
1

Specification and Verification of Synchronous Hardware using LOTOS. In
Jianping Wu, Samuel T. Chanson, Quiang Gao, editors, Proc. Formal Methods
for Protocol Engineering and Distributed Systems (FORTE XII/PSTV XIX),
pages 295-312, Kluwer Academic Publishers, London, UK, October 1999.

Specification and Verification of Synchronous
Hardware using LOTOS

Ji He and Kenneth J. Turner
Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA, Scotland

Keywords: Digital Logic, Hardware Description, LOTOS, Verification

Abstract: This paper investigates specification and verification of synchronous circuits
using DILL (Digital Logic in LOTOS). After an overview of the DILL approach,
the paper focuses on the characteristics of synchronous circuits. A more
constrained model is presented for specifying digital components and verifying
them. Two standard benchmark circuits are specified using this new model,
and analysed by the CADP toolset (Cæsar/Aldébaran Development Package).

1. INTRODUCTION

1.1 Background

DILL (Digital Logic in LOTOS [14,16,17,25]) is an approach for
specifying digital circuits using LOTOS (Language Of Temporal Ordering
Specification [12]). DILL offers higher-level abstractions for describing
hardware using a macro library for typical components and designs. DILL is
used to formally specify digital hardware, using LOTOS at various
abstraction levels. DILL addresses functional and timing aspects, supported
by a library of common components and circuit designs, and using standard
LOTOS tools.

The new work reported here allows synchronous circuits to be specified
and verified. Two hardware verification benchmarks are used as examples.
The paper extends the applicability of LOTOS in hardware design, and so is
of interest to the LOTOS community. Of necessity some background in

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Stirling Online Research Repository

https://core.ac.uk/display/9049261?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Ji He and Kenneth J. Turner

LOTOS and hardware is required. The paper demonstrates the possibility of
hardware verification using LOTOS, although some limitations wil l be
discussed.

LOTOS supports rigorous specification and analysis, unlike semi-formal
HDLs (Hardware Description Languages) such as VHDL (VHSIC Hardware
Description Language [10]). LOTOS is neutral with respect to whether a
specification is to be realised in hardware or software, allowing hardware-
software co-design [22]. LOTOS inherits a well -developed verification theory
from the field of process algebra, and has a theory for testing and test
derivation. There is good support from general-purpose LOTOS toolsets such
as CADP (Cæsar/Aldébaran Development Package [7]), LITE (LotoSphere
Integrated Tool Environment) and LOLA/TOPO (LOTOS Laboratory). Most of
these tools have been used in analysing DILL specifications. DILL is actually
realised through translation into LOTOS.

This paper elaborates a DILL approach for modelling and verifying
synchronous circuits. Synchronous design is chosen here as it is the main
approach for digital technology. Control by clock signals makes it easier to
abstract away from timing information. The current standard for LOTOS does
not support quantified timing, although the authors have developed Timed
DILL [16] for hardware timing analysis, using ET-LOTOS [19] as a basis.

Section 2 discusses how DILL models hardware, particularly synchronous
circuits. Two case studies then demonstrate that DILL can successfully
specify and verify standard benchmark designs. The Single Pulser in
section 3 ensures that a switch causes well -defined pulses. The Bus Arbiter
in section 4 grants bus access to only one client at a time among several.

1.2 Hardware Description and Verification

Hardware description has been studied extensively. Languages such as
VHDL, Verilog [11] and ELLA [2] are commonly used in industry. These
languages are semi-formal because their semantics is based on simulation
models. Other HDLs do have formal semantics, e.g. CIRCAL (Circuit
Calculus [21]), HOL [9] and Ruby [18]. DILL most closely resembles CIRCAL

in that both have a behavioural basis in process algebra. At a low level of
specification, the true concurrency semantics of CIRCAL are perhaps more
appropriate than the interleaving semantics of LOTOS. However, the
integrated data typing in LOTOS makes it much more expressive than
CIRCAL. In the authors’ experience, DILL can be used successfully at a
variety of abstraction levels. However, CIRCAL appears to be less effective at
higher levels. For example, describing the behaviour of a synchronous
circuit in CIRCAL requires the corresponding Mealy or Moore machine to be
defined and then translated into CIRCAL.

Specification/Verification of Synchronous Hardware using LOTOS 3

Much of the early work on hardware verification used theorem-proving.
Although quite general, this requires a significant amount of human
guidance during verification. More recently model-checking, language
containment and reachability analysis have attracted attention. Approaches
using FSM (Finite State Machine) models can be automated, but they do not
yet scale up to realistic hardware designs. The trend is to combine theorem-
proving and model-based approaches so as to achieve generality as well as
automated support. LOTOS verification approaches tend to be state-based
using an LTS (Labelled Transition System). Current LOTOS tools offer
model checking and reachability analysis, together with equivalence or
preorder checking. DILL can thus exploit a range of verification techniques.

Various researchers have studied the use of LOTOS for hardware
description. The initial work at Stirling [25] overlapped independent work in
Ottawa [6]. The European project FORMAT [5] studied the translation of
LOTOS to VHDL. Other hardware applications of LOTOS have included bus
protocols [3,23] and hardware synthesis [27].

The new DILL model for synchronous circuits has been evaluated on two
standard benchmark circuits [24] that are intended for comparing different
approaches to hardware verification. The machine used by the authors for
verification was a SUN (300 MHz CPU, 128 MB memory).

1.3 Verification with CADP

The authors used CADP to verify DILL hardware. CADP accepts full
standard LOTOS, using Cæsar.ADT for the data part of LOTOS and Cæsar for
the behavioural part. The result is an LTS that can be used for verification.
Aldébaran performs verification using the LTS or a network of LTSs (i.e. a
finite state machine connecting several LTSs by LOTOS parallel and hiding
operators). XTL (Executable Temporal Language) is a functional-li ke
programming language that allows compact implementation of temporal
logic operators. Several temporal logics such as ACTL (Action-based
Computational Temporal Logic [4]) have been embedded in XTL. To
partiall y solve the problem of state space explosion, CADP uses advanced
verification techniques such as compositional generation, on-the-fly
comparison, and a BDD (Binary Decision Diagram) representation of LTSs.
These techniques permit verification of relatively large specifications.

CADP supports verification through bisimulation and temporal logic
property checking. For verifying DILL (LOTOS) specifications, ACTL is an
obvious candidate because the semantics of LOTOS is also based on actions.
ACTL is also more understandable than the µ-calculus. The modal operators
of HML (Hennessy-Milner Logic) are also employed in verification for

4 Ji He and Kenneth J. Turner

convenience. The subset of temporal operators used later in the paper is as
follows. A, B and C are action sets, while F and G are formula sets.

ACTL_NOT_TO_UNLESS (A, B, C): this can be read as ‘not A to B
unless C’ . After an action satisfying A in the current state, all paths
leading to an action satisfying B must also satisfy C.

AG (F): all reachable states must satisfy F.
AU_A_B (F, A, B, G): this is the until operator

�
. A restricted form is

used in this paper: AU_A_B (true, A, B, true). This means that for
the current state, each of its paths should have the following
property: the actions along the path satisfy A until there is an action
that satisfies B.

BOX (A, F): for the current state, all outgoing actions (if any) that
satisfy A must result in states satisfying F.

EVAL_A (A): yields a state set corresponding to action A.
EX_A (A, F): from the current state, there exists an A that can lead to

a state satisfying F.
WDIA (A, F): from the current state there exists a path with possible

preceding internal actions and A, leading to a state satisfying F.

2. MODELLING APPROACH

2.1 General Approach

The basic philosophy of DILL is that it should be easy for the hardware
engineer to translate a circuit schematic into a LOTOS specification, and then
to analyse and verify the properties of this specification. There is thus a need
for a component library. The library is available online for research purposes
[15] and is summarised in Table 1.

 It is possible to describe logic designs at different levels of abstraction,
and to compare a higher-level design with a more detailed one. DILL does
not give refinement guidelines, since these will be motivated by normal
hardware design procedures. Components in the original DILL library were
specified by progressively combining simpler components. This approach is
termed structural since it reflects how a component is constructed. As the
philosophy of DILL is to enable circuits, including library components, to be
specified at different abstraction levels, higher level specification is also
needed. This is termed the behavioural style. It specifies only what the
component should do, not how it is constructed. Adding a new component to
the DILL library does, of course, need reasonable knowledge of LOTOS.
However the existing library provides simple patterns to follow as examples.

Specification/Verification of Synchronous Hardware using LOTOS 5

Having abstract (behavioural) as well as design (structural) specifications in
the library is helpful in both bottom-up and top-down design.

Table 1. DILL Library
Component Variants
Adder 2/4 inputs, behavioural/structural, half/full/parallel/ripple
And, ... 2/3/4//8 inputs, 0/1-active tri-state enable
Clock -
Comparator 1/4/8/n inputs, behavioural/structural
Counter behavioural/structural
Decoder 2/3 inputs, behavioural/structural, 0/1-active outputs,

BCD/Decimal/Excess-3/Gray
Demultiplexer 1/2 inputs, behavioural/structural
Delay dynamic/general/hold/inertial/pure/setup/width/edge
Divider 2/4/8 inputs, behavioural/structural, positive/negative edge trigger
Encoder 4/8 inputs, behavioural/structural, 0/1-active outputs
Flip Flop D/JK/MS/RS/T, behavioural/structural, positive/negative edge trigger,

preset, preclear, lockout
Inverter 1/4/8 inputs, 0/1-active tri-state enable
Latch D/RS, 1/4/8 bits, behavioural/structural, preset, preclear, clocked
Memory behavioural/structural
Multiplexer 2/4 inputs, 1/8/n-bit, behavioural/structural
One, source of logic 1/0, sink
Parity 8 inputs, behavioural/structural
Register 4/8/n bits, behavioural/structural, positive/negative edge trigger, load

enable/preclear, tri-state output, bucket brigade/pass-on/shift
Repeater /4/8 inputs, 0/1-active tri-state enable

Since component specifications are translated into LOTOS, the designer
must be famil iar with how to combine LOTOS behaviour expressions.
Fortunately the relationship between a circuit design and its DILL

representation is straightforward, and does not require detailed LOTOS

knowledge. The principal method of connecting components is to compose
their behaviours in parallel. The synchronisation rules of LOTOS allow
components to be connected in a natural way.

LOTOS, li ke most specification languages, deals only with discrete
events. It is therefore signal changes that are modelled in asynchronous
(unclocked) design. However in synchronous circuits, changes in signal level
are controlled by clock pulses (except for components such as level-
triggered flip-flops). Signal levels can thus be treated as maintained during a
clock cycle, and so correspond to one LOTOS event per clock cycle in the
synchronous case.

Wires or tracks between components are not normally represented
explicitly in DILL. A component’s ports (e.g. its pins) are represented by
LOTOS gates. (The term ‘gate’ will be qualified as it has different meanings
in hardware and LOTOS.) and To ‘wire up’ two ports, their LOTOS gates are

6 Ji He and Kenneth J. Turner

merely synchronised. Since LOTOS allows multi-way synchronisation, it is
easy to connect one output to several inputs. In high-speed circuits, the
transmission time over a wire may be modelled as a delay. Multi-bit signals
or multi -wire connections (e.g. buses) and multi -component assemblies (e.g.
memory arrays) are supported by DILL.

2.2 Synchronous Circuit Model

 A piece of combinational logic merely combines its inputs to produce
outputs; it is referred to as a stage in the following. Sequential logic
incorporates feedback, so the state of an output depends on previous inputs.
Synchronous circuits, as one form of sequential design, are distinguished
from asynchronous circuits through control by a global clock.

The classical synchronous circuit model is shown in figure 1. In this
model, the combinational logic provides the primary outputs and internal
outputs according to the primary inputs and internal inputs. Internal outputs
are then fed into state hold components to produce the internal inputs.
Changes of the internal inputs are synchronised with the clock, in other
words they are changed only at a particular moment of the clock cycle
(usually its transition). The internal inputs determine the state of the whole
circuit.

For a synchronous circuit, the designer must ensure that the clock cycle is
slower than the slowest stage in a circuit. This can be done by analysing the
timing characteristics of components used in the circuit. The untimed version
of DILL cannot of course confirm if the clock constraint is met. As discussed
in [16], Timed DILL can specify such constraints. However, sections 2.4 and
3 will show that properly modelli ng the storage components and
environment ensures a DILL specification always meets the clock condition.

Figure 1. Synchronous Circuit Model

Specification/Verification of Synchronous Hardware using LOTOS 7

In synchronous design, the primary inputs are usually synchronised with
the clock signal. This eases design and analysis of synchronous circuits.
DILL incorporates this practice into its synchronous circuit model, assuming
that the primary inputs have already been synchronised with the clock signal.

Besides the above, the DILL synchronous model has two more
restrictions. It is important that there is no cyclic connection within a stage,
and storage components have to be specified in the behavioural style. These
restrictions are related to the way components are modelled, for otherwise a
DILL specification might deadlock where a real circuit could still work. This
is discussed further in section 2.4 .

2.3 Synchronous Model for Basic Logic Gates

The fundamental DILL model for basic logic gates allows an input or
output port to offer an event corresponding to a signal change at any time.
This model is a very generic representation of logic gates used in real world,
but this may lead to non-determinism due to the lack of quantified timing
[17]. The gate model therefore has to be constrained according to the
environment in which the gates operate. Logic gates are presumed to be part
of a synchronous design. If the clock is slow enough to let every signal settle
down, it is reasonable to allow the value of each signal to change just once
per clock cycle. The transient values are ignored because they do not affect
circuit behaviour. The synchronous model allows basic logic gates (and thus
all other components within combinational logic) to wait until all i nputs
occur before outputting the corresponding value.

The following example models a two-input nand gate. Note that inputs
are interleaved, i.e. they can occur in any order. It might appear that the
order of input events could be fixed since it does not influence the
functionality of a component. This would result in a smaller state space
when circuits are verified. Unfortunately this might cause deadlock when
components are connected. Suppose that components A and B each have two
inputs. Imagine that inputs are required in the order IpA1 before IpA2, and
IpB1 before IpB2. This would lead to deadlock if the components shared
inputs, with IpA1 connected to IpB2 and IpA2 connected to IpB1. For this
reason, DILL insists on fully interleaved inputs.

process Nand2 [Ip1, Ip2, Op] : noexit :=
 (Ip1 ?dtIp1 : Bit; exit (dtIp1, any Bit) (* allow one input *)
 |||
 Ip2 ?dtIp2 : Bit; exit (any Bit, dtIp2)) (* allow other input *)
>> accept dtIp1, dtIp2 : Bit in (* accept both inputs *)
 (Op !(dtIP1 nand dtIp2); (* output nand of inputs *)
 Nand2 [Ip1, Ip2, Op]) (* repeat behaviour *)
endproc (* Nand2 *)

8 Ji He and Kenneth J. Turner

2.4 Synchronous Model for State Hold Components

 The gate model just discussed is not suitable for circuits with cyclic
connections since these result in input-output interdependency and thus in
specification deadlock. Cyclic connections are common in latches and flip-
flops, so state hold components are modelled in the behavioural style. At a
higher level of specification and design, problems due to cyclic connections
do not arise. For synchronous circuits, two modifications are made to the
fundamental DILL model. LOTOS events are considered to model signal
levels rather than changes, and a constraint is added to reflect the assumption
of a slow enough clock. A DFF (Delay Flip-Flop) is a simple memory
element with data input D, clock input Clk and output Q. Its specification is
as follows:

process DFF [D, Clk, Q] (dtD, dtClk : Bit) : noexit :=
 D ?newdtD : Bit; DFF [D, Clk, Q] (newdtD, dtClk); (* input new data *)
 Clk ?newdtClk : Bit; (* input clock pulse *)
 ([(dtClk eq 1) and (newdtClk eq 0)] → (* ignore negative pulse *)
 DFF [D, Clk, Q] (dtD, newdtClk) (* continue behaviour *)
 []
 [(dtClk eq 0) and (newdtClk eq1)] → (* react to positive pulse *)
 Q !dtD; (* output stored data *)
 DFF [D, Clk, Q] (dtD, newdtClk) (* continue behaviour *)
)
endproc (* DFF *)

Suppose a combinational logic circuit feeds into this flip-flop as the state
hold component. If the clock signal is not constrained, it is possible that the
clock moves to the next cycle before the combinational logic has settled
down. The model of a synchronous circuit must exclude this possibility.
After a positive-going transition of the clock signal, if the D input of the flip-
flop has not occurred yet then the next positive-going transition of clock
signal must not occur. This is ensured by the following constraint on the D
flip-flop specification. The process Cons_DFF deals with the initial state of
the flip-flop The next positive-going clock transition is handled by process
Cons_DFF_Aux. The full specification of a D flip-flop combines DFF and
Cons_DFF with the LOTOS parallel operator.

process Cons_DFF [D, Clk] (dtClk : Bit) : noexit :=
 D ?newdtD : Bit; (* input new data *)
 Cons_DFF [D, Clk] (dtClk) (* continue behaviour *)
[]
 Clk ?newdtClk : Bit; (* input clock pulse *)
 ([(newdtClk eq 1) and (dtClk eq 0)] → (* react to positive pulse *)
 Cons_DFF_Aux [D, Clk] (newdtClk) (* after one clock pulse *)
[]
 [(newdtClk eq 0) and (dtClk eq 1)] → (* ignore other pulses *)
 Cons_DFF [D, Clk] (newdtClk)) (* continue behaviour *)
where

Specification/Verification of Synchronous Hardware using LOTOS 9

 process Cons_DFF_Aux [D, Clk] (dtClk : Bit) : noexit :=
 D ?newdtD : Bit; Clk !0; Clk !1; (* input before negative pulse *)
 Cons_DFF_Aux [D, Clk] (1) (* continue behaviour *)
 []
 Clk !0; D ?newdtD : Bit; Clk !1; (* input after negative pulse *)
 Cons_DFF_Aux [D, Clk] (1) (* continue behaviour *)
 endproc (* Cons_DFF_Aux *)
endproc (* Cons_DFF *)

3. CASE STUDY: A SINGLE PULSER

 The informal description of the Single Pulser appears in the standard
benchmark document [24]. A Single Pulser is a clocked-sequential device
with a one-bit input I and a one-bit output O. It deals with a debounced
switch that is on (true) in the down position and off (false) in the up position.
When the Single Pulser senses the switch being turned on, it must assert an
output signal lasting one clock cycle. The circuit should not allow additional
outputs until after the switch has been turned off . The benchmark also
informally defines some properties that the Single Pulser must respect.

3.1 Specification

Figure 2 shows a design for the Single Pulser given in the benchmark.
P_In is the input from the switch, and P_Out is the output from the circuit. It
is very straightforward to represent the Single Pulser design in DILL.
Because the clock is implicit in a synchronous circuit design, circuit
properties may not actually refer to it. Experience shows that hiding the
clock signal can make the temporal logic formulae clearer. The Single Pulser
specification is as follows (omitting process gate names for brevity):

Figure 2. Single Pulser Design

hide Inp, N_Find, Find, Clk in (* hide internal gates *)
 ((Cons_DFF |[N_Find, Inp]| (Inverter |[Find]| And2)) (* flip-flop, inverter, and *)
 |[Clk, Inp]| (* synchronised with ... *)
 Cons_DFF) (* flip-flop *)
|[P_In, Clk, P_Out]| (* synchronised with ... *)
 Env (* the environment *)

10 Ji He and Kenneth J. Turner

The Env process serves as the environment constraint on the Single
Pulser. It permits P_In to come before each positive-going clock transition,
and allows the next clock cycle only after P_Out has occurred. Without this
constraint, the properties discussed later are invalid. The constraint between
P_In and Clk ensures that P_In is synchronised with Clk. The constraint
between inputs and output respects the slow-clock requirement: P_Out must
happen before the next positive-going clock transition. These assumptions
are not automatically guaranteed by the circuit design, but they are required
by the DILL synchronous circuit model. In outline, Env is specified as:

 (P_In ? dtPIn : Bit; (* pulse in *)
 Clk ! 1; (* positive-going clock *)
 (Clk ! 0; exit ||| P_Out ? dtPOUt : Bit; exit)) (* negative-going clock, pulse out *)
>> (* and then ... *)
 Env (* same environment behaviour *)

3.2 Verification

The formulation of properties in CADP was briefly explained in
section 1.3 For brevity the properties are given only informally here; see the
details in [17]. Verification of the Single Pulser was undertaken using only
XTL model checking, although it is not difficult to give a higher level
specification in DILL/LOTOS and then check for equivalence between the two
levels. Because LOTOS events are modelled as signal levels instead of signal
transitions, representing a rising edge needs two clock cycles. In the first
cycle the signal should be at level 0, in the second cycle it should be at level
1. Each signal happens once and only once in a clock cycle, so the second
appearance of the same signal indicates the second clock cycle.

Property 1: If P_In has a rising, eventually P_Out becomes true.
Property 2: Whenever P_Out is 1, it becomes 0 in the next state and

remains 0 at least until the next rising edge on P_In.
Property 3: Whenever there is a rising edge, and assuming that the

output pulse does not happen immediately, there are no more rising
edges until that pulse happens. In other words, there cannot be two
rising edges on P_In without a rising edge on P_Out between them.

The size of the LTS produced by Cæsar.ADT and Cæsar from the DILL

specification has 295 states and 538 transitions. Aldébaran minimises the
LTS to a smaller one having 97 states and 174 transitions modulo strong
bisimulation. Because the resultant LTS is small , all the generation and
verification steps take negligible time. Aldébaran uses the LTS to show that
the DILL design is deadlock free. The XTL tool is also able to demonstrate
that all the supposed properties of the circuit are valid.

Specification/Verification of Synchronous Hardware using LOTOS 11

4. CASE STUDY: A BUS ARBITER

In this section, the DILL approach is evaluated using another benchmark
circuit. For brevity, the specifications are not given here but can be found in
[17]. The purpose of the Bus Arbiter is to grant access on each clock cycle to
a single client among a number of clients requesting use of a bus. The inputs
to the arbiter are a set of request signals, each from a client. The outputs are
a set of acknowledge signals, indicating which client is granted access
during a clock cycle. The documentation also defines some properties that
the Bus Arbiter must respect. Thse are given informally and also in CTL
(Computational Temporal Logic). Besides li sting the properties to be
fulfilled, the benchmark documentation also gives an arbitration algorithm in
plain English. Finally the gate level implementation of the Bus Arbiter is
provided as a circuit diagram.

Figure 3. Bus Arbiter With Three Cells

Figure 4. Design of An Arbiter Cell

12 Ji He and Kenneth J. Turner

4.1 Higher-Level Specification in LOTOS

LOTOS supports specification at various levels of abstraction. Although
the benchmark circuits have been studied by many researchers, as far as the
authors knowledge there has not been a formal specification of the
arbitration algorithm used in the design. With LOTOS, it is possible to
provide such a higher-level specification. There are two clear benefits of this
formalisation. Firstly, better understanding of the algorithm can be gained
from rigorous specification. Secondly, correctness of the algorithm itself can
be ensured before the circuit is built and verified. Flaws in the algorithm will
be more time-consuming to fix if they are found only after implementation.

The arbitration algorithm embodied in the design is a round-robin token
scheme with priority override. Normally the arbiter grants access to the
highest priority client: the one with the lowest index number among all the
requesting clients. However as requests become more frequent, the arbiter is
designed to fall back on a round-robin scheme, so that every requester is
eventually acknowledged. This is done by circulating a token in a ring of
arbiter cells, with one cell per client. The token moves once every clock
cycle. If a client’s request persists for the time it takes for the token to make
a complete circuit, that client is granted immediate access to the bus.

Translating the algorithm to LOTOS is quite straightforward, mainly using
LOTOS value expressions. For example each cell has two associated
variables: token indicates if the token is in the cell, and waiting indicates if
the client’s request has persisted for a completed token cycle. Circulating the
token, (re)setting the waiting variable and so on correspond to LOTOS value
expressions. For an arbiter with three cells, the LOTOS specification has 79
lines (including comments) for the behavioural specification.

4.2 Lower-Level Specification in DILL

The design of the arbiter consists of repeated cells. Each cell is in charge
of accepting request signals from a client, and sending back
acknowledgements to the same client. Figure 3 shows an arbiter with three
cells. Figure 4 shows the design of each cell . The first cell i s slightly
different because it is assumed that the token is initially in the first cell.

The principle of the circuit will not explained in detail here. Briefly, the ti
(token in) and to (token out) signals are for circulation of the token. The to
output of the last cell connects to the ti input of the first cell to form a ring.
The gi (grant in) and go (grant out) signals are related to priority. The grant
of cell i is passed to cell i+1, meaning no client of index ≤ i is requesting.
Hence a cell may assert its acknowledge output if its grant input is asserted.
The oi (override in) and oo (override out) signals are used to override the

Specification/Verification of Synchronous Hardware using LOTOS 13

priority. When the token is in a persistent requesting cell, its corresponding
client will get access to the bus. The oo signal of the cell is set to 1. This
signal propagates down to the first cell and resets its grant signal through an
inverter. As a consequence the gi signal of every cell i s reset, in other words
the priority has no effect during this clock cycle. Within each cell, register T
stores 1 when the token is present; register W (waiting) is set to 1 when there
is a persistent request. Initiall y the token is assumed to be in the first cell.

The components of each cell are in the DILL library, so specification of a
cell is very easy. The specification of an arbiter with three cells is obtained
by connecting three such processes. As for the Single Pulser, there is also an
environment constraint in the structural specification of the arbiter to meet
the conditions of the synchronous circuit model discussed in section 2.2.

Since the properties that the arbiter must fulfill are given in the
benchmark documentation, it is obvious that the verification should consist
of model checking these properties. Equivalence checking is also performed
since two levels of specifications are identified.

4.3 Verification

Section 1.3 explained how to formulate properties in CADP. They are
translated into action-based temporal logic (ACTL and HML). The following
properties refer to client 0; the formulae for other clients have a similar form.

Property 1: No two acknowledge outputs are asserted in the same
clock cycle (safety).

AG ((* for all states ... *)
 not ((* it is not the case that ... *)
 EX_A ((* there exists action *)
 EVAL_A (Ack0 !1) (* Ack0 !1 leading to ... *)
 (WDIA (EVAL_A (Ack1 !1), true) or (* action Ack1 !1 or *)
 WDIA (EVAL_A (Ack2 !1), true))))) (* action Ack2 !1 *)

Property 2: Every persistent request is eventually acknowledged
(liveness).

AG ((* for all states ... *)
 BOX ((* after all it s outgoing action *)
 EVAL_A (Req0 !1), (* which is Req0 !1 ... *)
 AU_A_B (true, true, (* until ... *)
 (EVAL_A (Ack0 !1) or (* eventually Ack0 !1 ... *)
 EVAL_A (Req0 !0)), true))) (* unless Req0 !0 *)

Property 3: Acknowledge is not asserted without request (safety).

AG ((* for all states *)
 ACTL_NOT_TO_UNLESS ((* not Req0 !0, Ack0 !1 unless Req0!1 *)
 EVAL_A (Req0 !0), (* after Req0 !0 *)
 EVAL_A (Ack0 !1), (* Ack0 !1 is impossible ... *)
 EVAL (Req0 !1))) (* unless after Req0 !1 *)

14 Ji He and Kenneth J. Turner

To verify the higher-level specification against the temporal logic
formulae, the LTS of the specification was produced first. Cæsar generates
an LTS with 3649 states and 7918 transitions. Aldébaran reduces this to 379
states and 828 transitions with respect to strong bisimulation. Both
generation and reduction take seconds. The temporal logic formulae are then
checked against the minimised LTS. Each is verified as true within 1 minute.

The real challenge comes when the lower-level DILL specification is
verified. The state space is so large that direct generation of the LTS from
the LOTOS specification is impractical. As mentioned before, there are
several advanced techniques implemented in CADP to tackle the problem of
state space explosion. Nevertheless, using on-the-fly verification of the
arbiter also fails after considerable run-time. CADP does not currently
support the direct generation of BDDs from a LOTOS specification.

Compositional generation was tried out to verify the arbiter. Basically the
idea is that of ‘ divide and conquer’ . A LOTOS specification is divided into
several smaller specifications to make sure that it is possible for Cæsar to
generate an LTS for each of them. Then Aldébaran is used to reduce these
LTSs with respect to a suitable equivalence relation. The minimised LTSs
are then combined using the LOTOS parallel operator (and also the hide
operator if necessary) to form a network of communicating LTSs (the CADP

term). At this stage, an LTS might be produced from the network, or on-the-
fly verification might be performed against the network. In order to get valid
verification results, special attention must be given to the equivalence
relation that is used. The relation must be a congruence at least with respect
to the compositional operators, here the LOTOS parallel and hide operators.
The relation must also preserve the properties to be verified. This ensures
that the resulting network of communicating LTSs will respect the same
properties as the original LOTOS specification.

Among the benchmark properties, the first and the third concern safety
while the second concerns li veness. Safety equivalence [1] preserves safety
properties, while branching bisimulation equivalence [26] preserves liveness
properties when there are no livelocks in specifications. Both of these
equivalences are congruences with respect to the parallel and hide operators.
These two equivalences are thus appropriate to compositional generation.

The arbiter design was divided into three pieces, one per cell. After about
seven minutes, an LTS that is safety equivalent to the LOTOS specification of
the design is generated. The two safety properties were verified to be true
against this LTS, implying that the design also satisfies these safety
properties. Verification of the formulae takes just seconds. However
generating the LTS which is branching equivalent to the design takes almost
one day, after which the liveness property is also verified to be true.

Specification/Verification of Synchronous Hardware using LOTOS 15

Before checking equivalence, a suitable equivalence must be chosen. For
most systems, observational equivalence is an obvious choice. Informally it
means that two systems have exactly same behaviour in terms of the
observable actions. For hardware systems, testing equivalence (two
specifications pass or fail exactly the same external tests) is also used as a
criterion in some approaches such as CIRCAL. The algorithm for testing
equivalence is not implemented in CADP, so the stronger notion of
observational equivalence was used when checking the Bus Arbiter.

As before, compositional generation was used to generate the LTS for the
design. This time each cell was reduced with respect to observational
equivalence, since this is a congruence for the parallel and hide operators.
Generating the LTS took about eight minutes. This LTS was expected to be
observationally equivalent to that for the higher-level specification. However
Aldébaran discovered that they are not! Table 2 is one of the sequences
given as a counter-example. (The Aldébaran output has been rendered more
readable here.) This sequence indicates that in the first three clock cycles
only client 0 requests the bus; both the high-level specification and the low-
level design grant access to this client. In the fourth cycle, client 0 cancels its
request but client 1 begins to request access. At this point the two levels of
specifications are different: the lower-level specification offers 0 for Ack1,
whereas the higher-level specification offers 1 for Ack1.

Table 2. A Counter-Example generated by Aldébaran
Cycle 1 Cycle 2 Cycle 3 Cycle 4

Req0 1 1 1 0
Req1 0 0 0 0
Req2 0 0 0 0
Ack0 1 1 1
Ack1 0 0 0 0 or 1
Ack2 0 0 0

After step-by-step simulation of the counter-example, it was soon
discovered that the circuit may not properly reset the oo (override out) signal
to 0. Suppose a cell has been requesting access, so its W register is set to 1. If
the cell cancels the request in the very clock cycle that the token happens to
arrive. In this situation, because the client has already cancelled its request it
should be possible for another client to get the bus. However, the design sets
the oo signal to override the priority as if this client were stil l requesting.
This prevents any other client from accessing the bus in this clock cycle.

Fixing the problem was much easier than finding it. The correction was
to connect the Req signal to the And gate that follows the W register. (See
[17] for the revised circuit diagram.) The output of the And gate guarantees
that the oo signal is always correctly set or reset according to the request

16 Ji He and Kenneth J. Turner

signal in the current clock cycle. This modified design was verified to be
observationally equivalent to the higher-level algorithmic specification.

As mentioned in section 2.2, in DILL the inputs are assumed to be
synchronised with the clock signal. Suppose that the Req signal in figure 4
is always ready before the active clock transition, i.e. is not synchronised
with the clock. In this case the problem discussed above might not happen.
As the benchmark documentation does not state if inputs are synchronised
with the clock or not, it is believed that the modified design is more robust.

5. CONCLUSION

With the new approach to specifying synchronous, it is possible to verify
standard hardware benchmarks – here, the Single Pulser and the Bus Arbiter.
In comparison with other techniques applied to the same case studies, e.g.
COSPAN [8] and CIRCAL [20], DILL is much more convenient for giving a
higher-level specification. This is not so surprising since LOTOS is an
expressive language. CIRCAL, by way of contrast, gives an abstract view of a
synchronous circuit by directly specifying its corresponding finite state
machine, which is not always a natural representation of circuit behaviour.

Being based on process algebra, DILL specifications can be verified by
equivalence and preorder checking. This is distinctive in that most hardware
verification systems are based on theorem proving or model checking. The
former needs human assistance to complete a proof. The latter needs
specialised expertise since temporal logic specifications are not easy to
write. In contrast, equivalence or preorder checking makes it possible to
write the specification in the same formalism as the implementation, here
DILL (or really, LOTOS). The correctness of a DILL specification can be
easily checked by simulation tools. Another benefit of equivalence checking
is seen in the Bus Arbiter case study. As a classical verification benchmark,
the Bus Arbiter has been investigated using many approaches. But as far as
the authors know, the defect reported in section 4.3 is a new discovery.

However, the size of the circuit that can be effectively verified is small
compared to that handled by other mature hardware verification tools.
COSPAN can verify an arbiter with four cells with the consumption of about
1 MB memory, due to a symbolic representation using BDDs and efficient
reduction techniques [8]. CIRCAL is reported to generate the state space of an
arbiter with up to 40 cells using reasonable computing resources, although
the actual memory used was not reported [20]. Again this is due to the BDD
representation of the CIRCAL specification. Note that CIRCAL was not in fact
used to verify the arbiter formally. [20] just gives a test pattern to show that
even if all clients request the bus, only one can gain access to the bus in each

Specification/Verification of Synchronous Hardware using LOTOS 17

clock cycle. CIRCAL does not have the functionality of temporal logic model
checking. Because of its limited power in specifying higher-level behaviour,
equivalence checking was not used in the CIRCAL case study. CADP on the
other hand consumes more than 100 MB of memory to produce the state
space of a three-cell arbiter. Although the resulting state space is relatively
small , the intermediate stages of generation need considerable memory.

There are two main reasons for this performance limitation. One comes
from the modelling language LOTOS and the other comes from CADP.
Firstly, for synchronous circuits the order in which signals occur during a
clock cycle is not so important. So it is reasonable to imagine that the inputs
happen together and then output occurs. But when modelling such circuits in
DILL, independent (interleaved) inputs are allowed so the state space is
considerably enlarged. Secondly, CADP is a tool under development and
currently some of its features are mainly based on explicit state exploration.
Because CADP cannot produce the minimised state space in the first place,
large amounts of memory have to be consumed before a smaller LTS can be
produced by minimisation. On-the-fly algorithms are of some help, but they
apply only in particular situations. For example, on-the-fly observational
equivalence checking is not supported by CADP. Also CADP does not offer a
BDD representation of LOTOS specifications, although BDDs are used to
represent intermediate data types in some algorithms. Fortunately CADP is
currently being actively improved by the CADP developers.

REFERENCES

 [1] A. Bouajjani, J. C. Fernandez, et al. Safety for branching time semantics. In Automata,
Languages and Programming, LNCS 510, pages 76–92. Springer-Verlag, Berlin, 1991.

[2] R. Boulton, M. J. C. Gordon et al. The HOL verification of ELLA designs. TR 199,
University of Cambridge Computer Laboratory, Aug. 1990.

[3] G. Chehaibar, H. Garavel, et al. Specification and verification of the PowerScale bus
arbitration protocol: An industrial experiment with LOTOS. TR 2958, INRIA, Le Chesnay,
Aug. 1996.

[4] R. De Nicola and F. Vaandrager. Action versus state based logics for transition systems.
In Semantics for Systems of Concurrent Processes, LNCS 469, pages 407–419. Springer-
Verlag, Berlin, 1990.

[5] C. Delgado Kloos, T. de Miguel et al. VHDL generation from a timed extension of the
formal description technique LOTOS with the FORMAT project. Microprocessing and
Microprogramming, 38:589–596, 1993.

[6] M. Faci and L. M. S. Logrippo. Specifying hardware in LOTOS. In Proc. Computer
Hardware Description Languages and Their Applications XI, pages 305–312. North-
Holland, Amsterdam, Apr. 1993.

[7] J.-C. Fernández, H. Garavel, et al. CADP (Cæsar/Aldébaran development package): A
protocol validation and verification toolbox. In R. Alur and T. A. Henzinger, editors,

18 Ji He and Kenneth J. Turner

Proc. Computer-Aided Verification VIII , LNCS 1102, pages 437–440. Springer-Verlag,
Berlin, Aug. 1996.

[8] K. Fisler and R. P. Kurshan. Verifying VHDL designs with COSPAN. In Formal Hardware
Verification Methods and Systems in Comparison, LNCS 1287, pages 206–247. Springer-
Verlag, Berlin, 1997.

[9] C. A. R. Hoare and M. J. C. Gordon, editors. Mechanized Reasoning and Hardware
Design. Prentice Hall , Englewood Cli ffs, 1992.

[10] IEEE. VHSIC Hardware Design Language. IEEE 1076. Institution of Electrical and
Electronic Engineers Press, New York, 1993.

[11] IEEE. IEEE Standard Hardware Design Language based on the Verilog Hardware
Description Language. IEEE 1364. Institution of Electrical and Electronic Engineers
Press, New York, 1995.

[12] ISO/IEC. Information Processing Systems – Open Systems Interconnection – LOTOS – A
Formal Description Technique based on the Temporal Ordering of Observational
Behaviour. ISO/IEC 8807. International Organization for Standardization, Geneva, 1989.

[13] ISO/IEC. Information Processing Systems – Open Systems Interconnection –
Enhancements to LOTOS. International Organization for Standardization, Geneva, Apr.
1998.

[14] Ji He and K. J. Turner. Extended DILL: Digital logic with LOTOS. TR CSM-142,
Computing Science and Mathematics, University of Stirling, UK, Nov. 1997.

[15] Ji He and K. J. Turner. DILL (Digital Logic in LOTOS) translator. http://www.cs.stir.ac.uk/
~kjt/software/dil l.html, Jan. 1998.

[16] Ji He and K. J. Turner. Timed DILL: Digital logic with LOTOS. TR CSM-145,
Computing Science and Mathematics, University of Stirling, Apr. 1998.

[17] Ji He and K. J. Turner. Modelli ng and verifying synchronous circuits in DILL. TR CSM-
152, Computing Science and Mathematics, University of Stirling, Feb. 1999.

[18] G. Jones and M. Sheeran. Circuit design in Ruby. In J. Staunstrup, editor, Formal
Methods For VLSI Design, pages 13–70. Elsevier Science Publishers, Amsterdam, 1990.
[19] L. Léonard and G. Leduc. An introduction to ET-LOTOS for the description of time-

sensitive systems. Computer Networks and ISDN Systems, 28:271–292, May 1996.
[20] G. A. McCaskill and G. J. Milne. Sequential circuit analysis with a BDD based process

algebra system. TR HDV-25-93, Computer Science, University of Strathclyde, Jan. 1993.
[21] G. J. Milne. The Formal Specification and Verification of Digital Systems. McGraw-

Hill , New York, 1994.
[22] L. Sánchez Fernández, M. L. López et al. Co-design at work: The Ethernet bridge case

study. Current Issues in Electronic Modell ing, 8, Apr. 1996.
[23] M. Sighireanu and R. Mateescu. Validation of the link layer protocol of the IEEE-1394

serial bus (‘Firewire’) : An experiment with E-LOTOS. TR 3172, Institut National de
Recherche en Informatique et Automatique, Le Chesnay, May 1997.

[24] J. Staunstrup and T. Kropf. IFIP WG10.5 benchmark circuits. http://goethe.ira.uka.de/
hvg/benchmarks.html, July 1996.

[25] K. J. Turner and R. O. Sinnott. DILL: Specifying digital logic in LOTOS. In R. L. Tenney,
P. D. Amer, and M. Ü. Uyar, editors, Proc.Formal Description Techniques VI, pages 71–
86. North-Holland, Amsterdam, 1994.

[26] R. J. van Glabbeek and W. P. Weijl and. Branching time and abstraction in bisimulation.
TR CS R8911, Centrum voor Wiskunde en Informatica, Amsterdam, 1989.

[27] K. Yasumoto, A. Kitajima et al. Hardware synthesis from protocol specifications in
LOTOS. In S. Budkowski, E. Najm, and A. Cavalli , editors, Proc. Formal Description
Techniques XI/Protocol Specification, Testing and Verification XVIII . Chapman-Hall ,
London, 1998.

