsj iff f is of sort sj . Furthermore, a function
symbol f with type ty(f) = sn1

1 × · · · × s
nk
k → sj is assigned arities arsj (f) = nj

for all 1 ≤ j ≤ k. The unsorted arity ar(f) is defined as ar(f) =
∑k
j=1 arsj (f).

A term rewrite system (TRS) is a collection R ⊆ T (Σ,V)2 of pairs of terms.
Instead of (`, r) ∈ R, the notation ` → r ∈ R is used. This already indicates the
direction in which such rules are applied. It is required that for a rule `→ r ∈ R,
the term ` is not a variable and all variables occurring in r are also occurring
in `. A term t ∈ T (Σ,V) can be rewritten to a term t′ with rule ` → r ∈ R at
position p ∈ Pos(t), denoted t →`→r,p t

′, if t|p = `σ for some substitution σ and
t′ = t[rσ]p. The term t|p is also called a redex. Note that the subscript `→ r can
be replaced by R if the concrete rule is not of importance and that subscripts can be
left out if the rule or the position are not relevant. If a term t cannot be rewritten,
then t is said to be in normal form, which is also denoted t 6→.

A term rewrite system R is called left-linear if for all ` → r ∈ R the term `
is linear, i.e., no variable x ∈ V occurs more than once in `. Formally, this can
be expressed by requiring that for all positions p, p′ ∈ Pos(`), `|p = `|p′ ∈ V =⇒
p = p′. The TRS R is called overlapping if for some rules `1 → r1, `2 → r2 ∈ R,
position p1 ∈ Pos(`1) such that `1|p1 /∈ V , and substitutions σ1, σ2 it holds that
`1|p1σ1 = `2σ2 and p1 6= ε if `1 → r1 = `2 → r2. Otherwise, R is called
non-overlapping. A TRS R is called orthogonal if it is both left-linear and non-
overlapping, otherwise R is called non-orthogonal. Finally, R is called terminating
if no infinite reduction sequence t1 →R t2 →R . . . exists.

The set of constructors C of a TRS R is the set of symbols that do not occur at
the root of any rule’s left-hand side, i.e., C = Σ \ {root(`) | `→ r ∈ R}. The set of
defined symbols Σdef is the set of all symbols occurring as root of left-hand sides,
i.e., Σdef = {root(`) | `→ r ∈ R} = Σ \ C.

Context-Sensitive Rewriting

The variant of rewriting with the restriction that rewriting inside certain arguments
of certain symbols is disallowed is called context-sensitive rewriting [Luc98, Luc02].

97

6. Productivity Analysis by Context-Sensitive Termination

In context-sensitive rewriting, for every symbol f the set µ(f) of arguments of f is
specified inside which rewriting is allowed. More precisely, µ-rewriting µ→R with
respect to a TRS R is defined inductively by

• if `→ r ∈ R and σ is a substitution, then `σ µ→R rσ;

• if i ∈ µ(f) and ti
µ→R t′i and t′j = tj for all j 6= i, then f(t1, . . . , tn)

µ→R
f(t′1, . . . , t′n).

Such a replacement map µ can also be used to partition the set of positions of a
term into the allowed and blocked positions. For a term t ∈ T (Σ,V), the allowed
positions of t are defined as Posµ(t) = {ε} ∪ {i.p | i ∈ µ(root(t)), p ∈ Posµ(t|i)}
and the set of blocked positions of t as blockedµ(t) = Pos(t) \ Posµ(t). Context-
sensitive rewriting then is the restriction of the rewrite relation to those redexes on
positions from Posµ, i.e., t

µ→`→r,p t
′ iff t→`→r,p t

′ and p ∈ Posµ(t). A TRS R
over a signature Σ, together with some replacement map µ, is called µ-terminating
iff no infinite µ→R-chain exists. Proving µ-termination has received quite some
attention in the recent past and strong tools, such as for example AProVE [GSKT06]
and µ-Term [L+], exist for it. These tools combine approaches to transform µ-
termination into standard termination problems [GM04, Luc06] and approaches that
adapt their techniques (such as dependency pairs [AG00]) by taking µ-rewriting into
account [AGL06, AEF+08].

Infinite Terms

So far, only finite terms have been considered. However, in an infinite computation,
infinite terms can occur in the limit. Intuitively, a term (both finite and infinite)
is defined by saying which symbol is at which position. Here, a position p ∈ N∗
is again a finite sequence of natural numbers. In order to be a proper term, some
requirements have to be satisfied as indicated in the following definition. This
definition is an extension of the definition in [Zan08] to sorted terms, which includes
the unsorted case by just considering a single sort. In the below definition, the
symbol ⊥ represents undefined.

Definition 6.1.1. A (possibly infinite) term over a sorted signature Σ =
⊎k
j=1 Σsj is

defined to be a map t : N∗ → Σ ∪ {⊥} such that

• the root t(ε) of the term t is a function symbol from Σ, so t(ε) ∈ Σ, and

• for all p ∈ N∗ and all i ∈ N,

t(p.i) ∈ Σsj ⇐⇒ t(p) ∈ Σ ∧ ty(t(p)) = sn1
1 × · · · × s

nk
k → so

∧
∑j−1
r=1 nr < i ≤

∑j
r=1 nr.

So t(p.i) = ⊥ for all p, i not covered by the above two cases.
The set of all ground terms over Σ is denoted T ∞(Σ).

An alternative equivalent definition of T ∞(Σ) can be given based on co-algebra.
Another alternative uses metric completion, where infinite terms are limits of finite
terms. However, for the results in this thesis these alternatives are not needed.

A position p ∈ N∗ satisfying t(p) ∈ Σsj is called a position of t of sort sj . The
depth of a position p ∈ N∗ is the length of p considered as a string. The usual notion

98

Term Rewriting, Specifications, and Productivity

of finite term coincides with a term in this setting having finitely many positions,
that is, t(p) = ⊥ for all but finitely many p.

Also for a symbol f ∈ Σ with ty(f) = sn1
1 × · · · × snkk → so and terms

t1,1, . . . , t1,n1 , t2,1 . . . , tk,nk ∈ T ∞(Σ) where ti,j is of sort si, the term t with
t(ε) = f , t(i.p) = tj(p) for 1 ≤ j ≤ k such that

∑j−1
r=1 nr < i ≤

∑j
r=1 nr, and

t(i.p) = ⊥ otherwise is denoted t = f(t1,1, . . . , t1,n1 , t2,1, . . . , tk,nk).
In this thesis, only infinite terms constructed over a set C of constructors and

a set D of data (disjoint from C) will be considered. Hence, those terms will be
two-sorted1: a sort s for the (infinite) terms to be defined (mnemonic: structure),
and a sort d for the data. Thus, every f ∈ C is assumed to be of type dm × sn → s
for some m,n ∈ N, where ard(f) = m, ars(f) = n, and ar(f) = ard(f) + ars(f).

In case ars(f) > 0 for all f ∈ C then no finite terms exist. This holds for example
for streams. In case ard(f) = 0 for all f ∈ C then no position of sort D exist, and
terms do not depend on D.

Example 6.1.2 (Streams). Let D be an arbitrary given non-empty data set, and let
C = {:}, with ard(:) = ars(:) = 1. Then T ∞(C] D) coincides with the usual
notion of streams over D, being functions from N to D. More precisely, a function
f : N→ D gives rise to an infinite term t defined by t(2n) = : and t(2n.1) = f(n)
for every n ∈ N, and t(w) = ⊥ for all other strings w ∈ N∗. Conversely, every
t : N∗ → C] D satisfying the requirements of the definition of a term is of this
shape. Note that if |D| = 1, then there exists only one such term.

In case D is finite, an alternative approach is not to consider the binary construc-
tor ‘:’, but unary constructors for every element of D. In this approach D does not
play a role and is irrelevant.

Example 6.1.3 (Finite and infinite lists). Let D be an arbitrary given non-empty
data set, and let C = {:, nil}, with ard(:) = ars(:) = 1 and ard(nil) = ars(nil) = 0.
Then T ∞(C] D) covers both the streams over D as in Example 6.1.2 and the usual
(finite) lists. As in Example 6.1.2, a function f : N → D gives rise to an infinite
term t defined by t(2n) = : and t(2n.1) = f(n) for every n ∈ N, and t(w) = ⊥
for all other strings w ∈ N∗. The only way nil can occur is where t(2n) = nil for
some n ≥ 0, t(2i) = : and t(2i.1) ∈ D for every i < n, and t(w) = ⊥ for all other
strings w ∈ N∗, in this way representing a finite list of length n. Conversely, every
t : N∗ → C] D satisfying the requirements of the definition of a term is of one
of these two shapes. In the literature this combination of finite and infinite lists is
sometimes called lazy lists.

Example 6.1.4 (Binary trees). Several variants of infinite binary trees fit in the
format. A few examples are the following:

• Infinite binary trees with nodes labeled by D are obtained by choosing C = {b}
with ard(b) = 1 and ars(b) = 2. In Example 6.2.7 the nodes are labeled by
D ×D, obtained by choosing ard(b) = 2 instead.

• The combination of finite and infinite binary trees with nodes labeled by
D is obtained by choosing C = {b, nil} with ard(b) = 1, ars(b) = 2 and
ard(nil) = ars(nil) = 0. In Example 6.2.2 the nodes are unlabeled, obtained
by choosing ard(b) = 0 instead.

1In [Isi08, Isi10] an arbitrary many-sorted setting is proposed. The presented approaches easily
generalize to a more general many-sorted setting, but for notational convenience only the restriction to the
two-sorted setting is considered.

99

6. Productivity Analysis by Context-Sensitive Termination

Specifications

A specification gives the symbols and rules that shall be used to compute an intended
infinite element of T ∞(C]D). As stated above, the two sorts s and d are considered.
For the sort d, the data elements D are assumed to be ground normal forms of a
terminating TRS Rd over a data signature Σd. Note that this implies that all symbols
in Σd have types of the form dm → d with m ≥ 0. The real specification is given
by the TRS Rs, containing rewrite rules of a special shape and where both sides
have sort s. These rules are over the signature Σd] Σs, where the signature Σs
contains all constructors C and additionally some defined symbols. Although the
goal is to define elements of T ∞(C] D), which are usually infinite, all terms in the
specification are finite, and rewriting always refers to rewriting of finite terms. It is
assumed that all terms are well-sorted, that is, the sort of a term used as argument
of a function symbol is the one expected by the type of the function symbol.

The restrictions imposed on specifications are given below in the definition of
proper specifications.

Definition 6.1.5. A proper specification is a tuple S = (Σd,Σs, C,Rd,Rs), where
Σd is the signature of data symbols, each of type dm → d (then the data arity of such
a symbol g is defined to be ard(g) = m), Σs is the signature of structure symbols f ,
which have types of the shape dm × sn → s (and data arity ard(f) = m, structure
arity ars(f) = n), C ⊆ Σs is a set of constructors, Rd is a terminating TRS over
the signature Σd, and Rs is a TRS containing rules f(u1, . . . , um, t1, . . . , tn)→ t
satisfying the following properties:

• f ∈ Σs \ C with ard(f) = m, ars(f) = n,

• f(u1, . . . , um, t1, . . . , tn) is a well-sorted linear term,

• t is a well-sorted term of sort s, and

• for all 1 ≤ i ≤ n and for all p ∈ Pos(ti) such that ti|p is not a variable and
root(ti|p) ∈ Σs, it holds that root(ti|p′) /∈ C for all p′ < p (i.e., no structure
symbol is below a constructor).

Furthermore, Rs is required to be exhaustive, meaning that for every defined
function symbol f ∈ Σs \ C with ard(f) = m, ars(f) = n, ground normal forms
u1, . . . , um ∈ T (Σd), and ground terms t1, . . . , tn ∈ T (Σd ∪Σs) such that for every
1 ≤ i ≤ n, ti = ci(u′1, . . . , u′k, t′1, . . . , t′l) with u′j ∈ T (Σd) being a normal form for
1 ≤ j ≤ k = ard(ci) and ci ∈ C, there exists at least one rule `→ r ∈ Rs such that
` matches the term f(u1, . . . , um, t1, . . . , tn).

A proper specification S is called orthogonal, if Rd∪Rs is orthogonal, otherwise
it is called non-orthogonal.

The above definition coincides with the definition of proper specifications given
in [ZR10a] for orthogonal proper specifications2, which in turn are a generalization
of proper stream specifications as given in [Zan09, ZR10b]. Fixing C,D, typically

2To see this, one should observe that a defined symbol cannot occur on a non-root position of a left-
hand side. This holds since otherwise the innermost such symbol would have variables and constructors as
structure arguments and data arguments that do not unify with any of the data rules (due to orthogonality),
which therefore are normal forms and can be instantiated to ground normal forms. Thus, exhaustiveness
would require a left-hand side to match this term when instantiating all structure variables with some
terms having a constructor root, which would give a contradiction to non-overlappingness.

100

Term Rewriting, Specifications, and Productivity

a proper specification will be given by Rd,Rs in which Σd,Σs and the arities are
left implicit since they are implied by the terms occurring in Rd,Rs. If a proper
specification is only given by Rs, then Rd is assumed to be empty.

Productivity

A specification is called productive for a given ground term of sort s if every finite
part of the intended resulting infinite terms can be computed in finitely many steps.
However, it has been left unclear what computations have to be considered. In the
following, two different notions of productivity will be presented: weak productivity
and strong productivity. Both of these notions were already defined in [End10] and
are akin to weak and strong normalization in the realm of termination.

Weak productivity requires the existence of a reduction to a constructor normal
form (which can be an infinite term). Thus, weak productivity is equivalent to the
following.

Definition 6.1.6. A proper specification (Σd,Σs, C, Rd, Rs) is weakly productive for
a ground term t of sort s if for every k ∈ N there is a reduction t →∗Rd∪Rs t

′ for
which every symbol of sort s in t′ on depth less than k is in C.

To define strong productivity, the notion of outermost-fair rewrite sequences has
to be introduced first.

Definition 6.1.7.

• A redex is called outermost iff it is not a strict subterm of another redex.

• A redex t|p = `σ is said to survive a reduction step t→`′→r′,q t
′ if p ‖ q, or

if p < q and t′ = t[`σ′]p for some substitution σ′ (i.e., the same rule can still
be applied at p).

• A rewrite sequence (reduction) is called outermost-fair, iff there is no outermost
redex that survives as an outermost redex infinitely long.

• A rewrite sequence (reduction) is called maximal, iff it is infinite or ends in a
normal form (a term that cannot be rewritten further).

This allows to define the notion of strong productivity, as in [End10]. Here, it is
again noted that a constructor normal form can be characterized by having, for every
d ∈ N, only constructors on depth d or less.

Definition 6.1.8. A proper specification (Σd,Σs, C, Rd, Rs) is called strongly pro-
ductive iff for every ground term t of sort s all maximal outermost-fair rewrite
sequences starting in t end in (i.e., have as limit for infinite sequences) a constructor
normal form.

Corollary 6.1.9. A proper specification (Σd,Σs, C, Rd, Rs) is strongly productive
iff for all k ∈ N and all maximal outermost-fair rewrite sequences t0 →Rd∪Rs
t1 →Rd∪Rs . . . starting in a ground term t0 of sort s, there exists j ∈ N such that
root(tj |p) ∈ C for all positions p ∈ Pos(tj) of depth k or less.

In general, weak and strong productivity differ, since only requiring the existence
of a reduction to a normal form (or to a constructor prefix of arbitrary depth) does
not guarantee a computation to reach it. This is the case because of the possible

101

6. Productivity Analysis by Context-Sensitive Termination

non-deterministic choices that exist in non-orthogonal proper specifications. The
following example illustrates this fact.

Example 6.1.10. Consider two proper specifications with the TRSs Rs and R′s
consisting of the following rules:

Rs : maybe → 0 : maybe R′s : random → 0 : random
maybe → maybe random → 1 : random

Both specifications are not orthogonal, since both the rules for maybe and those
for random overlap. The specification containing Rs is not strongly productive, since
it admits the infinite outermost-fair reduction maybe → maybe → . . . that never
produces any constructors. However, there exists an infinite reduction producing
infinitely many constructors starting in the term maybe, namely maybe → 0 :
maybe→ 0 : 0 : maybe→ Therefore, this specification is weakly productive.

For the specification containing the TRS R′s, i.e., the rules for random, the
specification is strongly productive (and therefore also weakly productive), since no
matter what rule of random is chosen, an element of the stream is created.

However, for the case of orthogonal proper specifications, weak and strong
productivity coincide, as was shown in [End10]. Hence, for orthogonal proper
specifications, it is sufficient to only speak about productivity.

An important consequence of productivity of an orthogonal specification is
well-definedness: Every term admits a unique interpretation as an infinite term.
Intuitively, existence follows from taking the limit of the process of computing a
constructor on every level, and reduce data terms to normal form. Uniqueness
follows form orthogonality. An investigation of well-definedness of orthogonal stream
specifications has been performed in [Zan09].

As in [ZR10b], productivity is required for all finite ground terms of sort s rather
than a single one. This is different from [EGH+07, EGH08] where productivity of
an initial start-term is investigated. The following two propositions state that when
considering all terms, reaching a constructor on every arbitrary depth is equivalent to
reaching a constructor at the root. As the latter characterizations are simpler, they form
the basis of all further observations on productivity in this thesis. In [Isi08, Isi10]
productivity is also required for infinite terms, being a stronger restriction than
considering all finite terms. This will be illustrated in Example 6.2.5.

Proposition 6.1.11. A proper specification (Σd,Σs, C,Rd,Rs) is weakly productive
if and only if every ground term t of sort s admits a reduction t →∗Rd∪Rs t

′ for
which root(t′) ∈ C.

Proof. The “only if” direction of the proposition is obvious. For the “if” direction,
the following claim is proved by induction on k.

Claim: Let k ∈ N, and for all ground terms t of sort s, t →∗Rd∪Rs t
′

with root(t′) ∈ C. Then t →∗Rd∪Rs t
′′ for a term t′′ in which every

symbol of sort s on depth less than k is in C.

If k = 1, then the claim directly holds by choosing t′′ = t′.
Otherwise, t →∗Rd∪Rs t

′ = c(u1, . . . , um, t1, . . . , tn) with root(t′) = c ∈ C,
with c of type dm × sn → s. Applying the induction hypothesis to t1, . . . , tn yields

102

Productivity of Orthogonal Specifications

ti →∗Rd∪Rs t
′′
i , where all symbols of sort s in t′′i on depth < k − 1 are from C, for

i = 1, . . . , n. Now

t→∗Rd∪Rs f(u1, . . . , um, t1, . . . , tn)→∗Rd∪Rs c(u1, . . . , um, t
′′
1 , . . . , t

′′
n)

proves the claim.

A similar characterization also exists for strong productivity. Of course, for
strong productivity the existence of a reduction to a term having a constructor as
root symbol is not sufficient. Instead, all maximal outermost-fair reductions have to
be considered.

Proposition 6.1.12. A proper specification (Σd,Σs, C,Rd,Rs) is strongly productive,
iff for every maximal outermost-fair reduction t0 →Rd∪Rs t1 →Rd∪Rs . . . with t0
being a ground term of sort s there exists k ∈ N such that root(tk) ∈ C.

Proof. The “only if”-direction is trivial. For the “if”-direction, it is shown inductively
that for every depth z ∈ N and every maximal outermost-fair reduction ρ ≡ t0 →p0

t1 →p1 . . . there exists an index j ∈ N such that for all positions p ∈ Pos(tj) of
sort s with |p| < z, root(tj |p) ∈ C.

For z = 0, the index j can be set to 0, thus here the claim trivially holds. Other-
wise, an index k ∈ N exists such that root(tk) ∈ C. Let tk = c(u′1, . . . , u′m, t′1, . . . , t′n)
with c ∈ C. Because c is a constructor, pl > ε for all l ≥ k. Define sets
Pr = {pl − r | l ≥ k, pl ≥ r} for 1 ≤ r ≤ n (i.e., the positions in the re-
maining maximal outermost-fair reduction that occur in argument r). Then, for
1 ≤ r ≤ n and Pr = {pr0, pr1, . . . } the reduction t′r = tr,0 →pr0

tr,1 →pr1
. . .

is also a maximal outermost-fair reduction, otherwise an infinitely long surviv-
ing outermost redex would also be an infinitely long surviving outermost redex
of the reduction ρ. The induction hypothesis for z − 1 yields indices jr for ev-
ery 1 ≤ r ≤ n such that root(tr,jr |p) ∈ C for all positions p ∈ Pos(tr,jr) with
|p| < z − 1. Since all these reductions were taken from the original reduction,
define j = k +

∑n
i=1 ji, which shows that the initial reduction has the form

t0 →∗ tk = c(u′1, . . . , u′m, t′1, . . . , t′n) →∗ c(u′′1 , . . . , u′′m, t′′1 , . . . , t′′n) = tj , where
tr,jr →∗ t′′r for every 1 ≤ r ≤ n. Since there are only constructors in tr,jr for
depths < z − 1, these constructors are still present in t′′r . This proves the propo-
sition, since c ∈ C and thus for all positions p ∈ Pos(tj) of sort s with |p| < z,
root(tj |p) ∈ C.

6.2 Productivity of Orthogonal Specifications

This section presents techniques that can be used to prove productivity of orthogonal
proper specifications, as defined in the previous Section 6.1. Such specifications
can be used to describe computations that are deterministic, hence they must be
completely specified. As discussed in the previous section, computations are specified
by a number of rewrite rules that are interpreted as a lazy functional program. Then
productivity can be characterized and investigated as a property of term rewriting,
as was investigated before in [EGH+07, Isi08, EGH08, ZR10b, Isi10]. The work
presented in this section is based on [ZR10a].

Streams, as was shown in Example 6.1.2, can be seen as infinite terms. Even
when restricting to data structures representing the result of a computation, it is
natural not to restrict to streams. In case the computation possibly ends, then the

103

6. Productivity Analysis by Context-Sensitive Termination

result is not a stream but a finite list, and when parallelism is considered, naturally
infinite trees come in. Hence, this section develops techniques for automatically
proving productivity of specifications in a wide range of infinite data structures,
including streams, the combination with finite lists, and several kinds of infinite trees.
Earlier techniques specifically for stream specifications were given in [EGH+07,
EGH08, ZR10b]. A key idea of the presented approach is to prove productivity by
proving termination of context-sensitive rewriting [Luc98, Luc02], that is, rewriting
in which rewriting is disallowed inside particular arguments of particular symbols.
As strong tools like AProVE [GSKT06] and µ-Term [L+] have been developed to
prove termination of context-sensitive rewriting automatically, the power of these
tools can now be exploited to prove productivity automatically. As the underlying
technique is completely different from the technique of [EGH+07, EGH08], it is
expected that both approaches have their own merits. Indeed, there are examples
where the technique of [EGH+07, EGH08] fails whereas the presented technique
based on context-sensitive termination succeeds. The comparison the other way
around is hard to make as the technique of [EGH+07, EGH08] only applies for
proving productivity for a single ground term, whereas here productivity is proven
for all ground terms.

The first technique to prove productivity of an orthogonal proper specification is
given below. It is a simple syntactic criterion, which can also be seen as a particular
case of the analysis of friendly nesting specifications as given in [EGH08].

Theorem 6.2.1. Let S = (Σd,Σs, C,Rd,Rs) be an orthogonal proper specification
in which for every `→ r ∈ Rs the term r is not a variable and root(r) ∈ C. Then
S is productive.

Proof. According to Proposition 6.1.11 for every ground term t of sort s it suffices
to prove that t →∗Rd∪Rs t

′ for a term t′ satisfying root(t′) ∈ C. This is done by
induction on t. Let t = f(u1, . . . , um, t1, . . . , tn) for ard(f) = m, ars(f) = n. If
f ∈ C, nothing has to be done. So assume that f ∈ Σs \ C. As they are ground
terms of sort d, all ui rewrite to elements of D. By the induction hypothesis, all ti
rewrite to terms with root in C, and in which the arguments of sort d rewrite to
elements of D. Now by the exhaustiveness requirement of properness, the resulting
term matches with the left-hand side of a rule from Rs. Due to the assumption, by
rewriting according to this rule a term is obtained of which the root is in C.

This theorem is sufficient to prove productivity of several specifications. As an
example, productivity of tree specifications is considered below.

Example 6.2.2. Choose C = {b, nil} with ars(b) = 2 and ard(b) = ard(nil) =
ars(nil) = 0 representing the combination of finite and infinite unlabeled binary trees.
Then

t → b(b(nil, t), t)

is an orthogonal proper specification that is productive due to Theorem 6.2.1. The
symbol t represents an infinite unlabeled tree in which the number of nodes on
depth n is exactly the n-th Fibonacci number.

However, the syntactic criterion of Theorem 6.2.1 is rather weak, meaning that
numerous productive specifications will not be identified as such. Therefore, in the
following, a technique based on context-sensitive termination is presented.

104

Productivity of Orthogonal Specifications

Proving Productivity by Context-Sensitive Termination

As intended for generating infinite terms, the orthogonal TRS Rd ∪Rs will never
be terminating. However, when disallowing rewriting inside arguments of sort s of
constructor symbols, it may be terminating. To disallow rewriting, context-sensitive
rewriting makes use of a replacement map. The specific replacement map used for
proving productivity is defined next.

Definition 6.2.3. Let S = (Σd,Σs, C,Rd,Rs) be an orthogonal proper specification.
The replacement map µS is defined as µS(f) = {1, . . . , ard(f)} for all f ∈ Σd ∪ C
and µS(f) = {1, . . . , ard(f) + ars(f)} for all f ∈ Σs \ C.

The main theorem shows that if µS-termination holds, then the specification
is productive. In the following, it is allowed to leave out the subscript S if the
specification is clear from the context.

Theorem 6.2.4. Let (Σd,Σs, C,Rd,Rs) be an orthogonal proper specification for
which Rd ∪Rs is µS -terminating. Then the specification is productive.

Proof. Define a ground µ-normal form to be a ground term that can not be rewritten
by µ-rewriting. The following claim is proven by induction on t:

Claim: If t is a ground µ-normal form of sort s, then root(t) ∈ C.

Assume root(t) 6∈ C. Then t = f(u1, . . . , um, t1, . . . , tn) for f ∈ Σs, u1, . . . , um
are of sort d, and t1, . . . , tn are of sort s. Since µ(f) = {1, . . . , n+m}, they are all
ground µ-normal forms. So u1, . . . , um ∈ D. By the induction hypothesis all ti have
their roots in C. Since ti is a µ-normal form and the arguments of sort d are in µ(c)
for every c ∈ C, the arguments of ti of sort d are all in D. By the exhaustiveness
requirement, a rule is applicable to t on the root level, so satisfies the restriction of
µ-rewriting, contradicting the assumption that t is a µ-normal form. This concludes
the proof of the claim.

According to Proposition 6.1.11, for productivity it has to be proven that every
ground term t of sort s rewrites to a term having its root in C. Apply µ-rewriting
on t as long as possible. Due to µ-termination this will end in a term on which
µ-rewriting is not possible, so a ground µ-normal form. Due to the claim this ground
µ-normal form has its root in C.

This theorem allows to prove productivity of examples that have more involved
definitions. The following examples shall illustrate this.

Example 6.2.5. Consider the stream specification given by the TRS Rs:

ones → 1 : ones f(0 : xs) → f(xs)
f(1 : xs) → 1 : f(xs)

Productivity for all ground terms including f(ones) follows from Theorem 6.2.4:
Entering this rewrite system in the tool AProVE [GSKT06] or µ-Term [L+] together
with the context-sensitivity information that rewriting is disallowed in the second
argument of ‘:’ fully automatically yields a proof of context-sensitive termination.

In this specification f is the stream function that removes all zeros. So productivity
depends on the fact that the stream of all zeros does not occur as the interpretation
of a subterm of any ground term in this specification. For instance, by adding the

105

6. Productivity Analysis by Context-Sensitive Termination

rule zeroes → 0 : zeroes the specification is not productive any more as f(zeroes)
does not rewrite to a term having a constructor as its root.

This also shows the difference between the requirement of productivity of all
finite ground terms as is used in this thesis and the requirement in [Isi08, Isi10]
of productivity of all terms, including infinite terms. There this example is not
productive on the infinite term representing the stream of all zeros. Finally, it should
be mentioned that the technique from [EGH08] fails to prove productivity for f(ones),
since the specification is not data obliviously productive, i.e., it is not productive
when identifying all data elements (in this case 0 and 1) with a single data element •.

Example 6.2.6. Below, the sorted stream of Hamming numbers is specified, which
are all positive natural numbers that are not divisible by other prime numbers than
2, 3 and 5, in ascending order. Here, the natural numbers are represented in Peano
notation, i.e., D = {sn(0) | n ≥ 0}. For + and ∗ the standard rules are used.
Furthermore, a comparison function cmp is needed, for which cmp(n,m) yields 0 if
n = m, s(0) if n > m, and s(s(0)) if n < m. So Rd consists of the following rules:

x+ 0 → x cmp(0, 0) → 0
x+ s(y) → s(x+ y) cmp(s(x), 0) → s(0)

x ∗ 0 → 0 cmp(0, s(x)) → s(s(0))
x ∗ s(y) → (x ∗ y) + x cmp(s(x), s(y)) → cmp(x, y)

In Rs the function mul multiplies a stream element-wise by a number, whereas the
function merge merges two sorted streams, using the auxiliary function f. Finally,
the constant h creates the sorted stream of Hamming numbers. The rules of Rs read:

mul(x, y : ys) → x ∗ y : mul(x, ys)

merge(x : xs, y : ys) → f(cmp(x, y), x : xs, y : ys)
f(0, x : xs, y : ys) → x : merge(xs, ys)
f(s(0), xs, y : ys) → y : merge(xs, ys)

f(s(s(z)), x : xs, ys) → x : merge(xs, ys)

h → s(0) : merge(merge(mul(s2(0), h),mul(s3(0), h)),mul(s5(0), h)))

The above is an orthogonal proper stream specification, being the folklore functional
program for generating Hamming numbers, up to notational details. Productivity
can be proved fully automatically: Calling µ-Term [L+] together with the context-
sensitivity information that rewriting is disallowed in the second argument of ‘:’
yields a proof of context-sensitive termination. So by Theorem 6.2.4 productivity
can be concluded.

For completeness it shall be mentioned that the tool of [EGH+07, EGH08] also
finds a proof of productivity of h in this example.

Example 6.2.7. The Calkin-Wilf tree [CW00] is a binary tree in which every node
is labeled by a pair of natural numbers. The root is labeled by (1, 1), and every
node labeled by (m,n) has children labeled by (m,m+ n) and (m+ n, n). It can
be proved that for all natural numbers m,n > 0 that are relatively prime the pair
(m,n) occurs exactly once as a label of a node, and no other pairs occur. So the
labels of the nodes represent positive rational numbers, and every positive rational
number m/n occurs exactly once as a pair (m,n). There is one constructor b with
ard(b) = ars(b) = 2. The data set D consisting of the natural numbers is taken from

106

Productivity of Orthogonal Specifications

Example 6.2.6, as is the symbol + and its two rules. Now the Calkin-Wilf tree cw is
defined by

cw → f(s(0), s(0)) f(x, y) → b(x, y, f(x, x+ y), f(x+ y, y)).

Productivity of this specification can be proved by µ-Term [L+], which proves
context-sensitive termination for the replacement map µ(cw) = ∅ and µ(f) = µ(b) =
µ(+) = {1, 2}, hence proving productivity by Theorem 6.2.4.

A related structure is the Stern-Brocot tree [Ste58, Bro61], that was independently
discovered by the mathematician Moritz Stern and the watchmaker Achille Brocot
in the 19-th century. It also is an infinite tree that contains every rational number
exactly once, and it even forms a binary search tree, i.e., all elements in the left
subtree of a node a smaller and all elements in the right subtree of a node are larger
than the rational number that node is labeled with. It is constructed by repeatedly
computing the mediant (m+m′, n+ n′) of two pairs (m,n) and (m′, n′), which
has the property that mn < m+m′

n+n′ <
m′

n′ for m
n < m′

n′ . Again, the specification for
the tree makes use of the constructor b with ard(b) = ars(b) = 2, the data set D
representing natural numbers, and the function + with its two rules implementing
addition. Then the Stern-Brocot tree sb is defined by the following two rules in Rs:

sb → g(0, s(0), s(0), 0)
g(m,n, m′, n′) →

b(m+m′, n+ n′, g(m,n, m+m′, n+ n′), g(m+m′, n+ n′, m′, n′)

Context-sensitive termination of this specification can also be proven by µ-Term [L+],
where µ(sb) = ∅ and µ(g) = µ(b) = µ(+) = {1, 2}. Thus, according to Theo-
rem 6.2.4, productivity of this example has been proven.

Theorem 6.2.4 can be seen as a strengthening of Theorem 6.2.1: if all roots of
right-hand sides of rules from Rs are in C then Rd ∪ Rs is µ-terminating, as is
shown in the following proposition.

Proposition 6.2.8. Let S = (Σd,Σs, C,Rd,Rs) be an orthogonal proper specifica-
tion in which for every `→ r in Rs the term r is not a variable and root(r) ∈ C.
Then Rd ∪Rs is µ-terminating.

Proof. Assume there exists an infinite µ-reduction. For every term in this reduction
count the number of symbols from Σs that are on allowed positions. Due to the
assumptions by every Rd-step this number remains the same, while by every Rs-step
this number decreases by one. So this reduction contains only finitely many Rs-steps.
After these finitely many Rs-steps an infinite Rd-reduction remains, contradicting
the assumption that Rd is terminating.

The reverse direction of Theorem 6.2.4 does not hold, as is illustrated in the next
example.

Example 6.2.9. Consider the proper (stream) specification (Σd,Σs, C,Rd,Rs),
where Σd = {0, 1}, Rd = ∅, C = {:} with ard(:) = ars(:) = 1, and Rs being
the below TRS:

p → zip(alt, p)
alt → 0 : 1 : alt

zip(x : xs, ys) → x : zip(ys, xs)

107

6. Productivity Analysis by Context-Sensitive Termination

This specification is productive, as will be shown later in Example 6.2.11.
However, it admits an infinite context-sensitive reduction p → zip(alt, p) which is
continued by repeatedly reducing the redex p.

The stream p describes the sequence of right and left turns in the well-known
dragon curve, obtained by repeatedly folding a paper ribbon in the same direction.

Transformations for Proving Productivity

To be able to handle examples like the dragon curve, transformations of such
specifications are investigated, such that productivity of the original system can be
concluded from productivity of the transformed one. Whenever productivity of a
specification cannot be determined directly, then one of these transformations is
applied and productivity of the transformed specification is checked instead.

One such transformation is the reduction of right-hand sides, that is, a rule
` → r of Rs is replaced by ` → r′ for a term r′ satisfying r →∗Rd∪Rs r

′. Write
R = Rd∪Rs, and write R′ for the result of this replacement. Then, by construction,
→R′ ⊆ →+

R, and →R ⊆ →R′ ◦ ←∗R, that is, every →R-step can be followed by
zero or more →R-steps to obtain an →R′-step. The below theorem is formulated
in this more general setting, such that it is applicable more generally than only for
reduction of right-hand sides.

Theorem 6.2.10. Let S = (Σd,Σs, C,Rd,Rs) and S ′ = (Σd,Σs, C,Rd,R′s) be
two orthogonal proper specifications satisfying →R′ ⊆ →+

R for R = Rd ∪Rs and
R′ = Rd ∪R′s. If S ′ is productive, then S is productive, too.

Proof. Let S ′ be productive, i.e., every ground term t of sort s admits a reduction
t →∗R′ t′ for which root(t′) ∈ C. Then, →R′ ⊆ →+

R allows to conclude t →∗R t′,
proving productivity of S .

Example 6.2.11. The above Theorem 6.2.10 is applied to Example 6.2.9. Observe
that the right-hand side of the rule p→ zip(alt, p) can be rewritten as follows:

zip(alt, p)→ zip(0 : 1 : alt, p)→ 0 : zip(p, 1 : alt)

Hence, the specification can be transformed by replacing Rs with the TRS R′s
consisting of the following rules:

p → 0 : zip(p, 1 : alt)
alt → 0 : 1 : alt

zip(x : xs, ys) → x : zip(ys, xs)

Clearly, this is a proper specification that is productive due to Theorem 6.2.1.
Now productivity of the original specification follows from Theorem 6.2.10 and
→R′s ⊆ →

+
Rs .

Concluding productivity of the original system from productivity of the trans-
formed system is called soundness, the converse is called completeness. The following
example shows the incompleteness of Theorem 6.2.10.

Example 6.2.12. Consider the two orthogonal proper (stream) specifications S and
S ′ defined by

Rs: a → f(a) R′s: a → f(a)
f(xs) → 0 : xs f(x : xs) → 0 : x : xs

108

Productivity of Orthogonal Specifications

Here C = {:}, Rd = ∅, Σd = {0}. Since a →R f(a) →R 0 : a and f(· · ·) →R 0 :
· · · , the specification S is productive, as a and f are the only symbols in Σs.

For the TRS R′s it holds that →R′s ⊆ →
+
Rs , since any step with the rule

f(x : xs)→ 0 : x : xs of R′s can also be done with the rule f(xs)→ 0 : xs of Rs.
However, S ′ is not productive, as the only reduction starting in a is a→R′ f(a)→R′
f(f(a))→R′ · · · in which the root is never in C.

Next, it is shown that with the extra requirement →R ⊆ →R′ ◦ ←∗R, as holds
for reduction of right-hand sides, both soundness and completeness hold.

Theorem 6.2.13. Let S = (Σd,Σs, C,Rd,Rs) and S ′ = (Σd,Σs, C,Rd,R′s) be
orthogonal proper specifications satisfying →R′ ⊆ →+

R and →R ⊆ →R′ ◦←∗R for
R = Rd ∪Rs and R′ = Rd ∪R′s.

Then S is productive if and only if S ′ is productive.

Proof. The “if” direction follows from Theorem 6.2.10.
For the “only-if” direction, the following claim is proven first:

Claim: If t →R t′ and t →∗R t′′, then there exists a term v satisfying
t′ →∗R v and t′′ →∗R′ v.

Let t→R t′ be an application of the rule `→ r in R, so t = C[`σ] and t′ = C[rσ]
for some context C and substitution σ. According to the Parallel Moves Lemma
([Ter03, Lemma 4.3.3]), t′′ = C ′′[`σ1, . . . , `σn], and t′, t′′ have a common R-reduct
C ′′[rσ1, . . . , rσn]. Due to `σi →R rσi and→R ⊆ →R′◦←∗R there exist ti satisfying
`σi →R′ ti and rσi →∗R ti, for all i = 1, . . . , n. Now choosing v = C ′′[t1, . . . , tn]
proves the claim.

Using this claim, by induction on the number of →R-steps from t to t′ one
proves the generalized claim: If t →∗R t′ and t →∗R t′′, then there exists a term v
satisfying t′ →∗R v and t′′ →∗R′ v.

Let t be an arbitrary ground term of sort s. Due to productivity of S there exists t′
satisfying t →∗R t′ and root(t′) ∈ C. Applying the generalized claim for t′′ = t
yields a term v satisfying t′ →∗R v and t→∗R′ v. Since root(t′) ∈ C and t′ →∗R v it
must also be the case that root(v) ∈ C. Now t→∗R′ v implies productivity of S ′.

Example 6.2.12 generalizes to a general application of Theorem 6.2.10 other
than rewriting right-hand sides as follows. Assume a rule from Rs in a proper
transformation contains an s-variable xs in the left-hand side being an argument
of the root. Then for every c ∈ C this rule may be replaced by an instance of
the same rule, obtained by replacing xs by c(x1, . . . , xm, xs1, . . . , xsn), where
ard(c) = m, ars(c) = n. If this is done simultaneously for every c ∈ C, so replacing
the original rule by |C| instances, then the result is again a proper specification. Also
the requirements of Theorem 6.2.10 hold, even →R′ ⊆ →R. This transformation is
shown by an example.

Example 6.2.14. Productivity of the following variant of Example 6.2.9 is analyzed,
in which p has been replaced by a stream function, and Rs is the below TRS:

p(xs) → zip(xs, p(xs))
alt → 0 : 1 : alt

zip(x : xs, ys) → x : zip(ys, xs)

109

6. Productivity Analysis by Context-Sensitive Termination

Proving productivity by Theorem 6.2.1 fails. Also proving productivity with
the technique of Theorem 6.2.4 fails, since there exists the infinite context-sensitive
reduction

p(alt) → zip(alt, p(alt)) →

Furthermore, reducing the right-hand side of p(xs) → zip(σ, p(xs)) can only
be done by applying the first rule, not creating a constructor as the root of the
right-hand side. What blocks rewriting using the zip rule is the variable xs in
the first argument of zip. Therefore, Theorem 6.2.10 is applied as sketched above.
Note that C = {:}, so the rule p(xs) → zip(xs, p(xs)) is replaced by the single
rule p(x : xs) → zip(x : xs, p(x : xs)) to obtain the TRS R′s. This now allows
to rewrite the new right-hand side by the zip rule, replacing the previous rule by
p(x : xs)→ x : zip(p(x : xs), xs), i.e., the TRS R′′s is obtained which consists of
the following rules:

p(x : xs) → x : zip(p(x : xs), xs)
alt → 0 : 1 : alt

zip(x : xs, ys) → x : zip(ys, xs)

Productivity of R′′s follows from Theorem 6.2.1. This implies productivity of R′s
due to Theorem 6.2.10 which in turn implies productivity of the initial specification
S , again due to Theorem 6.2.10.

Example 6.2.15. For stream computations it is often natural to also use finite
lists. The data structure combining streams and finite lists is obtained by choosing
C = {:, nil}, with ard(:) = ars(:) = 1 and ard(nil) = ars(nil) = 0, as mentioned
in Example 6.1.3. An example using this is defining the sorted stream p = 1 :
2 : 2 : 3 : 3 : 3 : 4 : · · · of natural numbers, in which the representation of the
number n occurs exactly n times for every n ∈ N.3 Auxiliary functions are conc,
implementing concatenation, copy for which copy(k, n) is the finite list of k copies
of n for k, n ∈ N, and a function f, used for generating p = f(0). Taking D to be the
set of ground terms over {0, s} and Rd = ∅, Rs is chosen to consist of the following
rules:

p → f(0) f(x) → conc(copy(x, x), f(s(x)))
copy(s(x), y) → y : copy(x, y) conc(nil, xs) → xs

copy(0, x) → nil conc(x : xs, ys) → x : conc(xs, ys)

Note that productivity of this system is not trivial: if the rule for f is replaced by
f(x)→ conc(copy(x, x), f(x)), then the system is not productive.

Productivity cannot be proved directly by Theorem 6.2.1 or Theorem 6.2.4;
context-sensitive termination does not even hold for the single f rule. However by
replacing the f rule by the two instances

f(0)→ conc(copy(0, 0), f(s(0))) and f(s(x))→ conc(copy(s(x), s(x)), f(s(s(x)))),

and then applying rewriting right-hand sides by which these two rules are replaced
by

f(0)→ f(s(0)) and f(s(x))→ s(x) : conc(copy(x, s(x)), f(s(s(x))))

3The same stream is easily defined by a specification not involving finite lists, but here this extended
data structure and the use of standard operations like conc shall be illustrated.

110

Productivity of Orthogonal Specifications

yields a proper specification for which context-sensitive termination is proved by
AProVE [GSKT06] or µ-Term [L+], proving productivity of the original example by
Theorem 6.2.10 and Theorem 6.2.4.

Example 6.2.16. Finally, an example in binary trees shall be considered, in which
the nodes are labeled by natural numbers, so there is one constructor b : d× s2 → s
and D consists of ground terms over {0, s}. The rules are

c → b(0, f(g(0), left(c)), g(0)) left(b(x, xs, ys)) → xs
g(x) → b(x, g(s(x)), g(s(x))) f(b(x, xs, ys), zs) → b(x, ys, f(zs, xs))

To get an impression of the hardness of this example, observe that f and left are
similar to zip and tail for streams, respectively, and the recursion in the rule for c
has the flavor of c → 0 : zip(· · · , tail(c)). The tool described in the following
section proves productivity by Theorem 6.2.10 and Theorem 6.2.4, by first rewriting
right-hand sides and then proving context-sensitive termination.

Implementation

The presented techniques to prove productivity of orthogonal proper specifications
were implemented in a tool to check productivity automatically. It is accessible via
the web-interface at the following URL:

http://www.win.tue.nl/~mraffels/productivity

The input format requires the following ingredients:

• the variables,

• the operation symbols with their types,

• the rewrite rules.

Details of the format can be seen from the examples that are available. All other
information, such as the symbols in C, is extracted by the tool from these ingredients.

As a first step, the tool checks that the input is indeed a proper specification.
Checking syntactic requirements, such as no function symbol returning sort d has an
argument of sort s, the TRS is 2-sorted and orthogonal, and the left-hand sides have
the required shape, are all straightforward. However, to verify the last requirement
of a proper specification, namely that the TRS is exhaustive, is a hard job if D is
allowed to be the set of ground normal forms of any terminating orthogonal Rd.
Only for the class of proper specifications in which D consists of the constructor
ground terms of sort d exhaustiveness can be checked efficiently. In that case, the
terms in D do not contain symbols occurring as root symbol in a left-hand side of
a rule in Rd. To check whether this is the case, anti-matching, to be described in
the following chapter, is used. It provides a set of terms that match exactly those
ground terms not matched by any left-hand side. For left-linear systems such as those
considered here, an anti-matching set can be efficiently constructed. It can easily be
shown that the normal forms of ground terms w.r.t. Rd are only constructor terms
if and only if there is no anti-matching term that has a defined symbol as root and
only terms built from constructors and variables as arguments. The idea of the proof
is that such a term could be instantiated to a ground term, which is a normal form

111

http://www.win.tue.nl/~mraffels/productivity

6. Productivity Analysis by Context-Sensitive Termination

due to the anti-matching property. Then, checking exhaustiveness of Rs has to only
consider constructor terms for both data and structure arguments.

To analyze productivity of a given proper specification, the tool first investigates
whether Theorem 6.2.1 can be applied directly: it checks whether the roots of all
right-hand sides are constructors. If this simple criterion does not hold, then it tries
to show context-sensitive termination using the existing termination prover µ-Term,
by which productivity will follow by Theorem 6.2.4.

If both of these first attempts fail then the tool tries to transform the given
specification. Since rewriting of right-hand sides is both sound and complete, as was
shown in Theorem 6.2.13, a productive specification can never be transformed into
an unproductive one by this technique. Therefore, this is the first transformation to
try. However, large right-hand sides often make it harder for termination tools to
prove context-sensitive termination. Therefore, the tool tries to only rewrite positions
on right-hand sides that appear to be needed to obtain a constructor prefix tree of
a certain, adjustable depth. This is done by traversing the term in an outermost
fashion and only trying to rewrite arguments if the possibly matching rules require
a constructor for that particular argument. If at least one right-hand side could be
rewritten, a new specification with the rewritten right-hand sides is created. Since
rewriting of right-hand sides is not guaranteed to terminate, a limit is imposed onto
the maximal number of rewriting steps. After rewriting the right-hand sides in this
way, the tool again tries to prove productivity of the transformed TRS using the basic
techniques, i.e., the syntactic criterion and context-sensitive termination.

As shown in Examples 6.2.14 and 6.2.15, it can be helpful to replace a variable
by all constructors of its sort applied to variables. Therefore, in case productivity
could not be shown so far, it is tried to instantiate a variable on a position of a
right-hand side that is required by the rules for the defined symbol directly above it.
Then the instantiated right-hand sides are rewritten again to obtain new specifications
for which productivity is analyzed further.

The described transformations are applied in the order of their presentation a
number of times. If a set limit of applications of transformations is reached, the tool
finally tries to rewrite to deeper context-prefixes on right-hand sides and does a final
check for productivity, using a larger timeout value.

Using these heuristics the tool is able to automatically prove productivity of all
productive examples presented in this section. This especially includes the below
example of a stream specification, which previously could not be proved to be
productive by any other automated technique.

Example 6.2.17. Consider the following combination of Example 6.2.9 (describ-
ing the paper folding stream) together with the rules for function f taken from
Example 6.2.5 (which remove all 0 elements from a stream):

p → zip(alt, p) f(0 : xs) → f(xs)
alt → 0 : 1 : alt f(1 : xs) → 1 : f(xs)

zip(x : xs, ys) → x : zip(ys, xs)

The tool first performs rewriting of the right-hand side of the p-rule and then
proves context-sensitive termination using µ-Term [L+]. Note the subtlety in this
example: as soon as a ground term t can be composed of which the interpretation as
a stream contains only finitely many ones, then the system will not be productive
for f(t). So as a consequence it can be concluded that the paper folding stream p
contains infinitely many ones, as the specification is productive for f(p).

112

Productivity of Non-Orthogonal Specifications

6.3 Productivity of Non-Orthogonal Specifications

In the case of non-orthogonal proper specifications, two computations starting in the
same initial term might end in (or, for infinite reductions, have as limit) two different
constructor normal forms. This is natural when non-deterministic choices are allowed
that guide the computation. In that case, it is therefore desired that all such choices
lead to a constructor normal form. When considering this in the target application
of hardware cells, for which stabilization shall be proven, then this corresponds to
stabilization regardless of the concrete input values that are being supplied.

Hence, strong productivity should be studied for non-orthogonal specifications. It
was already shown in Example 6.1.10 that strong and weak productivity differ for non-
orthogonal specifications. In this section, the techniques for proving productivity that
were presented in the previous Section 6.2 are extended to also be applicable to prove
strong productivity of non-orthogonal proper specification. As a characterization of
strong productivity, Proposition 6.1.12 will be used, which only requires the existence
of a term starting with constructor in every maximal outermost-fair reduction sequence.

A first technique to prove strong productivity of proper specifications is given
next. It is a simple syntactic check that determines whether every right-hand side
of sort s starts with a constructor. For orthogonal proper specifications, this was
already observed in Theorem 6.2.1.

Theorem 6.3.1. Let S = (Σd,Σs, C,Rd,Rs) be a proper specification. If for all
rules `→ r ∈ Rs, r is not a variable and root(r) ∈ C, then S is strongly productive.

Proof. Let ρ ≡ t0 →p0 t1 →p1 . . . be a maximal outermost-fair reduction and let
t0 = f(u′1, . . . , u′m, t′1, . . . , t′n) with ard(f) = m and ars(f) = n. If f ∈ C then
nothing has to be proven, so assume f ∈ Σs \ C. Structural induction on t0 is
performed to prove that root(tk) ∈ C for some k ∈ N.

The induction hypothesis states that for every 1 ≤ i ≤ n and every maximal
outermost-fair reduction t′i = ti,0 → ti,1 → . . . there exists an index ki ∈ N such
that root(ti,ki) ∈ C.

Assume that for all l ∈ N, pl 6= ε. If t0 contains a redex at position ε, this is an
outermost redex that survives infinitely long, contradicting the assumption that ρ is
outermost fair. Thus, t0 6→ε. As in the proof of Proposition 6.1.12, define Pr =
{pl−r | l ∈ N, pl ≥ r} for 1 ≤ r ≤ n (i.e., the positions in the maximal outermost-fair
reduction ρ that occur in argument r). Then, for 1 ≤ r ≤ n and Pr = {pr0, pr1, . . . }
the reduction t′r = tr,0 →pr0

tr,1 →pr1
. . . is also a maximal outermost-fair reduction,

otherwise an infinitely long surviving outermost redex would also be an infinitely long
surviving outermost redex of the reduction ρ. Therefore, indices ki ∈ N exist such
that root(ti,ki) ∈ C, due to the induction hypothesis. This makes reduction ρ have
the shape t0 = f(u′1, . . . , u′m, t′1, . . . , t′n) →∗ f(u′′1 , . . . , u′′m, t′′1 , . . . , t′′n) = tj for
some j ∈ N, where u′′1 , . . . , u′′m are normal forms (since the reduction ρ is maximal
outermost-fair and Rd is terminating) and ti,ki →∗ t′′i , thus also root(t′′i) ∈ C.
Because Rs is exhaustive, the term tj must contain a redex at the root position ε,
which of course is outermost. This gives rise to a contradiction to ρ being outermost
fair, as this outermost redex survives infinitely often, because pl 6= ε for all l ∈ N.

Therefore, pk−1 = ε for some k − 1 ∈ N and the reduction ρ has the shape
t0 →∗ tk−1 →ε tk = rσ, where the last step is with respect to some rule `→ r ∈ Rs.
By the assumption on the shape of the rules in Rs, root(r) ∈ C, hence also
root(rσ) ∈ C, which proves productivity according to Proposition 6.1.12.

113

6. Productivity Analysis by Context-Sensitive Termination

This technique is sufficient to prove strong productivity of the proper specification
consisting of the two rules for random in Example 6.1.10, since both have right-hand
sides with the constructor : at the root. However, it is easy to create examples which
are strongly productive, but do not satisfy the syntactic requirements of Theorem 6.3.1.

Example 6.3.2. Consider the proper specification with the following TRS Rs:

ones → 1 : ones finZeroes → 0 : ones
finZeroes → 0 : 0 : ones finZeroes → 0 : 0 : 0 : ones
f(0 : xs) → f(xs) f(1 : xs) → 1 : f(xs)

The constant finZeroes produces non-deterministically a stream that starts with
one, two, or three zeroes followed by an infinite stream of ones. Function f takes a
binary stream as argument and filters out all occurrences of zeroes. Thus, productivity
of this example proves that only a finite number of zeroes can be produced. This
however cannot be proven with the technique of Theorem 6.3.1, since the right-hand
side of the rule f(0 : xs)→ f(xs) does not start with the constructor ‘:’.

Below, also the technique based on context-sensitive termination, which was
presented in Section 6.2, is extended to the non-orthogonal setting. The idea is
to disallow rewriting in structure arguments of constructors, thus context-sensitive
termination implies that for every ground term of sort s, a term starting with a
constructor can be reached (due to the exhaustiveness requirement). As was observed
by Endrullis and Hendriks recently in [EH11], this set of blocked positions can be
enlarged, making the approach even stronger.

Below, the extended technique for proving productivity by showing termination
of a corresponding context-sensitive TRS is given for the more general proper
specifications, which also may include non-determinism. This version already
includes an adaption of the improvement mentioned above.

Definition 6.3.3. Let S = (Σd,Σs, C,Rd,Rs) be a proper specification. The
replacement map µS : Σd ∪ Σs → 2N is defined as follows: 4

• µS(f) = {1, . . . , ard(f)}, if f ∈ Σd ∪ C

• µS(f) = {1, . . . , ard(f)+ars(f)}\{1 ≤ i ≤ ard(f)+ars(f) | t|i is a variable
for all `→ r ∈ Rs and all non-variable subterms t of ` with root(t) = f},5
otherwise

In the remainder, the subscript S is left out if the specification is clear from the
context. The replacement map µS is canonical [Luc02] for the left-linear TRS Rs,
guaranteeing that non-variable positions of left-hand sides are allowed. In the above

4 Note that in [EH11], Endrullis and Hendriks consider orthogonal TRSs and also block arguments
of symbols in Σd which only contain variables. This however is problematic when allowing data rules
that are not left-linear. Example:

Rs : f(1) → f(d(0, d(1, 0))) f(0) → c ∈ C
Rd : d(x, x) → 1 d(0, x) → 0 d(1, x) → 0

Here, the term f(d(0, d(1, 0))) can only be µ-rewritten to the term f(0) (which then in turn has to be
rewritten to c) if defining µ(d) = {1}, since the subterm d(1, 0) can never be rewritten to 0. However,
the example is not strongly productive, as reducing in this way gives rise to an infinite outermost-fair
reduction f(d(0, d(1, 0)))→ f(d(0, 0))→ f(1)→ Blocking arguments of data symbols can only
be done when Rd is left-linear, too.

5 The requirement of t not being a variable ensures that root(t) is defined.

114

Productivity of Non-Orthogonal Specifications

definition, it is extended to the possibly non-left-linear TRS Rd ∪Rs by allowing all
arguments of symbols from Σd.

The main result of this section is that also for possibly non-orthogonal proper
specifications, µ-termination implies productivity.

Theorem 6.3.4. A proper specification S = (Σd, Σs, C, Rd, Rs) is strongly
productive, if Rd ∪Rs is µS -terminating.

Before proving the above theorem, it will first be shown that it subsumes The-
orem 6.3.1. Intuitively, this holds because structure arguments of constructors are
blocked, and if every right-hand side of Rs starts with a constructor then the number
of allowed redexes of sort s in a term steadily decreases. This is akin to the argument
in Proposition 6.2.8, which showed the corresponding result for orthogonal proper
specifications.

Proposition 6.3.5. Let S = (Σd,Σs, C,Rd,Rs) be a proper specification. If for all
rules `→ r ∈ Rs it holds that root(r) ∈ C, then Rd ∪Rs is µS -terminating.

Proof. Let t ∈ T (Σd ∪Σs,V) be well-typed. If t has sort d, then all subterms must
also be of sort d, as symbols from Σd only have arguments of that sort. Hence,
rewriting can only be done with rules from Rd, which is assumed to be terminating.

Otherwise, let t be of sort s and assume that t starts an infinite µ-reduction
t = t0

µ→`0→r0,p0 t1
µ→`1→r1,p1 t2

µ→`2→r2,p2 Define Posredsµ (t′) = {p ∈
Posµ(t′) | t′|p is a redex of sort s} for any term t′ ∈ T (Σd ∪ Σs,V). It will be
proven that in every step ti

µ→`i→ri,pi ti+1 of the infinite reduction, |Posredsµ (ti+1)| ≤
|Posredsµ (ti)| and that for steps with `i → ri ∈ Rs, it even holds that |Posredsµ (ti+1)| <
|Posredsµ (ti)|. To this end, case analysis of the rule `i → ri is performed. If
`i → ri ∈ Rd, then ti = ti[`iσi]pi and ti+1 = ti[riσi]pi for some substitu-
tion σi. Because `i, ri ∈ T (Σd,V), |Posredsµ (`i)| = |Posredsµ (ri)| = 0. Also,
for all x ∈ V , σi(x) ∈ T (Σd,V) since all symbols in Σd have arguments of
sort d, and root(`i) ∈ Σd. Thus, Posredsµ (ti+1) = Posredsµ (ti). In the second case,
`i → ri ∈ Rs. Let ti = ti[`iσi]pi and ti+1 = ti[riσi]pi for some substitution σi.
Then, Posredsµ (ti) = Posredsµ (ti[z]pi)] {pi.p | p ∈ Posredsµ (ti|pi)} for any variable
z ∈ V of sort s. For ti+1, it is the case that Posredsµ (ti+1) = Posredsµ (ti[riσi]pi) =
Posredsµ (ti[z]pi)]{pi.p | p ∈ Posredsµ (ti[riσi]pi |pi)} for any variable z ∈ V of sort s.
Here, it holds that Posredsµ (ti|pi) = Posredsµ (`iσi) 3 ε, therefore pi ∈ Posredsµ (ti).
Furthermore, Posredsµ (ti[riσi]pi |pi) = Posredsµ (riσi) = ∅, since root(ri) ∈ C by
assumption, hence µ(root(ri)) = {1, . . . , ard(root(ri))} and because symbols from
Σd only have arguments of sort d. Thus, Posredsµ (ti+1) (Posredsµ (ti).

Combining these observations, only finitely many reductions with rules from Rs
exist in the infinite reduction. Thus, an infinite tail of steps with rules from Rd exists.
This however contradicts the assumption that Rd is terminating, hence no infinite
µ-reduction can exist which proves µ-termination of Rd ∪Rs.

Hence, analyzing context-sensitive termination only would be sufficient. However,
the syntactic check of Theorem 6.3.1 can be done very fast and should therefore be
the first method to try.

In order to prove Theorem 6.3.4 the following lemma is needed, which shows
that in every ground term not starting with a constructor there exists a redex that is
not blocked by the replacement map µ.

115

6. Productivity Analysis by Context-Sensitive Termination

Lemma 6.3.6. Let S be a proper specification. For all ground terms t of sort s with
root(t) /∈ C there exists a position p ∈ Posµ(t) such that t→p.

Proof. Let t = f(u1, . . . , um, t1, . . . , tn). Structural induction on t is performed.
If ui →p′ for some 1 ≤ i ≤ m with i ∈ µ(f), then t →i.p′ and i.p′ ∈ Posµ(t)
since arguments of data symbols are never blocked. Thus, assume in the remainder
that ui is a ground normal form w.r.t. Rd for all 1 ≤ i ≤ m with i ∈ µ(f). If
root(ti) ∈ C for all 1 ≤ i ≤ n such that m + i ∈ µ(f), then either there exists a
1 ≤ j ≤ ard(root(ti)) and position p ∈ Pos(ti|j) such that ti|j →Rd , or all data
arguments ti|j are ground normal forms. In the first case, the position i.j.p is an
allowed position, which proves the lemma. Otherwise, in case all data arguments are
ground normal forms, t→ε must hold by the exhaustiveness requirement (and because
all arguments uj , tj with j /∈ µ(f) are being matched by pairwise different variables,
due to left-linearity). Finally, the case has to be considered where a 1 ≤ i ≤ n exists
with m+ i ∈ µ(f) such that root(ti) /∈ C. By the induction hypothesis, ti →p′ for
some p′ ∈ Posµ(ti). Therefore, (m+i).p′ ∈ Posµ(t) and t→m+i.p′ hold.

A second lemma that is required for the proof of Theorem 6.3.4 states that a spe-
cialized version of the Parallel Moves Lemma [BN98] holds for proper specifications.
This lemma allows to swap the order of reductions blocked by µ with reductions
not blocked by µ. To formulate the lemma, the notion of a parallel reduction step
t

q→P t′ is needed, which is defined for a set P = {p1, . . . , pn} ⊆ Pos(t) where for
every pair 1 ≤ i < j ≤ n it holds that pi ‖ pj and a term t = t[`1σ1]p1 . . . [`nσn]pn
as t′ = t[r1σ1]p1 . . . [rnσn]pn for rules `i → ri ∈ Rd ∪ Rs and substitutions σi,
1 ≤ i ≤ n.

Lemma 6.3.7. Let S be a proper specification. For all ground terms t, t′, t′′ and
positions P ⊆ blockedµ(t), p ∈ Posµ(t′) with t q→P t′ →`→r,p t

′′, a term t̂ and a
set P ′ ⊆ Pos(t̂) exist such that t→`→r,p t̂

q→P ′ t
′′.

Proof. Let P = {p1, . . . , pk} ⊆ blockedµ(t). Then t = t[`1σ1]p1 . . . [`kσk]pk
q→P

t[r1σ1]p1 . . . [rkσk]pk = t′ = t′[`σ]p for some rules `1 → r1, . . . , `k → rk, ` →
r ∈ Rd ∪ Rs and substitutions σ1, . . . , σk, σ. W.l.o.g., let 0 ≤ j ≤ k be such that
pi 6‖ p for all 1 ≤ i ≤ j and pi ‖ p for all j < i ≤ k. Since p ∈ Posµ(t′) and
pi ∈ blockedµ(t′), it must hold that p < pi for all 1 ≤ i ≤ j. Therefore, the term t′

must have the following shape:

t′ = t
[
`σ[r1σ1]p1−p . . . [rjσj]pj−p

]
p

[rj+1σj+1]pj+1 . . . [rkσk]pk

If `→ r ∈ Rd, then it must hold that j = 0, since arguments of data symbols
are never blocked. Hence, the lemma trivially holds in this case, as all reductions
are on independent positions.

Otherwise, `→ r ∈ Rs. Because the positions pi for 1 ≤ i ≤ j are blocked, it
must be the case that they are either below a variable in all rules containing a certain
symbol f (hence, they are also below a variable in `), or they are below a structure
argument of a constructor c ∈ C. By requirement of specifications, if a constructor is
present on a left-hand side of a rule, all its structure arguments must be variables.
Thus, it can be concluded that all positions pi, and thereby all terms riσi, are below
some variable of ` in t′. Additionally, the left-hand side ` is required to be linear,
therefore there exist pairwise different variables x1, . . . , xj , contexts C1, . . . , Cj , and

116

Productivity of Non-Orthogonal Specifications

a substitution σ′ being like σ except that σ′(xi) = xi for 1 ≤ i ≤ j such that:

t′ = t [`σ′{x1:=C1[r1σ1], . . . , xj :=Cj [rjσj]}]p [rj+1σj+1]pj+1 . . . [rkσk]pk
→p t [rσ′{x1:=C1[r1σ1], . . . , xj :=Cj [rjσj]}]p [rj+1σj+1]pj+1 . . . [rkσk]pk = t′′

It can be concluded that p ∈ Posµ(t), as all reduction steps in t q→P t
′ are either

below or independent of p. Thus:

t = t [`σ′{x1:=C1[`1σ1], . . . , xj :=Cj [`jσj]}]p [`j+1σj+1]pj+1 . . . [`kσk]pk
→p t [rσ′{x1:=C1[`1σ1], . . . , xj :=Cj [`jσj]}]p [`j+1σj+1]pj+1 . . . [`kσk]pk = t̂
q→P ′ t [rσ′{x1:=C1[r1σ1], . . . , xj :=Cj [rjσj]}]p [rj+1σj+1]pj+1 . . . [rkσk]pk = t′′

In the second reduction step, the positions of the terms `iσi in t̂ constitute the
set P ′ ⊆ Pos(t̂).

The two above lemmas allow to prove the main Theorem 6.3.4, showing that
context-sensitive termination implies productivity of the considered proper specifica-
tion.

Proof of Theorem 6.3.4. Assume S is not strongly productive. Then, a maximal
outermost-fair reduction sequence ρ ≡ t0 → t1 → . . . exists where for all k ∈ N,
root(tk) /∈ C.

This reduction sequence is infinite, since otherwise it would end in a term tm for
some m ∈ N with root(tm) /∈ C. Then however, according to Lemma 6.3.6, the term
tm would contain a redex, giving a contradiction to the sequence being maximal.

The sequence might however perform reductions that are below a variable ar-
gument of a constructor or below a variable in all left-hand sides of a defined
symbol. These reduction steps are not allowed when considering context-sensitive
rewriting with respect to µ. Such reductions however can be reordered. First, due
to Lemma 6.3.6, there is always a redex which is not blocked, thus there is also an
outermost such one. Because the reduction is outermost-fair, and because reductions
below a variable cannot change the matching of a rule, as shown in Lemma 6.3.7,
such redexes must be contracted an infinite number of times in the infinite reduction
sequence ρ. Thus, the reduction steps in ρ can be reordered: If there is a (parallel)
reduction below a variable before performing a step that is allowed by µ, then these
two steps are swapped using Lemma 6.3.7. Repeating this construction yields an
infinite reduction sequence ρ′ consisting of steps which are not blocked by µ. Thus,
this is an infinite µ-reduction sequence, showing that Rd ∪Rs is not µ-terminating,
which therefore proves the theorem.

The technique of Theorem 6.3.4, i.e., proving µ-termination of the corresponding
context-sensitive TRS, is able to prove strong productivity of Example 6.3.2. By
Definition 6.3.3, the corresponding replacement map µ is defined as µ(0) = µ(1) =
µ(ones) = µ(finZeroes) = ∅ and µ(f) = µ(:) = {1}, i.e., rewriting is allowed on
all positions except those that are inside a second argument of the constructor :.
Context-sensitive termination of the TRS together with the above replacement map µ
can for example be shown by the tool AProVE [GSKT06]. Thus, productivity of
that example has been shown according to Theorem 6.3.4.

Another example, which illustrates the improvement of [EH11] incorporated in
Definition 6.3.3 that blocks more argument positions, is given below.

117

6. Productivity Analysis by Context-Sensitive Termination

Example 6.3.8. Consider the following proper specification, given by the TRS Rs:

a → f(1 : a, a) f(x : xs, ys) → x : ys
f(f(xs, ys), zs) → f(xs, f(ys, zs))

When defining µ(1) = µ(a) = ∅ and µ(:) = {1} by the first case of Defini-
tion 6.3.3, and defining µ(f) = {1, 2} (i.e., not removing any argument positions, as
was done in the orthogonal case in Definition 6.2.3), then an infinite µ-reduction
exists:

a µ→ f(1 : a, a) µ→ f(1 : a, f(1 : a, a)) µ→ . . .

This reduction can be continued in the above style by reducing the underlined
redex further, which will always create the term a on an allowed position of the
form 2n. However, such positions are not required for any of the f-rules to be
applicable; for both rules it holds that all subterms of left-hand sides that start with
the symbol f, which are the terms f(x : xs, ys), f(f(xs, ys), zs), and f(xs, ys), have
a variable as second argument. Thus, according to Definition 6.3.3, the replacement
map µ′ can be defined to be like µ, except that µ′(f) = {1}. With this improved
replacement map, µ′-termination of the above TRS can for example be proven by
the tool AProVE [GSKT06], which implies productivity by Theorem 6.3.4.

Checking productivity in this way, i.e., by checking context-sensitive termination,
can only prove productivity but not disprove it. This is illustrated in the next example.

Example 6.3.9. Consider the proper specification with the following rules in Rs:

a → f(a) f(x : xs) → x : f(xs) f(xs) → 1 : xs

Starting in the term a, an infinite µ-reduction starting with a→ f(a) exists, which
can be continued by reducing the underlined redex repeatedly, since µ(f) = {1}.
Thus, the example is not µ-terminating. However, the specification is strongly
productive, as can be shown by a case distinction based on the root symbol of some
arbitrary ground term t. In case root(t) = :, then nothing has to be done, according
to Proposition 6.1.12. Otherwise, if root(t) = a, then any maximal outermost-fair
reduction must start with t = a→ f(a), thus the analysis can be reduced to the final
case, where root(t) = f. In this last case, t = f(t′). When rewriting the term t′, i.e.,
performing reductions below the root, then the term still has the shape f(t̃) for some
term t̃ such that t′ →∗ t̃. Hence, any such term is a redex with respect to the third
rule and therefore must be eventually reduced in an outermost-fair reduction. Either
the second or the third rule must be applied to such a term f(t̃), both of which create
a constructor : at the root. Therefore, also in this case any outermost-fair reduction
reaches a term having a constructor as root symbol, which proves strong productivity
due to Proposition 6.1.12.

In the remainder of this section it shall be illustrated that the requirements of
proper specifications in Definition 6.1.5, namely that the TRS Rs should be left-linear
and that structure arguments of constructors in left-hand sides must not be structure
symbols, i.e., that they must be variables, are required for soundness of Theorem 6.3.4.
The first example specification is not left-linear and not strongly productive, but
µ-terminating.

118

Proving Productivity of Hardware Cells

Example 6.3.10. Consider the non-proper specification containing the following
rules in Rs, where C = {a, c}:

b → a f(c(x, x)) → f(c(a, b))
f(a) → a f(c(x, y)) → c(x, y)

The example specification is not strongly productive, as it admits the infinite
outermost-fair reduction sequence f(c(a, a)) → f(c(a, b)) → f(c(a, a)) →
However, the TRS can be proven µ-terminating by the tool AProVE [GSKT06],
where µ(f) = {1} and µ(a) = µ(b) = µ(c) = ∅. This is the case because rewriting
below the constructor c is not allowed, thus the second step of the above reduction
sequence is blocked. The reason why Theorem 6.3.4 fails is the reordering of
reductions, since in this example a reduction of the form t

q→P t′ →`→r,p t′′

(here: f(c(a, b)) q→{1.1} f(c(a, a)) →f(c(x,x))→f(c(a,b)),ε f(c(a, b))) does not imply
that t →`→r,p (in the example, f(c(a, b)) 6→f(c(x,x))→f(c(a,b)),ε), i.e., Lemma 6.3.7
does not hold.

The next example illustrates why non-variable structure arguments of constructors
are not allowed in left-hand sides.

Example 6.3.11. Let Rs contain the following rules, and let C = {a, c}.

b → a f(c(a)) → f(c(b))
f(a) → a f(c(x)) → x

The TRSRs is context-sensitive terminating, but the corresponding specification is
not strongly productive due to the infinite outermost-fair reduction sequence f(c(a))→
f(c(b)) → f(c(a)) → Here, the second step is not allowed when performing
context-sensitive rewriting, since µ(c) = ∅. Using the tool AProVE [GSKT06],
context-sensitive termination of the above TRS together with the replacement map µ
can be shown.

However, this example can be unrolled, which makes the resulting specification
proper, by introducing a fresh symbol g and replacing the two rules for f in the right
column above by the following three rules:

f(c(x)) → g(x) g(a) → f(c(b)) g(x) → x

Then in the corresponding context-sensitive TRS, µ(f) = µ(g) = {1} and
µ(a) = µ(b) = µ(c) = ∅. This context-sensitive TRS is not µ-terminating, since it
admits the infinite reduction f(c(a)) µ→ g(a) µ→ f(c(b)) µ→ g(b) µ→ g(a) µ→

It should be noted that the restriction for left-hand sides to only contain variables
in constructor arguments was already made in [ZR10a]. This is the case because
matching constructors nested within constructors would otherwise invalidate the
approach of disallowing rewriting inside structure arguments of constructors.

6.4 Proving Productivity of Hardware Cells

Proving productivity can be used to verify stabilization of Hardware circuits. In
such a circuit, the inputs can be seen as an infinite stream of zeroes and ones, which
in general can occur in any arbitrary sequence. Furthermore, a circuit contains a
number of internal signals, which also carry different Boolean values over time. To

119

6. Productivity Analysis by Context-Sensitive Termination

D

SI

SE

CK

next n1

n2

Q

QN

Figure 6.1: Example circuit of scanable D flip-flop

store a value over time, feedback loops are used. In such a loop, a value that is
computed from some logic function is also used as an input to that function. Thus,
it is desired that such values stabilize, instead of oscillating indefinitely.

To check this, productivity analysis can be used. This will be illustrated in this
section by means of an example that will be considered throughout the rest of this
section.

Consider the circuit shown in Figure 6.1, implementing a scanable D flip-flop.
This circuit first selects, based on the value of the input SE (scan enable), either the
negation of the data input D (in case SE=0) or the negation of the scan data input
SI (in case SE=1). This value, called next in Figure 6.1, is then fed into another
multiplexer (mux), for which a feedback loop exists. This mux is controlled by the
negation of the clock input CK. If the clock is 0 then the negated value of next is
forwarded to the output n1, otherwise the stored value of n1 is kept. Similarly, n2
implements such a latch structure, however this time the latch forwards the negation
of the n1 input in case CK is 1, and it keeps its value when CK is 0. The outputs Q
and QN are computed from this stored value n2.

Note that a lot of the negations are only contained to refresh the signals, otherwise
a high voltage value might decay and not be detected properly anymore.

From the example circuit, a proper specification can be created, where the data
symbols consist of the two Boolean values 0 and 1 and the symbol not used for
negating by means of the following two rules:

not(0) → 1 not(1) → 0

The structures of interest are the infinite streams containing Boolean values, thus
the set of constructors is C = {:}. The structure TRS Rs contains the rules shown
in Figure 6.2. It should be remarked that in the these rules, the negations of the
clock have been removed, to ease readability. The defined function symbols next,
n1, n2, q, and qn reflect the wires and output signals with the corresponding name
in Figure 6.1. The constant rand is added to abstract the values of the inputs. It
provides a random stream of Boolean values, thus it is able to represent any sequence
of input values provided to the circuit. The rules of the symbol next implement the

120

Proving Productivity of Hardware Cells

rand → 0 : rand
rand → 1 : rand

next(0 : ses, d : ds, si : sis) → not(d) : next(ses, ds, sis)
next(1 : ses, d : ds, si : sis) → not(si) : next(ses, ds, sis)

n1(0 : cks, nextv : nexts, n1l) → not(nextv) : n1(cks, nexts, not(nextv))
n1(1 : cks, nextv : nexts, n1l) → n1′(cks, nexts, n1l, not(not(n1l)))

n1′(cks, nexts, 0, 0) → 0 : n1(cks, nexts, 0)
n1′(cks, nexts, 1, 1) → 1 : n1(cks, nexts, 1)
n1′(cks, nexts, 0, 1) → n1′(cks, nexts, 1, not(not(1)))
n1′(cks, nexts, 1, 0) → n1′(cks, nexts, 0, not(not(0)))

n2(0 : cks, n1v : n1s, n2l) → n2′(cks, n1s, n2l, not(not(n2l)))
n2(1 : cks, n1v : n1s, n2l) → not(n1v) : n2(cks, n1s, not(n1v)))

n2′(cks, n1s, 0, 0) → 0 : n2(cks, n1s, 0)
n2′(cks, n1s, 1, 1) → 1 : n2(cks, n1s, 1)
n2′(cks, n1s, 0, 1) → n2′(cks, n1s, 1, not(not(1)))
n2′(cks, n1s, 1, 0) → n2′(cks, n1s, 0, not(not(0)))

q(n2v : n2s) → not(n2v) : q(n2s)

qn(qv : qs) → not(qv) : qn(qs)

Figure 6.2: Structure TRS Rs for the circuit in Figure 6.1

mux selecting either the next data input value d in case the next scan enable input
value si is 0, or the next scan input value si in case si is 1.

The output of n1 is also computed by a mux, however, here the previous output
value has to be considered due to the feedback loop. This cycle is broken by
introducing a new parameter n1l that stores the previously output value. Then, based
on the next value of the clock ck, the input stream nextv : nexts coming from the
previously described multiplexer, and from the previous output value the next value
of the stream at n1 is computed. If the clock ck is 0, then the latch simply outputs
the value nextv and continues on the remaining streams, setting the parameter n1l to
this value to remember the computed value. Otherwise, if ck is 1, then the feedback
loop is active and has to be evaluated until it stabilizes. This is done by the function
n1′. It has as arguments the remaining input stream of the clock, the remaining
input stream of the scan multiplexer, and the previous output value and the newly
computed output value. If both of these values are the same, then the value of the
wire n1 has stabilized and hence can be output. The tail of the output stream is
computed by again calling the function n1 with the remaining streams for the clock
and the scan multiplexer. Otherwise, the new output value (the last argument of n1′)
differs from the old output value (the penultimate argument of n1′). In that case, the
new output value becomes the old output value and the new output is recomputed.

121

6. Productivity Analysis by Context-Sensitive Termination

This is repeated until eventually the output value stabilizes, or it will oscillate and
never produce a stable output.

Similar to the function n1, the function n2 computes stable values for the
corresponding wire in Figure 6.1. Again, the parameter n2l is added to store a
previously output value, and the auxiliary function n2′ is used to compute a stable
value for the feedback loop. The only difference to the function n1 is that the cases
of the clock are inverted, due to the additional inverter in Figure 6.1 that feeds the
select input of the multiplexer that computes n2.

Finally, the functions q and qn implement the two inverters that feed the corre-
sponding output signals in Figure 6.1.

The above specification is productive, since the TRS Rd ∪ Rs can be proven
context-sensitive terminating, for example by the tool AProVE [GSKT06]. Hence,
according to Theorem 6.3.4, the specification is productive, meaning that every
ground term of sort s rewrites to a constructor term. This especially holds for the
ground terms tq = q(tn2) and tqn = qn(tq), where the ground term tn2 is an arbitrary
instantiation of the term t̂n2 = n2(rand, n1(rand, nexts(rand, rand, rand), n1l), n2l),
i.e., the variables n1l and n2l are instantiated arbitrarily with either 0 or 1. Thus, the
circuit produces an infinite stream of stable output values, regardless of its initial
state and input streams, and does not oscillate infinitely long.

A similar question exists in the context of the synchronous language Esterel [Ber99,
PBEB07], an imperative language that is often used to describe embedded systems.
In this language, so-called reactions are described, which are responses to certain
input signals that take zero time. In such a response, a signal can either be present or
absent, but not both. An Esterel program is then said to be constructive, if from the
current state, the set of signals that is present or absent can be uniquely computed
for any valuation of the input signals. This is similar to the productivity question
investigated here. When viewing an Esterel program as producing a stream of sets
of signals that have been emitted in the current reaction, then productivity of the
program proves that in any state and for any input valuation the program does compute
a well-defined set of emitted signals. However, in contrast to the approach presented
in this section, formal semantics of Esterel such as [Ber99, PBEB07, TdS05] treat a
situation in which a signal cannot be computed to be either emitted or non-emitted
as deadlock, whereas the productivity analysis requires such situations to behave as
a livelock, i.e., a situation where further steps are possible but do not produce any
output (next stream element). Another semantics of Esterel that is specifically geared
towards checking constructiveness is presented in [Mou09]. There, constructiveness
of a subset of the Esterel language is defined as the property that a proof tree is
well-founded, which in turn means that a non-constructive program gives rise to an
infinite proof tree. It would be interesting to investigate whether this semantics can
be used to formulate the question of constructiveness as a productivity problem. If
this is the case, then one should also look into extending the semantics to the full
Esterel language.

Productivity is also related to the Kahn principle of Kahn Process Networks
(KPNs) [Kah74, GB10], which are commonly used in the streaming media domain
to model computations at an abstract level. A KPN describes a number of parallel
processes that communicate via unbounded fifo buffers. For KPNs, the Kahn principle
states that the operational semantics and the denotational semantics coincide, i.e.,
the intended behavior can indeed be achieved by executing the operational rules.
This is also the case for productivity, where executing the rules creates the desired

122

Summary

object, e.g., a stream. A crucial property of KPNs is that they are independent of
the relative delays of the buffers, i.e., a process always waits until all inputs are
available to compute its result. Thus, the computation is independent of the order of
input arrivals. This is also the case for stream specifications, where the result of a
function can only be computed when all required input streams have provided their
first element; the order of computing these is irrelevant. A difference is however that
the fifo buffers in a KPN always start in an empty state. This requires the functions
that take such buffers as input to be also defined for finite input sequences, which is
not required for productivity where one can also reason solely about infinite objects.

6.5 Summary

This chapter presented techniques to automatically prove productivity of specifications
of infinite objects such as streams. Previously, several techniques were developed for
proving productivity of stream specifications, but not for other infinite data structures
like infinite trees and combination of streams and finite lists. First, in Section 6.2,
orthogonal specifications were considered. It was shown that by proving termination
of a corresponding context-sensitive rewrite system [Luc02, GM04], productivity
of a specification can be concluded. However, the other direction does not hold,
i.e., from context-sensitive non-termination one must not conclude non-productivity.
Hence, productivity-preserving transformations, such as rewriting of right-hand sides
and case analysis, were presented to increase the strength of the productivity analysis.

There are examples where this approach outperforms all earlier techniques.
For instance, the techniques from [EGH+07, EGH08] fail to prove productivity of
Example 6.2.5, as these techniques are data-oblivious, i.e., they do not take the value
of data elements into account. For this specific example the technique from [ZR10b]
succeeds, but it fails as soon binary stream operations such as zip come in.

Productivity has been characterized and investigated as a property of term
rewriting, as was done before in the literature, see for example [EGH+07, Isi08,
EGH08, ZR10b, Isi10, ZR10a]. However, all these approaches were limited to
orthogonal specifications, which is not suitable for analysis of hardware cells. As was
already stated at the beginning of this chapter, the sequences of input values provided
to a hardware cell are unknown, hence all possible sequences have to be considered.
This is not possible with the restriction to orthogonal specifications, since there for
example the constant rand, which produces all possible streams consisting of the
values 0 and 1 by the two simple rules rand→ 0 : rand and rand→ 1 : rand, are not
allowed. Hence, this restriction was lifted in Section 6.3, to be able to abstract from
the concrete input sequences provided to a hardware cell using the constant rand. For
such non-orthogonal specifications the desired productivity should hold in all possible
execution traces, not just some. Therefore, the notion of strong productivity [End10]
was studied. Techniques were presented to also prove this form of productivity, which
were similar to those presented for the orthogonal case. Also, a recent improvement
presented in [EH11], that allows to block even more argument positions, could be
extended to the non-orthogonal setting. However, the result of [EH11], showing that
this improvement makes context-sensitive termination equivalent to productivity of
strongly sequential orthogonal specifications, does not carry over to non-orthogonal
specifications. It was shown in Section 6.4 that the extension to non-orthogonal
specifications is able to prove productivity of stream specifications created from

123

6. Productivity Analysis by Context-Sensitive Termination

hardware circuits, which implies stabilization of the circuit regardless of the external
input sequences that are provided.

However, the transformations that could be used in the orthogonal setting are not
correct for non-orthogonal specifications; rewriting of right-hand sides for example
is not correct since it considers only a single possible reduction sequence, but, in
the non-orthogonal setting, all reduction sequences must be considered. This can be
seen for example for the rules of the constant maybe, given as maybe→ 0 : maybe
and maybe→ maybe in Example 6.1.10. The right-hand side of the second rule can
be rewritten to 0 : maybe by the first rule, which would be a productive specification
according to Theorem 6.3.1. However, the original specification is of course not
strongly productive. It would be interesting to investigate whether for example
narrowing could be used instead.

Still some restrictions had to be imposed onto possibly non-orthogonal proper
specifications. The most severe restriction is the requirement of left-linear rules.
Dropping this requirement however would make Theorem 6.3.4, which showed that
productivity can be concluded from context-sensitive termination, unsound. This
was demonstrated in Example 6.3.10. Similarly, Example 6.3.11 showed that also
the requirement that structure arguments of constructors must be variables cannot be
dropped without losing soundness of Theorem 6.3.4. This requirement however is
not that severe in practice, since many specifications can be unfolded by introducing
fresh symbols, as was presented in [EH11, Zan09].

Some ideas in this chapter are related to earlier observations for orthogonal
specifications. In [Hin08] the observation was made that if right-hand sides of stream
definitions have the stream constructor ‘:’ as its root, then well-definedness can be
concluded, comparable to Theorem 6.2.1. A similar observation can be made about
process algebra, where a recursive specification is called guarded if right-hand sides
can be rewritten to a choice among terms all having a constructor on top, see for
example [BBR10, Section 5.5]. In that setting every specification has at least one
solution, while guardedness also implies there is at most one solution ([BBR10,
Theorem 5.5.11]). So guardedness implies well-definedness, being of the flavor
of combining Theorem 6.2.1 with rewriting right-hand sides. From both of these
observations well-definedness is obtained, which is a slightly weaker notion than
productivity. An investigation of well-definedness for stream specifications based on
termination was made in [Zan09]. It should be stressed that productivity is strictly
stronger than well-definedness, which is shown by the orthogonal proper (stream)
specification a→ f(a), f(x : xs)→ 0 : a. This specification is well-defined, since
any term has to be interpreted as the infinite stream of zeroes. However, starting
in the constant a, no stream constructor is ever produced. Well-definedness only
requires that a unique solution exists, whereas productivity also requires the given
rules to be able to compute such a unique solution. In the synchronous language
Esterel [Ber99, PBEB07], a notion related to well-definedness is logical correctness,
which requires that a unique model exists for a program. Similar to the above,
the constructiveness of Esterel programs, which resembles productivity, is strictly
stronger than logical correctness. It is shown for example in [Ber99] that there are
Esterel programs which are logically correct but not constructive.

Another related notion is the Kahn principle of Kahn process networks [Kah74,
GB10], which states that the operational rules can be applied to achieve the deno-
tational behavior. This is similar to productivity of a stream specification, which
expresses that by applying the rewriting rules the intended streams can be computed.

124

Chapter 7
Productivity Analysis by Outermost

Termination

The previous chapter presented techniques to prove productivity by means of context-
sensitive termination. There, outermost-fair reduction sequences were considered
to prove productivity, which was already observed in [End10]. In an outermost-fair
reduction sequence not every reduction step is outermost. It is only required that
every outermost redex is either eventually reduced, or it eventually is not an outermost
redex anymore.

In this chapter, productivity of orthogonal specifications is investigated again,
where the link to outermost rewriting is made explicit. In Section 7.1, which is
based on [ZR10b], a special form of outermost rewriting called balanced outermost
rewriting is considered. These rewriting sequences are similar to outermost-fair
reductions, however it is required that all redexes are outermost, i.e., non-outermost
redexes are never allowed to be contracted. The main result of this section is
that if balanced outermost termination of a specification and the overflow rules
{c(x1, . . . , xar(c)) → overflow | c ∈ C} can be proven, then the specification is
productive.

In special cases, where no data rules exist and at most one structure argument is
used, every outermost reduction sequence is balanced outermost. Furthermore, outer-
most termination always implies balanced outermost termination. Hence, outermost
termination can be used to prove productivity. Section 7.2 presents one technique
to prove outermost termination, by transforming such a problem into a standard
termination problem. In this way, powerful existing termination provers such as
AProVE [GSKT06], Jambox [End], µ-Term [L+], or TTT2 [KSZM] can be used.
This section is based on the work previously described in [RZ09].

7.1 Proving Productivity by Balanced Outermost Termination

The specifications considered in this section differ slightly from those that were defined
in Definition 6.1.5. Here, strictly proper specifications are considered, for which also
data arguments of constructors are required to be variables on left-hand sides of rules.
This however can again be achieved by unfolding in many cases [Zan09, EH11].
This section is an extension of the work presented in [ZR10b], where only (strictly
proper) stream specifications were treated.

125

7. Productivity Analysis by Outermost Termination

Definition 7.1.1. Let S = (Σd,Σs, C,Rd,Rs) be an orthogonal proper specification.
Then S is called strictly proper, if for all f(u1, . . . , um, t1, . . . , tn)→ r ∈ Rs with
ard(f) = m and ars(f) = n it holds that if ti is not a variable and root(ti) ∈ C,
then ti|j ∈ V for all 1 ≤ j ≤ ar(root(ti)).

The following example demonstrates the difference between orthogonal proper
specifications and orthogonal strictly proper specifications.

Example 7.1.2. Consider the following orthogonal proper stream specification, given
by the TRS Rs. This specification was already considered in Example 6.2.5 of the
previous chapter.

ones → 1 : ones f(0 : xs) → f(xs)
f(1 : xs) → 1 : f(xs)

This specification is not strictly proper, since the arguments 0 and 1 of the
constructor ‘:’ on the left-hand sides for the function f are not variables. This
however can be solved by unfolding, which introduces a fresh function symbol g with
ard(g) = ars(g) = 1 and replaces the two rules for f . The unfolded specification
then is the following:

ones → 1 : ones g(0, xs) → f(xs)
f(x : xs) → g(x, xs) g(1, xs) → 1 : f(xs)

This specification is strictly proper, since now the matching of the first element
in the argument stream of f is deferred into the rules for g.

Next, the notion of balanced outermost rewriting is defined, which is a property
of infinite reductions.

Definition 7.1.3. Let R be an arbitrary TRS. An infinite outermost reduction

t1 →p1 t2 →p2 t3 →p3 t4 · · ·

with respect to R is called balanced outermost if for every i and every redex of ti
on position q there exists j ≥ i such that pj ≤ q.

The TRS R is called balanced outermost terminating if it does not admit an
infinite balanced outermost reduction.

A direct consequence is that for any infinite outermost reduction that is not
balanced and contains a redex on position p in some term, every term later in the
reduction has a redex on position p, too.

As an example the stream specification for the Thue Morse sequence is considered.

Example 7.1.4. The Thue Morse sequence morse is given by the following orthogonal
strictly proper (stream) specification, where Rd contains the two rules not(0)→ 1
and not(1)→ 0 and the structure TRS Rs consists of the rules given below.

morse → 0 : zip(inv(morse), tail(morse)) tail(x : xs) → xs
inv(x : xs) → not(x) : inv(xs) zip(x : xs, ys) → x : zip(ys, xs)

The infinite reduction

tail(morse) → tail(0 : zip(inv(morse), tail(morse)))
→ zip(inv(morse), tail(morse))

126

Proving Productivity by Balanced Outermost Termination

continued by repeating this reduction forever on the created subterm tail(morse),
is outermost, but not balanced, since the redex morse on position 1.1 in the term
zip(inv(morse), tail(morse)) is never rewritten, and neither a higher redex. By forcing
the infinite outermost reduction to be balanced, this redex should be rewritten, after
which the rule for inv can be applied, and has to be applied due to balancedness,
after which the first argument of zip will have ’:’ as its root, after which outermost
reduction will choose the zip rule and create the constructor ’:’ as the root.

This leads to the main theorem regarding productivity of this chapter, showing
that balanced outermost termination allows to conclude productivity for orthogonal
strictly proper specifications.

Theorem 7.1.5. An orthogonal strictly proper specification S = (Σd,Σs, C,Rd,Rs)
is (weakly and stronly) productive, ifRd∪Rs∪{c(x1, . . . , xar(c))→ overflow | c ∈ C}
is balanced outermost terminating, where xi 6= xj for all 1 ≤ i < j ≤ ar(c) and
overflow /∈ Σd ∪ Σs is a fresh symbol.

To prove the above theorem, using the special shape of orthogonal strictly proper
specifications, first a lemma is proven that states that any ground term not having a
constructor as root symbol contains a redex that is not below any constructor.

Lemma 7.1.6. Let S = (Σd,Σs, C,Rd,Rs) be an orthogonal strictly proper speci-
fication, and let t be a ground term of sort s with root(t) /∈ C. Then there exists a
position p ∈ Pos(t) such that t→p and for all p′ < p, root(t|p′) /∈ C.

Proof. This lemma follows from Lemma 6.3.6 in Section 6.3, together with the
observation that arguments of constructors never need to be rewritten, due to the
requirement that all arguments are variables in left-hand sides of strictly proper
specifications.

This lemma allows to prove this section’s main theorem. Note that only orthogonal
specifications are considered, hence weak and strong productivity coincide and it
is sufficient to prove weak productivity, i.e., the existence of a reduction to a term
starting with a constructor, cf. Proposition 6.1.11 in Section 6.1.

Proof of Theorem 7.1.5. Assume t is a ground term of sort s that is not productive,
i.e., it does not rewrite to a term with a constructor as its root symbol. This
allows to construct an infinite balanced outermost reduction w.r.t. Rd ∪ Rs ∪
{c(x1, . . . , xar(c)) → overflow | c ∈ C}: According to Lemma 7.1.6, there ex-
ists a position p ∈ Pos(t) such that t→p and for all p′ < p, root(t|p′) /∈ C. Hence,
there exists a position q1 ≤ p such that for some term t1, t→q1 t1 is an outermost
step w.r.t. Rd ∪ Rs. Since also for all q′ < q1, root(t|q′) /∈ C, this is also an
outermost step w.r.t. Rd ∪Rs ∪ {c(x1, . . . , xar(c))→ overflow | c ∈ C}. Also t1 is
not productive, otherwise, if t1 would rewrite to a term with a constructor as its root
symbol, then so would t. Hence, this argument can be repeated to obtain an infinite
outermost reduction t = t0 →q1 t1 →q2 t2 →q3

There might however be a term ti and a redex on a position p ∈ Pos(ti) that is
never reduced or consumed in the constructed infinite outermost reduction. However,
then there is never a reduction step above p in the remaining reduction, i.e., for all
j > i, qj 6≤ p. Since the reduction consists of outermost steps, it can be concluded
that qj 6> p, otherwise tj−1 →qj tj would not be outermost. Hence, qj ‖ p for all
j > i. Let p′ ≤ p such that ti →p′ is an outermost step. Then also p′ ‖ qj for all

127

7. Productivity Analysis by Outermost Termination

j > i, since qj ≤ p′ ≤ p would contradict the assumption that qj 6≤ p and qj > p′

would contradict the assumption that tj−1 →qj tj is an outermost step. Therefore,
the redex at position p′ can be reduced at any time, without affecting reducibility of
the redexes at positions qj . These however might now become non-outermost steps.
So let t0 →∗ ti →qi+1 · · · →qk tk →p′ t

′
k+1 for some k > i such that t′k+1 →qk+1

is not an outermost step. But then the above reasoning that there is a redex on a
position not below a constructor symbol in t′k+1 and following terms can be applied
again, yielding another infinite outermost reduction for which the redex of ti at
position p is reduced or consumed. Repeating this construction gives an infinite
balanced outermost reduction, which therefore proves the theorem.

It should be remarked that the reverse direction of Theorem 7.1.5, other than it
was stated in [ZR10b], does not hold in general. This was first discovered in [EH11],
where a counterexample was given. This counterexample used structure functions
with up to three arguments. Below, another counterexample is given that only uses
function symbols with at most two arguments.

Example 7.1.7. Let Rs consist of the following rules:

b → f(g(zeroes, zeroes), b)
zeroes → 0 : zeroes

f(x : xs, ys) → 0 : zeroes
g(x : xs, y : ys) → 0 : zeroes

The corresponding specification is orthogonal and strictly proper. Furthermore,
it is productive, as can be seen by rewriting the right-hand side of the first rule as
follows (where the reduced redexes are underlined):

f(g(zeroes, zeroes), b)→ f(g(0 : zeroes, zeroes), b)
→ f(g(0 : zeroes, 0 : zeroes), b)
→ f(0 : zeroes, b)→ 0 : zeroes

By Theorems 6.2.1 and 6.2.10 of the previous chapter productivity of the initial
specification has therefore been proven.

However, when adding the rule x : xs→ overflow it admits an infinite balanced
outermost reduction, where again the reduced redexes are underlined:

b→ f(g(zeroes, zeroes), b)
→ f(g(0 : zeroes, zeroes), b)
→ f(g(overflow, zeroes), b)
→ f(g(overflow, 0 : zeroes), b)
→ f(g(overflow, overflow), b)
→ . . .

This reduction can be continued by repeating the above reduction of the symbol b
that is underlined in the last term. Note that g(overflow, overflow) is a normal form,
hence the reduction is balanced.

Using Outermost Termination Tools

Balancedness is obtained for free in case there are no rewrite rules for the data, i.e.,
Rd = ∅, and there are no rules in Rs that have more than one argument of structure
type s. This claim will be proven below.

128

Proving Productivity by Balanced Outermost Termination

Proposition 7.1.8. Let (Σd,Σs, C,Rd,Rs) be an orthogonal strictly proper specifi-
cation with Rd = ∅ and the type of all f ∈ Σs \ C is of the form dm × sn → s for
some m ∈ N, n ∈ {0, 1}.

Then every infinite outermost reduction t0 → t1 → t2 → . . . is balanced.

Proof. Structural induction is performed to show that for any outermost reduction
step t→p t

′, p ≤ p′ holds for all positions p′ ∈ Pos(t) for which t|p′ is a redex.
If t is a term of sort d, then t is a normal form, due to Rd = ∅. Hence, it does

not contain any redex.
If t = c ∈ Σs is a structure constant, then Pos(t) = {ε}. Thus, there is at most

one redex which proves this case.
Otherwise, if t = f(u1, . . . , un) with ars(f) = 0 (i.e., there is no argument of

structure sort), then again t→ε holds. This is due to Rd = ∅ and the exhaustiveness
requirement of proper specifications, note that no data operations are allowed with
arguments of structure sort. So this case has also been proven.

In the final case to consider, t = f(u1, . . . , un, t̃) for some f ∈ Σs with
ars(f) = 1. If t →ε, then p = ε must hold, as t →p t

′ was assumed to be an
outermost step, which proves this case. Therefore, assume that t 6→ε, i.e., p > ε.
Since u1, . . . , un are normal forms, because of Rd = ∅, it must be the case that
for all p′ ∈ Pos(t) with t →p′ , m + 1 ≤ p′, hence this especially holds for p as
well. Therefore, the induction hypothesis proves for the outermost reduction step
t̃→p−(m+1) t̃

′ that p− (m+1) ≤ p′′ for all positions p′′ ∈ Pos(t̃) with t̃|p′′ being a
redex. So, p = (m+1).(p− (m+1)) and for all p′ ∈ Pos(t) with t|p′ being a redex
it holds that p′ = (m+1).p′′. Hence, it also holds that p ≤ p′, proving this final case
and therefore the proposition.

The specification of the Thue Morse sequence given in Example 7.1.4 shows the
necessity of requiring at most one argument to be of structure sort. It was already
observed that the infinite reduction

tail(morse)→ tail(0 : zip(inv(morse), tail(morse)))
→ zip(inv(morse), tail(morse))
→ . . . ,

continued by repeatedly reducing the redex tail(morse), is outermost but not balanced.
To show that also the requirement Rd = ∅ is needed, an example is presented next
that allows to construct an infinite outermost reduction that is not balanced. Consider
the stream specification

tail(x : xs) → xs
a → 0 : f(not(1), tail(a))

f(0, xs) → 1 : f(0, xs)
f(1, xs) → 0 : f(1, xs)

together with the rules Rd = {not(0) → 1, not(1) → 0}. This orthogonal strictly
proper specification is productive, as can for example be checked with the tool
described in Section 6.2 or the productivity tool of [EGH08]. However, there also
exists an infinite outermost reduction, namely

tail(a)→ tail(0 : f(not(1), tail(a)))→ f(not(1), tail(a))→ . . . ,

which is continued by repeatedly reducing the redex tail(a). This redex is outermost,
since both rules having the symbol f as root require either 0 or 1 as first argument.

129

7. Productivity Analysis by Outermost Termination

To apply one of these rules, the outermost redex not(1) would have to be reduced
first, which shows that the above infinite outermost reduction is not balanced.

To also present an example that does satisfy the requirements of Property 7.1.8,
an alternative definition of the Thue Morse stream is proven productive below.

Example 7.1.9. Consider the following definition of the Thue Morse stream:

morse → 0 : a
a → 1 : f(a)

f(0 : xs) → 0 : 1 : f(xs)
f(1 : xs) → 1 : 0 : f(xs)

This TRS Rs is an orthogonal proper specification, but it is not strictly proper. After
unfolding, an orthogonal strictly proper specification is obtained that still satisfies
the requirements of Property 7.1.8. Thus, when adding the rule x : xs→ overflow,
outermost termination of the following TRS has to be shown:

morse → 0 : a
a → 1 : f(a)

f(x : xs) → g(x, xs)
g(0, xs) → 0 : 1 : f(xs)
g(1, xs) → 1 : 0 : f(xs)
x : xs → overflow

Outermost termination of the above TRS can for instance be proven using the trans-
formation presented in the next Section 7.2 and AProVE [GSKT06] as a termination
prover, or using the approach presented in [EH09]. This allows to conclude that the
above stream specification is productive.

The next example is interesting, since it is not friendly nesting, a condition
required by [EGH08] to be applicable. Essentially, a stream specification is friendly
nesting if the right-hand sides of every nested symbol start with ‘:’, which is clearly
not the case for the second rule below.

Example 7.1.10. Consider the following TRS Rs:

a → 1 : a
f(x : xs) → g(x, xs)
g(0, xs) → 1 : f(xs)
g(1, xs) → 0 : f(f(xs)))

As can easily be seen, the above example fits into the orthogonal strictly proper
specification format considered in this section and it satisfies the requirements of
Property 7.1.8. After adding the rule x : xs → overflow, outermost termination
can be proved automatically using the above techniques, which allows to conclude
productivity of the example.

Finally, it should be remarked that outermost termination always implies balanced
outermost termination, since an infinite balanced outermost reduction consists only
of outermost steps. Thus, also for orthogonal strictly proper specifications that have
either data rules or symbols with more than one structure argument productivity can
be checked in the way presented here. However, in practice it is seldomly the case
that for this type of specifications outermost termination can be proven.

130

Transformational Outermost Termination Analysis

7.2 Transformational Outermost Termination Analysis

A lot of work has been done on automatically proving termination and innermost termi-
nation. However, also termination with respect to the outermost strategy makes sense.
For instance, this is the standard strategy in the functional programming language
Haskell [Pey03], and it can be specified in CafeOBJ [FD98] and Maude [CDE+03].
This section will focus on the most general variant of the outermost strategy: re-
ducing a redex is always allowed if it is not a proper subterm of another redex.
Termination with respect to this strategy will shortly be called outermost termination.
This is different from the approaches for proving termination of Haskell presented
in [PSS97, GRSK+11], where termination is only proven for a specific set of terms
(ground instantiations of a so-called start term) and not for every possible term.
Furthermore, the language Haskell does not allow overlapping rules, i.e., there is at
most one rule applicable for every term, and all arguments on left-hand sides are
constructor terms.

A direct application of outermost termination analysis was presented in the
previous Section 7.1. It showed that balanced outermost termination can be used
to analyze productivity. In case general outermost termination can be proven, then
this entails that there are no infinite balanced outermost reductions. Furthermore,
the previous section identified cases where infinite outermost sequences and infinite
balanced outermost sequences coincide.

The approach presented in this section works by transforming a given TRS
into another TRS such that ground outermost termination of the original TRS is
equivalent to termination of the transformed TRS. It will be shown that when fixing
the signature there may be a difference between outermost termination and ground
outermost termination, but by adding fresh constants there is no difference any more.
Therefore it is not a restriction to focus on ground outermost termination.

The crucial ingredient of the presented transformation is anti-matching: for L
being a set of terms such that it matches all terms that can be rewritten with the
given TRS, a set SL is needed such that any term matches with a term in SL if
and only if it does not match with a term in L. It turns out that if all terms in L
are linear, then a finite set SL satisfying this requirement can easily be constructed,
while there are sets L containing non-linear terms such that every set SL satisfying
this property is infinite. For that reason only the class of quasi left-linear TRSs is
treated, which are all TRSs where a left-hand side is an instance of a linear left-hand
side. Clearly, this class also includes all left-linear TRSs.

Based on anti-matching a straightforward transformation T is given such that
every infinite outermost reduction with respect to any quasi left-linear TRS R gives
rise to an infinite T (R)-reduction. Several variants of the basic transformation
were evaluated and the most powerful one is given in the final definition of the
transformation. Additionally, two other transformations are given that can only prove
but not disprove ground outermost termination. These transformations are simpler,
hence proving termination for them is often easier. Also these transformations make
use of an anti-matching set of terms by extracting contexts of rule instances that can
never be redexes themselves.

Preliminaries

Below, some notation shall be fixed that is used in the rest of this section. Recall that
a substitution σ : V → T (Σ,V) is written as σ = {x1 := t1, . . . , xm := tm}, which

131

7. Productivity Analysis by Outermost Termination

denotes the mapping σ(x) = x and σ(xi) = ti for all x 6= xi and 1 ≤ i ≤ m. The
set of all substitutions over Σ and V will be denoted as SUB(Σ,V). The application
of a substitution σ ∈ SUB(Σ,V) to a term t ∈ T (Σ,V) is denoted tσ and replaces
all variables by their corresponding terms. Such a term tσ is called an instance
of t. Two terms t, t′ ∈ T (Σ,V) are said to unify, if a unifier σ ∈ SUB(Σ,V) exists
such that tσ = t′σ. A term t ∈ T (Σ,V) is said to match a term t′ ∈ T (Σ,V), if a
substitution σ ∈ SUB(Σ,V) exists such that tσ = t′.

A standard property relating linearity and unification is the following.

Lemma 7.2.1. Let t, t′ ∈ T (Σ,V) be two linear terms with V(t) ∩ V(t′) = ∅ that
do not unify. Then there is a position p ∈ Pos(t)∩Pos(t′) such that t|p and t′|p are
no variables and root(t|p) 6= root(t′|p).

Proof (Sketch). For linear terms t, t′ ∈ T (Σ,V) with V(t)∩V(u) = ∅, it holds as an
invariant of the standard Martelli-Montanari unification algorithm as given in [Ter03,
Section 7.7] that every variable occurs at most once. Thus, the only way to get the
result fail is by having two terms that have different root symbols.

A term t ∈ T (Σ,V) outermost rewrites to a term t′ ∈ T (Σ,V) with a rule
`→ r ∈ R at a position p ∈ Pos(t), denoted t o→`→r,p t

′, if t→`→r,p t
′ and t|p is

an outermost redex, that is for all positions p′ ∈ Pos(t) with p′ < p it holds that
t 6→R,p′ .

Given a TRS R, the set of left-hand sides of that TRS is defined to be lhs(R) =
{` | `→ r ∈ R}. A TRS R is called outermost terminating if there is no infinite
o→-chain. Given a TRS R, R is called ground terminating (outermost ground
terminating), if there is no infinite sequence t1, t2, t3 . . . ∈ T (Σ) of ground terms
such that ti →R ti+1 (ti

o→R ti+1) for all i ∈ N. The following example shows
that outermost termination for arbitrary terms may differ from outermost ground
termination.

Example 7.2.2. Consider the following left-linear term rewrite system R over the
signature Σ = {f, a, b}:

f(a, x) → a f(x, a) → f(x, b)
f(b, x) → a b → a

f(f(x, y), z) → a

For arbitrary terms, the following infinite outermost reduction exists:

f(x, a) o→ f(x, b) o→ f(x, a) o→ · · ·

But, when instantiating the variable x by any arbitrary ground term t ∈ T (Σ) in
the above reduction, then one of the three rules on the left is applicable at the root
position. Hence, the reduction f(t, b)→ f(t, a) is no longer an outermost reduction.
In fact, the above term rewrite system is outermost ground terminating, as will be
shown later.

This difference between outermost termination and ground outermost termination
only occurs when fixing the signature. It is easy to see that by replacing variables in
any infinite outermost reduction by fresh constants, the result is an infinite outermost
ground reduction. For quasi left-linear TRSs adding one fresh constant suffices.

132

Transformational Outermost Termination Analysis

Transformation of Outermost Termination to Standard Termination

The idea of the transformation is to only allow a reduction when a certain control
symbol down marks the current redex. After having reduced a term, the control
symbol is replaced by another control symbol up that is moved outwards. Only when
the root of the term is encountered, then the control symbol is replaced by the down
symbol again. In order to find the next outermost redex, the symbol down may only
descend into subterms when no left-hand side is applicable to the term. For this
purpose, a set SL is needed such that its elements match exactly those terms that are
not matched by a left-hand side. Such a set SL is called anti-matching, as defined
below.

Definition 7.2.3. A set SL ⊆ T (Σ,V) is called anti-matching w.r.t. a set L ⊆
T (Σ,V), if the following holds for all ground terms t ∈ T (Σ):

6 ∃` ∈ L, τ ∈ SUB(Σ,V) : t = `τ ⇐⇒ ∃s ∈ SL, σ ∈ SUB(Σ,V) : t = sσ

Using such an anti-matching set, the transformation can be defined formally.

Definition 7.2.4. Let R be a TRS over a signature Σ and let SL ⊆ T (Σ,V) be an
anti-matching set w.r.t. L = lhs(R).

Choose four fresh unary symbols top, up, down, block /∈ Σ, and let Σ\ = {f \ |
f ∈ Σ, ar(f) > 0} be such that Σ ∩ Σ\ = ∅. The TRS T (R) over the signature
Σ ∪ Σ\ ∪ {top, up, down, block} is defined to consist of the following rules:

• down(`)→ up(r), for all rules `→ r in R;

• top(up(x))→ top(down(x));

• down(f(t1, . . . , tn)) → f \(block(t1), . . . , down(ti), . . . , block(tn)), for all
f(t1, . . . , tn) ∈ SL and all i ∈ {1, . . . , n};

• f \(block(x1), . . . , up(xi), . . . , block(xn)) → up(f(x1, . . . , xn)), for all f ∈
Σ and all i ∈ {1, . . . , n}, where ar(f) = n and x1, . . . , xn are distinct
variables.

For an infinite TRS R, clearly T (R) is infinite, too. The TRS T (R) can also
become infinite for a finite TRS R that is not quasi left-linear, since then any anti-
matching set SL might be infinite. This is demonstrated later, when anti-matching is
discussed in detail. For quasi left-linear TRSs however, a finite anti-matching set
always exists and can be constructed automatically.

Theorem 7.2.5. For a quasi left-linear TRS R, there exists a finite, computable,
and (up to variable renaming) unique set SL ⊆ T (Σ,V) of linear terms that is
anti-matching w.r.t. L = lhs(R).

The proof of this theorem will be given later. However, the correctness of the
transformation does not depend on finiteness of SL.

In the transformation, the already mentioned symbols down and up are introduced
to control the position of the next redex. The symbol top is used to denote the
root position of the term, where the search of the next redex has to turn downwards
again. The last of these fresh control symbols is the symbol block. Its purpose is
to disallow evaluations where an up symbol appears at the root position of a term
without having applied a rule of the form down(`)→ up(r). Furthermore, for every

133

7. Productivity Analysis by Outermost Termination

function symbol f of the original rewrite system, a new marked symbol f \ is created
which has the same arity as f . This allows to use different interpretations for these
symbols in the often used reduction pairs. Thus, it can be distinguished whether a
symbol is above or below one of the control symbols, which often makes termination
proofs easier.

An outermost rewrite step can be modelled by a sequence of steps in the
transformed system. This is shown in the following lemma.

Lemma 7.2.6. Let R be a TRS over a signature Σ, let t, t′ ∈ T (Σ).
If t o→R t′, then down(t)→+

T (R) up(t′).

Proof. Let t, t′ ∈ T (Σ) be two ground terms and let t o→`→r,p t
′ for some rule

`→ r ∈ R and some position p ∈ Pos(t). Induction is done over the length of p.
In case p = ε, then directly the rule down(`)→ up(r) must be in T (R), which

shows the desired property.
Otherwise, let p = i.p′ for some p′ ∈ Pos(t|i) and let t = f(t1, . . . , tn).

Hence, t 6→ε and t′ = f(t1, . . . , ti−1, t
′
i, ti+1, . . . , tn) for some t′i ∈ T (Σ). Since

t is a ground term, tτ = t and tτ = t 6= `′σ holds for all τ, σ ∈ SUB(Σ,V)
and all `′ ∈ lhs(R). Hence, by Definition 7.2.3 a term s ∈ SL and a substitu-
tion σ ∈ SUB(Σ,V) exist such that sσ = t. Let s = f(s1, . . . , sn). Then a
rule down(f(s1, . . . , sn)) → f \(block(s1), . . . , down(si), . . . , block(sn)) ∈ T (R)
exists that is applicable to the term down(t) and therefore gives the reduction
down(t) = down(f(t1, . . . , tn))→ f \(block(t1), . . . , down(ti), . . . , block(tn)). For
the subterm ti it holds that ti

o→`→r,p′ t
′
i. Here, the induction hypothesis is applicable

and yields a reduction down(ti)→+ up(t′i). When applying this together with the
rule f \(block(x1), . . . , up(xi), . . . , block(xn)) → up(f(x1, . . . , xn)) ∈ T (R) the
following reduction is obtained:

down(t) = down(f(t1, . . . , tn))→ f \(block(t1), . . . , down(ti), . . . , block(tn))
→+ f \(block(t1), . . . , up(t′i), . . . , block(tn))
→ up(f(t1, . . . , t′i, . . . , tn)) = up(t′)

This completes the proof of the lemma.

Using the above lemma, the main theorem can be proven which shows that the
presented transformation is sound, i.e., from termination of the transformed TRS
outermost ground termination of the original TRS can be concluded.

Theorem 7.2.7. Let R be a TRS over a signature Σ for which T (R) is terminating.
Then R is outermost ground terminating.

Proof. Assume R is not outermost ground terminating. Then there is an infinite
outermost reduction t1

o→R t2
o→R . . . for some ground terms t1, t2, . . . ∈ T (Σ).

For each ti
o→R ti+1, down(ti)→+

T (R) up(ti+1) by Lemma 7.2.6. Due to the rule
top(up(x))→ top(down(x)) an infinite reduction in the transformed system T (R)
is obtained, i.e.,

top(down(t1))→+
T (R) top(up(t2))→T (R) top(down(t2))→+

T (R) . . . ,

contradicting termination of T (R).

134

Transformational Outermost Termination Analysis

Below the case of (arbitrary) outermost termination shall be considered, not just
outermost ground termination. For a quasi left-linear TRS R over the signature Σ a
new TRSR′ is created which has the same rules asR, but now is defined to be over the
signature Σ′ = Σ∪{c}, where c /∈ Σ is a fresh constant (i.e., it has arity 0). Then an
infinite reduction t1

o→R t2
o→R t3

o→R . . . for some terms t1, t2, t3, . . . ∈ T (Σ,V)
implies that t1σ1

o→R′ t2σ2
o→R′ t3σ3

o→R′ . . . is an infinite reduction of ground
terms tiσi ∈ T (Σ) for substitutions σi = {x := c | x ∈ V(ti)}, where i ≥ 1. This
holds, since no left-hand side of the rewrite system R′ matches a subterm of tiσi
which R does not match, because no left-hand side of R′ contains the constant c.
Furthermore, no redex that previously was an outermost redex can suddenly become
a non-outermost redex; for this to be the case a non-linear left-hand side would
have to match some subterm of tiσi, whereas it did not match the corresponding
subterm of ti. However, due to R being quasi left-linear, this non-linear left-hand
side would have to be an instance of a linear one, which would already have matched
the subterm in ti.

In the other direction, one can replace the symbol c in an infinite reduction
w.r.t. R′ by a fresh variable, giving an infinite reduction w.r.t. R. Therefore, the term
rewrite system R is outermost terminating, iff the term rewrite system R′ is outermost
ground terminating. Such a TRS R′ can then be handled by the transformation
presented above to show outermost termination of R.

Other Transformations based on Contexts

There are examples for which the transformed TRS T (R) cannot be proven terminating
automatically. For some of these examples the transformations presented in the
following are successful. These transformations do not use symbols down and up to
find the next redex, but rewrite a redex when an anti-matching context is found.

Definition 7.2.8. For a set L ⊆ T (Σ,V) of terms, a set CL ⊆ T (Σ,V] {�}) is
called a set of anti-matching contexts w.r.t. L, iff

• � /∈ CL,

• � occurs exactly once in every term C ∈ CL, and

• if for some ground term t ∈ T (Σ) and position p ∈ Pos(t), t|p = `σ for some
` ∈ L and substitution σ ∈ SUB(Σ,V) and t 6= `′σ′ for all `′ ∈ L and all
σ′ ∈ SUB(Σ,V), then there is a C ∈ CL and a τ ∈ SUB(Σ,V] {�}) such
that t = Cτ and for p′ ∈ Pos(C) with C|p′ = � it holds that p′ ≤ p.

The third requirement above is similar to the requirements for an anti-matching
set SL. Thus, the set ĈL = {s[�]i | s ∈ SL, 1 ≤ i ≤ ar(root(s))} is a set of anti-
matching contexts, as can easily be checked. Using a set of anti-matching contexts,
another transformation T2 is defined. Here and in the following, C[t] denotes the
term C[t]p, where p ∈ Pos(C) is the position of the context C such that C|p = �.

Definition 7.2.9. For a TRS R over a signature Σ, let CL be a set of anti-matching
contexts w.r.t. L = lhs(R). The TRS T2(R) over the signature Σ] {top} is defined
to contain the following rules:

• top(`)→ top(r) for all `→ r ∈ R, and

• C[`]→ C[r] for all `→ r ∈ R and all C ∈ CL such that V(`) ∩ V(C) = ∅.

135

7. Productivity Analysis by Outermost Termination

It will be shown below that this is a sound transformation, i.e., outermost
termination of some TRS R can be concluded from termination of T2(R). First, the
cases shall be identified in which T2(R) can be guaranteed to be finite. Clearly, if R
is infinite then T2(R) is infinite, too. Since the construction of the set ĈL relies on
the anti-matching set SL, finiteness of T2(R) can be guaranteed if R is finite and
quasi left-linear. This can be observed from Theorem 7.2.5.

To prove soundness of the transformation T2, it is first shown that any reduction
can be put into the context top(�).

Lemma 7.2.10. Let t, t′ ∈ T (Σ) be two ground terms with t
o→R t′. Then

top(t)→T2(R) top(t′).

Proof. Let t, t′ ∈ T (Σ) with t = t[`σ]p
o→`→r,p t[rσ]p = t′ for some ` → r ∈ R,

some substitution σ, and position p ∈ Pos(t). If p = ε, then t = `σ and t′ = rσ. By
construction, top(`)→ top(r) ∈ T2(R), hence top(t) = top(`σ) = top(`)σ →T2(R)
top(r)σ = top(rσ) = top(t′).

Otherwise, p = p′.i for some p′ ∈ Pos(t) and 1 ≤ i ≤ ar(root(t|p′). Since
t

o→p t
′, it must be the case that t 6→p′ (or equivalently, t|p′ 6→R,ε), otherwise

the reduction would not be outermost. Thus, t|p′ 6= `′σ′ for all `′ → r′ ∈ R and
substitutions σ′, and furthermore t|p′ →`→r,i t

′|p′ . Due to Definition 7.2.9 a context
C ∈ CL and a substitution τ ∈ SUB(Σ,V] {�}) exist such that t|p′ = Cτ and for
p� ∈ Pos(C) with C|p�

= � it holds that p� ≤ i, i.e., either p� = ε or p� = i.
If p� = ε then C = �, which is not allowed by Definition 7.2.9. Hence, p� = i.
For the rule C[`] → C[r] ∈ T2(R) it holds that V(`) ∩ V(C) = ∅. Therefore,
t|p′ = C[`σ]τ = C[`]στ →T2(R),ε C[r]στ = C[rσ]τ = t|p′ which implies that
top(t)→T2(R),1.p′ top(t′).

This allows to prove soundness of the transformation T2.

Theorem 7.2.11. If for a TRS R and a set of anti-matching contexts Clhs(R) the
TRS T2(R) is terminating, then R is outermost ground terminating.

Proof. Let t1
o→R t2

o→R . . . be an infinite outermost reduction for ground terms
t1, t2, . . . ∈ T (Σ). Then, due to Lemma 7.2.10, top(t1)→T2(R) top(t2)→T2(R) . . .
is an infinite reduction w.r.t. the TRS T2(R), which proves the theorem.

One might wonder why in the construction of ĈL the hole � is always introduced
at depth 1, instead of replacing a variable of the term. Why this latter idea is not
sound is illustrated in the below example.

Example 7.2.12. Consider the below TRS R over signature Σ = {f, b}:

b → f(f(b)) f(b) → b f(f(f(x))) → b
For L = lhs(R), SL = {f(f(b))}, i.e., there are no variables in any term

contained in SL. Thus, for Ĉ ′L = ∅, the only rules in T2(R) would be of the shape
top(`)→ top(r). The TRS consisting only of these rules can be shown terminating.
However, the above TRS contains the following infinite outermost ground reduction,
showing this approach to be unsound:

f(f(b)) o→ f(b) o→ b o→ f(f(b)) o→ . . .

It should be remarked that Ĉ ′L = ∅ is not a set of anti-matching contexts w.r.t. L.
This holds because the term f(f(b)) is irreducible at the root position but contains

136

Transformational Outermost Termination Analysis

the redex f(b) on position p = 1. Hence, the third requirement of Definition 7.2.9 is
violated.

The transformation T2 is always incomplete, i.e., non-termination of T2(R) does
not imply outermost non-termination of R, regardless of the concrete set CL of
anti-matching contexts.

Example 7.2.13. Consider the following TRS R:

f(h(x)) → f(i(x)) f(i(x)) → a i(x) → h(x)

When this TRS is transformed using the transformation T2, then the context f(�)
must be considered, since f(f(h(x))) is not matched by any left-hand side of R,
but is reducible at position p = 1. Thus, the two rules f(f(h(x)))→ f(f(i(x))) and
f(i(x)) → f(h(x)) must be contained in T2(R). These two rules form an infinite
reduction, but the original TRS R is outermost ground terminating, as can be shown
using the transformation T for example.

The above example failed since the rule i(x)→ h(x) was inserted into the context
f(�), but such a reduction will never take place due to the left-hand side f(i(x)). As
an improvement, one can therefore make a more fine-grained analysis of possible
reductions in arguments of contexts. These contexts are again derived from an
anti-matching set SL.

Definition 7.2.14. Let R be a TRS over signature Σ and let SL ⊆ T (Σ,V) be an
anti-matching set w.r.t. L = lhs(R). The TRS T3(R) is defined over the signature
Σ] {top}, containing the following rules:

• top(`)→ top(r) for all `→ r ∈ R, and

• s[`]iµ → s[r]iµ for all s ∈ SL, all 1 ≤ i ≤ ar(root(s)), and all ` → r ∈ R
such that s|i and ` unify with the most general unifier µ.

The above transformation T3 is also sound.

Theorem 7.2.15. If the TRS T3(R) is terminating for a TRS R, then R is outermost
ground terminating.

Proof Sketch. Observe that Lemma 7.2.10 also holds when replacing transformation
T2 by T3, since the reduction on a position i below an anti-matching context must
be matched by some left-hand side of R, hence it must unify with the argument
of an anti-matching term. Thus, a similar proof to that of Theorem 7.2.11 shows
transformation T3 to be sound.

The transformation T3 shall now be compared with T2 on Example 7.2.13.

Example 7.2.16. For the TRS R shown in Example 7.2.13, the TRS T3(R) consists
of the following rules, where SL = {h(x), a, f(a), f(f(x))}:

top(f(h(x))) → top(f(i(x))) h(f(h(x))) → h(f(i(x)))
top(f(i(x))) → top(a) h(f(i(x))) → h(a)

top(i(x)) → top(h(x)) h(i(x)) → h(h(x))
f(f(h(x))) → f(f(i(x))) f(f(i(x))) → f(a)

As can be seen, the TRS T3(R) does not contain the rule f(i(x)) → f(h(x)),
which caused T2(R) to be non-terminating. And indeed, the TRS T3(R) can be
shown terminating automatically.

137

7. Productivity Analysis by Outermost Termination

However, the improved transformation is still incomplete, as witnessed by the
following counter-example.

Example 7.2.17. Consider the following TRS:

h(x) → x : 0 : h(s(x)) s(x) : xs → overflow

Outermost ground termination of this example can be shown using the transfor-
mation T . However, 0 : xs ∈ SL must hold for any anti-matching set SL. Thus, the
rule 0 : h(x) → 0 : x : 0 : h(s(x)) must be contained in T3(R). For this rule the
underlined part shows that the same rule is applicable again, leading to an infinite
reduction.

Anti-Matching

To be able to construct the transformed TRS T (R) from a term rewrite system R
that shall be checked for outermost termination, a set L is considered that matches
all terms which can be rewritten by R, for example L = lhs(R). Then, a set SL
of terms has to be found that describe the terms which cannot be rewritten by R.
Clearly, this only depends on the left-hand sides. Rewriting w.r.t. a TRS is done by
matching the left-hand sides to some other terms. Thus, the set SL should contain
terms that match those ground terms not matched by the terms contained in L. One
can imagine that there are several possible sets that satisfy this condition. The goal
is to select the smallest such set and to be able to construct it finitely when this is
possible.

This problem is treated in its general form: finding a set of terms that match the
terms not matched by some terms contained in another set. Only later the case of
linear terms is considered, where it will be shown that for this restriction the set SL
is finite and can be computed.

The problem of finding a set of terms that describe the complement of a set of
terms is similar to the problem considered by Lassez and Marriot [LM87], where
an explicit representation of a set is being searched that is described using counter
examples. But their focus is on machine learning, therefore it is hard to directly
apply their results. Also the concept of anti-patterns as introduced in [KKM07]
is related to the problem studied here. Anti-patterns are more general since they
allow to introduce negation of patterns at any position in a term, while here only
negation of a complete pattern is required. However, this work is not applicable here,
since a representation of a set that does not match a given term is required, while an
anti-pattern matching problem is to decide whether an anti-pattern matches a single
ground term.

Below, first a set S′L of terms that satisfy the desired property is defined. This
set is usually infinite and contains quite a number of redundant terms, i.e., terms
that are already matched by other terms contained in S′L. Thus, another set SL is
defined that consists only of the minimal elements of S′L w.r.t. an order that expresses
whether one term matches the other.

Definition 7.2.18. Let L ⊆ T (Σ,V) be a set of terms. On terms the preorder ≤ is
defined by

t ≤ u ⇐⇒ ∃σ : tσ = u

which induces the definition of its strict part to be

t < u ⇐⇒ t ≤ u ∧ ¬(u ≤ t).

138

Transformational Outermost Termination Analysis

Now SL is defined to be the set of minimal elements of the set of terms that do not
unify with elements of L, i.e.,

S′L = {t ∈ T (Σ,V) | 6 ∃` ∈ L, σ, τ ∈ SUB(Σ,V) : `σ = tτ}

SL = {t ∈ S′L | 6 ∃u ∈ S′L : u < t}

One might wonder why unification is considered, while term rewriting is concerned
with matching. This becomes clear when formulating what kind of terms are sought:
the set of terms that match those terms which are not matched by left-hand sides. This
means that two matchings have to be considered at the same time. When assuming
the set of variables to be disjoint then this gives rise to a unification problem.

As a next step it is shown that the set S′L is closed under substitution. This is
of interest, since the ground terms that are matched by a term contained in S′L are
considered. Thus, it should be the case that every instantiation of a term from S′L is
also contained in S′L, such that this especially holds for ground instances.

Lemma 7.2.19. {sσ ∈ T (Σ,V) | s ∈ S′L, σ ∈ SUB(Σ,V)} = S′L.

Proof. “⊇”: Holds trivially for σ = id.
“⊆”: Let s ∈ S′L, σ ∈ SUB(Σ,V). Then sσ ∈ {sσ ∈ T (Σ,V) | s ∈ S′L, σ ∈

SUB(Σ,V)}. It holds that `σ′ 6= sτ ′ for all ` ∈ L and all substitutions σ′, τ ′ ∈
SUB(Σ,V). Therefore, especially `σ′ 6= sστ ′ holds for all substitutions σ′, τ ′ ∈
SUB(Σ,V). Hence, sσ ∈ S′L.

The set SL is derived from the set S′L by taking only the minimal elements of S′L
w.r.t. the order >. In order to be able to show that these minimal elements exist, it
is shown that this order is well-founded, i.e., there are no infinite descending chains.

Lemma 7.2.20. The relation > from Definition 7.2.18 is well-founded.

Proof. Assume, > were not well-founded, i.e., there exists an infinite sequence
t1 > t2 > . . . for some t1, t2, . . . ∈ T (Σ,V). Thus, for every i > 1, ti−1τ 6= ti for
all τ ∈ SUB(Σ,V) and substitutions σi ∈ SUB(Σ,V) exist such that ti−1 = tiσi.
For a term t ∈ T (Σ,V), let #Σ(t) ∈ N denote the number of symbols from Σ
contained in t and let #2×V(t) ∈ N denote the number of variables that occur
more than once in t. If for a variable xi ∈ V(ti) it holds that σi(xi) /∈ V , then
#Σ(ti−1) = #Σ(tiσi) >N #Σ(ti). Otherwise, σi(x) ∈ V for all x ∈ V . Then there
must be two variables xi, yi ∈ V(ti) with xi 6= yi and σi(xi) = σi(yi) ∈ V , since
otherwise one could define τ = {y := x | σi(x) = y} and would get ti−1τ = ti.
Hence, in this case #Σ(ti−1) = #Σ(ti) and #2×V(ti−1) >N #2×V(ti). Because the
lexicographic combination of two well-founded orders is also well-founded, this gives
a contradiction since an infinite descending chain for the lexicographic combination
of >N on #Σ and >N on #2×V was constructed. This proves the lemma.

When removing larger elements from a set w.r.t. ≤, then all terms that are matched
by removed terms are still being matched by some term in the set. This is proven in
the next lemma and will be used to show that SL still matches the same terms as S′L.

Lemma 7.2.21. {uσ | u ∈ U, σ ∈ SUB(Σ,V)} = {uσ | u ∈ U ∪ U ′, σ ∈
SUB(Σ,V)} for every U,U ′ ⊆ T (Σ,V) with U ′ = {u′ | ∃u ∈ U : u ≤ u′}.

139

7. Productivity Analysis by Outermost Termination

Proof. “⊆”: trivial, since U ⊆ U ∪ U ′.
“⊇”: Let u′ ∈ U ∪U ′, let σ′ ∈ SUB(Σ,V). If u′ ∈ U , then the property trivially

holds. So let u′ ∈ U ′ \ U . Then a u ∈ U exists such that u ≤ u′, i.e., there is a
substitution τ ∈ SUB(Σ,V) such that u′ = uτ . Hence, u′σ′ = uτσ′ ∈ {uσ | u ∈
U, σ ∈ SUB(Σ,V)}.

For the set S′L it should be intuitively clear that all terms that are not matched
by a term contained in L are matched by a term in that set. Using the above lemma,
it can now be shown that this already holds for the set SL.

Lemma 7.2.22. {sσ ∈ T (Σ,V) | s ∈ SL, σ ∈ SUB(Σ,V)} = S′L.

Proof. “⊆”: Since SL ⊆ S′L, this holds due to Lemma 7.2.19.
“⊇”: Since > is well-founded as shown in Lemma 7.2.20, the existence of the

minimal elements in SL is guaranteed. Thus, Lemma 7.2.21 shows the desired
property.

This allows to prove that the ground terms matched by SL are indeed those terms
that are not matched by the set L.

Lemma 7.2.23. T (Σ) \ {`σ ∈ T (Σ) | ` ∈ L, σ ∈ SUB(Σ,V)} = {sσ ∈ T (Σ) |
s ∈ SL, σ ∈ SUB(Σ,V)}.

Proof. This lemma is shown in two steps: First it is proven that {`σ ∈ T (Σ) |
` ∈ L, σ ∈ SUB(Σ,V)} ∩ {sσ ∈ T (Σ) | s ∈ SL, σ ∈ SUB(Σ,V)} = ∅ (showing
“⊇”), and in the second step it is shown that T (Σ) = {`σ ∈ T (Σ) | ` ∈ L, σ ∈
SUB(Σ,V)} ∪ {sσ ∈ T (Σ) | s ∈ SL, σ ∈ SUB(Σ,V)} (showing “⊆”).

For the first step, let t ∈ {`σ ∈ T (Σ) | ` ∈ L, σ ∈ SUB(Σ,V)} ∩ {sσ ∈ T (Σ) |
s ∈ SL, σ ∈ SUB(Σ,V)}. Thus, there exist ` ∈ L and σ` ∈ SUB(Σ,V) such that
t = `σ` and there exist s ∈ SL ⊆ S′L and σs ∈ SUB(Σ,V) such that t = sσs.
Putting this together gives `σ` = t = sσs, which is a contradiction to the definition
of S′L.

To show the second step, observe that clearly {`σ ∈ T (Σ) | ` ∈ L, σ ∈
SUB(Σ,V)} ∪ {sσ ∈ T (Σ) | s ∈ SL, σ ∈ SUB(Σ,V)} ⊆ T (Σ). So it remains to
be shown that {`σ ∈ T (Σ) | ` ∈ L, σ ∈ SUB(Σ,V)} ∪ {sσ ∈ T (Σ) | s ∈ SL, σ ∈
SUB(Σ,V)} ⊇ T (Σ). For that purpose, let t ∈ T (Σ) be an arbitrary ground term.
In case there exist ` ∈ L and σ` ∈ SUB(Σ,V) such that `σ` = t the property has
been shown. Otherwise, for all ` ∈ L and all substitutions σ ∈ SUB(Σ,V) that satisfy
`σ ∈ T (Σ) it holds that `σ 6= t. Since t is a ground term, V(t) = ∅. This means that
tτ = t for any substitution τ ∈ SUB(Σ,V). Furthermore, for every term t′ ∈ T (Σ,V)
with V(t′) 6= ∅ it holds that t 6= t′ which allows to conclude that t 6= `σ′ for all
substitutions σ′ ∈ SUB(Σ,V) where V(`σ′) 6= ∅. Combining these observations, one
sees that for all substitutions σ, τ ∈ SUB(Σ,V) it holds that `σ 6= tτ = t. Due to
the definition of S′L, t ∈ S′L and hence t ∈ {sσ ∈ T (Σ) | s ∈ SL, σ ∈ SUB(Σ,V)}
by Lemma 7.2.22, which completes the proof.

In the following, only sets L are considered that contain linear terms. It should
be observed that this also covers the case of a quasi left-linear TRS R: for such a
TRS the set L can be defined to contain all linear left-hand sides of R. Then L still
matches the same terms as lhs(R), due to Lemma 7.2.21. The goal is to show that
for a linear set L the set SL is finite. For that purpose the depth of a term is needed,
which is defined as follows.

140

Transformational Outermost Termination Analysis

Definition 7.2.24. The depth of a term t ∈ T (Σ,V) is defined as depth(t) = 0
if t ∈ V and depth(f(t1, . . . , tn)) = 1 + max{depth(t1), . . . ,depth(tn)} for t =
f(t1, . . . , tn).

The depth of a finite set T ⊆ T (Σ,V) is defined as the maximum over the depths
of the terms it contains, i.e., depth(T) = max{depth(t) | t ∈ T}.

Then for example depth(f(x, y)) = 1, while depth(f(a, y)) = 2 for the signature
Σ = {f, a}. Using this notion of depth, the following lemma can be proven. It
provides an upper bound on the depth of the terms contained in SL for sets L
containing only linear terms.

Lemma 7.2.25. For a set L ⊆ T (Σ,V) containing only linear terms, depth(SL) ≤
depth(L).

Proof. Assume, there exists a s ∈ SL ⊆ S′L with depth(s) > depth(L). Then,
sσ 6= `τ for all ` ∈ L and all substitutions σ, τ ∈ SUB(Σ,V). W.l.o.g. it may be
assumed that V(s) and V(`) are disjoint for all ` ∈ L. Lemma 7.2.1 shows that for
every ` ∈ L a position p` ∈ Pos(`)∩Pos(s) exists such that root(`|p`) 6= root(s|p`).
By definition of depth(L), it holds that |p`| < depth(L). Let truncL(s) ∈ T (Σ,V)
denote the term that is derived from s by replacing all subterms at positions of length
depth(L) by fresh variables. By construction, depth(truncL(s)) = depth(L),
truncL(s) < s, and root(s|p) = root(truncL(s)|p) for all p ∈ Pos(s) with
|p| < depth(L). Hence, root(truncL(s)|p) = root(s|p) 6= root(`|p`), i.e., for
all substitutions σ, τ ∈ SUB(Σ,V), truncL(s)σ 6= `τ . Thus truncL(s) ∈ S′L, which
contradicts the minimality of s.

Furthermore, only linear terms have to be considered for the set SL, if SL is to
be used for anti-matching of ground terms.

Lemma 7.2.26. Let L ⊆ T (Σ,V) be a set of linear terms. For every t ∈ T (Σ)∩S′L
it holds that a linear term s ∈ SL and a substitution σ ∈ SUB(Σ,V) exist with
sσ = t.

Proof. Let t ∈ T (Σ)∩S′L. Then for all ` ∈ L and all τ ∈ SUB(Σ,V) the definition
of anti-matching gives `τ 6= t. Since T (Σ) ⊆ T (Σ,V), Lemma 7.2.1 shows that a
position p` ∈ Pos(`) ∩ Pos(t) exists with root(t|p`) 6= root(`|p`).

There exist s ∈ SL and σ ∈ SUB(Σ,V) with sσ = t, due to Lemma 7.2.22. In
case s is a linear term, then nothing has to be proven.

Otherwise, start with the term lin(s) that is created from s by replacing every
occurrence of a variable by a fresh variable, thereby generating a linear term. Then
clearly, there is a substitution σ′ such that lin(s)σ′ = t. If there is an `′ ∈ L
and a substitution τ ∈ SUB(Σ,V) such that lin(s)τ = `′τ (where it is assumed
that V(lin(s)) ∩ V(`′) = ∅), then the variable at a position ps that is a prefix of
p`′ is replaced by f(x1, . . . , xn), where f = root(t|ps), ar(f) = n, and the xi
are pairwise-disjoint fresh variables. This variable must exist, otherwise `′ would
match t. This process is repeated until there are no more `′ that unify with the
thereby constructed term s′. By construction s′ is linear and does not unify with any
term from L. Furthermore, this term is minimal in S′L w.r.t. >, therefore s′ ∈ SL,
which shows the claim.

141

7. Productivity Analysis by Outermost Termination

From the above lemmas, the following construction yields a set S for a set L
of linear terms that satisfies the requirement of Definition 7.2.4. Let d = depth(L)
be the maximal depth of terms occurring in L. Start by S′ being the finite set of
all linear terms up to renaming of variables of depth ≤ d. Next remove all terms
from S′ that unify with L. Finally initialize S to S′ and remove all non-minimal
elements t from S, i.e., every term t for which a u ∈ S exists with u < t is removed
from S. Lemmas 7.2.25 and 7.2.26 then show that all ground terms that are not
matched by L are matched by S.

Using this construction and the above lemmas, Theorem 7.2.5 can now be proven.
It states that for a quasi left-linear TRS R a finite, computable, and unique set S
exists that matches exactly those terms that lhs(R) does not match. Note that only a
linear set L that matches all ground terms matched by lhs(R) has to be consider for
a quasi left-linear TRS, as was already observed above.

Proof of Theorem 7.2.5. Let L ⊆ T (Σ,V) be the finite set of linear left-hand sides
of R. Then L matches all terms that can be rewritten by R due to Lemma 7.2.21.
Let SL ⊆ T (Σ,V) be defined as given in Definition 7.2.18. As can be seen from
Lemma 7.2.23, for all ground terms t ∈ T (Σ) it holds that t ∈ {sσ ∈ T (Σ) |
s ∈ SL, σ ∈ SUB(Σ,V)} iff t /∈ {`σ ∈ T (Σ) | ` ∈ L, σ ∈ SUB(Σ,V)}. Due
to Lemma 7.2.25 SL is finite, since, up to variable renaming, only finitely many
terms whose depth is less than or equal to depth(L) exist for a finite signature
Σ. Lemma 7.2.26 shows that S = SL ∩ {t ∈ T (Σ,V) | t is linear}, and finally
the sketched construction shows that the set S is computable and unique since the
minimal elements w.r.t. > are unique.

Finally, the case of TRSs that are not quasi left-linear shall be studied. For
this purpose, let L = {f(x, x)} be the left-hand sides of a TRS over the signature
Σ = {f, g}. Then for every n ∈ N the term f(x, gn(x)) is contained in S′L.
Furthermore, there is no term s 6= f(x, gn(x)) ∈ S′L such that sσ = f(x, gn(x)),
which shows that SL is infinite. To show that this is not due to choosing the set SL,
the proposition below states that SL is the smallest set that has the desired property.

Proposition 7.2.27. Let L ⊆ T (Σ,V). For every S ⊆ T (Σ,V) that satisfies
∀t ∈ T (Σ) : (∃s ∈ S, σ ∈ SUB(Σ,V) : t = sσ) ⇐⇒ ¬(∃` ∈ L, τ ∈ SUB(Σ,V) :
t = `τ) it holds that SL ⊆ S ⊆ S′L, where variable renamings are disregarded.

Proof. The inclusion S ⊆ S′L can be seen directly from the definition of S′L.
Assume, there is such a set S ⊆ T (Σ,V) with SL 6⊆ S. Then, there is a term

s′ ∈ SL such that s′ /∈ S. Furthermore, it must be the case that {sσ | s ∈ S, σ ∈
SUB(Σ,V)} = {sσ | s ∈ SL, σ ∈ SUB(Σ,V)} = S′L, i.e., there must be an s ∈ S
and a σ ∈ SUB(Σ,V) such that sσ = s′. This implies that s ≤ s′. In case it also
holds that s′ ≤ s, then s′ ∈ S, contradicting the assumption. But otherwise s < s′

holds, which contradicts the minimality of s′.

As a consequence of Proposition 7.2.27 and the previously observed fact that for
L = {f(x, x)} it holds that SL ⊇ {f(x, gn(x)) | n ∈ N}, it can be concluded that
any set S that matches those terms which are not matched by a term in L must be
infinite, since already SL ⊆ S is infinite.

142

Transformational Outermost Termination Analysis

Completeness of the Basic Transformation

The transformations T2 and T3 were already shown to be incomplete. In the following,
it will be shown that the basic transformation T , which uses the symbols down and
up to control the position of the next redex, is complete, i.e., from non-termination
of T (R) the outermost non-termination of R may be concluded.

Theorem 7.2.28. Let R be a quasi left-linear TRS over signature Σ containing a
constant c ∈ Σ with ar(c) = 0. If T (R) is not terminating, then R is outermost
ground non-terminating.

To prove the above theorem, the signatures Σctrl = {top, down, up, block}∪{f \ |
f ∈ Σ, ar(f) > 0} and Σ∪ctrl = Σ ∪ Σctrl are defined.

In order to get rid of terms that occur in an infinite evaluation and contain one
of the control symbols from Σctrl, the function drop is defined. It replaces all terms
having a control symbol as root with a constant. Therefore, it is assumed that the
signature Σ contains at least one constant c, i.e., a symbol with ar(c) = 0, as required
in Theorem 7.2.28. Note that if no constant existed, then no ground terms could
exist either, so a TRS over such a signature would trivially be (outermost) ground
terminating.

Definition 7.2.29. Let c ∈ Σ be a constant. For a term t ∈ T (Σ∪ctrl,V) the function
drop : T (Σ∪ctrl,V)→ T (Σ,V) is defined as follows:

• drop(x) = x for all x ∈ V ,

• drop(f(t1, . . . , tn)) = f(drop(t1), . . . ,drop(tn)) for all f ∈ Σ of arity n,
and

• drop(fctrl(t1, . . . , tn)) = c for all f ∈ Σctrl of arity n.

The definition of drop is extended to substitutions σ ∈ SUB(Σ∪ctrl,V) by
defining drop(σ) (x) = drop(σ(x)) for all x ∈ V .

Corollary 7.2.30. For all terms t ∈ T (Σ,V) and substitutions σ ∈ SUB(Σ∪ctrl,V),
drop(tσ) = t drop(σ).

Corollary 7.2.31. For all terms t ∈ T (Σ∪ctrl,V) and positions p ∈ Pos(t) it holds
that drop(t) = drop(t[drop(t|p)]p).

In the following lemma it is shown that reductions w.r.t. the TRS T (R) are
removed when applying the function drop. Intuitively, this holds because all defined
symbols in T (R) are from Σctrl.

Lemma 7.2.32. If t→∗T (R) t
′ for some terms t, t′ ∈ T (Σ∪ctrl,V), then drop(t) =

drop(t′).

Proof. Induction on the length k of the reduction t→k
T (R) t

′ is performed. If the
length k is 0, then t = t′ and hence drop(t) = drop(t′).

Otherwise, the reduction has the form t →`→r,p t̂ →k−1
T (R) t

′ for some rule
` → r ∈ T (R), some term t̂ ∈ T (Σ∪ctrl,V), and some position p ∈ Pos(t),
where t|p = `σ and t̂ = t[rσ]p for some σ ∈ SUB(Σ∪ctrl,V). Note that for all rules
`′ → r′ ∈ T (R), both root(`) ∈ Σctrl and root(r) ∈ Σctrl hold. Therefore, by Corol-
lary 7.2.31, drop(t) = drop(t[drop(t|p)]p) = drop(t[drop(`σ)]p) = drop(t[c]p) and

143

7. Productivity Analysis by Outermost Termination

drop(t̂) = drop(t̂[drop(t̂|p)]p) = drop(t[drop(rσ)]p) = drop(t[c]p), which proves
that drop(t) = drop(t̂). Together with the induction hypothesis, which shows that
drop(t̂) = drop(t′), this completes the proof.

Using the above, it can now be shown that a reduction in the transformed TRS
which transforms a down symbol into an up symbol corresponds to an outermost
step in the original TRS.

Lemma 7.2.33. If down(t) →∗T (R) up(t′) for two terms t, t′ ∈ T (Σ∪ctrl,V), then
drop(t) o→R drop(t′).

Proof. Let down(t) →∗T (R) up(t′) with t, t′ ∈ T (Σ∪ctrl,V). The length of this
reduction cannot be 0, since down 6= up. Thus, the length of the reduction must at
least be 1. Induction on this length is performed.

In case the reduction is of the form down(t) >ε→∗T (R) down(t̂) →down(`)→up(r),ε

up(t̂′)→∗TR up(t′) (where >ε→ denotes steps below the root), then t̂ = `σ and t̂′ = rσ
for some substitution σ ∈ SUB(Σ∪ctrl,V). Since `, r ∈ T (Σ,V), drop(`) = ` and
drop(r) = r hold and furthermore, due to Corollary 7.2.30, drop(`σ) = ` drop(σ)
and drop(rσ) = r drop(σ). Thus, by Lemma 7.2.32, drop(t) = drop(t̂) =
drop(`σ) = `drop(σ) o→`→r,ε r drop(σ) = drop(rσ) = drop(t′) is an outer-
most step w.r.t. R. This step is at the root position, hence trivially outermost. Note
that this case always applies if the length of the reduction is 1, hence this also proves
the base case of the induction.

Otherwise, the reduction must have the following shape for some terms u =
f(u1, . . . , un) ∈ SL ⊆ T (Σ,V), v = f \(block(u1), . . . , down(ui), . . . , block(un)),
and tj , t′j , t′′j ∈ T (Σ∪ctrl,V) for 1 ≤ j ≤ n:

down(t) >ε→∗T (R) down(t̂)
= down(f(t1, . . . , tn))
→down(u)→v,ε f

\(block(t1), . . . , down(ti), . . . , block(tn))
→∗T (R) f \(block(t′′1), . . . , up(t′′i), . . . , block(t′′n))
→∗T (R) f \(block(t′1), . . . , up(t′i), . . . , block(t′n))
→T (R),ε up(f(t′1, . . . , t′n)
→∗T (R) up(t′)

The reduction must contain the term f \(block(t′′1), . . . , up(t′′i), . . . , block(t′′n)),
as otherwise the symbol up could never appear at the root position. Hence, the
reduction down(ti)→ up(t′′i) occurs and must be shorter than the original reduction.
This allows to apply the induction hypothesis, which shows that drop(ti)

o→ drop(t′′i).
Furthermore, the symbols block and up are constructors of the TRS T (R), thus
t′′j →∗T (R) t

′
j for all 1 ≤ j ≤ n and tj →∗T (R) t

′′
j for all 1 ≤ j ≤ n with j 6= i. This

allows to reorder the reductions, since they are all on independent positions and below
variables of the rule f \(block(x1), . . . , up(xi), . . . , block(xn)) → f(x1, . . . , xn) ∈
T (R):

down(t) >ε→∗T (R) down(f(t1, . . . , tn))
→down(u)→v,ε f

\(block(t1), . . . , down(ti), . . . , block(tn))
→∗T (R) f \(block(t1), . . . , up(t′′i), . . . , block(tn))
→T (R) up(f(t1, . . . , t′′i , . . . , tn))
→∗T (R) up(f(t′1, . . . , t′n)
→∗T (R) up(t′)

144

Transformational Outermost Termination Analysis

Here, Lemma 7.2.32 shows that drop(t) = drop(t̂) = drop(f(t1, . . . , tn)) =
f(drop(t1), . . . ,drop(tn)). Furthermore, since u ∈ T (Σ,V), drop(t̂) = drop(uτ) =
u drop(τ) according to Corollary 7.2.30 for some substitution τ ∈ SUB(Σ∪ctrl,V).
Since u ∈ SL, the definition of anti-matching implies that drop(t̂) = u drop(τ) 6=
`′τ ′ for all rules `′ → r′ ∈ R and all substitutions τ ′ ∈ SUB(Σ,V). This shows that
the step drop(ti)

o→ drop(t′′i) is also outermost when applying Lemma 7.2.32 to the
above reordered reduction, which gives the following outermost reduction:

drop(t) = f(drop(t1), . . . ,drop(tn))
o→R f(drop(t1), . . . ,drop(t′′i), . . . ,drop(tn))
= f(drop(t′1), . . . ,drop(t′i), . . . ,drop(t′n))
= drop(f(t′1, . . . , t′n))
= drop(t′)

Thereby, the lemma has been proven.

Since outermost ground termination is considered, a way to obtain ground terms
from arbitrary terms is required. For this purpose the function gnd is introduced.

Definition 7.2.34. Let c ∈ Σ be a constant. For a term t ∈ T (Σ∪ctrl,V) the term
gnd(t) ∈ T (Σ∪ctrl) is defined as gnd(x) = c for all x ∈ V , and gnd(f(t1, . . . , tn)) =
f(gnd(t1), . . . , gnd(tn)) for all f ∈ Σ∪ctrl with ar(f) = n and terms t1, . . . , tn ∈
T (Σ∪ctrl,V).

The function gnd is extended to substitutions σ ∈ SUB(Σ∪ctrl,V) by defining
gnd(σ) (x) = gnd(σ(x)) for all x ∈ V .

Finally, completeness of the transformation T , as stated in Theorem 7.2.28, can
be proven.

Proof of Theorem 7.2.28. Assume that T (R) is not terminating. Then an infinite
reduction t1 →T (R) t2 →T (R) . . . exists. Aoto’s property [Aot01] will be applied,
which states that termination of a sorted and an unsorted TRS coincide if all variables
are of the same sort. For this purpose, three sorts are considered, called 0, 1, and 2.
These are assigned to the function symbols as follows: All variables have sort 0,
the symbol top has sort mapping 1 → 2, the symbols down, up, and block have
sort mapping 0→ 1, and for every f ∈ Σ with ar(f) = n the sort mapping of f is
0n → 0 and that of f \ is 1n → 1. All rules of the TRS T (R) are compatible with
these sorts, cf. Definition 7.2.4.

Thus, there is also an infinite reduction t′1 →T (R) t
′
2 →T (R) . . . of well-sorted

terms t′i. Especially, it can be observed that root(t′i|p) 6= top for all 1 ≤ i ≤ n
and p ∈ Pos(t′i) such that p 6= ε and t′i|p /∈ V , otherwise the term would not be
well-sorted.

Assume that in the infinite reduction, root(t′1) 6= top. This implies that
root(t′i) 6= top for all i ≥ 1, due to the sort assignment. Hence, also for T (R) =
T (R) \ {top(up(x)) → top(down(x))} it holds that t′1 →T (R) t

′
2 →T (R) . . . is an

infinite reduction. Consider the lexicographic path order �lpo with the precedence
down A f \ A up A f A block for all f ∈ Σ. Then, down(`) �lpo up(r), since
r ∈ T (Σ,V), down(f(t1, . . . , tn)) �lpo f

\(block(t1), . . . , down(ti), . . . , block(tn))
for all f(t1, . . . , tn) ∈ SL and all argument positions 1 ≤ i ≤ n = ar(f), and
f \(block(x1), . . . , up(xi), . . . , block(xn)) �lpo up(f(x1, . . . , xn)) for all f ∈ Σ
and 1 ≤ i ≤ ar(f) = n. This shows that →

T (R) ⊆ �lpo, which contradicts
non-termination of T (R).

145

7. Productivity Analysis by Outermost Termination

Thus, it can be concluded that root(t′i) = top for all i ≥ 1. Also, there must be an
infinite number of reduction steps at the root position, otherwise a term top(t̂) would
exist for which t̂ would start an infinite reduction. This cannot occur, as was just shown.
The only rule that can be applied at the root is top(up(x))→ top(down(x)). Thus,
the infinite reduction must contain a reduction of the shape top(up(t̃1)) →T (R),ε
top(down(t̃1)) →∗T (R) top(up(t̃2)) →T (R),ε top(down(t̃2)) →∗T (R) When
replacing the terms t̃j with gnd(t̃j) for all j ≥ 1 then the infinite reduction is still
possible. Hence, repeated application of Lemma 7.2.33 gives rise to the infinite
outermost ground reduction

drop(gnd(t̃1))
o→R drop(gnd(t̃2))

o→R . . . ,

which proves the theorem.

Implementation and Experiments

The transformations described above have been implemented in a tool called TrafO.1
Even though the construction of the anti-matching set SL can certainly be improved,
the complete transformation only takes a neglegible amount of time for all of the
following examples.

The implementation allows for a number of different variants of the transformation
to be used. The above only presented one of these, which proved to be the most
effective. In detail, one can choose whether or not to add the blocking symbol block
when the symbol down descends into a term that is not matched by a left-hand side
of the original term rewrite system. Also, it can be chosen whether a symbol f ∈ Σ
should be rewritten to a marked version f \ of that symbol or not when descending
into terms from SL. As a last option, one can also use a modified version of the rules
for the up symbol that explicitly match terms from SL, however this modification
proved itself not to be effective.

The transformed system is then used as input for the termination provers Jam-
box [End], TTT2 [KSZM], and AProVE [GSKT06], which were the strongest tools
of the 2007 termination competition in the TRS category [MZ07]. The reason why
multiple tools were used was that the transformation turned out to produce rewrite
systems for which sometimes one tool succeeded in proving termination of the
transformed TRS, while at least one of the other tools was unable to do so.

Below some examples are presented. First, it shall be shown that Example 7.2.2
really is outermost ground terminating, as was claimed above. When this example is
transformed, the following TRS is created:

Example 7.2.35 (Transformation of Example 7.2.2).

top(up(x)) → top(down(x)) down(b) → up(a)
down(f(x, a)) → up(f(x, b)) down(f(a, x)) → up(a)

f\(block(x), up(y)) → up(f(x, y)) down(f(b, x)) → up(a)
f\(up(x), block(y)) → up(f(x, y)) down(f(f(x, y), z)) → up(a)

It can be observed that in the transformed TRS there are no rules that allow the
symbol down to descend into a term. This is the case because for the anti-matching
set SL it holds that SL = {a}, such that no rules are created for the symbol down.

1This tool is available at http://www.win.tue.nl/~mraffels/trafo.html

146

http://www.win.tue.nl/~mraffels/trafo.html

Transformational Outermost Termination Analysis

The transformed TRS can easily be shown terminating within a short amount of time
by all of the considered termination tools. For the next example, this is not the case
anymore.

Example 7.2.36.

a → f(a) f(f(f(f(f(x))))) → b

Both AProVE and TTT2 can show termination of the transformed TRS, while
Jambox fails to do so. What is also interesting is that TTT2 uses RFC Match Bounds
to show this, whereas AProVE uses only Dependency Pairs and a large number of
rewriting steps, but is able to find this proof much faster than TTT2.

The next example proved to be rather difficult for all of the considered tools. It
is similar to the kind of problems generated by the technique proving productivity
presented in Section 7.1, however it only generates an overflow symbol whenever the
first argument is at least one.

Example 7.2.37.

from(x) → x : from(s(x)) s(x) : xs → overflow

This example could only be proven terminating by the tool Jambox, both AProVE
and TTT2 failed. However, the techniques used by Jambox to prove termination,
namely semantic labelling and polynomial orders, are also implemented in both of
the other tools. Hence, this clearly shows that proving termination is also strongly
dependent on heuristics and/or search encodings.

In the examples considered so far, it was the case that always the right-hand
side of the rule causing outermost ground termination was a ground term. This is
different in the next example.

Example 7.2.38.

f(f(g(x))) → x g(b) → f(g(b))

The transformed TRS can be shown terminating by the tools TTT2 and Jambox,
while AProVE fails.

In the example below, the right-hand sides are not always either growing or
detecting a term that has grown too large.

Example 7.2.39.
f(f(x, y), z) → c
f(x, f(y, z)) → f(f(x, y), z)

a → f(a, a)

For this example, termination of the transformed TRS can be shown terminating
by both AProVE and Jambox, while TTT2 fails to show termination. If the first rule
is changed to f(f(x, y), z)→ f(c, x), then only AProVE can show the transformed
TRS to be terminating.

Next, the approach shall be compared with the tool Cariboo [FGK02, GK09],
which uses a stand-alone approach to prove outermost termination. It is distributed
with 6 examples of outermost termination. Of these 6 examples, 5 are left-linear and
therefore they can be directly handled by the approach presented in this thesis. For
all of these examples, outermost ground termination can be shown using Jambox as
termination prover. The last example shall be considered in more detail below.

147

7. Productivity Analysis by Outermost Termination

Example 7.2.40 (Outermost Example 6).

f(x, x) → f(i(x), g(g(x))) f(x, i(g(x))) → a
f(x, y) → x f(x, i(x)) → f(x, x)

g(x) → i(x)

As can be seen above, this example has non-linear left-hand sides for the function
symbol f. However, these left-hand sides are all instances of the left-hand side f(x, y),
which makes this TRS quasi left-linear. Hence, only the set L = {f(x, y), g(x)} of
linear terms has to be considered, from which SL is computed to be SL = {a, i(x)}.
Using this anti-matching set, the transformation yields a finite TRS whose termination
can be proven using any of the three considered tools.

Finally, the strength of the presented approach shall be compared against that
of Cariboo. The following example is non-terminating for normal rewriting, since
already the rule h(x)→ f(h(x)) allows an infinite reduction.

Example 7.2.41.

f(h(x)) → f(i(x)) h(x) → f(h(x))
f(i(x)) → x i(x) → h(x)

Cariboo is unable to prove outermost ground termination of the above TRS, while
the transformed TRS T (R) can be proven terminating by all considered tools. Also
Example 7.2.38 and both variants of Example 7.2.39 cannot be proven outermost
ground terminating by Cariboo.

There are also examples where Cariboo succeeds, whereas the presented trans-
formational approach fails. First of all, Cariboo can also handle examples that are
not quasi left-linear, while the transformation is not applicable in this case, since
it would produce an infinite transformed TRS. But there are also quasi left-linear
examples where Cariboo can prove outermost ground termination, but none of the
considered tools can prove termination of the transformed TRS. Such an example is
given below.

Example 7.2.42.

from(x) → x : from(s(x)) s(s(x)) : xs → overflow

This example can be shown terminating by Cariboo, whereas for all termination
provers the transformed TRS is too hard. Please note that this is only a slightly
modified version of Example 7.2.37, where instead of one s symbol now two such
symbols are required.

In the termination competition of 2008 [Wal09], which included the outermost
category, a combination of the presented transformations T and T3, using both Jam-
box [End] and AProVE [GSKT06] as termination provers, was competing with an
extension of the tool Jambox [End] by the context-sensitive transformation presented
in [EH09], with the tool AProVE [GSKT06] that used both the transformation T pre-
sented here and the transformation presented in [Thi09], and the tool TTT2 [KSZM]
which only proved outermost non-termination according to [TS09]. The results show
that in general, for proving outermost termination, the context-sensitive approach
of [EH09] is strongest, proving 72 of the total 291 considered examples outermost
terminating. Using the transformation presented in this section, 46 examples could
be proven outermost terminating, while the combination used in AProVE could prove

148

Summary

27 examples outermost terminating. It should however be remarked that there were
examples for which the transformational approach presented here could be used to
successfully prove outermost termination, whereas this was not possible with any of
the competing automated approaches.

For proving outermost non-termination, the approach implemented in TTT2
outperformed all other techniques, proving a total of 158 examples to be outer-
most non-terminating. But there were also examples for which the transformation
of [Thi09], implemented in the tool AProVE, was the only approach that could prove
outermost non-termination. In total, AProVE could show outermost non-termination
of 37 examples. Using the transformation T , which was presented here, outermost
non-termination of 30 examples could be proven.

7.3 Summary

This chapter presented in Section 7.1 an alternative approach to prove productivity of
orthogonal specifications by balanced outermost termination. The work presented is
an extension of [ZR10b], where only stream specifications were considered. Instead,
here also other data structures can be treated that fit into the format of orthogonal
strictly proper specifications. The restrictions imposed onto these specifications
are stricter than those considered in Chapter 6, here also the data arguments of
constructors are required to be variables on left-hand sides of rules. This however, as
was shown in the examples, can often be achieved by unfolding. Balanced outermost
termination is similar to the outermost-fair reductions considered in the previous
chapter, as they also require that no outermost redexes survive infintely long. However,
in contrast to outermost-fair reductions, an infinite balanced outermost reduction
only consists of outermost steps, which is not necessarily the case for an infinite
outermost-fair reduction.

For the special case where no data rules exist and where every defined structure
symbol has at most one structure argument, balanced outermost termination and
outermost termination were shown to coincide. Even if there are more structure
arguments, outermost termination will imply balanced outermost termination, however
the contrary is not true anymore for these rewrite systems. This allows to use
automated tools for proving outermost termination to check productivity. Note
however that this technique is limited to orthogonal specifications. It was argued in
the previous chapter that for the verification of cells, non-orthogonal specifications
should be allowed to be able to express arbitrary input sequences. Thus, the technique
presented in Section 7.1 can only be applied to check stabilization of cells for a
limited set of input patterns. For this purpose, the corresponding specification is
extended with a specification of the considered input patterns, the transformation
is applied to this extended specification, and finally outermost termination of the
transformed system is checked.

A technique to prove outermost termination was presented in Section 7.2. It
works by transforming an outermost termination problem into a standard termination
problem, which can then be treated by existing tools. For the transformation to result
in a finite TRS, the original TRS whose outermost termination shall be analyzed must
be quasi left-linear. This requires that all left-hand sides of the rules are an instance
of some linear left-hand side. Then, it could be shown that a finite anti-matching set
of terms can be computed, which matches exactly those ground terms not matched
by any of the rules. In the basic transformation, this set is used to descend into terms

149

7. Productivity Analysis by Outermost Termination

whenever no rule can be applied above the current position. This transformation was
furthermore proven to be complete, which is an extension over the original work
presented in [RZ09]. Additionally, the section presented two transformations that are
easier to check but are incomplete, i.e., they can only prove outermost termination,
but not disprove it.

Section 7.2’s technique to prove outermost termination was the first one that
used existing termination provers. Previously, only the tool Cariboo [FGK02, GK09]
existed that used a stand-alone approach to prove outermost termination. Therefore,
this tool cannot make use of the tremendous improvements that have been made and
still are being made in the area of termination analysis. Since the transformational
technique of Section 7.2 was presented in [RZ09], several other techniques to prove
outermost termination have been developed. The technique of Thiemann [Thi09]
also uses a transformation of the outermost termination problem, where an innermost
termination problem is created. Endrullis and Hendriks present in [EH09] a transfor-
mation from outermost termination to context-sensitive termination. In the termination
competition of 2008 that included the outermost termination category [Wal09] this
approach turned out to be the most powerful, proving the most examples outermost
terminating. However, it should be remarked that the transformational approach
presented in this thesis was able to prove outermost termination of examples for
which all other approaches failed to do so.

For disproving outermost termination, direct techniques such as [TS09] have been
developed. The results of the termination competition show that such an approach
outperforms all other transformational approaches. Thus, it would be interesting
to investigate whether also for proving outermost (ground) termination such direct
approaches exist.

Another interesting topic for future research is to investigate whether balanced
outermost termination can be checked automatically, which is introduced in Section 7.1
to determine productivity. At the moment, only techniques for checking general
outermost termination are available. But it is often the case that for productive
specifications containing symbols with more than one structure argument, such as
the specification in Example 7.1.4 of the Thue Morse stream containing the function
zip, outermost termination does not hold.

150

Chapter 8
Conclusion

This thesis presented techniques for the verification of cell libraries, which are used
to implement a larger chip design from smaller standard components, called cells.
Such cell libraries are usually provided by external parties, hence they should be
verified to ensure that the chip design works as intended.

To aid in the development of larger designs, cell libraries contain a number of
different views on the cells contained. These views describe different aspects of
the cell, such as a functional simulation description, a transistor netlist description,
different timing descriptions, layout information, etc. Hence, it is vital that these
views correspond, i.e., that they describe the same behavior.

In this thesis, most emphasis was put on functional descriptions of cells. Chapter 3
presented a technique to verify that simulation descriptions in the commonly used
subset VeriCell of the standardized language Verilog [IEE06] and the transistor
netlist descriptions, usually given as SPICE netlists [NP73], implement the same
functionality. There, it was discovered that even at this rather detailed level of
description, non-determinism exists which can have an influence on the final result of
a computation. For Verilog, the reason was found to be the User-Defined Primitives
(UDPs), which are used to implement state-holding elements, i.e., memories.

Such non-determinism was investigated further in Chapter 4, both for Verilog and
transistor netlists. In both cases, an efficient technique was developed to automatically
identify cases where the result of a computation can differ due to this inherent
non-determinism that results from the order of applying input changes. When the
functional behavior is not affected by this order, the non-determinism can be used
to optimize other design goals, such as for example power consumption. This was
presented in Section 4.3, where the non-determinism analysis was extended by also
taking an abstract measure of power into account. Then, one can enforce from
functionally equivalent orders the order that consumes the minimal amount of power
without altering the overall behavior of the cell. Also, during power characterization,
the non-determinism analysis can be of use. There, the goal is to measure the
concrete power consumed by different orders of applying inputs, in different states
of the cell. Since this suffers from combinatorial explosion, the non-determinism
analysis can be used to identify situations in which the functionality and the abstract
power consumption do not differ, hence for such situations it is sufficient to only
consider one of these equivalent orders.

Since non-determinism will usually be present in cells that implement useful
functions, there exists further information that indicates the legal input of cells. Such

151

8. Conclusion

information is to be respected by the environment to guarantee that the cell behaves
as expected. The information about legal input is given by means of timing checks,
describing time windows in which certain events (specific transitions of input signals)
must not occur. Chapter 5 therefore extended the non-determinism analysis techniques
presented in Chapter 4 to also take this information into account. In this way, it
can be checked that a cell always behaves deterministically as long as the timing
checks are respected by the environment. In the other direction, a situation in which
non-determinism can occur is often an indication that a timing check is missing.
Thus, the non-determinism analysis can be used to get an idea of the required timing
checks that need to be added. Another timing specification that was considered in
Chapter 5 are module paths, which are also known as timing arcs or delay arcs.
Such a module path gives a delay that it takes an input change to propagate through
the cell to an output. This of course is dependent on the functionality of the cell,
thus a technique was presented that checked whether some specified module paths
can actually occur in the functional implementation. Furthermore, a technique was
presented to enumerate for a given cell all possible module paths.

For some of the analyses a next state function is required, i.e., a function that
computes from the current state values and some input values the values in the next
state. In a hardware implementation however, such a function is not immediate,
instead numerous different functions are combined and re-evaluated a number of
times until they (hopefully) stabilize in a next state. To analyze whether such a
stable next state will always be reached, productivity analysis can be used. This
notion is investigated in the setting of term rewrite systems, where productivity has
been studied before. Productivity is the property that from a desired infinite object,
any finite prefix can be computed by some given rules. When applying this to the
hardware setting, it should be the case that when viewing wires as infinite streams of
values, then any finite prefix (representing the history of the wire up to the current
point in time) should be computable. A technique to analyze productivity based on
context-sensitive termination was presented in Chapter 6. It creates from a given term
rewrite system automatically another term rewrite system for which context-sensitive
termination is analyzed. If context-sensitive termination can be shown, then it implies
that the initial term rewrite system is productive. Since cells are interacting with
the environment by means of input and output signals, these signals have to be
abstracted. Hence, the idea is to allow arbitrary sequences of input values, which
guarantees that the cell computes a stable next state in all possible environments.
This abstraction required giving up the restriction to orthogonal specifications, which
disallows such non-determinism. In the literature, only orthogonal specifications have
been considered before, since it allows to also conclude a specification to describe
a unique behavior. But in the analysis of hardware, presented for an example cell
in Section 6.4, the two rules rand → 0 : rand and rand → 1 : rand already make
the specification non-orthogonal. These rules implement the abstraction of input
values to an arbitrary stream of Boolean input values and therefore non-orthogonal
specifications need to be allowed. With the extension to non-orthogonal specifications
it was illustrated that productivity, and hence stabilization, of hardware cells can be
established for term rewrite systems corresponding to the implementation of cells.

Another technique for proving productivity, restricted to orthogonal specifications
only, was presented in Chapter 7. There, the link with outermost rewriting, which
was already used in Chapter 6, is made even more explicit by considering balanced
outermost termination. It was proven that balanced outermost termination of an
extended term rewrite system implies productivity of an initial term rewrite system.

152

For balanced outermost termination, no automated tools exist. However, there
are special cases where outermost termination and balanced outermost termination
coincide. Furthermore, when outermost termination can be proven, then balanced
outermost termination also holds. To prove outermost termination, Chapter 7 also
presented a transformation that allows to use termination provers for standard rewriting
to prove outermost termination. This transformation was proven to be both sound
and complete, i.e., termination of the transformed term rewrite system allows to
conclude outermost termination of the initial system and from non-termination of
the transformed term rewrite system it can be inferred that the initial term rewrite
system is not terminating for outermost rewriting.

All of the techniques described in this thesis were implemented and evaluated
experimentally on industrial cell libraries. Furthermore, the results were presented
in a number of scientific publications [RMR+09, RRM09, RZ09, RMS10, RMZ10,
ZR10a, ZR10b, Raf11, RM11, RMZ11].

Future Work

A number of different views that describe cells contained in a cell library have been
considered in this thesis. For these views it was verified that they correspond to each
other, i.e., that they describe the same common behavior. However, there still are
views that were not taken into account in this thesis and combinations that were not
considered. Hence, it would be interesting to also investigate these, to be able to gain
even more confidence that all views of a cell library describe the same cells. An
important example are the different layout views, which describe, at different levels
of detail, lithographic masks used for production. It is already common practice
to extract from a detailed layout view a transistor netlist description which is then
compared with the transistor netlist contained in the cell library. However, also the
different layout views should be checked whether they correspond to each other or
not. If for example a layout view that is used by a place-and-route tool to introduce
connections between different cells in a larger chip design does not correspond with
the other layout views, then the final chip design will be incorrect and non-functional.

The analysis techniques presented in this thesis made use of some links between
hardware verification and term rewriting. One is the verification of stabilization
described above. But also the non-determinism analysis is centered around a property
that is known from term rewriting, called the commuting diamond property. There
are also connections between these two fields that go in the other direction, one
example is the use of SAT solving, that was initially developed to verify hardware
circuits, for the purpose of searching well-founded orders. For this reason, it should
be investigated whether more connections between these fields exist that allow such
an exchange of knowledge.

153

Bibliography

[AEF+08] B. Alarcón, F. Emmes, C. Fuhs, J. Giesl, R. Gutiérrez, S. Lucas,
P. Schneider-Kamp, and R. Thiemann. Improving Context-Sensitive
Dependency Pairs. In Proceedings of the 15th International Confer-
ence on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR’08), volume 5330 of Lecture Notes in Artificial Intelligence,
pages 636–651. Springer-Verlag, 2008.

[AG00] T. Arts and J. Giesl. Termination of Term Rewriting using Dependency
Pairs. Theoretical Computer Science, 236(1-2):133–178, 2000.

[AGL06] B. Alarcón, R. Gutiérrez, and S. Lucas. Context-Sensitive Depen-
dency Pairs. In Proceedings of the 26th International Conference
on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS’06), volume 4337 of Lecture Notes in Computer
Science, pages 297–308. Springer-Verlag, 2006.

[Aot01] T. Aoto. Solution to the Problem of Zantema on a Persistent Prop-
erty of Term Rewrite Systems. Journal of Functional and Logic
Programming, 2001(11):1–20, 2001.

[BBR96] A. Bogliolo, L. Benini, and B. Ricco. Power Estimation of Cell-
Based CMOS Circuits. In Proceedings of the 33rd annual Design
Automation Conference (DAC’96), pages 433–438. ACM Press, 1996.

[BBR10] J. C. M. Baeten, T. Basten, and M. A. Reniers. Process Algebra:
Equational Theories of Communicating Processes, volume 50 of Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University
Press, 2010.

[Ber99] G. Berry. The Constructive Semantics of Pure Esterel, 1999. Draft
version 3, available from http://www-sop.inria.fr/meije/
esterel/esterel-eng.html.

[BN98] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[Bro61] A. Brocot. Calcul des Rouages par Approximation, Nouvelle Méthode.
Revue Chonométrique, 3:186–194, 1861.

[Bry87] R. Bryant. Boolean Analysis of MOS Circuits. IEEE Transactions on
Computer-Aided Design, 6(4):634–649, 1987.

155

http://www-sop.inria.fr/meije/esterel/esterel-eng.html
http://www-sop.inria.fr/meije/esterel/esterel-eng.html

Bibliography

[CCG+02] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella. NuSMV Version 2: An
OpenSource Tool for Symbolic Model Checking. In Proceedings of
the 14th International Conference on Computer-Aided Verification
(CAV’02), volume 2404 of Lecture Notes in Computer Science, pages
359–364. Springer-Verlag, 2002. See also http://nusmv.irst.
itc.it.

[CDE+03] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer,
and C. Talcott. The Maude 2.0 System. In Proceedings of the 14th
International Conference on Rewriting Techniques and Applications
(RTA’03), volume 2706 of Lecture Notes in Computer Science, pages
76–87. Springer-Verlag, 2003.

[CW00] N. Calkin and H. Wilf. Recounting the Rationals. American Mathe-
matical Monthly, 107(4):360–363, 2000.

[DB95] A. J. Daga and W. P. Birmingham. A Symbolic-Simulation Approach
to the Timing Verification of Interacting FSMs. In Proceedings of
IEEE International Conference on Computer Design (ICCD’95), pages
584–589. IEEE Computer Society Press, 1995.

[Dim01] J. Dimitrov. Operational semantics for Verilog. In Proceedings of
the 8th Asia-Pacific Software Engineering Conference (APSEC’01),
pages 161–168. IEEE Computer Society Press, 2001.

[DKMW94] S. Devadas, K. Keutzer, S. Malik, and A. Wang. Certified Timing
Verification and the Transition Delay of a Logic Circuit. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 2(3):333–
342, 1994.

[EGH+07] J. Endrullis, C. Grabmayer, D. Hendriks, A. Isihara, and J. W. Klop.
Productivity of Stream Definitions. In Proceedings of the Conference
on Fundamentals of Computation Theory (FCT’07), volume 4639 of
Lecture Notes in Computer Science, pages 274–287. Springer-Verlag,
2007.

[EGH08] J. Endrullis, C. Grabmayer, and D. Hendriks. Data-oblivious Stream
Productivity. In Proceedings of the 11th International Conference
on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR’08), volume 5330 of Lecture Notes in Computer Science,
pages 79–96. Springer-Verlag, 2008. Web interface tool: http:
//infinity.few.vu.nl/productivity/.

[EH09] J. Endrullis and D. Hendriks. From Outermost to Context-Sensitive
Rewriting. In Proceedings of the 20th International Conference on
Rewriting Techniques and Applications (RTA’09), volume 5595 of
Lecture Notes in Computer Science, pages 305–319. Springer-Verlag,
2009.

[EH11] J. Endrullis and D. Hendriks. Lazy Productivity via Termination.
Theoretical Computer Science, 412(28):3203–3225, 2011. Festschrift
in Honour of Jan Bergstra.

156

http://nusmv.irst.itc.it
http://nusmv.irst.itc.it
http://infinity.few.vu.nl/productivity/
http://infinity.few.vu.nl/productivity/

[End] J. Endrullis. Jambox 2.0e. Downloadable from http://joerg.
endrullis.de.

[End10] J. Endrullis. Termination and Productivity. PhD thesis, Vrije Univer-
siteit Amsterdam, 2010.

[FD98] K. Futatsugi and R. Diaconescu, editors. CafeOBJ Report. World
Scientific Publishing Company, 1998.

[FGK02] O. Fissore, I. Gnaedig, and H. Kirchner. System Presentation –
CARIBOO: An Induction Based Proof Tool for Termination with
Strategies. In Proceedings of the 4th international ACM SIGPLAN
conference on Principles and Practice of Declarative Programming
(PPDP’02), pages 62–73. ACM Press, 2002.

[GB10] M. Geilen and T. Basten. Kahn Process Networks and a Reactive
Extension. In Handbook of Signal Processing Systems, pages 967–
1006. Springer-Verlag, 2010.

[GK09] I. Gnaedig and H. Kirchner. Termination of Rewriting under Strategies.
ACM Transactions on Computational Logic, 10(2):10:1–10:52, 2009.

[GM04] J. Giesl and A. Middeldorp. Transformation Techniques for Context-
Sensitive Rewrite Systems. Journal of Functional Programming,
14:329–427, 2004.

[Gor95] M. Gordon. The semantic challenge of Verilog HDL. In Proceedings
of the 10th Annual IEEE Symposium on Logic in Computer Science
(LICS’95), pages 136–145. IEEE Computer Society Press, 1995.

[GRSK+11] J. Giesl, M. Raffelsieper, P. Schneider-Kamp, S. Swiderski, and
R. Thiemann. Automated Termination Proofs for Haskell by Term
Rewriting. ACM Transactions on Programming Languages and Sys-
tems, 33(2):7:1–7:39, 2011.

[GSKT06] J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Au-
tomatic Termination Proofs in the Dependency Pair Framework. In
Proceedings of the 3rd International Joint Conference on Automatic
Reasoning (IJCAR’06), volume 4130 of Lecture Notes in Computer
Science, pages 281–286. Springer-Verlag, 2006. Web interface tool:
http://aprove.informatik.rwth-aachen.de.

[Ham50] R. W. Hamming. Error-detecting and error-correcting codes. Bell
System Technical Journal, XXIX(2):147–160, 1950.

[Hay00] B. Hayes. On the Teeth of Wheels. American Scientist, 88(4):296,
2000.

[HBJ01] Z. Huibiao, J. Bowen, and H. Jifeng. From Operational Semantics
to Denotational Semantics for Verilog. In Proceedings of the 11th
Conference on Correct Hardware Design and Verification Methods
(CHARME’01), volume 2144 of Lecture Notes in Computer Science,
pages 449–464. Springer-Verlag, 2001.

157

http://joerg.endrullis.de
http://joerg.endrullis.de
http://aprove.informatik.rwth-aachen.de

Bibliography

[Hin08] R. Hinze. Functional Pearl: Streams and Unique Fixed Points. In
Proceeding of the 13th ACM SIGPLAN International Conference on
Functional Programming (ICFP’08), pages 189–200. ACM Press,
2008.

[HKC00] M. Huang, R. Kwok, and S.-P. Chan. An Empirical Algorithm for
Power Analysis in Deep Submicron Electronic Designs. VLSI Design,
14(2):219–227, 2000.

[HMMCM06] C. Helmstetter, F. Maraninchi, L. Maillet-Contoz, and M. Moy. Auto-
matic Generation of Schedulings for Improving the Test Coverage of
Systems-on-a-Chip. In Proceedings of the 6th International Confer-
ence on Formal Methods in Computer Aided Design (FMCAD’06),
pages 171–178. IEEE Computer Society Press, 2006.

[IEE05] IEEE Std 1364.1-2005: Verilog Register Transfer Level Synthesis.
IEEE Computer Society Press, 2005.

[IEE06] IEEE Std 1364-2005: IEEE Standard for Verilog Hardware Descrip-
tion Language. IEEE Computer Society Press, 2006.

[IEE09] IEEE-Std 1076-2008: IEEE Standard VHDL Language Reference
Manual. IEEE Computer Society Press, 2009.

[Isi08] A. Isihara. Productivity of Algorithmic Systems. In Proceedings of the
Austrian-Japanese Workshop on Symbolic Computation in Software
Science (SCSS’08), volume 08-08 of RISC-Linz Report, pages 81–95,
2008.

[Isi10] A. Isihara. Algorithmic Term Rewriting Systems. PhD thesis, Vrije
Universiteit Amsterdam, 2010.

[Kah74] G. Kahn. The Semantics of a Simple Language for Parallel Program-
ming. Information Processing, 74:471–475, 1974.

[Kel75] R. M. Keller. A fundamental theorem of asynchronous parallel
computation. In Proceedings of the Sagamore Computer Conference,
volume 24 of Lecture Notes in Computer Science, pages 102–112.
Springer-Verlag, 1975.

[KGG08] S. Kundu, M. K. Ganai, and R. Gupta. Partial order reduction for
scalable testing of SystemC TLM designs. In Proceedings of the 45th
annual Design Automation Conference (DAC’08), pages 936–941.
ACM Press, 2008.

[KKM07] C. Kirchner, R. Kopetz, and P.-E. Moreau. Anti-Pattern Matching.
In Proceedings of the 16th European Symposium on Programming
(ESOP’07), volume 4421 of Lecture Notes in Computer Science, pages
110–124. Springer-Verlag, 2007.

[KSZM] M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. Tyrolean Termi-
nation Tool 2 (TTT2). Downloadable from http://colo6-c703.
uibk.ac.at/ttt2.

158

http://colo6-c703.uibk.ac.at/ttt2
http://colo6-c703.uibk.ac.at/ttt2

[L+] S. Lucas et al. µ-Term. Web interface and download: http://
zenon.dsic.upv.es/muterm/.

[LM87] J.-L. Lassez and K. Marriot. Explicit Representation of Terms Defined
by Counter Examples. Journal of Automated Reasoning, 3(3):301–317,
1987.

[Luc98] S. Lucas. Context-Sensitive Computations in Functional and Func-
tional Logic Programs. Journal of Functional and Logic Programming,
1998(1):1–61, 1998.

[Luc02] S. Lucas. Context-Sensitive Rewrite Strategies. Information and
Computation, 178(1):294–343, 2002.

[Luc06] S. Lucas. Proving Termination of Context-Sensitive Rewriting by
Transformation. Information and Computation, 204(12):1782–1846,
2006.

[McM97] K. McMillan. A Compositional Rule for Hardware Design Refinement.
In Proceedings of the 9th International Conference on Computer-Aided
Verification (CAV’97), volume 1254 of Lecture Notes in Computer
Science, pages 24–35. Springer-Verlag, 1997. See also http://www.
kenmcmil.com/smv.html.

[Men08] Mentor Graphics Corp. ModelSim 6.3g, 2008. See http://www.
model.com/.

[Moo65] G. E. Moore. Cramming more components onto integrated circuits.
Electronics, 38(8):114–117, 1965.

[Mou09] M. R. Mousavi. Causality in the Semantics of Esterel: Revisited. In
Proceedings of the 5th International Workshop on Structural Opera-
tional Semantics (SOS’09), volume 18 of Electronic Proceedings in
Theoretical Computer Science, pages 32–45, 2009.

[MZ07] C. Marché and H. Zantema. The Termination Competition. In Proceed-
ings of the 18th International Conference on Rewriting Techniques and
Applications (RTA’07), volume 4533 of Lecture Notes in Computer Sci-
ence, pages 303–313. Springer-Verlag, 2007. See also http://www.
lri.fr/~marche/termination-competition and http:
//termcomp.uibk.ac.at.

[Nan08] Nangate Inc. Open Cell Library v2008_10 SP1, 2008. Downloadable
from http://www.nangate.com/openlibrary/.

[NP73] L. W. Nagel and D. O. Pederson. SPICE (Simulation Program with
Integrated Circuit Emphasis). Technical Report UCB/ERL M382,
EECS Department, University of California, Berkeley, 1973.

[PBE+09] M. Palla, J. Bargfrede, S. Eggersglüß, W. Anheier, and R. Drechsler.
Timing Arc Based Logic Analysis for False Noise Reduction. In
Proceedings of the 2009 International Conference on Computer-Aided
Design (ICCAD’09), pages 225–230. ACM Press, 2009.

159

http://zenon.dsic.upv.es/muterm/
http://zenon.dsic.upv.es/muterm/
http://www.kenmcmil.com/smv.html
http://www.kenmcmil.com/smv.html
http://www.model.com/
http://www.model.com/
http://www.lri.fr/~marche/termination-competition
http://www.lri.fr/~marche/termination-competition
http://termcomp.uibk.ac.at
http://termcomp.uibk.ac.at
http://www.nangate.com/openlibrary/

Bibliography

[PBEB07] D. Potop-Butucaru, S. A. Edwards, and G. Berry. Compiling Esterel.
Springer-Verlag, 2007.

[Pel98] D. Peled. Ten Years of Partial Order Reduction. In Proceedings of
the 10th International Conference on Computer Aided Verification
(CAV’98), volume 1427 of Lecture Notes in Computer Science, pages
17–28. Springer-Verlag, 1998.

[Pey03] S. Peyton Jones. Haskell 98 Language and Libraries: The Revised
Report. Cambridge University Press, 2003.

[Pix92] C. Pixley. A Theory and Implementation of Sequential Hardware
Equivalence. IEEE Transactions on CAD of Integrated Circuits and
Systems, 11(12):1469–1478, 1992.

[PJB+95] M. Pandey, A. Jain, R. Bryant, D. Beatty, G. York, and S. Jain.
Extraction of finite state machines from transistor netlists by symbolic
simulation. In Proceedings of the International Conference on Com-
puter Design (ICCD’95), pages 596–601. IEEE Computer Society
Press, 1995.

[Pra07] Pragmatic C Software Corp. GPL Cver 2.12a, 2007. Downloadable
from http://www.pragmatic-c.com/gpl-cver/.

[PSS97] S. E. Panitz and M. Schmidt-Schauss. TEA: Automatically proving
Termination of Programs in a non-strict higher order Functional
Language. In Proceedings of the 4th International Symposium on
Static Analysis (SAS’97), volume 1302 of Lecture Notes in Computer
Science, pages 345–360. Springer-Verlag, 1997.

[Raf11] M. Raffelsieper. Productivity of Non-Orthogonal Term Rewrite Sys-
tems. In Informal Proceedings of the 10th International Workshop in
Reduction Strategies in Rewriting and Programming (WRS’11), 2011.
Extended Abstract.

[RDJ96] A. Raghunathan, S. Dey, and N. K. Jha. Glitch Analysis and Reduction
in Register Transfer Level Power Optimization. In Proceedings of
the 33rd annual Design Automation Conference (DAC’96), pages
331–336. ACM Press, 1996.

[RM11] M. Raffelsieper and M. R. Mousavi. Symbolic Power Analysis of
Cell Libraries. In Proceedings of the 16th International Workshop on
Formal Methods for Industrial Critical Systems (FMICS’11), volume
6959 of Lecture Notes in Computer Science, pages 134–148. Springer-
Verlag, 2011.

[RMR+09] M. Raffelsieper, M. R. Mousavi, J.-W. Roorda, C. Strolenberg, and
H. Zantema. Formal Analysis of Non-Determinism in Verilog Cell
Library Simulation Models. In Proceedings of 14th International Work-
shop on Formal Methods for Industrial Critical Systems (FMICS’09),
volume 5825 of Lecture Notes in Computer Science, pages 133–148.
Springer-Verlag, 2009.

160

http://www.pragmatic-c.com/gpl-cver/

[RMS10] M. Raffelsieper, M. R. Mousavi, and C. Strolenberg. Checking and
Deriving Module Paths in Verilog Cell Library Descriptions. In
Proceedings of the 13th Design, Automation, and Test in Europe
Conference and Exposition (DATE’10), pages 1506–1511. European
Design and Automation Association, 2010.

[RMZ10] M. Raffelsieper, M. R. Mousavi, and H. Zantema. Order-Independence
of Vector-Based Transition Systems. In Proceedings of the 10th
International Conference on Application of Concurrency to System
Design (ACSD’10), pages 115–123. IEEE Computer Society Press,
2010.

[RMZ11] M. Raffelsieper, M. R. Mousavi, and H. Zantema. Long-Run Order-
Independence of Vector-Based Transition Systems. IET Computers &
Digital Techniques, 2011. To appear.

[RRM09] M. Raffelsieper, J.-W. Roorda, and M. R. Mousavi. Model Checking
Verilog Descriptions of Cell Libraries. In Proceedings of the Ninth
International Conference on Application of Concurrency to System
Design (ACSD’09), pages 128–137. IEEE Computer Society Press,
2009.

[RZ09] M. Raffelsieper and H. Zantema. A Transformational Approach
to prove Outermost Termination Automatically. In Proceedings of
the 8th International Workshop in Reduction Strategies in Rewriting
and Programming (WRS’08), volume 237 of Electronic Notes in
Theoretical Computer Science, pages 3–21. Elsevier Science Publishers
B. V. (North-Holland), 2009.

[Sch97] R. R. Schaller. Moore’s law: past, present and future. IEEE Spectrum,
34(6):52–59, 1997.

[SLL97] W.-Z. Shen, J.-Y. Lin, and J.-M. Lu. CB-Power: A Hierarchical
Cell-Based Power Characterization and Estimation Environment for
Static CMOS Circuits. In Proceedings of 2nd Asia and South Pacific
Design Automation Conference (ASP-DAC’97), pages 189–194. IEEE
Computer Society Press, 1997.

[Sny08] W. Snyder. Verilator 3.681, 2008. Downloadable from http://
www.veripool.org/wiki/verilator.

[Ste58] M. A. Stern. Ueber eine zahlentheoretische Funktion. Journal für die
reine und angewandte Mathematik, 55:193–220, 1858.

[TdS05] O. Tardieu and R. de Simone. Loops in Esterel. ACM Transactions
on Embedded Computing Systems, 4(4):708–750, 2005.

[Ter03] Terese. Term Rewriting Systems. Cambridge University Press, 2003.

[Thi09] R. Thiemann. From Outermost Termination to Innermost Termination.
In Proceedings of the 35th Conference on Current Trends in Theory
and Practice of Computer Science (SOFSEM’09), volume 5404 of
Lecture Notes in Computer Science, pages 533–545. Springer-Verlag,
2009.

161

http://www.veripool.org/wiki/verilator
http://www.veripool.org/wiki/verilator

Bibliography

[TS09] R. Thiemann and C. Sternagel. Loops under Strategies. In Proceedings
of the 20th International Conference on Rewriting Techniques and
Applications (RTA’09), volume 5595 of Lecture Notes in Computer
Science, pages 17–31. Springer-Verlag, 2009.

[Tur36] A. M. Turing. On Computable Numbers, with an Application to the
Entscheidungsproblem. Proceedings of the London Mathematical
Society, 42(2):230–265, 1936.

[Tur03] M. Turpin. The Dangers of Living with an X. SNUG Boston, 2003.

[vE00] C. A. J. van Eijk. Sequential Equivalence Checking Based on Struc-
tural Similarities. IEEE Transactions on CAD of Integrated Circuits
and Systems, 19(7):814–819, 2000.

[Wal09] J. Waldmann. Report on the Termination Competition
2008. In Informal Proceedings of the 10th International
Workshop on Termination (WST’09), 2009. Available from
http://www.imn.htwk-leipzig.de/~waldmann/talk/
09/wst/paper.pdf. See also http://termcomp.uibk.ac.
at.

[Wel08] WellSpring Solutions. VeriWell 2.8.7, 2008. Downloadable from
http://sourceforge.net/projects/veriwell.

[Wil07] S. Wilson. Icarus Verilog v0.8.6, 2007. Downloadable from http:
//www.icarus.com/eda/verilog/.

[WW98] P. Wohl and J. Waicukauski. Extracting Gate-Level Networks from
Simulation Tables. In Proceedings of the IEEE International Test
Conference (TEST’98), pages 622–631. IEEE Computer Society Press,
1998.

[Zan08] H. Zantema. Normalization of Infinite Terms. In Proceedings of the
19th International Conference on Rewriting Techniques and Applica-
tions (RTA’08), volume 5117 of Lecture Notes in Computer Science,
pages 441–455. Springer-Verlag, 2008.

[Zan09] H. Zantema. Well-definedness of Streams by Termination. In Proceed-
ings of the 20th International Conference on Rewriting Techniques and
Applications (RTA’09), volume 5595 of Lecture Notes in Computer
Science, pages 164–178. Springer-Verlag, 2009.

[ZR10a] H. Zantema and M. Raffelsieper. Proving Productivity in Infinite Data
Structures. In Proceedings of the 21st International Conference on
Rewriting Techniques and Applications (RTA’10), volume 6 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 401–416.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2010.

[ZR10b] H. Zantema and M. Raffelsieper. Stream Productivity by Outermost
Termination. In Proceedings of the 9th International Workshop in
Reduction Strategies in Rewriting and Programming (WRS’09), vol-
ume 15 of Electronic Proceedings in Theoretical Computer Science,
2010.

162

http://www.imn.htwk-leipzig.de/~waldmann/talk/09/wst/paper.pdf
http://www.imn.htwk-leipzig.de/~waldmann/talk/09/wst/paper.pdf
http://termcomp.uibk.ac.at
http://termcomp.uibk.ac.at
http://sourceforge.net/projects/veriwell
http://www.icarus.com/eda/verilog/
http://www.icarus.com/eda/verilog/

Cell Libraries and Verification

Summary

Digital electronic devices are often implemented using cell libraries to provide the
basic logic elements, such as Boolean functions and on-chip memories. To be usable
both during the development of chips, which is usually done in a hardware definition
language, and for the final layout, which consists of lithographic masks, cells are
described in multiple ways. Among these, there are multiple descriptions of the
behavior of cells, for example one at the level of hardware definition languages,
and another one in terms of transistors that are ultimately produced. Thus, correct
functioning of the device depends also on the correctness of the cell library, requiring
all views of a cell to correspond with each other.

In this thesis, techniques are presented to verify some of these correspondences in
cell libraries. First, a technique is presented to check that the functional description
in a hardware definition language and the transistor netlist description implement
the same behavior. For this purpose, a semantics is defined for the commonly used
subset of the hardware definition language Verilog. This semantics is encoded into
Boolean equations, which can also be extracted from a transistor netlist. A model
checker is then used to prove equivalence of these two descriptions, or to provide a
counterexample showing that they are different.

Also in basic elements such as cells, there exists non-determinism reflecting
internal behavior that cannot be controlled from the outside. It is however desired that
such internal behavior does not lead to different externally observable behavior, i.e.,
to different computation results. This thesis presents a technique to efficiently check,
both for hardware definition language descriptions and transistor netlist descriptions,
whether non-determinism does have an effect on the observable computation or not.

Power consumption of chips has become a very important topic, especially since
devices become mobile and therefore are battery powered. Thus, in order to predict
and to maximize battery life, the power consumption of cells should be measured and
reduced in an efficient way. To achieve these goals, this thesis also takes the power
consumption into account when analyzing non-deterministic behavior. Then, on the
one hand, behaviors consuming the same amount of power have to be measured
only once. On the other hand, functionally equivalent computations can be forced
to consume the least amount of power without affecting the externally observable
behavior of the cell, for example by introducing appropriate delays.

A way to prevent externally observable non-deterministic behavior in practical
hardware designs is by adding timing checks. These checks rule out certain input
patterns which must not be generated by the environment of a cell. If an input
pattern can be found that is not forbidden by any of the timing checks, yet allows
non-deterministic behavior, then the cell’s environment is not sufficiently restricted
and hence this usually indicates a forgotten timing check. Therefore, the check for
non-determinism is extended to also respect these timing checks and to consider only

163

Summary

counterexamples that are not ruled out. If such a counterexample can be found, then
it gives an indication what timing checks need to be added.

Because current hardware designs run at very high speeds, timing analysis of
cells has become a very important issue. For this purpose, cell libraries include a
description of the delay arcs present in a cell, giving an amount of time it takes for an
input change to have propagated to the outputs of a cell. Also for these descriptions,
it is desired that they reflect the actual behavior in the cell. On the one hand, a delay
arc that never manifests itself may result in a clock frequency that is lower than
necessary. On the other hand, a forgotten delay arc can cause the clock frequency
being too high, impairing functioning of the final chip. To relate the functional
description of a cell with its timing specification, this thesis presents techniques to
check whether delay arcs are consistent with the functionality, and which list all
possible delay arcs.

Computing new output values of a cell given some new input values requires
all connections among the transistors in a cell to obtain stable values. Hitherto
it was assumed that such a stable situation will always be reached eventually. To
actually check this, a wire is abstracted into a sequence of stable values. Using
this abstraction, checking whether stable situations are always reached is reduced to
analyzing that an infinite sequence of such stable values exists. This is known in the
term rewriting literature as productivity, the infinitary equivalent to termination. The
final contribution in this thesis are techniques to automatically prove productivity.
For this purpose, existing termination proving tools for term rewriting are re-used to
benefit from their tremendous strength and their continuous improvements.

164

Curriculum Vitae

Matthias Raffelsieper was born on May 5th, 1981 in Recklinghausen, Germany. After
finishing secondary school in 2000, Matthias completed the compulsory civilian
service in 2001. In the same year, he started studying computer science at the RWTH
Aachen University of Technology. Matthias received his Diplom in computer science,
equivalent to a Master of Science in computer science, with distinction in 2007. His
diploma thesis was titled “Improving efficiency and power of automated termination
analysis for Haskell” and was supervised by Prof. Dr. Jürgen Giesl.

Immediately after graduation, Matthias started as a PhD student at the Eindhoven
University of Technology, under the supervision of Prof. Dr. Hans Zantema and Prof.
Dr. Jan Friso Groote. His research in the Valichip project focused on the verification
of cell libraries, a problem identified in cooperation with the industrial partner Fenix
Design Automation. Next to this, Matthias also maintained a strong interest in term
rewriting. Both areas have led to a number of publications in conference proceedings
and journals.

165

Appendix A
Nangate Open Cell Library License

The Open Cell Library is intended for use by universities, other research activities,
educational programs and Si2.org members. However allowed, the Open Cell Library
is not intended for commercial use. If you use the Open Cell Library for demonstration
of commercial EDA tools it is required to mention, indicate that the library was
developped by Nangate.

If you have questions or concerns then please contact us at openlibrary@nangate.com

The Open Cell Library is provided by Nangate under the following License:

Nangate Open Cell Library License, Version 1.0. February 20, 2008

Permission is hereby granted, free of charge, to any person or organization obtaining
a copy of the Open Cell Library and accompanying documentation (the "Library")
covered by this license to use, reproduce, display, distribute, execute, and transmit the
Library, and to prepare derivative works of the Library, and to permit third-parties to
whom the Library is furnished to do so, all subject to the following:

The copyright notices in the Library and this entire statement, including the above
license grant, this restriction and the following disclaimer, must be included in all
copies of the Library, in whole or in part, and all derivative works of the Library,
unless such copies or derivative works are solely in the form of machine-executable
object code generated by a source language processor. The library has been generated
using a non-optimized open PDK and is not suited for any commercial purpose.
Measuring or benchmarking the Library against any other library or standard cell set
is prohibited. Any meaningful library benchmarking must be done in collaboration
with Nangate or other providers of optimized and production-ready PDKs.

THE LIBRARY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WAR-
RANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT
HOLDERS OR ANYONE DISTRIBUTING THE LIBRARY BE LIABLE FOR
ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
LIBRARY OR THE USE OR OTHER DEALINGS IN THE LIBRARY.

167

Titles in the IPA Dissertation Series since 2005

E. Ábrahám. An Assertional Proof Sys-
tem for Multithreaded Java -Theory and
Tool Support- . Faculty of Mathematics
and Natural Sciences, UL. 2005-01

R. Ruimerman. Modeling and Remod-
eling in Bone Tissue. Faculty of Biomed-
ical Engineering, TU/e. 2005-02

C.N. Chong. Experiments in Rights
Control - Expression and Enforce-
ment. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2005-03

H. Gao. Design and Verification of
Lock-free Parallel Algorithms. Faculty
of Mathematics and Computing Sci-
ences, RUG. 2005-04

H.M.A. van Beek. Specification and
Analysis of Internet Applications. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2005-05

M.T. Ionita. Scenario-Based System Ar-
chitecting - A Systematic Approach to
Developing Future-Proof System Archi-
tectures. Faculty of Mathematics and
Computing Sciences, TU/e. 2005-06

G. Lenzini. Integration of Analy-
sis Techniques in Security and Fault-
Tolerance. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2005-07

I. Kurtev. Adaptability of Model Trans-
formations. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2005-08

T. Wolle. Computational Aspects of
Treewidth - Lower Bounds and Net-
work Reliability. Faculty of Science,
UU. 2005-09

O. Tveretina. Decision Procedures for
Equality Logic with Uninterpreted Func-
tions. Faculty of Mathematics and Com-
puter Science, TU/e. 2005-10

A.M.L. Liekens. Evolution of Fi-
nite Populations in Dynamic Environ-
ments. Faculty of Biomedical Engineer-
ing, TU/e. 2005-11

J. Eggermont. Data Mining using
Genetic Programming: Classification
and Symbolic Regression. Faculty
of Mathematics and Natural Sciences,
UL. 2005-12

B.J. Heeren. Top Quality Type Er-
ror Messages. Faculty of Science,
UU. 2005-13

G.F. Frehse. Compositional Verifica-
tion of Hybrid Systems using Simula-
tion Relations. Faculty of Science,
Mathematics and Computer Science,
RU. 2005-14

M.R. Mousavi. Structuring Structural
Operational Semantics. Faculty of
Mathematics and Computer Science,
TU/e. 2005-15

A. Sokolova. Coalgebraic Analysis
of Probabilistic Systems. Faculty of
Mathematics and Computer Science,
TU/e. 2005-16

T. Gelsema. Effective Models for the
Structure of pi-Calculus Processes with
Replication. Faculty of Mathematics and
Natural Sciences, UL. 2005-17

P. Zoeteweij. Composing Constraint
Solvers. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2005-18

J.J. Vinju. Analysis and Transforma-
tion of Source Code by Parsing and
Rewriting. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2005-19

M.Valero Espada. Modal Abstrac-
tion and Replication of Processes with
Data. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2005-20

A. Dijkstra. Stepping through Haskell.
Faculty of Science, UU. 2005-21

Y.W. Law. Key management and link-
layer security of wireless sensor net-
works: energy-efficient attack and de-
fense. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2005-22

E. Dolstra. The Purely Functional Soft-
ware Deployment Model. Faculty of
Science, UU. 2006-01

R.J. Corin. Analysis Models for Se-
curity Protocols. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2006-02

P.R.A. Verbaan. The Computational
Complexity of Evolving Systems. Fac-
ulty of Science, UU. 2006-03

K.L. Man and R.R.H. Schiffelers. For-
mal Specification and Analysis of Hybrid
Systems. Faculty of Mathematics and
Computer Science and Faculty of Me-
chanical Engineering, TU/e. 2006-04

M. Kyas. Verifying OCL Specifications
of UML Models: Tool Support and Com-
positionality. Faculty of Mathematics
and Natural Sciences, UL. 2006-05

M. Hendriks. Model Checking Timed
Automata - Techniques and Applications.
Faculty of Science, Mathematics and
Computer Science, RU. 2006-06

J. Ketema. Böhm-Like Trees for Rewrit-
ing. Faculty of Sciences, VUA. 2006-07

C.-B. Breunesse. On JML: topics in
tool-assisted verification of JML pro-
grams. Faculty of Science, Mathematics
and Computer Science, RU. 2006-08

B. Markvoort. Towards Hybrid Molec-
ular Simulations. Faculty of Biomedical
Engineering, TU/e. 2006-09

S.G.R. Nijssen. Mining Structured
Data. Faculty of Mathematics and Nat-
ural Sciences, UL. 2006-10

G. Russello. Separation and Adaptation
of Concerns in a Shared Data Space.

Faculty of Mathematics and Computer
Science, TU/e. 2006-11

L. Cheung. Reconciling Nondetermin-
istic and Probabilistic Choices. Faculty
of Science, Mathematics and Computer
Science, RU. 2006-12

B. Badban. Verification techniques for
Extensions of Equality Logic. Faculty of
Sciences, Division of Mathematics and
Computer Science, VUA. 2006-13

A.J. Mooij. Constructive formal meth-
ods and protocol standardization. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2006-14

T. Krilavicius. Hybrid Techniques for
Hybrid Systems. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2006-15

M.E. Warnier. Language Based Secu-
rity for Java and JML. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2006-16

V. Sundramoorthy. At Home In Ser-
vice Discovery. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2006-17

B. Gebremichael. Expressivity of
Timed Automata Models. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2006-18

L.C.M. van Gool. Formalising In-
terface Specifications. Faculty of
Mathematics and Computer Science,
TU/e. 2006-19

C.J.F. Cremers. Scyther - Semantics
and Verification of Security Protocols.
Faculty of Mathematics and Computer
Science, TU/e. 2006-20

J.V. Guillen Scholten. Mobile Chan-
nels for Exogenous Coordination of
Distributed Systems: Semantics, Imple-
mentation and Composition. Faculty
of Mathematics and Natural Sciences,
UL. 2006-21

H.A. de Jong. Flexible Heterogeneous
Software Systems. Faculty of Natural

Sciences, Mathematics, and Computer
Science, UvA. 2007-01

N.K. Kavaldjiev. A run-time reconfig-
urable Network-on-Chip for streaming
DSP applications. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2007-02

M. van Veelen. Considerations on Mod-
eling for Early Detection of Abnormali-
ties in Locally Autonomous Distributed
Systems. Faculty of Mathematics and
Computing Sciences, RUG. 2007-03

T.D. Vu. Semantics and Applications of
Process and Program Algebra. Faculty
of Natural Sciences, Mathematics, and
Computer Science, UvA. 2007-04

L. Brandán Briones. Theories for
Model-based Testing: Real-time and
Coverage. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2007-05

I. Loeb. Natural Deduction: Shar-
ing by Presentation. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2007-06

M.W.A. Streppel. Multifunctional Ge-
ometric Data Structures. Faculty of
Mathematics and Computer Science,
TU/e. 2007-07

N. Trčka. Silent Steps in Transition
Systems and Markov Chains. Faculty
of Mathematics and Computer Science,
TU/e. 2007-08

R. Brinkman. Searching in encrypted
data. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2007-09

A. van Weelden. Putting types to good
use. Faculty of Science, Mathematics
and Computer Science, RU. 2007-10

J.A.R. Noppen. Imperfect Informa-
tion in Software Development Pro-
cesses. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2007-11

R. Boumen. Integration and Test
plans for Complex Manufacturing Sys-
tems. Faculty of Mechanical Engineer-
ing, TU/e. 2007-12

A.J. Wijs. What to do Next?: Analysing
and Optimising System Behaviour in
Time. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2007-13

C.F.J. Lange. Assessing and Improving
the Quality of Modeling: A Series of Em-
pirical Studies about the UML. Faculty
of Mathematics and Computer Science,
TU/e. 2007-14

T. van der Storm. Component-
based Configuration, Integration and
Delivery. Faculty of Natural Sci-
ences, Mathematics, and Computer Sci-
ence,UvA. 2007-15

B.S. Graaf. Model-Driven Evolution of
Software Architectures. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2007-16

A.H.J. Mathijssen. Logical Calculi
for Reasoning with Binding. Faculty
of Mathematics and Computer Science,
TU/e. 2007-17

D. Jarnikov. QoS framework for Video
Streaming in Home Networks. Faculty
of Mathematics and Computer Science,
TU/e. 2007-18

M. A. Abam. New Data Structures and
Algorithms for Mobile Data. Faculty
of Mathematics and Computer Science,
TU/e. 2007-19

W. Pieters. La Volonté Machinale: Un-
derstanding the Electronic Voting Con-
troversy. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2008-01

A.L. de Groot. Practical Automa-
ton Proofs in PVS. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-02

M. Bruntink. Renovation of Idiomatic
Crosscutting Concerns in Embedded Sys-

tems. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2008-03

A.M. Marin. An Integrated System
to Manage Crosscutting Concerns in
Source Code. Faculty of Electrical En-
gineering, Mathematics, and Computer
Science, TUD. 2008-04

N.C.W.M. Braspenning. Model-based
Integration and Testing of High-tech
Multi-disciplinary Systems. Faculty of
Mechanical Engineering, TU/e. 2008-05

M. Bravenboer. Exercises in Free Syn-
tax: Syntax Definition, Parsing, and As-
similation of Language Conglomerates.
Faculty of Science, UU. 2008-06

M. Torabi Dashti. Keeping Fairness
Alive: Design and Formal Verifica-
tion of Optimistic Fair Exchange Pro-
tocols. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2008-07

I.S.M. de Jong. Integration and Test
Strategies for Complex Manufacturing
Machines. Faculty of Mechanical Engi-
neering, TU/e. 2008-08

I. Hasuo. Tracing Anonymity with Coal-
gebras. Faculty of Science, Mathematics
and Computer Science, RU. 2008-09

L.G.W.A. Cleophas. Tree Algorithms:
Two Taxonomies and a Toolkit. Faculty
of Mathematics and Computer Science,
TU/e. 2008-10

I.S. Zapreev. Model Checking Markov
Chains: Techniques and Tools. Faculty
of Electrical Engineering, Mathematics
& Computer Science, UT. 2008-11

M. Farshi. A Theoretical and Exper-
imental Study of Geometric Networks.
Faculty of Mathematics and Computer
Science, TU/e. 2008-12

G. Gulesir. Evolvable Behavior Speci-
fications Using Context-Sensitive Wild-
cards. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2008-13

F.D. Garcia. Formal and Computa-
tional Cryptography: Protocols, Hashes
and Commitments. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-14

P. E. A. Dürr. Resource-based Veri-
fication for Robust Composition of As-
pects. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2008-15

E.M. Bortnik. Formal Methods in Sup-
port of SMC Design. Faculty of Me-
chanical Engineering, TU/e. 2008-16

R.H. Mak. Design and Perfor-
mance Analysis of Data-Independent
Stream Processing Systems. Faculty
of Mathematics and Computer Science,
TU/e. 2008-17

M. van der Horst. Scalable Block
Processing Algorithms. Faculty of
Mathematics and Computer Science,
TU/e. 2008-18

C.M. Gray. Algorithms for Fat Objects:
Decompositions and Applications. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2008-19

J.R. Calamé. Testing Reactive Systems
with Data - Enumerative Methods and
Constraint Solving. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2008-20

E. Mumford. Drawing Graphs for
Cartographic Applications. Faculty of
Mathematics and Computer Science,
TU/e. 2008-21

E.H. de Graaf. Mining Semi-structured
Data, Theoretical and Experimental As-
pects of Pattern Evaluation. Faculty
of Mathematics and Natural Sciences,
UL. 2008-22

R. Brijder. Models of Natural Compu-
tation: Gene Assembly and Membrane
Systems. Faculty of Mathematics and
Natural Sciences, UL. 2008-23

A. Koprowski. Termination of Rewrit-
ing and Its Certification. Faculty of

Mathematics and Computer Science,
TU/e. 2008-24

U. Khadim. Process Algebras for Hy-
brid Systems: Comparison and Devel-
opment. Faculty of Mathematics and
Computer Science, TU/e. 2008-25

J. Markovski. Real and Stochastic Time
in Process Algebras for Performance
Evaluation. Faculty of Mathematics and
Computer Science, TU/e. 2008-26

H. Kastenberg. Graph-Based Software
Specification and Verification. Faculty
of Electrical Engineering, Mathematics
& Computer Science, UT. 2008-27

I.R. Buhan. Cryptographic Keys
from Noisy Data Theory and Applica-
tions. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2008-28

R.S. Marin-Perianu. Wireless Sensor
Networks in Motion: Clustering Algo-
rithms for Service Discovery and Provi-
sioning. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2008-29

M.H.G. Verhoef. Modeling and Vali-
dating Distributed Embedded Real-Time
Control Systems. Faculty of Science,
Mathematics and Computer Science,
RU. 2009-01

M. de Mol. Reasoning about Func-
tional Programs: Sparkle, a proof as-
sistant for Clean. Faculty of Science,
Mathematics and Computer Science,
RU. 2009-02

M. Lormans. Managing Requirements
Evolution. Faculty of Electrical Engi-
neering, Mathematics, and Computer
Science, TUD. 2009-03

M.P.W.J. van Osch. Automated Model-
based Testing of Hybrid Systems. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2009-04

H. Sozer. Architecting Fault-Tolerant
Software Systems. Faculty of Electrical

Engineering, Mathematics & Computer
Science, UT. 2009-05

M.J. van Weerdenburg. Efficient
Rewriting Techniques. Faculty of
Mathematics and Computer Science,
TU/e. 2009-06

H.H. Hansen. Coalgebraic Modelling:
Applications in Automata Theory and
Modal Logic. Faculty of Sciences, Di-
vision of Mathematics and Computer
Science, VUA. 2009-07

A. Mesbah. Analysis and Testing of
Ajax-based Single-page Web Applica-
tions. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2009-08

A.L. Rodriguez Yakushev. Towards
Getting Generic Programming Ready
for Prime Time. Faculty of Science,
UU. 2009-9

K.R. Olmos Joffré. Strategies for Con-
text Sensitive Program Transformation.
Faculty of Science, UU. 2009-10

J.A.G.M. van den Berg. Reasoning
about Java programs in PVS using JML.
Faculty of Science, Mathematics and
Computer Science, RU. 2009-11

M.G. Khatib. MEMS-Based Stor-
age Devices. Integration in Energy-
Constrained Mobile Systems. Faculty
of Electrical Engineering, Mathematics
& Computer Science, UT. 2009-12

S.G.M. Cornelissen. Evaluating Dy-
namic Analysis Techniques for Program
Comprehension. Faculty of Electrical
Engineering, Mathematics, and Com-
puter Science, TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-
based Network Intrusion Detection Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2009-14

H.L. Jonker. Security Matters: Pri-
vacy in Voting and Fairness in Digital
Exchange. Faculty of Mathematics and
Computer Science, TU/e. 2009-15

M.R. Czenko. TuLiP - Reshaping Trust
Management. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2009-16

T. Chen. Clocks, Dice and Pro-
cesses. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2009-17

C. Kaliszyk. Correctness and Availabil-
ity: Building Computer Algebra on top
of Proof Assistants and making Proof As-
sistants available over the Web. Faculty
of Science, Mathematics and Computer
Science, RU. 2009-18

R.S.S. O’Connor. Incompleteness &
Completeness: Formalizing Logic and
Analysis in Type Theory. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2009-19

B. Ploeger. Improved Verification Meth-
ods for Concurrent Systems. Faculty
of Mathematics and Computer Science,
TU/e. 2009-20

T. Han. Diagnosis, Synthesis and Anal-
ysis of Probabilistic Models. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2009-21

R. Li. Mixed-Integer Evolution Strate-
gies for Parameter Optimization and
Their Applications to Medical Image
Analysis. Faculty of Mathematics and
Natural Sciences, UL. 2009-22

J.H.P. Kwisthout. The Computational
Complexity of Probabilistic Networks.
Faculty of Science, UU. 2009-23

T.K. Cocx. Algorithmic Tools for Data-
Oriented Law Enforcement. Faculty
of Mathematics and Natural Sciences,
UL. 2009-24

A.I. Baars. Embedded Compilers. Fac-
ulty of Science, UU. 2009-25

M.A.C. Dekker. Flexible Access Con-
trol for Dynamic Collaborative Environ-
ments. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2009-26

J.F.J. Laros. Metrics and Visualisation
for Crime Analysis and Genomics. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2009-27

C.J. Boogerd. Focusing Automatic
Code Inspections. Faculty of Electri-
cal Engineering, Mathematics, and Com-
puter Science, TUD. 2010-01

M.R. Neuhäußer. Model Checking
Nondeterministic and Randomly Timed
Systems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2010-02

J. Endrullis. Termination and Produc-
tivity. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2010-03

T. Staijen. Graph-Based Specifica-
tion and Verification for Aspect-Oriented
Languages. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2010-04

Y. Wang. Epistemic Modelling and Pro-
tocol Dynamics. Faculty of Science,
UvA. 2010-05

J.K. Berendsen. Abstraction, Prices
and Probability in Model Checking
Timed Automata. Faculty of Science,
Mathematics and Computer Science,
RU. 2010-06

A. Nugroho. The Effects of UML Mod-
eling on the Quality of Software. Faculty
of Mathematics and Natural Sciences,
UL. 2010-07

A. Silva. Kleene Coalgebra. Faculty
of Science, Mathematics and Computer
Science, RU. 2010-08

J.S. de Bruin. Service-Oriented Discov-
ery of Knowledge - Foundations, Imple-
mentations and Applications. Faculty
of Mathematics and Natural Sciences,
UL. 2010-09

D. Costa. Formal Models for Compo-
nent Connectors. Faculty of Sciences,
Division of Mathematics and Computer
Science, VUA. 2010-10

M.M. Jaghoori. Time at Your Ser-
vice: Schedulability Analysis of Real-
Time and Distributed Services. Faculty
of Mathematics and Natural Sciences,
UL. 2010-11

R. Bakhshi. Gossiping Models: Formal
Analysis of Epidemic Protocols. Faculty
of Sciences, Department of Computer
Science, VUA. 2011-01

B.J. Arnoldus. An Illumination of
the Template Enigma: Software Code
Generation with Templates. Faculty
of Mathematics and Computer Science,
TU/e. 2011-02

E. Zambon. Towards Optimal IT
Availability Planning: Methods and
Tools. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2011-03

L. Astefanoaei. An Executable Theory
of Multi-Agent Systems Refinement. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2011-04

J. Proença. Synchronous coordina-
tion of distributed components. Faculty
of Mathematics and Natural Sciences,
UL. 2011-05

A. Moralı. IT Architecture-Based Con-
fidentiality Risk Assessment in Networks
of Organizations. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2011-06

M. van der Bijl. On changing mod-
els in Model-Based Testing. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2011-07

C. Krause. Reconfigurable Component
Connectors. Faculty of Mathematics and
Natural Sciences, UL. 2011-08

M.E. Andrés. Quantitative Analysis
of Information Leakage in Probabilistic
and Nondeterministic Systems. Faculty
of Science, Mathematics and Computer
Science, RU. 2011-09

M. Atif. Formal Modeling and Verifi-
cation of Distributed Failure Detectors.
Faculty of Mathematics and Computer
Science, TU/e. 2011-10

P.J.A. van Tilburg. From Computabil-
ity to Executability – A process-theoretic
view on automata theory. Faculty of
Mathematics and Computer Science,
TU/e. 2011-11

Z. Protic. Configuration management
for models: Generic methods for model
comparison and model co-evolution.
Faculty of Mathematics and Computer
Science, TU/e. 2011-12

S. Georgievska. Probability and Hid-
ing in Concurrent Processes. Faculty
of Mathematics and Computer Science,
TU/e. 2011-13

S. Malakuti. Event Composition Model:
Achieving Naturalness in Runtime En-
forcement. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2011-14

M. Raffelsieper. Cell Libraries and Ver-
ification. Faculty of Mathematics and
Computer Science, TU/e. 2011-15

	Contents
	Preface
	1 Introduction
	2 Introduction to Cell Libraries
	2.1 Different Views of a Cell
	2.2 Transistor Netlist
	2.3 Verilog Simulation Description

	3 Equivalence Checking in Cell Libraries
	3.1 Semantics of VeriCell
	3.2 Encoding VeriCell into Boolean Transition Systems
	3.3 Equivalence Checking VeriCell and Transistor Netlist Descriptions
	3.4 Experimental Results
	3.5 Summary

	4 Efficient Analysis of Non-Determinism in Cell Libraries
	4.1 Order-Independence of VeriCell Descriptions
	4.2 Order-Independence of Transistor Netlists
	4.3 Using Non-Determinism to Reduce Power Consumption
	4.4 Summary

	5 Relating Functional and Timing Behavior
	5.1 Timing Checks
	5.2 Module Paths
	5.3 Summary

	6 Productivity Analysis by Context-Sensitive Termination
	6.1 Term Rewriting, Specifications, and Productivity
	6.2 Productivity of Orthogonal Specifications
	6.3 Productivity of Non-Orthogonal Specifications
	6.4 Proving Productivity of Hardware Cells
	6.5 Summary

	7 Productivity Analysis by Outermost Termination
	7.1 Proving Productivity by Balanced Outermost Termination
	7.2 Transformational Outermost Termination Analysis
	7.3 Summary

	8 Conclusion
	Bibliography
	Summary
	Curriculum Vitae
	A Nangate Open Cell Library License

