Spct,iﬁbatiun and-Verification-of S'y'i"lbhi'unu'ljs Hardware uoli"lg LEOTOS1n
Jianping Wu, Samuel T. Chanson, Quiang Gao, editors, Proc. Formal Methods
for Protocol Engineering and Distributed Systems (FORTE XII/PSTV XIX),
pages 295-312, Kluwer Academic Publishers, London, UK, October 1999.

Specification and Verification of Synchronous
Hardware using LOTOS

Ji He and Kenneth J. Turner
Computing Sienceand Mathematics, University of Stirling, Stirling FK9 4LA, Scotland

Keywords: Digital Logic, Hardware Description, LoTos, Verificaion

Abstract: This paper investigates gedficaion and verificaion o synchronous circuits
using DiLL (Digital Logic in LoTos). After an overview of the DiLL approach,
the paper focuses on the charaderistics of synchronous circuits. A more
constrained model is presented for spedfying digital comporents and verifying
them. Two standard benchmark circuits are spedfied using this new model,
and analysed by the CADP toolset (Caesar/Aldébaran Development Padkage).

1. INTRODUCTION

11 Background

DiLL (Digital Logic in Lotos [14]16,17,%5]) is an approach for
specifying digital circuits using LOTOS (Language Of Temporal Ordering
Spedfication [12]). DiLL offers higher-level abstractions for describing
hardware using a maao library for typicd componrents and designs. DILL is
used to formally specify digital hardware, using LOTOS at various
abstraction levels. DILL addresses functional and timing aspects, supported
by alibrary of common comporents and circuit designs, and using standard
LoTos tods.

The new work reported here allows g/nchronous circuits to be specified
and verified. Two hardware verification benchmarks are used as examples.
The paper extends the gplicability of LOTOS in hardware design, and so is
of interest to the LoTos community. Of necessity some badkground in

1

https://core.ac.uk/display/9049261?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Ji He and Kenneth J. Turner

LoTos and herdware is required. The paper demonstrates the possibility of
hardware verification using LoTos, although some limitations will be
discussed.

LoTos suppats rigorous specification and analysis, unike semi-formal
HDLs (Hardware Description Languages) such as VHDL (VHSIC Hardware
Description Language [10]). LOTOs is neutral with respect to whether a
specification is to be realised in hardware or software, allowing hardware-
software @-design [22]. LOTOS inherits a well-devel oped verification theory
from the field of process agebra, and has a theory for testing and test
derivation. There is good support from general-purpose LOTOS toolsets sich
as CADP (Cassar/Aldébaran Development Package [7]), LITE (LotoSphere
Integrated Tod Environment) and LOLA/TOPO (LOTOS Laboratory). Most of
these tools have been used in analysing DILL spedfications. DILL is adualy
reai sed through translationinto LOTOS.

This paper elaborates a DILL approach for modelling and verifying
synchronaus circuits. Synchronous design is chosen here as it is the main
approac for digital technalogy. Control by clock signals makes it essier to
abstract away from timing information. The current standard for LOTOS does
not suppat quantified timing, athowgh the authors have developed Timed
DILL [16] for hardware timing analysis, using ET-LOTOS [19] as abasis.

Sedion 2 discusses how DiLL models hardware, particularly synchronous
circuits. Two case studies then demonstrate that DILL can successfully
specify and verify standard benchmark designs. The Single Pulser in
sedion 3 ensures that a switch causes well-defined pulses. The Bus Arbiter
in section 4 grantsbusaccesto only oneclient at atime anong several.

1.2 Har dwar e Description and Verification

Hardware description has been studied extensively. Languages sich as
VHDL, Verilog [11] and ELLA [2] are commonly used in industry. These
languages are semi-formal becaise their semantics is based on simulation
models. Other HDLs do have formal semantics, e.g. CIRCAL (Circuit
Calculus[21]), HoL [9] and Ruby [18]. DiLL most closdly resembles CIRCAL
in that both have abehavioural basis in process algebra. At a low level of
specification, the true concurrency semantics of CIRCAL are perhaps more
appropriate than the interleaving semantics of LoTos. However, the
integrated data typing in LOTOS makes it much more expressive than
CIRCAL. In the authors experience, DILL can be used successfully at a
variety of abstractionlevels. However, CIRCAL appeasto be less effective &
higher levels. For example, describing the behaviour of a synchronous
circuit in CIRCAL requires the correspording Meay or Moore madiine to be
defined and then translated into CIRCAL.

Sredfication/Verification d Synchronous Hardware using LOTOS 3

Much of the early work on herdware verification used theorem-proving.
Althowgh oquite genera, this requires a significant amourt of human
guidance during verification. More recently model-cheding, language
containment and reachability analysis have attracted attention. Approaches
using FSM (Finite State Machine) models can be attomated, but they do rot
yet scale up to redlistic hardware designs. The trend is to combine theorem-
proving and model-based approadies so as to achieve generality as well as
automated support. LoOTOS verification approaches tend to be state-based
using an LTS (Labelled Transition System). Current LOTOS tools offer
model chedking and readability anaysis, together with equivalence or
preorder checking. DILL can thus exploit arange of verification techniques.

Various researchers have studied the use of LoTos for hardware
description. Theinitial work at Stirling [25] overlapped independent work in
Ottawa [6]. The European projed FORMAT [5] studied the trandation o
LoTos to VHDL. Other hardware gplications of LoTOS have included bus
protocols [3,23 and hardware synthesis[27].

The new DiLL model for synchronous circuits has been evaluated ontwo
standard benchmark circuits [24] that are intended for comparing diff erent
approades to hardware verification. The madine used by the aithors for
verification was a SUN (300MHz CPU, 128MB memory).

1.3 Verification with CADP

The authors used CADP to verify DILL hardware. CADP accepts full
standard LOTOS, using Cassar. ADT for the data part of LOTOS and Cassar for
the behavioural part. The result is an LTS that can be used for verification.
Aldébaran performs verification using the LTS or a network of LTSs (i.e. a
finite state machine conrecting several LTSs by LoTos parallel and hiding
operators). XTL (Exeautable Temporal Language) is a functiond-like
programming language that allows compad implementation of temporal
logic operators. Several temporal logics such as AcTL (Action-based
Computational Temporal Logic [4]) have been embedded in XTL. To
partialy solve the problem of state space explosion, CADP uses advanced
verification techniques sich as compositional generation, on-the-fly
comparison, and a BDD (Binary Dedsion Diagram) representation of LTSs.
These techniques permit verification of relatively large specifications.

CADP suppats verification through hissmulation and temporal logic
property checking. For verifying DILL (LOTOS) specifications, ACTL is an
obvious candidate because the semantics of LOTOS is aso based onadions.
ACTL is aso more understandable than the p-cdculus. The modal operators
of HML (Henness/-Milner Logic) are also employed in verification for

4 Ji He and Kenneth J. Turner

convenience The subset of temporal operators used later in the paper is as
follows. A, B and C are adion sets, while F and G are formula sets.

ACTL_NOT_TO_UNLESS (A, B, C): thiscan beread as ‘not Ato B
unless C'. After an action satisfying A in the aurrent state, al paths
leading to an action satisfying B must also satisfy C.

AG (F): dl reachable states must satisfy F.

AU_A B (F, A, B, G): thisisthe until operator %. A restricted formis
used in this paper: AU_A_B (true, A, B, true). This means that for
the current state, each of its paths dould have the following
property: the actions along the path satisfy A urtil there is an action
that satisfies B.

BOX (A, F): for the aurrent state, all outgoing actions (if any) that
satisfy A must result in states satisfying F.

EVAL_A (A): yields astate set correspording to action A.

EX_A (A, F): from the current state, there exists an A that can lead to
astate satisfying F.

WDIA (A, F): from the aurrent state there exists a path with possible
preceding internal actions and A, leading to a state satisfying F.

2. MODELLING APPROACH

2.1 General Approach

The basic philosophy of DILL is that it should be easy for the hardware
engineq to trandate acircuit schematic into a LOTOS spedfication, and then
to analyse and verify the properties of this gedfication. Thereis thus a need
for acomporent library. The library is available online for research puposes
[15] andis simmarised in Table 1.

It is possible to describe logic designs at different levels of abstraction,
and to compare ahigher-level design with a more detailed ore. DILL does
not give refinement guidelines, since these will be motivated by normal
hardware design procedures. Comporents in the origina DILL library were
specified by progressively combining simpler comporents. This approach is
termed structural since it reflects how a wmporent is constructed. As the
philosophy of DILL isto enable circuits, including library componrents, to be
specified at different abstraction levels, higher level specification is also
needed. This is termed the behavioural style. It spedfies only what the
comporent should do, not how it is constructed. Adding a new comporent to
the DiILL library does, of course, need reasonable knowledge of LOTOS.
However the existing library provides ssimple patterns to foll ow as examples.

Sredfication/Verification d Synchronous Hardware using LOTOS 5

Having abstract (behaviourad) as well as design (structural) spedficationsin
thelibrary is helpful in both bottom-up and top-down design.

Table 1. DiLL Library

Comporent Variants

Adder 2/4 inputs, behavioural/structural, half/full/ parall el/ripple

And, ... 2/3/4//8 inputs, 0/1-adive tri-state enable

Clock -

Comparator 1/4/8/n inputs, behavioural/structural

Counter behavioural/structural

Deooder 2/3 inputs, behavioural/structural, 0/1-adive outputs,
BCD/Dedmal/Excess3/Gray

Demultiplexer 1/2 inputs, behavioural/structural

Delay dynamic/general/hold/inertial/ pure/setup/width/edge

Divider 2/4/8 inputs, behavioural/structural, positive/negative elge trigger

Encoder 4/8 inputs, behavioural/structural, 0/1-adive outputs

Flip Flop D/IIK/MS/RSIT, behavioural/structural, paositive/negative eldge trigger,
preset, predea, lockout

Inverter 1/4/8 inputs, O/1-adive tri-state enable

Latch D/RS, 1/4/8 hits, behavioural/structural, preset, predea, clocked

Memory behavioural/structural

Multiplexer 2/4 inputs, 1/8/n-bit, behavioural/structural

One, ... sourceof logic 1/0, sink

Parity 8 inputs, behavioural/structural

Register 4/8/n bits, behavioural/structural, positi ve/negative edge trigger, load
enable/predea, tri-state output, bucket brigade/pass-on/shift

Repeaer 14/8 inputs, 0/1-adive tri-state enable

Since @mporent specifications are trandated into LOTOS, the designer
must be familiar with howv to combine LOTOS behaviour expressions.
Fortunately the rdationship between a circuit design and its DiLL
representation is straightforward, and does not require detailed LOTOS
knowledge. The principal method d connecting comporents is to compose
their behaviours in paralel. The synchronisation rules of LoTos alow
comporentsto be wnneded in anatura way.

LoTos, like most spedfication languages, deds only with discrete
events. It is therefore signal changes that are modelled in asynchronous
(unclocked) design. However in synchronaus circuits, changesin signal level
are controlled by clock pulses (except for comporents such as level-
triggered flip-flops). Signal levels can thus be treated as maintained duing a
clock cycle, and so correspondto one LOTOS event per clock cycle in the
synchronaus case.

Wires or tracks between comporents are not normally represented
explicitly in DILL. A comporent’s ports (e.g. its pins) are represented by
LoTos gates. (The term “gate” will be qualified as it has diff erent meanings
in hardware and LOTOS.) and To ‘wire up’ two pats, their LOTOS gates are

6 Ji He and Kenneth J. Turner

merely synchronised. Since LOTOS allows multi-way synchronisation, it is
easy to connect one output to severa inputs. In high-speal circuits, the
transmisson time over a wire may be modell ed as a delay. Multi-bit signals
or multi-wire connections (e.g. buses) and multi-comporent assemblies (e.g.
memory arrays) are supported by DILL.

2.2 Synchronous Circuit M odel

A piece of combinational logic merely combines its inputs to produce
outputs, it is referred to as a stage in the following. Sequential logic
incorporates feedbadk, so the state of an ouput depends on previous inputs.
Synchronots circuits, as one form of sequential design, are distinguished
from asynchronaus circuits through control by aglobal clock.

The classical synchronaus circuit model is shown in figure 1. In this
model, the combinational logic provides the primary outputs and interna
outputs according to the primary inpus and internal inputs. Internal outputs
are then fed into state hold comporents to produce the internal inputs.
Changes of the interna inputs are synchronised with the clock, in other
words they are dhanged only at a particular moment of the clock cycle
(usually its transition). The internal inputs determine the state of the whale
circuit.

For a synchronaus circuit, the designer must ensure that the clock cycleis
slower than the dowest stage in a circuit. This can be dore by analysing the
timing characteristics of comporents used in the drcuit. The untimed version
of DILL canna of course confirm if the dock constraint is met. As discussed
in [16], Timed DiLL can specify such constraints. However, sections 2.4 and
3 will show that properly moddling the storage mporents and
environment ensures a DILL spedfication always meds the clock condition.

primary — ~——— primary
inputs .| combinational | . outputs
logic
internal : : internal
state
hold
Clk component

Figure 1. Synchronous Circuit Model

Sredfication/Verification d Synchronous Hardware using LOTOS 7

In synchronows design, the primary inputs are usually synchronised with
the clock signal. This eases design and analysis of synchronous circuits.
DILL incorporates this practice into its g/nchronots circuit model, assuming
that the primary inpus have dready been synchronised with the dock signal.

Besides the ove, the DiLL synchronows model has two more
restrictions. It is important that there is no cyclic connedion within a stage,
and storage mmporents have to be specified in the behavioural style. These
restrictions are related to the way comporents are modelled, for otherwise a
DiLL spedfication might deadlock where ared circuit could still work. This
isdiscussed further in section24 .

2.3 Synchronous Model for Basic L ogic Gates

The fundamental DiLL model for basic logic gates alows an input or
output port to offer an event corresponding to a signal change & any time.
Thismodel is avery generic representation of logic gates used in red world,
but this may lead to nondeterminism due to the lad of quantified timing
[17]. The gate model therefore has to be wnstrained acording to the
environment in which the gates operate. Logic gates are presumed to be part
of asynchronaus design. If the clock is dow enouwgh to let every signal settle
down, it is reasonable to allow the value of ead signal to change just once
per clock cycle. The transient values are ignored because they do rot affed
circuit behaviour. The synchronaus model allows basic logic gates (and thus
al other comporents within combinational logic) to wait until al inputs
occur before outputting the crresponding value.

The following example models a two-input hand gate. Note that inputs
are interleaved, i.e. they can occur in any order. It might appea that the
order of input events could be fixed since it does nat influence the
functionality of a comporent. This would result in a smaller state space
when circuits are verified. Unfortunately this might cause deadlock when
comporents are mnrected. Suppose that componrents A and B each have two
inputs. Imagine that inputs are required in the order IpAl before IpA2, and
IpB1 before IpB2. This would lead to deadlock if the cmporents shared
inputs, with 1pAl connected to IpB2 and IpA2 connected to IpB1. For this
reason, DILL insists onfully interleaved inputs.

process Nand2[1p1, Ip2, Op] : noexit :=

(Ip1 2dtipl: Bit; exit (dtlpl, any Bit) (* alow oneinput *)
l
Ip2 2dtIp2 : Bit; exit (any Bit, dtlp2)) (* alow other input *)
>> accept dtipl, dtlp2 : Bitin (* accept bath inputs *)
(Op !(dtIP1 nand dlp2); (* output nand of inputs *)
Nand2[lp1, Ip2, Op]) (* repea behaviour *)

endproc (* Nand2*)

8 Ji He and Kenneth J. Turner

2.4 Synchronous Model for State Hold Components

The gate model just discussd is not suitable for circuits with cyclic
conrections gnce these result in inpu-output interdependency and thus in
specification deadlock. Cyclic connections are common in latches and fli p-
flops, so state hold componrents are modelled in the behaviourd style. At a
higher level of specification and design, problems due to cyclic connedions
do nd arise. For synchronaus circuits, two modificaions are made to the
fundamental DiLL model. LOTOS events are @nsidered to model signal
levelsrather than changes, and a constraint is added to reflect the assumption
of a dow enough clock. A DFF (Delay Flip-Flop) is a simple memory
element with data input D, clock input Clk and output Q. Its gecification is
asfollows:

process DFF[D, Clk, Q] (dtD, dtClk : Bit) : noexit :=

D ?newdtD : Bit; DFF [D, Clk, Q] (newdtD, dtCIk); (* input new data *)
Clk 7newdtCIk : Bit; (* input clock pulse*)
([(dtClk eq 1) and (newdtClk eq 0] — (* ignore negative pulse *)
DFF[D, CIk, Q] (dtD, newdtCIk) (* continue behaviour *)
[l
[(dtClk eq 0) and (newdtClk eql)] — (* read to pasitive pulse *)
Q!dtD; (* output stored data*)
DFF[D, Clk, Q] (dtD, newdtCIk) (* continue behaviour *)

)
endproc (* DFF*)

Suppase acombinational logic dreuit feeds into this fli p-flop as the state
had comporent. If the clock signal is not constrained, it is possible that the
clock moves to the next cycle before the combinational logic has ttled
down. The model of a synchronaus circuit must exclude this possibility.
After apositive-going transition of the clock signd, if the D inpu of the flip-
flop hes not occurred yet then the next positive-going transition of clock
signal must not occur. This is ensured by the following constraint on the D
flip-flop specification. The process Cons DFF deals with the initial state of
the flip-flop The next pasitive-going clock transition is handled by process
Cons_DFF_Aux. The full specificaion of a D flip-flop combines DFF and
Cons_DFF with the LoToOs parallel operator.

process Cons DFF[D, CIK] (dtClk : Bit) : noexit :=

D ?newdtD : Bit; (* input new data *)
Cons_DFF[D, CIK] (dtClIk) (* continue behaviour *)

(]
Clk ZnewdtCIk : Bit; (* input clock pulse *)
([(newdtClk eq 1) and (dtClk eq 0)] — (* read to pasitive pulse *)
Cons_DFF_Aux [D, CIK] (newdtClk) (* after one dock pulse *)

(]
[(newdtClk eq 0) and (dtClk eq 1)] — (* ignore other pulses *)
Cons _DFF[D, CIK] (newdtCIk)) (* continue behaviour *)

where

Sredfication/Verification d Synchronous Hardware using LOTOS 9

process Cons DFF_Aux [D, CIK] (dtClk : Bit) : noexit :=

D ZnewdtD : Bit; Clk !0; Clk !1; (* input before negative pulse *)

Cons DFF_Aux [D, CIK] (1) (* continue behaviour *)
(l

Clk !0; D 7newdtD : Bit; Clk !1; (* inpu after negative pulse *)

Cons DFF_Aux [D, CIK] (1) (* continue behaviour *)

endproc (* Cons_ DFF_Aux *)
endproc (* Cons_DFF*)

3. CASE STUDY: A SINGLE PULSER

The informal description of the Single Pulser appears in the standard
benchmark document [24]. A Single Pulser is a clocked-sequential device
with a one-bit input | and a one-bit output O. It deals with a debounced
switch that is on (true) in the down pasition and df (fase) in the up position.
When the Single Pulser senses the switch being turned on,it must assert an
output signal lasting one dock cycle. The circuit shoud not allow additional
outputs until after the switch has been turned off. The benchmark also
informally defines some properties that the Single Pulser must respect.

31 Specification

Figure 2 shows a design for the Single Pulser given in the benchmark.
P_Inistheinpu from the switch, and P_Out is the output from the drcuit. It
is very straightforward to represent the Single Pulser design in DILL.
Because the clock is implicit in a synchronous circuit design, circuit
properties may not adualy refer to it. Experience shows that hiding the
clock signal can make the temporal logic formulae ¢deaer. The Single Pulser
specification is as foll ows (omitting processgate names for brevity):

N_Find Find
Clk—l— mp| DFF Inverte - P_Out

DFF _T'
b 1o And2

Figure 2. Single Pulser Design

hide Inp, N_Find, Find, Clk in (* hide internal gates*)
((Cons_DFF |[N_Find, Inp]| (Inverter |[Find]| And2) (* flip-flop, inverter, and*)
[Clk, Inp]| (* synchronised with ... *)
Cons DFF) (* flip-flop*)
[P_In, Clk, P_Out]| (* synchronised with ... *)

Env (* the environment *)

10 Ji He and Kenneth J. Turner

The Env process ®rves as the environment constraint on the Single
Pulser. It permits P_In to come before eab positive-going clock transition,
and all ows the next clock cycle only after P_Out has occurred. Without this
constraint, the properties discussed later are invalid. The constraint between
P_In and Clk ensures that P_In is g/nchronised with Clk. The constraint
between inputs and output respects the slow-clock requirement: P_Out must
happen before the next positive-going clock transition. These asumptions
are not automaticdly guaranteed by the circuit design, bu they are required
by the DILL synchronous circuit model. In ouline, Env is ecified as:

(P_In?dtPIn: Bit; (* pulsein®)
Clk!1; (* positive-going clock *)
(Clk ! 0; exit ||| P_Out ?dtPOUL : Bit; exit)) (* negative-going clock, pulse out *)
>> (* andthen ... *)
Env (* same environment behaviour *)

3.2 Verification

The formulation o properties in CADP was briefly explained in
sedion 1.3 For brevity the properties are given only informally here; seethe
details in [17]. Verification of the Single Pulser was undertaken using only
XTL model chedking, athough it is nat difficult to give a higher level
specification in DILL/LOTOS and then check for equivalence between the two
levels. Because LOTOS events are modelled as signal levelsinstead of signal
transitions, representing a rising edge needs two clock cycles. In the first
cycle the signal should be & level 0, in the second cycle it should be & level
1. Eadch signal happens once and only once in a clock cycle, so the second
appearance of the same signal indicates the secondclock cycle.

Property 1. If P_In hasarising, eventually P_Out becomes true.

Property 2: Whenever P_Out is 1, it becomes 0 in the next state and
remains O at least until the next rising edge on P_In.

Property 3: Whenever there is a rising edge, and assuming that the
output pulse does nat happen immediately, there ae no more rising
edges until that pulse happens. In ather words, there canot be two
rising edges on P_In without arising edge on P_Out between them.

The size of the LTS produced by Cassar ADT and Cassar from the DiLL
specification has 295 states and 538 transitions. Aldébaran minimises the
LTS to a smaller one having 97 states and 174transitions moduo strong
bismulation. Because the resultant LTS is gnall, al the generation and
verification steps take negligible time. Aldébaran uses the LTS to show that
the DILL design is deadlock free. The XTL tod is aso able to demonstrate
that all the suppased properties of the drcuit are valid.

Sredfication/Verification d Synchronous Hardware using LOTOS 11

4. CASE STUDY: A BUSARBITER

In this sction, the DILL approad is evaluated using another benchmark
circuit. For brevity, the specifications are nat given here but can be found in
[17]. The purpaose of the Bus Arbiter is to grant access on ead clock cycleto
asingle dient among a number of clients requesting use of a bus. The inputs
to the arbiter are aset of request signals, each from a dient. The outputs are
a set of adknowledge signals, indicating which client is granted access
during a clock cycle. The documentation also defines sme properties that
the Bus Arbiter must respect. Thse are given informally and also in CTL
(Computational Temporal Logic). Besides listing the properties to be
fulfilled, the benchmark documentation also gives an arbitration algorithmin
plain English. Finally the gate level implementation of the Bus Arbiter is
provided as a drcuit diagram.

0
Reqg2 to oi go Ack2
ti 00 Qi
Req1 to oi go Ack1
ti 00 Qi
Req0 to oi go AckO
i 00 ?i

Figure 3. Bus Arbiter With ThreeCells

i __ DFF

Clk i M | Or [{And |(:,v|\=l;= e o g K
gi ! And g0
o —— o

Figure 4. Design of An Arbiter Cell

12 Ji He and Kenneth J. Turner

4.1 Higher-L evel Specification in LOTOS

LoTos suppats gecification at various levels of abstradion. Although
the benchmark circuits have been studied by many researchers, as far as the
authors knowledge there has not been a forma specification o the
arbitration algorithm used in the design. With LOTOS, it is possible to
provide such a higher-level specification. There are two clear benefits of this
formalisation. Firstly, better understanding of the agorithm can be gained
from rigorous Pecification. Secondly, correctnessof the algorithm itself can
be ensured before the drcuit is built and verified. Flawsin the dgorithm will
be more time-consuming to fix if they are foundonly after implementation.

The arbitration algorithm emboded in the design is a round-robin token
scheme with priority override. Normally the arbiter grants access to the
highest priority client: the one with the lowest index number among al the
requesting clients. However as requests become more frequent, the arbiter is
designed to fall back on a roundrobin scheme, so that every requester is
eventually adknowledged. This is done by circulating a token in a ring of
arbiter cells, with one cl per client. The token moves once erery clock
cycle. If a dient’ s request persists for the time it takes for the token to make
a wmplete drcuit, that client is granted immediate accessto the bus.

Trandlating the algorithm to LOTOS is quite straightforward, mainly using
LoTtos value expressons. For example eah cel has two assciated
variables: token indicates if the token isin the cell, and waiting indicates if
the client’ s request has persisted for a completed token cycle. Circulating the
token, (re)setting the waiting variable and so on correspondto LOTOS value
expressions. For an arbiter with three cells, the LOTOS specification has 79
lines (including comments) for the behavioural specificaion.

4.2 L ower-L evel Specification in DILL

The design of the arbiter consists of repeated cells. Each cell isin charge
of accepting request signas from a dient, and sending badk
adknowledgements to the same dient. Figure 3 shows an arbiter with three
cdls. Figure 4 shows the design of each cell. The first cel is dightly
different because it is assumed that the token isinitially in the first cell.

The principle of the drcuit will not explained in detail here. Briefly, the ti
(token in) and to (token out) signals are for circulation d the token. The to
output of the last cell conrects to the ti input of the first cdl to form aring.
The gi (grant in) and go (grant out) signals are related to priority. The grant
of cell i is passd to cell i+1, meaning no client of index < i is requesting.
Hence acell may assert its acknowledge output if its grant input is asserted.
The oi (override in) and oo (override out) signals are used to override the

Sredfication/Verification d Synchronous Hardware using LOTOS 13

priority. When the token is in a persistent requesting cdl, its correspondng
client will get accessto the bus. The oo signa of the cdl is %t to 1 This
signal propagates down to the first cell and resets its grant signal through an
inverter. As a consegquencethe gi signal of every cell isreset, in other words
the priority has no effect during this clock cycle. Within each cdl, register T
stores 1 when the token is present; register W (waiting) is st to 1 when there
isapersistent request. Initialy the token is assumed to bein the first cell.

The comporents of ead cdl arein the DILL library, so specification of a
cdl is very easy. The spedfication d an arbiter with three cdlls is obtained
by conreding threesuch processes. Asfor the Single Pulser, thereis aso an
environment constraint in the structural specification d the abiter to med
the condtions of the synchronaus circuit model discussed in sedion 2.2

Since the properties that the arbiter must fulfill are given in the
benchmark documentation, it is obvious that the verification should consist
of model checking these properties. Equivalence deding is also performed
since two levels of specifications are identified.

4.3 Verification

Sedion 1.3 explained how to formulate properties in CADP. They are
trandated into adion-based temporal logic (ACTL and HML). The following
propertiesrefer to client 0; the formulaefor other clients have asimilar form.

Property 1. No two adknowledge outputs are asserted in the same

clock cycle (safety).
AG ((* for all states...*)
not ((* itisnot the caethat ... *)
EX_A ((* there exists adion *)
EVAL_A (Ack0!1) (* AckO !l ledingto ... *)
(WDIA (EVAL_A (Ack1!1), true) or (* adionAckl!1 or *)
WDIA (EVAL_A (Ack2!1), true))))) (* adionAck2!1*)
Property 2. Every persistent request is eventualy adknowledged
(liveness).

AG ((* for all states...*)
BOX ((* after all itsoutgoing adion *)
EVAL_A (Req0!1), (* whichisReq0!1 ... *)
AU_A_B (true, true, (* until ...*)
(EVAL_A (Ack0!1) or (* eventually Ack0 1 ... %)
EVAL_A (Reg0!0)), true))) (* unlessReq0!0 *)

Property 3: Acknowledge is nat asserted without request (safety).
AG ((* for all states*)
ACTL_NOT_TO_UNLESS((* not Req0!0, AckO !1 urlessReq0!1 *)
EVAL_A (Req0!0), (* after Req010 *)
EVAL_A (Ack0!1), (* AckO!lisimposshle... *)

EVAL (Reg0!1))) (* unlessafter Req0!1 *)

14 Ji He and Kenneth J. Turner

To verify the higher-level spedfication against the tempora logic
formulag the LTS of the specification was produced first. Cassar generates
an LTS with 3649states and 7918transitions. Aldébaran reduces thisto 379
states and &8 transitions with resped to strong bismulation. Both
generation and reduction take seconds. The temporal logic formulaeare then
chedked against the minimised LTS. Each is verified as true within 1 minute.

The real challenge cmes when the lower-level DILL spedfication is
verified. The state spaceis so large that direct generation d the LTS from
the LoTos specification is impradical. As mentioned before, there are
several advanced techniques implemented in CADP to tackle the problem of
state space explosion. Nevertheless, using onthefly verification o the
arbiter aso fals after considerable runtime. CADP does not currently
suppat the direda generation d BDDsfrom aLoTOS specification.

Compasitional generationwas tried out to verify the arbiter. Basically the
ideais that of ‘divide and conquer’. A LOTOS specification is divided into
several smaller spedfications to make sure that it is possible for Cassar to
generate an LTS for each of them. Then Aldébaran is used to reduce these
LTSs with respect to a suitable equivalence relation. The minimised LTSs
are then combined using the LoTos parale operator (and also the hide
operator if necessary) to form a network of communicating LTSs (the CADP
term). At this stage, an LTS might be produced from the network, or on-the-
fly verification might be performed against the network. In arder to get valid
verification results, special attention must be given to the eguivalence
relation that is used. The relation must be acongruence at least with respect
to the compasitional operators, here the LOTOS pardlel and hide operators.
The relation must also preserve the properties to be verified. This ensures
that the resulting network of communicaing LTSs will resped the same
properties as the original LOTOS specification.

Among the benchmark properties, the first and the third concern safety
while the second concerns liveness Safety equivalence [1] preserves sfety
properties, while branching bisimulation equivalence [26] preserves liveness
properties when there are no livelocks in specifications. Both of these
equivalences are mngruences with respect to the parallel and hide operators.
These two equivalences are thus appropriate to compasitional generation.

The arbiter design was divided into threepieces, one per cell. After about
seven minutes, an LTSthat is sfety equivalent to the LOTOS specification of
the design is generated. The two safety properties were verified to be true
against this LTS, implying that the design aso satisfies these safety
properties. Verification d the formulae takes just secwonds. However
generating the LTS which is branching equivalent to the design takes amost
one day, after which the liveness property is aso verified to be true.

Sredfication/Verification d Synchronous Hardware using LOTOS 15

Before dhecking equivalence, a suitable equivalence must be chosen. For
most systems, observational equivalenceis an obvious choice Informally it
means that two systems have exadly same behaviour in terms of the
observable actions. For hardware systems, testing equivalence (two
specifications passor fail exactly the same external tests) is also used as a
criterion in some gjproaches such as CIRCAL. The algorithm for testing
equivalence is not implemented in CADP, so the stronger notion of
observational equivalence was used when checking the Bus Arbiter.

As before, compositional generation was used to generate the LTS for the
design. This time eat cdl was reduced with respect to cdbservationa
equivalence, since this is a congruence for the paralel and hide operators.
Generating the LTS took abou eight minutes. This LTS was expected to be
observationally equivalent to that for the higher-level specification. However
Aldébaran discovered that they are not! Table 2 is one of the sequences
given as a ounter-example. (The Aldébaran output has been rendered more
readable here)) This squence indicates that in the first three clock cycles
only client O requests the bus; both the high-level specification and the low-
level design grant aacessto this client. In the fourth cycle, client O cancdsits
request but client 1 begins to request access. At this point the two levels of
specifications are different: the lower-level specification dfers O for Ackl,
whereas the higher-level specification dfers 1 for Ackl.

Table 2. A Counter-Example generated by Aldébaran

Cyclel Cycle2 Cycle3 Cycle4
Req0 1 1 1 0
Reql 0 0 0 0
Req2 0 0 0 0
Acko 1 1 1
Ackl 0 0 0 Oorl
Ack2 0 0 0

After step-by-step simulation of the ounter-example, it was on
discovered that the circuit may not properly reset the 0o (override out) signa
to 0. Suppose acell has been requesting access, so its Wregister is st to 1. If
the cell cancels the request in the very clock cycle that the token happens to
arrive. In this situation, becaise the dient has already cancelled its request it
shoud be possible for another client to get the bus. However, the design sets
the oo signal to override the priority as if this client were still requesting.
This prevents any other client from accessing the bus in this clock cycle.

Fixing the problem was much easier than finding it. The corredion was
to connect the Req signal to the And gate that follows the W register. (See
[17] for the revised circuit diagram.) The output of the And gate guarantees
that the oo signal is aways correctly set or reset according to the request

16 Ji He and Kenneth J. Turner

signa in the aurrent clock cycle. This modified design was verified to be
observationally equivalent to the higher-level algorithmic spedfication.

As mentioned in section2.2, in DILL the inputs are &dumed to be
synchronised with the clock signal. Suppacse that the Req signal in figure 4
is aways ready before the active dock transition, i.e. is not synchronised
with the clock. In this case the problem discussed above might nat happen.
As the benchmark documentation dces nat state if inputs are synchronised
with the clock or nat, it is believed that the modified design is more robust.

5. CONCLUSION

With the new approach to specifying synchronous, it is possible to verify
standard hardware benchmarks — here, the Single Pulser and the Bus Arbiter.
In comparison with other techniques applied to the same cae studies, e.g.
CosPAN [8] and CIRCAL [20], DILL is much more nvenient for giving a
higher-level specification. This is not so surprising since LOTOS is an
expressive language. CIRCAL, by way of contrast, gives an abstract view of a
synchronaus circuit by directly specifying its correspording finite state
machine, which is not always a natural representation d circuit behaviour.

Being based on process algebra, DiLL spedficdions can be verified by
equivalence and preorder checking. Thisis distinctive in that most hardware
verification systems are based ontheorem proving or model checking. The
former needs human assistance to complete a proof. The latter needs
specialised expertise since tempora logic spedfications are not easy to
write. In contrast, equivalence or preorder chedking makes it possible to
write the spedfication in the same formalism as the implementation, here
DiLL (or really, LoTOS). The wrrectness of a DILL spedfication can be
easily chedked by simulation tools. Another benefit of equivalence checking
is see in the Bus Arbiter case study. As a dassical verificaion benchmark,
the Bus Arbiter has been investigated using many approades. But as far as
the authors know, the defed reported in section 4.3 is anew discovery.

However, the size of the drcuit that can be dfectively verified is gnall
compared to that handed by other mature hardware verificaion tools.
CosPAN can verify an arbiter with four cells with the consumption of about
1 MB memory, due to a symbalic representation wsing BDDs and efficient
reduction techniques [8]. CIRCAL is reported to generate the state space of an
arbiter with upto 40 cdlls using reasonable cmputing resources, athough
the actual memory used was nat reported [20]. Again thisis due to the BDD
representation d the CIRCAL spedficaion. Note that CIRCAL was not in fact
used to verify the arbiter formally. [20] just gives a test pattern to show that
even if al clients request the bus, orly one can gain acaess to the busin each

Sredfication/Verification d Synchronous Hardware using LOTOS 17

clock cycle. CIRCAL does not have the functiondlity of temporal 1ogic model
chedking. Because of its limited power in specifying higher-level behaviour,
equivalence heding was not used in the CIRCAL case study. CADP on the
other hand consumes more than 100 MB of memory to produce the state
space of athreecdl arbiter. Although the resulting state spaceis relatively
small, the intermediate stages of generation need considerable memory.

There ae two main reasons for this performance limitation. One comes
from the modelling language LoTos and the other comes from CADP.
Firstly, for synchronous circuits the order in which signals occur during a
clock cycleis not so important. So it is reasonable to imagine that the inputs
happen together and then output occurs. But when modelling such circuitsin
DILL, independent (interleaved) inputs are dlowed so the state spaceis
considerably enlarged. Secondly, CADP is a tool under development and
currently some of its features are mainly based onexplicit state exploration.
Because CADP cannat produce the minimised state space in the first place,
large anourts of memory have to be mnsumed before asmaller LTS can be
produced by minimisation. On-the-fly algorithms are of some help, bu they
apply only in particular situations. For example, on-the-fly observational
equivalence dedking is not supported by CADP. Also CADP does not offer a
BDD representation d LOTOS specifications, although BDDs are used to
represent intermediate data types in some dgorithms. Fortunately CADP is
currently being actively improved by the CADP developers.

REFERENCES

[1] A. Bougjjani, J. C. Fernandez et al. Safety for branching time semantics. In Automata,
Languages and Programmning, LNCS 510, pages 76-92. Springer-Verlag, Berlin, 1991.

[2] R. Boulton, M. J. C. Gordon et al. The HoL verification d ELLA designs. TR 199,
University of Cambridge Computer Laboratory, Aug. 1990

[3] G. Chehaibar, H. Garavdl, et al. Spedficaionand verificaion do the PowerScade bus
arbitration protocol: Anindustria experiment with LoTtos. TR 2958, INRIA, Le Chesnay,
Aug. 19%.

[4] R. De Nicola and F. Vaandrager. Action versus gate based logics for transition systems.
In Semantics for Systems of Concurrent Processes, LNCS 469, pages 407—-419. Springer-
Verlag, Berlin, 1990.

[5] C. DelgadoKloos, T. deMigud et al. VHDL generation from atimed extension d the
formal description technique LoTos with the FORMAT projed. Microprocessng and
Microprogramming, 38:589-596, 1993.

[6] M. Fad andL. M. S. Logrippo. Spedfying hardwarein Lotos. In Proc. Computer
Hardware Description Languages and Their Applications XI, pages 305-312. North-
Holland, Amsterdam, Apr. 1993.

[7] J.-C. Fernandez H. Garavel, et al. CADP (Cassar/Aldébaran development package): A
protocol validation and verificaiontoabox. InR. Alur and T. A. Henzinger, editors,

18 Ji He and Kenneth J. Turner

Proc. Computer-Aided Verification VIII, LNCS 1102, pages 437—240. Springer-Verlag,
Berlin, Aug. 1996.

[8] K. Fisler and R. P. Kurshan. Verifying VHDL designs with CospaN. In Formal Hardware
Verifi cation Methods and Systems in Comparison, LNCS 1287, pages 206—247. Springer-
Verlag, Berlin, 1997.

[9] C. A. R. Hoare and M. J. C. Gordon, editors. Mechan zed Reasoning and Hardware
Design. Prentice Hall, Englewood Cliffs, 1992

[10] IEEE. VHsc Hardware Design Language. |EEE 1076. Ingtitution of Eledricd and
Eledronic Engineas Press New York, 1993.

[11] IEEE. |EEE Standard Hardware Design Language based on the Verilog Hardware
Description Language. |EEE 1364. Ingtitution of Eledricd and Eledronic Enginees
Press New Y ork, 1995.

[12] ISO/IEC. Information Processng Systems — Open Systems Interconnedion — Lotos— A
Formal Description Technique based on the Temporal Ordering of Observational
Behaviour. ISO/IEC 8807. International Organization for Standardization, Geneva, 1989.

[13] ISO/IEC. Information Processng S/stems — Open Systems Interconnedion —
Enhancements to LoTos. International Organization for Standardization, Geneva, Apr.
1998.

[14] J He and K. J. Turner. Extended DiLL: Digital logic with Lotos. TR CSM-142,
Computing Science and Mathematics, University of Stirling, UK, Nov. 1997.

[15] J He and K. J. Turner. DiLL (Digital Logic in LoTos) trand ator. http://www.cs.stir.ac.uk/
~kjt/software/dil |.html, Jan. 1998.

[16] J He and K. J. Turner. Timed DiLL: Digital logic with LoTos. TR CSM-145,
Computing Science and Mathematics, University of Stirling, Apr. 1998.

[17] J He and K. J. Turner. Modelling and verifying synchronous circuitsin DiLL. TR CSM-
152, Computing Science and Mathematics, University of Stirling, Feb. 1999.

[18] G. Jones and M. Shegan. Circuit designin Ruby. In J. Staunstrup, editor, Formal
Methods For VLS Design, pages 13-70. Elsevier Science Publishers, Amsterdam, 1990.
[19] L. Léonard and G. Leduc. An introduction to ET-LoTos for the description of time-

sensitive systems. Computer Networks and |SDN Systems, 28:271-292, May 19%.

[20] G. A. McCaskill and G. J. Milne. Sequentid circuit analysis with a BDD based process
agebrasystem. TR HDV-25-93, Computer Science, University of Strathclyde, Jan. 1993.

[21] G. J. Milne. The Formal Spedfication and Verification of Digital Systems. McGraw-
Hill, New York, 1994.

[22] L. SanchezFernandez, M. L. Lépezet al. Co-design at work: The Ethernet bridge cae
study. Current Issuesin Eledronic Modelling, 8, Apr. 1996.

[23] M. Sighireanu and R. Mateescu. Validation o the link layer protocol of the IEEE-13%4
seria bus (‘Firewire’): An experiment with E-Lotos. TR 3172 Ingtitut National de
Recherche en Informatique & Automatique, Le Chesnay, May 1997

[24] J. Staunstrup and T. Kropf. IFIPWG10.5 benchmark circuits. http://goethe.ira.uka.de/
hvg/benchmarks.html, July 1996.

[25] K. J. Turner and R. O. Sinnatt. DILL: Spedfying digital logicin LoTos. InR. L. Tenney,
P. D. Amer, and M. U. Uyar, editors, Proc.Formal Description Techniques VI, pages 71—
86. North-Holl and, Amsterdam, 1994

[26] R. J. van Glabbee&k and W. P. Weljl and. Branching time and abstraction in bisimulation.
TR CSR8911, Centrum voor Wiskunde en Informatica, Amsterdam, 1989.

[27] K. Yasumoto, A. Kitgjimaet al. Hardware synthesis from protocol spedficaionsin
LoTos. In S. Budkowski, E. Najm, and A. Cavalli, editors, Proc. Formal Description
Tedniques XI/Protocol Spedfication, Testing ard Verification XVl . Chapman-Hall
London, 1998.

