89 research outputs found

    Foreword to the special issue on ground penetrating radar: Modeling tools, imaging methods and systems

    Get PDF

    Magnetic, electrical, and GPR waterborne surveys of moraine deposits beneath a lake: A case history from Turin, Italy

    Get PDF
    Bathymetry and bottom sediment types of inland water basins provide meaningful information to estimate water reserves and possible connections between surface and groundwater. Waterborne geophysical surveys can be used to obtain several independent physical parameters to study the sediments. We explored the possibilities of retrieving information on both shallow and deep geological structures beneath a morainic lake by means of waterborne nonseismic methods. In this respect, we discuss simultaneous magnetic, electrical, and groundpenetrating radar (GPR) waterborne surveys on the Candia morainic lake in northerly Turin (Italy).We used waterborne GPR to obtain information on the bottom sediment and the bathymetry needed to constrain the magnetic and electrical inversions. We obtained a map of the total magnetic field (TMF) over the lake from which we computed a 2D constrained compact magnetic inversion for selected profiles, along with a laterally constrained inversion for one electrical profile. The magnetic survey detected some deep anomalous bodies within the subbottom moraine. The electrical profiles gave information on the more superficial layer of bottom sediments. We identify where the coarse morainic material outcrops from the bottom finer sediments from a correspondence between high GPR reflectivity, resistivity, and magnetic anomalie

    Buried Object Detection by an Inexact Newton Method Applied to Nonlinear Inverse Scattering

    Get PDF
    An approach to reconstruct buried objects is proposed. It is based on the integral equations of the electromagnetic inverse scattering problem, written in terms of the Green's function for half-space geometries. The full nonlinearity of the problem is exploited in order to inspect strong scatterers. After discretization of the continuous model, the resulting equations are solved in a regularization sense by means of a two-step inexact Newton algorithm. The capabilities and limitations of the method are evaluated by means of some numerical simulations

    Case study: A GPR survey on a morainic lake in northern Italy for bathymetry, water volume and sediment characterization

    Get PDF
    We carried out an extensive waterborne GPR survey consisting of 50 profiles with a total length of nearly 37 km on the morainic lake of Candia northerly Turin (Italy). Our aim was to test the capability of GPR to estimate the bathymetry, the water volume and the sediment type. We enhanced and controlled the GPR data processing and interpretation with bathymetry acquired with an acoustic echo sounder and measured conductivity and temperature profile of the water column with a multiparametric probe. We also analyzed the diffraction hyperbola that originated within the sediments in order to estimate the velocity and relative permittivity. With the permittivity and dielectric mixing rules, we estimated the porosity of the sediments above the diffracting objects and drew a map of the bottom lake porosit

    Case study: A GPR survey on a morainic lake in northern Italy for bathymetry, water volume and sediment characterization

    Get PDF
    We carried out an extensive waterborne GPR survey consisting of 50 profiles with a total length of nearly 37 km on the morainic lake of Candia northerly Turin (Italy). Our aim was to test the capability of GPR to estimate the bathymetry, the water volume and the sediment type. We enhanced and controlled the GPR data processing and interpretation with bathymetry acquired with an acoustic echo sounder and measured conductivity and temperature profile of the water column with a multiparametric probe. We also analyzed the diffraction hyperbola that originated within the sediments in order to estimate the velocity and relative permittivity. With the permittivity and dielectric mixing rules, we estimated the porosity of the sediments above the diffracting objects and drew a map of the bottom lake porosity

    A new WebGIS approach to support ground penetrating radar deployment

    Get PDF
    En raison de l’agglomération complexe des infrastructures souterraines dans les grandes zones urbaines et des préoccupations accrues des municipalités ou des gouvernements qui déploient des systèmes d’information foncière ou des industries qui souhaitent construire ou creuser, il devient de plus en plus impératif de localiser et de cartographier avec précision les pipelines, les câbles d’énergie hydroélectrique, les réseaux de communication ou les conduites d’eau potable et d’égout. Le géoradar (Ground Penetrating Radar ou GPR) est un outil en géophysique qui permet de produire des images en coupe du sous-sol desquelles de l’information utile sur les infrastructures souterraines peut être tirée. Des expériences antérieures et une analyse documentaire approfondie ont révélé que les logiciels disponibles pour réaliser des levés GPR qui sont utilisés directement sur le terrain et hors site ne reposent pas ou très peu sur des fonctionnalités géospatiales. En outre, l’intégration de données telles que la visualisation de données GPR dans des espaces géoréférencés avec des orthophotos, des cartes, des points d’intérêt, des plans CAO, etc., est impossible. Lorsque disponible, l’ajout d’annotations ou l’interrogation d’objets géospatiaux susceptibles d’améliorer ou d’accélérer les investigations ne proposent pas des interfaces conviviales. Dans ce projet de recherche, une nouvelle approche est proposée pour déployer le GPR et elle est basée sur quatre fonctionnalités issues du Web et des systèmes d’information géographique (WebGIS) jugées essentielles pour faciliter la réalisation de levés GPR sur le terrain. Pour démontrer la faisabilité de cette nouvelle approche, une extension de la plate-forme logicielle existante GVX (conçue et vendue par Geovoxel) appelée GVX-GPR a été développée. GVX-GPR propose aux utilisateurs d’instruments GPR quatre fonctionnalités soit 1) intégration de cartes, 2) géo-annotations et points d’intérêt, 3) géoréférencement et visualisation de radargrammes et 4) visualisation de sections GPR géoréférencées. Afin de tester l’approche WebGIS et GPXGPR, deux sites d’étude ont été relevés par deux professionnels différents, un expert et un non-expert en géophysique, ont été sélectionnés. Une première expérimentation réalisée sur le campus de l’Université Laval à Québec prévoyait l’identification de trois objets enterrés soit un câble électrique, une fibre optique et un tunnel dont leur position XYZ était connue. Le deuxième essai s’est passé à l’Universidade Federal do Rio de Janeiro (Rio de Janeiro, Brésil), avec un professionnel expert en géophysique. Ce 2e site cherchait à reproduire un environnent plus réaliste avec une quantité inconnue d’objets enterrés. Les quatre fonctionnalités proposées par GVX-GPR ont donc été testées et leur intérêt discuté par les deux utilisateurs GPR. Les deux utilisateurs GPR se sont dits très intéressés par l’outil GVX-GPR et ses nouvelles fonctionnalités et ils aimeraient pouvoir l’intégrer à leur travail quotidien car ils y voient des avantages. En particulier, l’approche et GVX-GPR les a aidés à découvrir de nouvelles cibles, à délimiter le territoire à couvrir, à interpréter les données GPR brutes en permettant l’interaction entre les données géospatiales (en ligne) et les profils de données GPR, et finalement pour la cartographie à produire tout en respectant la norme CityGML (donc utile au partage éventuel des données). De même, une fois le système maitrisé, GVX-GPR a permis d’optimiser la durée du levé. Ce projet de maitrise a donc permis d’élaborer une nouvelle approche pour effectuer des levés GPR et proposer un outil logiciel pour tester la faisabilité de celle-ci. Une première étape de validation de la faisabilité et de l’utilité a été réalisée grâce aux deux tests effectués. Évidemment, ces deux tests sont des premiers pas dans une phase plus large de validation qui pourrait s’effectuer, et ils ont ouvert la porte à des ajustements ou l’ajout d’autres fonctionnalités, comme la manipulation des outils de visualisation 3D et l’ajout de filtres et traitement de signal. Nous estimons néanmoins ces premiers tests concluant pour ce projet de maîtrise, et surtout ils démontrent que les instruments GPR gagneraient à davantage intégrer les données et fonctionnalités géospatiales. Nous pensons également que nos travaux vont permettre à des communautés de non spécialistes en géophysique de s’intéresser aux instruments de type GPR pour les levés d’objets enfouis. Notre approche pourra les aider à préparer les données géospatiales utiles à la planification, à effectuer le levé terrain et à produire les cartes associéesDue to the complex agglomeration of underground infrastructures in large urban areas and accordingly increased concerns by municipalities or government who deploy land information systems or industries who want to construct or excavate, it is imperative to accurately locate and suitability map existing underground utility networks (UUN) such as pipelines, hydroelectric power cables, communication networks, or drinking water and sewage conduits. One emerging category of instrument in geophysics for collecting and extracting data from the underground is the ground penetrating radar (GPR). Previous experiments and a thorough literature review revealed that GPR software used in and off the field do not take advantage of geospatial features and data integration such as visualization of GPR data in a georeferenced space with orthophotographies, map, point of interest, CAD plans, etc. Also missing is the capability to add annotation or querying geospatial objects that may improve or expedite the investigations. These functions are long-lived in the geospatial domain, such as in geographic information system (GIS). In this research project, a new approach is proposed to deploy GPR based on four core WebGIS-enabled features, used to support field investigations with GPR. This WebGIS is based on an existing platform called GVX, designed and sold by Geovoxel as a risk management tool for civil engineering projects. In this proposed approach, a generic guideline based on GVX-GPR was developed which users can follow when deploying GPR. This approach is based on four core features which are missing on most GPR software, (1) map integration, (2) geo-annotations and points of interest, (3) radargram georeferencing and visualization, and (4) georeferenced slice visualization. In order to test the designed WebGIS-based approach, two different professionals, an expert in geophysics and a person without any background in geophysics, used the proposed approach in their day-to-day professional practice. The first experiment was conducted at Université Laval (Québec – Canada) when the subject undertook an area to a survey in order to identify 3 possible targets premapped. The second, with a Geophysics-specialist, took place in Rio de Janeiro, at Universidade Federal do Rio de Janeiro’s campus. This study covered an area counting on an unknown number of buried objects, aiming at reproducing a realistic survey scenario. Four new feature were added and discussed with GPR practitioners. Both GPR user declared to be very interested by the proposed by the tool GVX-GPR and its features, being willing to apply this software on their daily basis due to the added advantages. Particularly, this approach has aided these professionals to find new buried objects, delimit the survey area, interpret raw GPR data by allowing geospatial data interaction and GPR profiles, and, finally, to produce new maps compliant with standards such as CityGML. Also, once mastered, the technology allowed the optimization of survey time. This project enabled the development of a new approach to leverage GPR surveys and proposed a new tool in order to test the approach’s feasibility. A first step into the validation of this proposal has been taken towards a feasibility and utility evaluation with two tests accomplished. Unmistakably, these are the first steps of a likely larger validation process, opening up new possibilities for the continuity of the project such as the addition of signal processing techniques and 3D data handling. We nevertheless consider these conclusive for this master’s project, above all demonstrating the value add by geospatial data integration and functions to GPR instruments. This work is also intended to the community of newcomers, or interested in GPR, to further explore this technology, since this approach shall facilitate the preparation, execution, and post-processing phases of a GPR survey

    Qualitative Methods In Microwave Imaging

    Get PDF
    Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2017Thesis (Ph.D.) -- İstanbul Technical University, Institute of Science and Technology, 2017Mikrodalga görüntüleme doğrudan erişilemeyen saçıcıların elektriksel özelliklerini (göreli dielektrik sabiti \u1d716\u1d45f, göreli manyetrik geçirgenlik katsayısı \u1d707\u1d45f iletkenlik \u1d70e yahut debye parametreleri) saçtıkları elektrik alandan tespiti ile ilgilenen yeni bir teknolojidir. Mikrodalga görüntüleme hasarsız muayene, toprak altı görüntüleme, duvar arkası görüntüleme ve biyolojik doku görüntüleme gibi çeşitli tıbbi ve askeri uygulamalarda gelecek vaadeden bir teknikdir. Mikrodalga görüntülenmenin günümüz biliminde bu denli önemli olmasının temel nedeni ise biyolojik dokularla etkileşime geçtiğinde ionize edici bir özelliği olmamasıdır. Bu nedenle mikrodalga görüntüleme günümüzde sıkça kullanılan ve çoğu ionize edici radrasyona bağlı olan görüntüleme teknolojilerinin tümü için çok önemli bir yedek seçenektir. Ters saçılma teorisi nitel görüntüleme yöntemleri adı altında oldukça teorik bir takım yöntemleri literatürde barındırmakradır. Nitel görüntüleme yöntemleri integral denklemlerden saçıcının yalnızca şekil ve konumunun tespiti için kullanılır olup ve saçıcıların yapısı ve şekli ile ilgili herhangi bir ön bilgiye ihtiyaç duymamaktadır. Nitel görüntüleme yöntemlerinin en bilindik iki tanesi: (i) doğrusal örnekleme yöntemi ve (ii) faktörizasyon yöntemidir. Doğrusal örnekleme yöntemi ve faktörizasyon yöntemi formülasyon ve performans açısından birbirine oldukça benzerdir. Kısaca anlatmak gerekirse, doğrusal örnekleme yöntemi tarihsel olarak faktörizasyon yönteminden önce önerilmiş olup henüz matematiksel olarak tam olarak ispat edilememiştir. Faktörizasyon yöntemi ise doğrusal örnkeleme yönteminden esinlenerek geliştirilmiş olup doğruluğu matematiksel olarak da kanıtlanmıştır. Bu iki yönteminde ters problemin birbirine bağlı iki doğrusal olmayan integral denklem olarak ifade edilebildiği mikrodalga görüntülemede kullanılması mümkündür. Mikrodalga görüntülemede geleneksel çözüm yolu doğrusal olan veya doğrusal olmayan optimizasyon metodlarıdır. Bu metotlar eldeki doğrusal olmayan elektromanyeik saçılma problemini bir minimizasyon problemi haline dönüştürür. Ek olarak bu yöntemlerin bazıları doğrusal olmayan saçılma problemini doğrusal hale getirebilmek amacıyla Born yaklaşımını da kullanır. Sonuç olarak eldeki amaç fonksiyonunu minimize etmek amacıyla bilindik bir optimizasyon yöntemini (konjuge gradyan metodu, Newton yöntemi vs.) kullanır. Diğer bir deyişle nicel görüntüleme yöntemi olan bu metotlar fiziksel saçılma mekanizmasını kullaranarak elde edilen ölçülmüş elektrik alanı oluşturacak saçıcının şeklini ve elektriksel özelliklerini (göreli dielektrik sabiti \u1d716\u1d45f, göreli manyetrik geçirgenlik katsayısı \u1d707\u1d45f iletkenlik \u1d70e yahut debye parametreleri) kestirmeye çalışır. Bu nicel yöntemlerin dışında bir de yukarıda da bahsettiğimiz nitel görüntüleme yöntemleri vardır ki bunlar saçılma problemini sadece saçıcıların şeklini ve konumunu bulmak amacıyla çözerler. Nitel görüntülenme yöntemleri, nicel görüntüleme metotlarından farklı olarak hedef cisimlerin şekli ve konumunu tespit amacıyla genellikle elektromanyetik saçılma probleminin belirli bir saçıcı veya saçıcılar kümesi için doğrusal olması gerçeğini ve dualite prensiplerini kullanır. Nitel görüntüleme yöntemlerinin bu görece düşük beklentisi ve doğrusal yapıları onların bilgisayar ortamında kolayca gerçeklenebilmesini ve nicel görüntüleme yöntemlerine oranla çok daha az sürelerde ve çok daha az bir hesaplama yükü ile bilgisayar ortamında çalıştırılabilmesini sağlar. Tecrübelerimize dayanarak örnek vermek gerekirse, üç boyutlu (yaklaşık 150 bin – 300 bin bilinmeyen içeren) bir saçılma probleminin kontrast kaynak yöntemi ile çözülmesi ortalama bir bilgisayarda (8 GB RAM) olarak 1-2 saat alırken, aynı probleme LSM veya FM’nin uygulanması için maksimum 5 – 10 dk. gibi bir süre yeterli olacaktır. Tüm bu avantajalrına rağmen, başta LSM ve FM olmak üzere tüm nitel görüntüleme yöntemleri mühendislik alanında çok da uygulama alanı bulamamaktadır. Bunun başlıca sebepleri nitel görüntüleme yöntemlerinin genellikle çok üst düzey bir matematiksel arkaplana dayanması, bu yöntemlerin matematikçiler tarafından fiziksel şartların ve gerçek hayat durumlarının pek de düşünülmeden ortaya konulmuş olması (yani bu yöntemlerin pek çoğu esas olarak düzlem dalga aydınlatması altında ve ölçümlerin ölçüm mesafesi sonsuza yaklaşırkenki asimptotik halleri için kanıtlanmıştır) ve bu yöntemlerin fiziksel bir zemine oturtulmasının zor olmasıdır. İşte bu sebeblerle nitel görüntüleme yöntemlerinin incelemesi ve nitel görüntüleme yöntemlerinin gerçek hayatta kullanabileceğimiz algoritmalar haline getirilip onların fiziksel arkaplanlarının ve uygulama için gerekli koşulların ortaya konulması önemli bir çalışma alanı teşkil etmektedir. Bu tezin ilk kısmında, iki boyutlu bir uzayda enine manyetik saçılma senaryosu için engebeli bir yüzey altındaki gömülü cisimlerin tespiti amacıyla bir faktörizasyon metodu önerilmiş ve benzetimlerle elde edilmiş sonuçlarla oldukça gerçekçi durumlar için doğrulanmıştır. Esasında engebeli yüzey altında gömülü cisimlerin görüntülenmesi mayın tespiti ve arkelojik gömülerin görüntülenmesi gibi çok değişik uygulamaları olan oldukça karmaşık bir problemdir. Günümüzde yeraltının görüntülenmesi için mikrodalgaları kullanan temel teknoloji uzmanlar tarafından yorumlanması gereken ve sonuçta radaragramlar oluşturan yer radarı (ground penetrating radar, GPR) olduğu bilinmektedir. Bunun haricinde görüntülenmek istenen yeraltı bölgenin elektriksel ve şekilsel özellikleri ile ilgili bilgi veren bazı nitel ters saçılma yöntemleri de literatürde bulunmaktadır. Ayrıca, yeraltı görüntülemede çok önemli bir faktör olan ve çoğu zaman uygulanan yöntemin başarısını belirleyen yüzey engebesinin ise pek az sayıda çalışmada dikkate alındığı gerçeği de bilinmektedir. Bu bağlamda, pek çok görüntüleme probleminde saçıcı cisimlerin yer ve şeklinin tespiti amaçlı kullanılabilecek olan ve aynı anda pek çok sayıda değişik özelliğe sahip saçıcıları da görüntüleyebilen nicel mikrodalga görüntüleme yöntemleri bu problem özelinde de (engebeli bir yüzey altında gömülü saçıcı hedeflerin tespiti) oldukça ilginç bir alternatif teşkil etmektedir. Bundan dolayı tezimizin ilk kısmı bu konu üzerine olan çalışmalarımıza ayrılmıştır. Özel olarak bu kısımda yeraltına gömülü herhangi bir sayıda ve herhangi bir özelliğe sahip saçıcıların yer ve konumları faktörizasyon metodu ile tespit edilecektir. Çalışmamızda sınırlı açıklıklı bir anten dizisi ile belirli bir toprak altı bölgenin taranması durumu değişik aydınlatma frekansları, değişik nem oranına haiz toprak, değişik engebe profilleri, toprağın ve engebe profillerinin kısmen bilindiği durumlar için ayrı ayrı incelenmiş olup her durumda yöntemin başarımı ortaya konmuştur. Elde edilen sonuçlar uygulanan yöntemin gerçek hayattaki problemler için de umut verici olduğunu ortaya koymuştur. Tezin ikinci kısmında ele alınan temel nicel görüntüleme yöntemlerinin gerçek ölçüm düzenekleri için nasıl kullanılacağı problemi ele alınmıştır. Mikrodalga frekanslarında yapılan ölçümlerde yaygın olarak vektör ağ analizörleri (vector network analyzer, VNA) kullanımaktadır. Bu yaygın kullanımın başlıca sebebi vektör ağ analizörlerinin piyasada kolayca bulunabilir oluşu ve bu cihazların gösterdiği yüksek performansdır. Birkaç istisnai durum haricinde mikrodalga görüntüleme problemleri hep saçılan elektrik alan bilgisini kullanıp saçıcı hedeflerin elektriksel parametrelerinin (göreli dielektrik sabiti \u1d716\u1d45f, göreli manyetrik geçirgenlik katsayısı \u1d707\u1d45f iletkenlik \u1d70e yahut debye parametreleri) hesaplanmasını amaçlar. Buna karşın, vektör ağ çözümleyicilerinin ölçtüğü temel büyüklük saçılma parametreleridir. Bu nedenle genellikle yapılan iş ölçülen saçılma parametrelerinin saçılan elektrik alana çevrilmesi için belli başlı prosedürleri uygulamaktır. Saçılma parametreleri ile saçılan elektrik alan arasındaki bu bağlantıyı sağlayan dönüşüm ise genellikle belirli bir geometrik şekle haiz (düzlem, düzgün dairesel silindir veya küre) ve bilindik elektriksel özellikteki cisimlerin ölçülen saçılma parametreleri ile benzetimden elde edilmiş saçılan elektrik alanını karşılaştırmak üzerine kuruludur. Tezin ikinci kısmında bu bilindik kalibrasyon prosedürlerinin yerine daha iyi bir alternatif olarak ele alınan nitel görüntüleme yöntemlerini (doğrusal örneklem yöntemi ve faktörizasyon yöntemi) doğrudan saçılma parametreleri üzerinden yendien formüle ettik. Elde edilen sonuçlar geliştirlen yöntemin hem iki boyutlu hem de üç boyutlu görüntüleme de çok satbil ve doğru bir şekilde çalıştığını göstermektedir. Tezin üçüncü ve son kısmında ise ele alınan nitel görüntüleme yöntemleri (doğrusal örneklem yöntemi ve faktörizasyon yöntemi) ile saklı cisim tespiti probleminin çözümü üzerine yoğunlaştık. Saklı cisim tespiti problemi gerçek hayat uygulamalarında, özellikle çeşitli medikal ve askeri uygulamalarda, pek çok durumda karşımıza çıkmaktadır. Saklı cisim tespiti problemleminin çözümündeki temel zorluk ele alınan (görüntülenmesi hedeflenen) ortamın her noktasındaki elektriksel parametrelerin (göreli dielektrik sabiti \u1d716\u1d45f, göreli manyetrik geçirgenlik katsayısı \u1d707\u1d45f iletkenlik \u1d70e yahut debye parametreleri) hesaplanmasının gerekliliğidir. Bugüne kadar ele alınan ortamın tüm elektriksel parametrelerinin her noktadaki hesabı için pek çok değişik nicel görüntülüme yöntemi geliştirilmiş ve doğrulanmıştır. Ancak tüm nicel görüntüleme yöntemleri gibi bu yöntemlerinde oldukça ağır bir hesaplama yükü içerdiği gerçeği ortadadır. Daha önce de bahsedildiği üzere nicel yöntemlerin aksine nitel görüntüleme yöntemleri daha basit şekilde bilgisayar ortamında gerçeklenebilen daha basit formülasyonlara sahip ve hesaplama zamanı ve yükü nicel görüntüleme yöntemlerine oranla oldukça düşük olan yöntemlerdir. Tüm bu avantajlarına rağmen nitel görüntüleme yöntemleri saklı cisim tespitinde oldukça az kullanılmıştır. Bunun başlıca sebepleri, yukarıda da bahsedildiği üzere, bu yöntemlerin çok üst düzey bir matematiksel arkaplana dayanması, nitel görüntüleme yöntemlerinin matematikçiler tarafından fiziksel şartların ve gerçek hayat durumlarının pek de düşünülmeden ortaya konulmuş olması ve bu yöntemlerin fiziksel bir zemine oturtulmasının zor olmasıdır. Özel olarak saklı cisim tespiti problemi için bakacak olursak, nitel görüntüleme yöntemleri saklı cisim tespiti probleminde şu iki temel bilgiye ihtiyaç duyar: (i) cisimlerin gömülü olduğu ortamın elektriksel özellikleri (göreli dielektrik sabiti \u1d716\u1d45f, göreli manyetrik geçirgenlik katsayısı \u1d707\u1d45f iletkenlik \u1d70e yahut debye parametreleri) (ii) gömülü cisimlerin olmadğı duumda arka plandan saçılan elektrik alan bilgisi. Açıktır ki bu iki bilginin her ikisini de aynı anda sağlamak neredeyse tüm problemler için imkansızdır. Bu sebeple biz tzin bu üçüncü ve son kısmında bu önsel bilgi probleminin çözümü amacıyla bir yöntem önerdik. Özel olarak, pek çok saklı cisim tespiti probleminde yukarıdaki ikinci bilgi ((ii) gömülü cisimlerin olmadğı duumda arka plandan saçılan elektrik alan bilgisi) aslında elde edilebilir olup bu bilgi ışığında ilk önsel bilgiyi kullanmadan eldeki nitel görüntüleme yöntemlerinin yüksek bir başarımla çalıştırılabileğini önerdik. Elde edilen sonuçlar önerdiğimiz yöntemin oldukça stabil ve doğru bir biçimde çalıştığını doğrular niteliktedir.Microwave imaging (MWI) emerges as a novel technology that aims to extract physical properties of inaccessible objects from the scattered electric field measurements. MWI covers a very wide range of applications which includes but not limited to nondestructive testing (NDT), subsurface imaging, through wall imaging, biological imaging. The most important factor that tends the scientists to imaging with microwaves is non-ionizing nature of MWI when interacted with biological tissues. Therefore, MWI can be regarded as a healthy alternative of current imaging technologies, which are mostly based on ionizing radiation. Inverse scattering theory provides a group of highly theoretical approaches, known as qualitative method. These methods are based on inverting an integral equation for each point over a reconstruction domain to determine only the shape and the position of unknown scatterers without requiring any a-priori information. Two well-known representatives of qualitative inverse scattering methods are (i) linear sampling method (LSM) and (ii) factorization method (FM). These two methods are in fact quite similar in formulation as well as performance. These qualitative approaches are also usable in the MWI, where the inverse problem can be casted into two integral equations. Traditional solution approaches for MWI are based on non-linear or linear optimization methods. These methods recasts the nonlinear scattering problem in form of a minimization problem. Additionally, they can utilize Born approximation to linearize the problem and then the cost function is minimized via one of the canonical optimization approaches such as conjugate gradient method, newton’s method. In other words, these methods model the physical scattering mechanism to determine electrical properties of dielectric objects and attempts to minimize a cost functional by using a canonical minimization procedure. In contrast to these approaches, the qualitative inverse scattering methods uses linearity of the scattering problem or the duality principle to reach their final aim, which is obtaining the support of the scatterer. Thus, their modest goals and linear nature make these qualitative approaches easier to implement and more efficient in use of computational resources. In contrast to all these attractive features, both LSM and FM are rarely investigated from an engineering perspective due to their mathematical background. Hence, analyzing these methods from an engineering perspective and making these methods applicable in real world imaging scenarios is an important problem. In the first part of the thesis, we analyze the problem of imaging buried targets under a rough surface for a two dimensional transverse magnetic scattering scenario. In fact, imaging of buried targets under the rough ground is a challenging inverse scattering problem with many applications in engineering such as land mine detection and remote sensing of archaeological artefacts. Conventional technology that uses microwaves for subsurface sensing of the underground is ground penetrating radar (GPR) which generates radargrams that require further interpretation by experts. Also, various quantitative inverse scattering methods are existent in the literature to provide additional information on the morphological and electrical properties of buried obstacles. Furthermore, the surface roughness, which is a critical factor that determines the limits of subsurface imaging, are only considered in a very few studies. In this context, qualitative inverse scattering methods, which are almost exclusively used for reconstructing the shape of inaccessible targets from the scattered field measurements, are particularly interesting since such methods can image multiple objects without requiring a-priori knowledge. Thus, we present a qualitative imaging method for subsurface sensing under a rough surface. The method relies on FM, where the aim is to retrieve the shape of unknown dielectric objects embedded inside a dielectric body whose closed boundary and electrical parameters are known a priori. Results show the stability and accuracy of the proposed method under very realistic conditions. In the second part of this thesis, the problem of using the qualitative methods in the real world measurement scenario is addressed. In the real world applications imaging systems extensively incorporate vector network analyzers (VNAs) instead of implementing additional modules to perform microwave measurements. This is particularly driven by availability of high performance VNAs. While there are alternative ways of reconstructing an image in MWI, imaging methods are naturally formulated in terms of scattered electric field vectors whereas measured scattering parameters (S-parameters) are only auxiliary quantities. Consequently, an intermediate step is required for experimental setups where measured S-parameters are mapped into scattered electric field. This is mostly handled by comparing simulated electric fields against measured S-parameters. As a better alternative to the canonical calibration procedures, we develop novel qualitative microwave imaging algorithms, which uses the measured S-parameters directly. Obtained experimental results prove the accuracy and the stability of the presented method. In the third and last part of the thesis, we consider the problem of using qualitative imaging methods in real world concealed target imaging scenarios. Real world concealed target detection can have different applications ranging from medical imaging to subsurface sensing, as mentioned above. Main challenge for such inverse problems is that the solution procedures are expected to capture the electrical parameters (relative dielectric constant \u1d716\u1d45f, conductivity \u1d70e) of whole medium, which includes the buried objects. Up to date, many quantitative techniques are developed to obtain the complete electrical parameter distribution of a medium. However, if we take a glance at these formulations, we can see that they involve a considerable computational burden. Being contradictory to quantitative techniques, qualitative inversion methods, which aim to recover only the shape of the scatterers, have relatively simple formulations and require lower computational resources. In contrast to such obvious advantages, qualitative inversion techniques are rarely employed in buried obstacle detection, since these methods have strong a priori knowledge requirements in their original form. In particular, to be able to detect the shape of an inclusion by means of these methods, we must supply these two a priori pieces of information: (i) the dielectric parameters of the surrounding medium and (ii) the scattered field when there is no buried object inside the surrounding medium. It is obvious that fulfilling such strong conditions altogether is of a serious issue in any imaging problem. To this end, we propose a strategy to overcome the a priori knowledge requirement on the dielectric parameters of the surrounding medium. Results, which are obtained from real experiments performed in an anechoic chamber, confirm the accuracy and the stability of the proposed formulations.DoktoraPh.D

    New Global Perspectives on Archaeological Prospection

    Get PDF
    This volume is a product of the 13th International Conference on Archaeological Prospection 2019, which was hosted by the Department of Environmental Science in the Faculty of Science at the Institute of Technology Sligo. The conference is held every two years under the banner of the International Society for Archaeological Prospection and this was the first time that the conference was held in Ireland. New Global Perspectives on Archaeological Prospection draws together over 90 papers addressing archaeological prospection techniques, methodologies and case studies from 33 countries across Africa, Asia, Australasia, Europe and North America, reflecting current and global trends in archaeological prospection. At this particular ICAP meeting, specific consideration was given to the development and use of archaeological prospection in Ireland, archaeological feedback for the prospector, applications of prospection technology in the urban environment and the use of legacy data. Papers include novel research areas such as magnetometry near the equator, drone-mounted radar, microgravity assessment of tombs, marine electrical resistivity tomography, convolutional neural networks, data processing, automated interpretive workflows and modelling as well as recent improvements in remote sensing, multispectral imaging and visualisation
    corecore