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QUALITATIVE METHODS IN MICROWAVE IMAGING 

SUMMARY 

Microwave imaging (MWI) emerges as a novel technology that aims to extract 

physical properties of inaccessible objects from the scattered electric field 

measurements. MWI covers  a very wide range of applications which includes but not 

limited to nondestructive testing (NDT), subsurface imaging, through wall imaging, 

biological imaging. The most important factor that tends the scientists to imaging with 

microwaves is non-ionizing nature of MWI when interacted with biological tissues. 

Therefore, MWI can be regarded as a healthy alternative of current imaging 

technologies, which are mostly based on ionizing radiation. 

Inverse scattering theory provides a group of highly theoretical approaches, known as 

qualitative method. These methods are based on inverting an integral equation for each 

point over a reconstruction domain to determine only the shape and the position of 

unknown scatterers without requiring any a-priori information. Two well-known 

representatives of qualitative inverse scattering methods are (i) linear sampling method 

(LSM) and (ii) factorization method (FM). These two methods are in fact quite similar 

in formulation as well as performance. These qualitative approaches are also usable in 

the MWI, where the inverse problem can be casted into two integral equations. 

Traditional solution approaches for MWI are based on non-linear or linear 

optimization methods. These methods recasts the nonlinear scattering problem in form 

of a minimization problem. Additionally, they can utilize Born approximation to 

linearize the problem and then the cost function is minimized via one of the canonical 

optimization approaches such as conjugate gradient method, newton’s method. In 

other words, these methods model the physical scattering mechanism to determine 

electrical properties of dielectric objects and attempts to minimize a cost functional by 

using a canonical minimization procedure. In contrast to these approaches, the 

qualitative inverse scattering methods uses linearity of the scattering problem or the 

duality principle to reach their final aim, which is obtaining the support of the scatterer. 

Thus, their modest goals and linear nature make these qualitative approaches easier to 

implement and more efficient in use of computational resources. In contrast to all these 

attractive features, both LSM and FM are rarely investigated from an engineering 

perspective due to their mathematical background. Hence, analyzing these methods 

from an engineering perspective and making these methods applicable in real world 

imaging scenarios is an important problem.  

In the first part of the thesis, we analyze the problem of imaging buried targets under 

a rough surface for a two dimensional transverse magnetic scattering scenario. In fact, 

imaging of buried targets under the rough ground is a challenging inverse scattering 

problem with many applications in engineering such as land mine detection and remote 

sensing of archaeological artefacts. Conventional technology that uses microwaves for 

subsurface sensing of the underground is ground penetrating radar (GPR) which 

generates radargrams that require further interpretation by experts. Also, various 

quantitative inverse scattering methods are existent in the literature to provide 
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additional information on the morphological and electrical properties of buried 

obstacles. Furthermore, the surface roughness, which is a critical factor that determines 

the limits of subsurface imaging, are only considered in a very few studies. In this 

context, qualitative inverse scattering methods, which are almost exclusively used for 

reconstructing the shape of inaccessible targets from the scattered field measurements, 

are particularly interesting since such methods can image multiple objects without 

requiring a-priori knowledge. Thus, we present a qualitative imaging method for 

subsurface sensing under a rough surface. The method relies on FM, where the aim is 

to retrieve the shape of unknown dielectric objects embedded inside a dielectric body 

whose closed boundary and electrical parameters are known a priori. Results show the 

stability and accuracy of the proposed method under very realistic conditions. 

In the second part of this thesis, the problem of using the qualitative methods in the 

real world measurement scenario is addressed. In the real world applications imaging 

systems extensively incorporate vector network analyzers (VNAs) instead of 

implementing additional modules to perform microwave measurements. This is 

particularly driven by availability of high performance VNAs. While there are 

alternative ways of reconstructing an image in MWI, imaging methods are naturally 

formulated in terms of scattered electric field vectors whereas measured scattering 

parameters (S-parameters) are only auxiliary quantities. Consequently, an intermediate 

step is required for experimental setups where measured S-parameters are mapped into 

scattered electric field. This is mostly handled by comparing simulated electric fields 

against measured S-parameters. As a better alternative to the canonical calibration 

procedures, we develop novel qualitative microwave imaging algorithms, which uses 

the measured S-parameters directly. Obtained experimental results prove the accuracy 

and the stability of the presented method.       

In the third and last part of the thesis, we consider the problem of using qualitative 

imaging methods in real world concealed target imaging scenarios. Real world 

concealed target detection can have different applications ranging from medical 

imaging to subsurface sensing, as mentioned above. Main challenge for such inverse 

problems is that the solution procedures are expected to capture the electrical 

parameters (relative dielectric constant 𝜖𝑟, conductivity 𝜎) of whole medium, which 

includes the buried objects. Up to date, many quantitative techniques are developed to 

obtain the complete electrical parameter distribution of a medium. However, if we take 

a glance at these formulations, we can see that they involve a considerable 

computational burden. Being contradictory to quantitative techniques, qualitative 

inversion methods, which aim to recover only the shape of the scatterers, have 

relatively simple formulations and require lower computational resources. In contrast 

to such obvious advantages, qualitative inversion techniques are rarely employed in 

buried obstacle detection, since these methods have strong a priori knowledge 

requirements in their original form. In particular, to be able to detect the shape of an 

inclusion by means of these methods, we must supply these two a priori pieces of 

information: (i) the dielectric parameters of the surrounding medium and (ii) the 

scattered field when there is no buried object inside the surrounding medium. It is 

obvious that fulfilling such strong conditions altogether is of a serious issue in any 

imaging problem. To this end, we propose a strategy to overcome the a priori 

knowledge requirement on the dielectric parameters of the surrounding medium. 

Results, which are obtained from real experiments performed in an anechoic chamber, 

confirm the accuracy and the stability of the proposed formulations. 
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MİKRODALGA GÖRÜNTÜLEMEDE NİTEL YÖNTEMLER 

ÖZET 

Mikrodalga görüntüleme doğrudan erişilemeyen saçıcıların elektriksel özelliklerini 

(göreli dielektrik sabiti 𝜖𝑟, göreli manyetrik geçirgenlik katsayısı 𝜇𝑟 iletkenlik 𝜎 yahut 

debye parametreleri)  saçtıkları elektrik alandan tespiti ile ilgilenen yeni bir 

teknolojidir. Mikrodalga görüntüleme hasarsız muayene, toprak altı görüntüleme, 

duvar arkası görüntüleme ve biyolojik doku görüntüleme gibi çeşitli tıbbi ve askeri 

uygulamalarda gelecek vaadeden bir teknikdir. Mikrodalga görüntülenmenin 

günümüz biliminde bu denli önemli olmasının temel nedeni ise biyolojik dokularla 

etkileşime geçtiğinde ionize edici bir özelliği olmamasıdır. Bu nedenle mikrodalga 

görüntüleme günümüzde sıkça kullanılan ve çoğu ionize edici radrasyona bağlı olan 

görüntüleme teknolojilerinin tümü için çok önemli bir yedek seçenektir.   

Ters saçılma teorisi nitel görüntüleme yöntemleri adı altında oldukça teorik bir takım 

yöntemleri literatürde barındırmakradır. Nitel görüntüleme yöntemleri integral 

denklemlerden saçıcının yalnızca şekil ve konumunun tespiti için kullanılır olup ve 

saçıcıların yapısı ve şekli ile ilgili herhangi bir ön bilgiye ihtiyaç duymamaktadır. Nitel 

görüntüleme yöntemlerinin en bilindik iki tanesi: (i) doğrusal örnekleme yöntemi ve 

(ii) faktörizasyon yöntemidir. Doğrusal örnekleme yöntemi ve faktörizasyon yöntemi 

formülasyon ve performans açısından birbirine oldukça benzerdir. Kısaca anlatmak 

gerekirse, doğrusal örnekleme yöntemi tarihsel olarak faktörizasyon yönteminden 

önce önerilmiş olup henüz matematiksel olarak tam olarak ispat edilememiştir. 

Faktörizasyon yöntemi ise doğrusal örnkeleme yönteminden esinlenerek geliştirilmiş 

olup doğruluğu matematiksel olarak da kanıtlanmıştır. Bu iki yönteminde ters 

problemin birbirine bağlı iki doğrusal olmayan integral denklem olarak ifade 

edilebildiği mikrodalga görüntülemede kullanılması mümkündür. 

Mikrodalga görüntülemede geleneksel çözüm yolu doğrusal olan veya doğrusal 

olmayan optimizasyon metodlarıdır. Bu metotlar eldeki doğrusal olmayan 

elektromanyeik saçılma problemini bir minimizasyon problemi haline dönüştürür. Ek 

olarak bu yöntemlerin bazıları doğrusal olmayan saçılma problemini doğrusal hale 

getirebilmek amacıyla Born yaklaşımını da kullanır. Sonuç olarak eldeki amaç 

fonksiyonunu minimize etmek amacıyla bilindik bir optimizasyon yöntemini (konjuge 

gradyan metodu, Newton yöntemi vs.) kullanır. Diğer bir deyişle nicel görüntüleme 

yöntemi olan bu metotlar fiziksel saçılma mekanizmasını kullaranarak elde edilen 

ölçülmüş elektrik alanı oluşturacak saçıcının şeklini ve elektriksel özelliklerini (göreli 

dielektrik sabiti 𝜖𝑟, göreli manyetrik geçirgenlik katsayısı 𝜇𝑟 iletkenlik 𝜎 yahut debye 

parametreleri) kestirmeye çalışır. Bu nicel yöntemlerin dışında bir de yukarıda da 

bahsettiğimiz nitel görüntüleme yöntemleri vardır ki bunlar saçılma problemini sadece 

saçıcıların şeklini ve konumunu bulmak amacıyla çözerler. Nitel görüntülenme 

yöntemleri, nicel görüntüleme metotlarından farklı olarak hedef cisimlerin şekli ve 

konumunu tespit amacıyla genellikle elektromanyetik saçılma probleminin belirli bir 

saçıcı veya saçıcılar kümesi için doğrusal olması gerçeğini ve dualite prensiplerini 
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kullanır. Nitel görüntüleme yöntemlerinin bu görece düşük beklentisi ve doğrusal 

yapıları onların bilgisayar ortamında kolayca gerçeklenebilmesini ve nicel 

görüntüleme yöntemlerine oranla çok daha az sürelerde ve çok daha az bir hesaplama 

yükü ile bilgisayar ortamında çalıştırılabilmesini sağlar. Tecrübelerimize dayanarak 

örnek vermek gerekirse, üç boyutlu (yaklaşık 150 bin – 300 bin bilinmeyen içeren) bir 

saçılma probleminin kontrast kaynak yöntemi ile çözülmesi ortalama bir bilgisayarda 

(8 GB RAM) olarak 1-2 saat alırken, aynı probleme LSM veya FM’nin uygulanması 

için maksimum 5 – 10 dk. gibi bir süre yeterli olacaktır.  Tüm bu avantajalrına rağmen, 

başta LSM ve FM olmak üzere tüm nitel görüntüleme yöntemleri mühendislik 

alanında çok da uygulama alanı bulamamaktadır. Bunun başlıca sebepleri nitel 

görüntüleme yöntemlerinin genellikle çok üst düzey bir matematiksel arkaplana 

dayanması, bu yöntemlerin matematikçiler tarafından fiziksel şartların ve gerçek hayat 

durumlarının pek de düşünülmeden ortaya konulmuş olması (yani bu yöntemlerin pek 

çoğu esas olarak düzlem dalga aydınlatması altında ve ölçümlerin ölçüm mesafesi 

sonsuza yaklaşırkenki asimptotik halleri için kanıtlanmıştır) ve bu yöntemlerin fiziksel 

bir zemine oturtulmasının zor olmasıdır. İşte bu sebeblerle nitel görüntüleme 

yöntemlerinin incelemesi ve nitel görüntüleme yöntemlerinin gerçek hayatta 

kullanabileceğimiz algoritmalar haline getirilip onların fiziksel arkaplanlarının ve 

uygulama için gerekli koşulların ortaya konulması önemli bir çalışma alanı teşkil 

etmektedir.  

Bu tezin ilk kısmında, iki boyutlu bir uzayda enine manyetik saçılma senaryosu için 

engebeli bir yüzey altındaki gömülü cisimlerin tespiti amacıyla bir faktörizasyon 

metodu önerilmiş ve benzetimlerle elde edilmiş sonuçlarla oldukça gerçekçi durumlar 

için doğrulanmıştır. Esasında engebeli yüzey altında gömülü cisimlerin 

görüntülenmesi  mayın tespiti ve arkelojik gömülerin görüntülenmesi gibi çok değişik 

uygulamaları olan oldukça karmaşık bir problemdir. Günümüzde  yeraltının 

görüntülenmesi için mikrodalgaları kullanan temel teknoloji uzmanlar tarafından 

yorumlanması gereken ve sonuçta radaragramlar oluşturan yer radarı (ground 

penetrating radar, GPR) olduğu bilinmektedir. Bunun haricinde görüntülenmek 

istenen yeraltı bölgenin elektriksel ve şekilsel özellikleri ile ilgili bilgi veren bazı nitel 

ters saçılma yöntemleri de literatürde bulunmaktadır. Ayrıca, yeraltı görüntülemede 

çok önemli bir faktör olan ve çoğu zaman uygulanan yöntemin başarısını belirleyen 

yüzey engebesinin ise pek az sayıda çalışmada dikkate alındığı gerçeği de 

bilinmektedir. Bu bağlamda, pek çok görüntüleme probleminde saçıcı cisimlerin yer 

ve şeklinin tespiti amaçlı kullanılabilecek olan ve aynı anda pek çok sayıda değişik 

özelliğe sahip saçıcıları da görüntüleyebilen nicel mikrodalga görüntüleme yöntemleri 

bu problem özelinde de (engebeli bir yüzey altında gömülü saçıcı hedeflerin tespiti) 

oldukça ilginç bir alternatif teşkil etmektedir. Bundan dolayı tezimizin ilk kısmı bu 

konu üzerine olan çalışmalarımıza ayrılmıştır. Özel olarak bu kısımda yeraltına 

gömülü herhangi bir sayıda ve herhangi bir özelliğe sahip saçıcıların yer ve konumları 

faktörizasyon metodu ile tespit edilecektir. Çalışmamızda sınırlı açıklıklı bir anten 

dizisi ile belirli bir toprak altı bölgenin taranması durumu değişik aydınlatma 

frekansları, değişik nem oranına haiz toprak, değişik engebe profilleri, toprağın ve 

engebe profillerinin kısmen bilindiği durumlar için  ayrı ayrı incelenmiş olup her 

durumda yöntemin başarımı ortaya konmuştur. Elde edilen sonuçlar uygulanan 

yöntemin gerçek hayattaki problemler için de umut verici olduğunu ortaya koymuştur. 

Tezin ikinci kısmında ele alınan temel nicel görüntüleme yöntemlerinin gerçek ölçüm 

düzenekleri için nasıl kullanılacağı problemi ele alınmıştır. Mikrodalga frekanslarında 

yapılan ölçümlerde yaygın olarak vektör ağ analizörleri (vector network analyzer, 
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VNA) kullanımaktadır. Bu yaygın kullanımın başlıca sebebi vektör ağ analizörlerinin 

piyasada kolayca bulunabilir oluşu ve bu cihazların gösterdiği yüksek performansdır. 

Birkaç istisnai durum haricinde mikrodalga görüntüleme problemleri hep saçılan 

elektrik alan bilgisini kullanıp saçıcı hedeflerin elektriksel parametrelerinin (göreli 

dielektrik sabiti 𝜖𝑟, göreli manyetrik geçirgenlik katsayısı 𝜇𝑟 iletkenlik 𝜎 yahut debye 

parametreleri) hesaplanmasını amaçlar. Buna karşın, vektör ağ çözümleyicilerinin 

ölçtüğü temel büyüklük saçılma parametreleridir. Bu nedenle genellikle yapılan iş 

ölçülen saçılma  parametrelerinin saçılan elektrik alana çevrilmesi için belli başlı 

prosedürleri uygulamaktır. Saçılma parametreleri ile saçılan elektrik alan arasındaki 

bu bağlantıyı sağlayan dönüşüm ise genellikle belirli bir geometrik şekle haiz (düzlem, 

düzgün dairesel silindir veya küre) ve bilindik elektriksel özellikteki cisimlerin ölçülen 

saçılma parametreleri ile benzetimden elde edilmiş saçılan elektrik alanını 

karşılaştırmak üzerine kuruludur. Tezin ikinci kısmında bu bilindik kalibrasyon 

prosedürlerinin yerine daha iyi bir alternatif olarak ele alınan nitel görüntüleme 

yöntemlerini (doğrusal örneklem yöntemi ve faktörizasyon yöntemi) doğrudan 

saçılma parametreleri üzerinden yendien formüle ettik. Elde edilen sonuçlar geliştirlen 

yöntemin hem iki boyutlu hem de üç boyutlu görüntüleme de çok satbil ve doğru bir 

şekilde çalıştığını göstermektedir. 

Tezin üçüncü ve son kısmında ise ele alınan nitel görüntüleme yöntemleri (doğrusal 

örneklem yöntemi ve faktörizasyon yöntemi) ile saklı cisim tespiti probleminin 

çözümü üzerine yoğunlaştık. Saklı cisim tespiti problemi gerçek hayat 

uygulamalarında, özellikle çeşitli medikal ve askeri uygulamalarda, pek çok durumda 

karşımıza çıkmaktadır. Saklı cisim tespiti problemleminin çözümündeki temel zorluk 

ele alınan (görüntülenmesi hedeflenen) ortamın her noktasındaki elektriksel 

parametrelerin (göreli dielektrik sabiti 𝜖𝑟, göreli manyetrik geçirgenlik katsayısı 𝜇𝑟 

iletkenlik 𝜎 yahut debye parametreleri)  hesaplanmasının gerekliliğidir. Bugüne kadar 

ele alınan ortamın tüm elektriksel parametrelerinin her noktadaki hesabı için pek çok 

değişik nicel görüntülüme yöntemi geliştirilmiş ve doğrulanmıştır. Ancak tüm nicel 

görüntüleme yöntemleri gibi bu yöntemlerinde oldukça ağır bir hesaplama yükü 

içerdiği gerçeği ortadadır. Daha önce de bahsedildiği üzere nicel yöntemlerin aksine 

nitel görüntüleme yöntemleri daha basit şekilde bilgisayar ortamında gerçeklenebilen 

daha basit formülasyonlara sahip ve hesaplama zamanı ve yükü nicel görüntüleme 

yöntemlerine oranla oldukça düşük olan yöntemlerdir. Tüm bu avantajlarına rağmen 

nitel görüntüleme yöntemleri saklı cisim tespitinde oldukça az kullanılmıştır. Bunun 

başlıca sebepleri, yukarıda da bahsedildiği üzere, bu yöntemlerin çok üst düzey bir 

matematiksel arkaplana dayanması, nitel görüntüleme yöntemlerinin matematikçiler 

tarafından fiziksel şartların ve gerçek hayat durumlarının pek de düşünülmeden ortaya 

konulmuş olması ve bu yöntemlerin fiziksel bir zemine oturtulmasının zor olmasıdır. 

Özel olarak saklı cisim tespiti problemi için bakacak olursak, nitel görüntüleme 

yöntemleri saklı cisim tespiti probleminde şu iki temel bilgiye ihtiyaç duyar: (i) 

cisimlerin gömülü olduğu ortamın elektriksel özellikleri (göreli dielektrik sabiti 𝜖𝑟, 
göreli manyetrik geçirgenlik katsayısı 𝜇𝑟 iletkenlik 𝜎 yahut debye parametreleri) (ii) 

gömülü cisimlerin olmadğı duumda arka plandan saçılan elektrik alan bilgisi. Açıktır 

ki bu iki bilginin her ikisini de aynı anda sağlamak neredeyse tüm problemler için 

imkansızdır. Bu sebeple biz tzin bu üçüncü ve son kısmında bu önsel bilgi probleminin 

çözümü amacıyla bir yöntem önerdik. Özel olarak, pek çok saklı cisim tespiti 

probleminde yukarıdaki ikinci bilgi ((ii) gömülü cisimlerin olmadğı duumda arka 

plandan saçılan elektrik alan bilgisi) aslında elde edilebilir olup bu bilgi ışığında ilk 

önsel bilgiyi kullanmadan eldeki nitel görüntüleme yöntemlerinin yüksek bir 
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başarımla çalıştırılabileğini önerdik. Elde edilen sonuçlar önerdiğimiz yöntemin 

oldukça stabil ve doğru bir biçimde çalıştığını doğrular niteliktedir.
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 INTRODUCTION 

Microwave imaging is an important and newly developing technology for specialized 

needs arising in military, medical and other applications.  Microwaves have important 

advantages when compared with other conventional imaging modalities. Firstly, many 

imaging technology, which are consistently employed in military and medical area, 

highly depends on ionizing radiation, which is quite harmful for health. Microwaves 

do not have an ionizing property, thus regardless of the the final aim, the developed 

method will not as harmful as the currently used modalities. Furthermore, the 

wavelengths utilized in microwaves are well suitable (i.e. are resonance with targets) 

for many real world applications while they can penetrate into biological tissues (for 

medical applications), in soil (for subsurface imaging) and in air (for radar and military 

applications). In contrast to such advantages, using microwaves raises several 

problems, which constitutes the basis of many researches made on microwave imaging 

technologies today. The first and biggest problem is that the imaging with microwaves 

requires solving Maxwell’s equation for scatterers having sizes in the order of 

wavelength (i.e. in resonance region). Unfortunately, the electromagnetic scattering 

problem is turned out to be a nonlinear problem in resonance region, while imaging 

with higher frequencies, which are mostly used in the many imaging modalities like 

computerized tomography, can generally be modeled with linear scattering problem 

approximations. Thus, microwave imaging requires specialized algorithms, which can 

handle with nonlinear optimization problems. It is obvious that these improved 

algorithms will take certainly more time to be solved and will occupy more 

computational space in any computer system. Additionally, the systems that are to be 

designed for microwave imaging operations can have relatively large sizes and their 

calibration requires additional operations. Nevertheless, in the recent years many 

researches prove that with the increasing computational power of the commercially 

available computers, it will be possible to solve these problems in a near future. 
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Microwave imaging technologies can mainly be separated into two different groups: 

(i) quantitative inversion methods [1-7] (ii) qualitative inversion methods [8-14]. First 

group of methods aim to recover the electrical parameters (relative dielectric 

constant 𝜖𝑟, relative magnetic permeability 𝜇𝑟, conductivity 𝜎 or debye parameters) of 

the investigated region. By doing so, such methods can retrieve all information (shape, 

location and electrical parameter distribution) of the whole investigated region. 

Quantitative inversion approaches either set the non-linear scattering problem as 

minimization of a non-linear function [2-5] or they utilize from Born approximation 

[1,2] and/or the concept of virtual experiments [6,7] to convert the scattering problem 

into minimization of a linear function. After setting up the optimization problem, 

quantitative inversion methods employ canonical minimization-maximization 

procedures like conjugate gradient method, Newton’s method to obtain the most 

suitable electrical parameter distribution, which can generate the measured scattered 

electric field under given incident field excitation. Examples of these methods includes 

but not limited to Contrast Source Inversion method [3-5], Born Iterative method [1,2], 

Distorted Born Iterative method [2]. Quantitative imaging methods are shown to be 

stable and accurate for many practical microwave imaging problems [1-7]. In contrast 

to such advantageous the quantitative inversion methods, they generally require a 

significant amount of computational time-computational space and due to these large 

computational requirements their implementation are not generally straightforward in 

any computer system. Specifically, there are ongoing researches on how to implement 

the quantitative inversion methods more efficiently [6,7,15-18]. Possible solutions 

include but not limited to using parallel computing approaches [15,16], reducing 

computational size of the scattering problem via certain assumptions like virtual 

experiments technique [6,7], sparsity constrained optimization techniques [17,18].  

Qualitative inversion approaches aim to retrieve only the shape and the location of the 

scatterers and they do not provide information about the electrical properties (relative 

dielectric constant 𝜖𝑟, relative magnetic permeability 𝜇𝑟, conductivity 𝜎 or debye 

parameters)  of the targets [8-14]. For this aim, qualitative inversion methods utilize 

from the fact that the scattering problem is linear when the scatterer remains the same 

and they also employ duality/reciprocity principles to obtain so called indicator 

functions, which have the information of the shape and the location of the targets. 

Examples of qualitative inversion techniques include but not limited to linear sampling 
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method [9], factorization method [10], point source method [13], no-response test [13]. 

From those examples, the most remarkable ones are the linear sampling method 

[9,12,14] and the factorization method [10,11]. The qualitative inverse scattering 

methods are well established in mathematical literature, but their applications in real 

world engineering problems are rarely investigated [6,7,14]. The reasons behind this 

fact are: (i) their sophisticated mathematical background, which highly depends on 

special subjects of functional analysis (ii) their unrealistic assumptions, which are hard 

to satisfy in real world applications, e.g. most of those methods are proposed for plane 

wave excitation and far field measurements, they can require some a-priori information 

about the target, especially for the concealed target detection problems [13]. 

Nevertheless, the qualitative inverse scattering methods constitute an important option 

for microwave imaging problems, when one considers their modest computational 

time-computational space requirements [13]. Thus investigation of the usability of 

qualitative inverse scattering methods in real world microwave imaging problems is 

an important problem, which can find many applications in different areas ranging 

from medical imaging to military purposes.  

 Purpose of Thesis  

In the context described above, the general aim of this thesis is to analyze the 

qualitative imaging methods from an engineering perspective as well as explaining 

how to use these qualitative approaches in real world imaging problems. 

In the first part of the thesis, we analyze the problem of imaging buried targets under 

a rough surface for a two dimensional transverse magnetic (2D-TM) scattering 

scenario. In fact, imaging of buried targets under the rough ground is a challenging 

inverse scattering problem with many applications in engineering such as land mine 

detection and remote sensing of archaeological artefacts. Conventional technology that 

uses microwaves for subsurface sensing of the underground is ground penetrating 

radar (GPR) which generates radargrams that require further interpretation by experts 

[19]. On the other hand, as we declared above, various quantitative inverse scattering 

methods have been attempted to generate more intuitive subsurface images of 

underground as well as providing additional information on the morphological and 

electrical properties of buried obstacles [19-24]. While the surface roughness is a 

critical factor that determines the limits of subsurface imaging, very few studies take 
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surface roughness into account [25,26]. In this context, qualitative inverse scattering 

methods, which are almost exclusively used for reconstructing the shape of 

inaccessible targets from the scattered field measurements, are particularly interesting 

since such methods can image multiple objects without requiring a-priori knowledge 

[13]. Thus, we present a qualitative imaging method for subsurface sensing. The 

method relies on the theoretical framework derived in [27], where the aim is to retrieve 

the shape of unknown dielectric objects embedded inside a dielectric body whose 

closed boundary and electrical parameters are known a priori. 

In the second part of this thesis, the problem of using the qualitative methods in the 

real world measurement scenario is addressed. In the real world applications imaging 

systems extensively incorporate vector network analyzers (VNAs) instead of 

implementing additional modules to perform microwave measurements. This is 

particularly driven by availability of high performance VNAs. While there are 

alternative ways of reconstructing an image in MWI, imaging methods are naturally 

formulated in terms of scattered electric field vectors whereas measured scattering 

parameters (S-parameters) are only auxiliary quantities. Consequently, an intermediate 

step is required for experimental setups where measured S-parameters are mapped into 

scattered electric field. This is mostly handled by comparing simulated electric fields 

against measured S-parameters [28,29]. As a better alternative to the canonical 

calibration procedures, we develop novel qualitative microwave imaging algorithms, 

which uses the measured S-parameters directly.  

In the third and last part of the thesis, we consider the problem of using qualitative 

imaging methods in real world concealed target imaging scenarios. Real world 

concealed target detection can have different applications ranging from medical 

imaging to subsurface sensing, as mentioned above. Main challenge for such inverse 

problems is that the solution procedures are expected to capture the electrical 

parameters (relative dielectric constant 𝝐𝒓, conductivity 𝜎) of whole medium, which 

includes the buried objects. Up to date, many quantitative techniques are developed to 

obtain the complete electrical parameter distribution of a medium [1-7]. However, if 

we take a glance at these formulations, we can see that they involve a considerable 

computational burden. Being contradictory to quantitative techniques, qualitative 

inversion methods, which aim to recover only the shape of the scatterers, have 

relatively simple formulations and require lower computational resources [8,13]. In 
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contrast to such obvious advantages, qualitative inversion techniques are rarely 

employed in buried obstacle detection, since these methods have strong a priori 

knowledge requirements in their original form. In particular, to be able to detect the 

shape of an inclusion by means of these methods, we must supply these two a priori 

pieces of information: (i) the dielectric parameters of the surrounding medium and (ii) 

the scattered field when there is no buried object inside the surrounding medium 

[8,13]. It is obvious that fulfilling such strong conditions altogether is of a serious issue 

in any imaging problem. To this end, we propose a strategy to overcome the a priori 

knowledge requirement on the dielectric parameters of the surrounding medium. 

 Literature Review 

For the first part of the thesis, the situation is as we explained in the above. Today’s 

conventional technology utilizes from GPR to obtain a map of the targets buried under 

soil [19]. In addition to this, there are some works to extent usage of microwaves to 

localization of buried targets’ case [20-24]. Yet, only a small portion of these works 

consider the case when the surface profile has a roughness, which is the case for many 

circumstances [25,26]. Thus, in the author’s opinion, the contribution of the first part 

of this thesis, which is applied a recently proposed factorization method for a realistic 

near field measurement scenario, becomes meaningful.    

For the second part of the thesis, the previous works states nothing but using LSM, 

which is described in [9], or FM, which is introduced in [10,11],  after a conventional 

calibration procedure [1-7]. Yet, this calibration procedure does not take the antenna 

patterns into account explicitly [1-7]. Also to be able to obtain an image, the S-

parameter data must undergo some processing to be converted into electrical field 

values [1-7]. Thus, in the author’s opinion, the contribution of the second part of this  

thesis, which is developing the S-parameter based linear sampling method (S-LSM) 

and S-parameter based factorization method (S-FM), becomes meaningful.        

Lastly, for the final part, it has to be said that there are already several studies to remedy 

the a priori information problems of qualitative imaging methods [31-34]. In [31], the 

reciprocity gap-linear sampling method (RG-LSM) is utilized to relieve LSM from the 

above mentioned constraints. In [32-34], different qualitative methods are assessed in 

biomedical applications for which a limited a priori information is available. Yet, the 

methods, which are presented in the thesis, distinguish from these works. Simply, the 
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introduced methods proposes a practical solution procedure and they are 

experimentally verified by means of the real measurements. We stated before that to 

be able to detect the shape of an inclusion by means of these methods, we must supply 

these two a priori pieces of information: (i) the dielectric parameters of the surrounding 

medium and (ii) the scattered field when there is no buried object inside the 

surrounding medium. Explicitly, we state that it is possible to use LSM and FM in 

practical situations, whenever the condition (ii) is satisfied. It is important to notice 

that if (i) is satisfied (ii) is already fulfilled, but the converse is not true. Furthermore, 

the second condition can be satisfied in certain practical applications like mine 

sweeping, subsurface sensing or through-wall imaging, and so forth. Thus, in the 

author’s opinion,  the contribution of the final part of this thesis, which is giving a 

practical recipe for application of LSM and FM in real world concealed target imaging 

scenarios, becomes meaningful.        

 Hypothesis 

The hypotheses and contributions, which are newly proposed and confirmed in this 

thesis, can be given as in the below: 

1. In the first part of the thesis, we have applied a recently proposed 

factorization method, which uses far field measurement data inherently, to 

a rough-subsurface imaging problem, where the measurements are near 

field. 

2. In the first part of the thesis, we have described how this factorization 

method can be utilized when the exciting-measuring antennas do not cover 

whole surface (i.e. for the limited aperture situation).  

3. In the first part of the thesis, we also analyze the performance of the method 

for other realistic cases, where the dielectric parameters of the soil or the 

roughness profile is not exactly known. 

4. In the second part of the thesis, we develop the S-parameter based linear 

sampling method (S-LSM) and S-parameter based factorization method (S-

FM), which uses S - parameters measurements instead of electric field 

measurements. 
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5. In the second part of the thesis, we define two novel quantity, which are 

vector S-parameters and dyadic Green’s function for S-parameters to 

develop the S-LSM and S-FM. 

6. In the second part of the thesis, we experimentally prove the developed 

formulations for 2D-TM scattering setup. 

7. In the second part of the thesis, we experimentally prove the developed 

formulations for 3D vectorial scattering setup. 

8. In the third part of the thesis, we improve the LSM and FM to cope with 

real world concealed target imaging problems. In particular we release the 

methods from their a-priori information requirements. 

9. In the third part of the thesis, we experimentally prove the developed 

formulations for 2D-TM scattering setup 
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 MICROWAVE IMAGING 

 Direct Scattering Problem 

Consider a 3D scattering problem scenario in which several objects Ω1, Ω2, … , Ω𝑃, 

which are encapsulated by a domain D and which have with different electromagnetic 

parameters (𝜖𝑟1, 𝜇𝑟1, 𝜎1), (𝜖𝑟2, 𝜇𝑟2, 𝜎2),… , (𝜖𝑟𝑃, 𝜇𝑟𝑃, 𝜎𝑃), are hosted in a background 

medium, whose electromagnetic parameters are (𝜖𝑟𝑏, 𝜇𝑟𝑏, 𝜎𝑏).  Assume that this 

system is excited by the plane wave 𝐄𝐢(𝐫) = exp (𝑖𝐤𝐛. 𝐫), where 𝐤𝐛 = 𝑘𝑏𝐧
𝐢; 𝑘𝑏

2 =

 𝜔2𝜇𝑟𝑏휀𝑟𝑏𝜇0𝜖0 + 𝑖𝜎𝑏𝜇𝑟𝑏𝜇0𝜔; 𝜔 is the angular frequency  of illumination and 𝐧𝐢 is the 

direction of the propagation of the plane wave. Then, Helmholtz equations that has to 

be satisfied can be given as in the below: 

∆𝐄(𝐫) + 𝑘2𝐄(𝐫) = 0                                                         (2.1) 

∆𝐄𝐢(𝐫) + 𝑘𝑏
2𝐄𝐢(𝐫) = 0                                                      (2.2) 

where 𝑘2 is wavenumber in the medium containing the scatterers, 𝐄(𝐫) and 𝐄𝐬(𝐫) =

𝐄(𝐫) − 𝐄𝐢(𝐫) are the total and scattered electrical fields excited in the whole medium.  

The below modifications can be done on (2.1) and (2.2): 

∆𝐄(𝐫) + 𝑘2𝐄(𝐫) =  ∆𝐄𝐢(𝐫)+𝑘𝑏
2𝐄𝐢(𝐫) + (𝑘2 − 𝑘𝑏

2)𝐄𝐢(𝐫) + ∆𝐄𝐬(𝐫)+𝑘2𝐄𝐬(𝐫)     (2.3)                             

= (𝑘2 − 𝑘𝑏
2)𝐄𝐢(𝐫) + ∆𝐄𝐬(𝐫)+𝑘2𝐄𝐬(𝐫) = 0                                     (2.4)               

Then, the Helmholtz equation for scattered field can be written as: 

∆𝐄𝐬(𝐫) + 𝑘𝑏
2𝐄𝐬(𝐫) = −(𝑘2 − 𝑘𝑏

2)(𝐄𝐢(𝐫) + 𝐄𝐬(𝐫))                              (2.5)                                                                           

(∆ + 𝑘𝑏
2)𝐄𝐬(𝐫) = −(𝑘2 − 𝑘𝑏

2)𝐄(𝐫)                                         (2.6)              

Now, solution of the above equation can be simply written as a convolution of the 

sources (which is the the term at the right hand side) with the Green’s function of the 

Helmholtz equation in the scatterer free space, which is given by: 

𝐆(𝐫, 𝐫′) = (𝐈 +
1

𝑘𝑏
2   𝛁𝛁)

exp(𝑖𝑘|𝐫−𝐫′|)

4𝜋|𝐫−𝐫′|
                                      (2.7)       
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Thus: 

𝐄𝐬(𝐫) = ∫ (𝑘2 − 𝑘𝑏
2)𝐆(𝐫, 𝐫′)

𝐷
𝛘(𝐫′)𝐄(𝐫′)𝒅𝒓′,     𝐫 ∈ ℝ𝟑                   (2.8)     

Then by writing the above equation for 𝐫 ∈ D, we can obtain the below Fredholm 

equation of second kind 

𝐄(𝐫) = 𝐄𝐢(𝐫) + ∫ (𝑘2 − 𝑘𝑏
2)𝐆(𝐫, 𝐫′)

𝐷
𝛘(𝐫′)𝐄(𝐫′)𝒅𝒓′,     𝐫 ∈ D                  (2.9) 

The above equation is shown to be a well posed problem and its solution can be made 

by using the traditional method of moments technique [35]. After solving (2.9) and 

obtaining the total electric field inside the D, we can use (2.8) to compute the scattered 

field in ℝ𝟑. 

 Computational Aspects of Direct Scattering Problem 

Let us select D as the minimal cube containing all P scatterers and say the edge length 

of the sampling domain D is L. Then, by dividing this sampling domain to N in each 

orthogonal direction, Q=N3 many cubic cell is obtained with each of edge length 
𝐿

𝑁
. 

The centers of these cubic cells are selected as our sampling points 𝐫𝟏, 𝐫𝟐, … , 𝐫𝐐.  

In this setting the equations in (2.8) and (2.9) can be written as in the below: 

 𝐄𝐬 = 𝐆𝛘⊙ 𝐄                                                              (2.10)      

𝐄 = 𝐄𝐢 + 𝐆𝛘⊙ 𝐄                                                           (2.11) 

where 𝐄 = [Ex(𝐫𝐪); Ey(𝐫𝐪); Ez(𝐫𝐪)]3𝑄×1
; 1 ≤ 𝑞 ≤ 𝑄 is the total electric field induced 

on the domain D, 𝐄𝐢 = [Ex
𝑖 (𝐫𝐪); Ey

𝑖 (𝐫𝐪); Ez
𝑖(𝐫𝐪)]3𝑄×1

; 1 ≤ 𝑞 ≤ 𝑄 stands for the 

incident electric field on the sampling domain, 𝛘 = [𝜒(𝐫𝐪); 𝜒(𝐫𝐪); 𝜒(𝐫𝐪)]3𝑄×1
; 1 ≤

𝑞 ≤ 𝑄 denotes the object function, ⊙ stands for the Hadamard product and  

𝐆 = [

𝐺𝑥𝑥(𝐫𝐪, 𝐫𝐩) 𝐺𝑥𝑦(𝐫𝐪, 𝐫𝐩) 𝐺𝑥𝑧(𝐫𝐪, 𝐫𝐩)

𝐺𝑦𝑥(𝐫𝐪, 𝐫𝐩) 𝐺𝑦𝑦(𝐫𝐪, 𝐫𝐩) 𝐺𝑦𝑧(𝐫𝐪, 𝐫𝐩)

𝐺𝑧𝑥(𝐫𝐪, 𝐫𝐩) 𝐺𝑧𝑦(𝐫𝐪, 𝐫𝐩) 𝐺𝑧𝑧(𝐫𝐪, 𝐫𝐩)

]

3𝑄×3𝑄

;  1 ≤ 𝑞, 𝑝 ≤ 𝑄     (2.12) 

is the matrix whose cells hold the integration of Green’s function over a cubic cell. 

Here, the elements of Green’s function matrix can be computed as given in the below 

[35]: 
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𝐺𝑖𝑗 =

{
 

 (
4𝜋𝑎

𝑘2
(
sin(𝑘𝑎)

𝑘𝑎
− cos(𝑘𝑎)) (𝐈 +

1

𝑘𝑏
2   𝛁𝛁)

exp(𝑖𝑘|𝐫−𝐫′|)

4𝜋|𝐫−𝐫′|
 ) 𝐞𝑖𝐞𝑗, |𝐫 − 𝐫

′| > 𝑎 

(
−1+(

2

3
)(1−𝑖𝑘𝑎)𝑒𝑖𝑘𝑎

𝑘2
)𝛿𝑖𝑗 ,                                                                |𝐫 − 𝐫

′| < 𝑎
(2.13) 

where 𝑎 = √
3

4𝜋

3 𝐿

𝑁
 is the effective radius of the cubic cell. When we take a glance on 

the formulation above it is obvious that solution of (2.11) requires computation of 

Green’s matrix, whose number of elements 3𝑄 × 3𝑄. Such a memory requirement 

cannot be satisfied in many commercially available computers. Besides the inversion 

of Green matrix requires (3𝑄)3 operation, which is also not an acceptable time 

requirement. Thus to reduce the memory requirement the solution of (2.11) is 

performed with biconjugate gradient minimization method [35]. Thus the problem is 

reduced to evaluation of Green’s matrix and performing matrix multiplications 

including 𝐆. To further simplify the problem matrix multiplications including Green’s 

matrix 𝐆 can be performed with application of fast Fourier transform (FFT) due to 

being Toeplitz of Green’s matrix 𝐆. Particularly, let 𝐫 = (𝑥, 𝑦, 𝑧) and 𝐫′ = (𝑥′, 𝑦′, 𝑧′), 

then: 

𝐆(𝑥, 𝑦, 𝑧; 𝑥′, 𝑦′, 𝑧′) = 𝐆(𝑥 − 𝑥′, 𝑦 − 𝑦′, 𝑧 − 𝑧′)                     (2.14) 

[𝐆𝐟]𝑖,𝑗,𝑘 = ∑ ∑ ∑ 𝐆(𝑥𝑖 − 𝑥𝑖′ , 𝑦𝑗 − 𝑦𝑗′ , 𝑧𝑘 − 𝑧𝑘′)𝐟(𝑥𝑖′ , 𝑦𝑗′ , 𝑧𝑘′)
𝑵
𝑘′=1

𝑵
𝑗′=1

𝑵
𝑖′=1      (2.15) 

[𝐆𝐟]𝑖,𝑗,𝑘 = ∑ ∑ ∑ 𝐆(𝑥𝑖−𝑖′ , 𝑦𝑗−𝑗′ , 𝑧𝑘−𝑘′)𝐟(𝑥𝑖′ , 𝑦𝑗′ , 𝑧𝑘′)
𝑵
𝑘′=1

𝑵
𝑗′=1

𝑵
𝑖′=1               (2.16) 

𝐆𝐟 = IFFT3D{FFT3D{𝐆}⊙ FFT3D{𝐟}}                                    (2.17) 

Thus, solution of (2.11) is achieved with a biconjugate gradient fast Fourier transform 

(BiCG-FFT) whose overall complexity is 3𝑄𝑙𝑜𝑔(3𝑄) and whose memory 

comsumption is 6𝑄 [35]. At the final step of forward problem, the computation of 

scattered field can be done by (2.10) with a canonical matrix product thanks to 

relatively small number of measurement points. 

 Inverse Scattering Problem 

Inverse scattering problem is to calculate the electrical properties inside the domain D 

given the noisy scattered field measured on some arc 𝚪 ∈ ℝ𝟑. Here qualitative 
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inversion algorithms aim to reconstruct only the shapes and positions of the scatterers, 

i.e. 𝛀𝟏, 𝛀𝟐, … , 𝛀𝑷. 

Let us consider the configuration described in the above where  the measuring and 

illuminating antennas are located on surface 𝚪, which surrounds the scattering objects 

𝛀𝟏, 𝛀𝟐, … , 𝛀𝑷 and the sampling domain D. The idea behind linear sampling method is 

investigating the approximate solvability of near field equation, which is given by [9]: 

𝐄𝐬(𝐫, 𝐲)𝐠𝐫′(𝐲) = 𝐆(𝐫, 𝐫′)𝐪                                          (2.18) 

Where 𝐄𝐬(𝐫, 𝐲) = [
𝐄𝟏,𝟏
𝐬 (𝐫, 𝐲) 𝐄𝟏,𝟐

𝐬 (𝐫, 𝐲)

𝐄𝟐,𝟏
𝐬 (𝐫, 𝐲) 𝐄𝟐,𝟐

𝐬 (𝐫, 𝐲)
] is the scattered electric field matrix;  

𝐄𝒊,𝒋
𝐬 (𝐫, 𝐲) is the scattered electric field measured at 𝐫 ∈ 𝚪 in the ith orthogonal direction 

where the illumination is made at 𝐲 ∈ 𝚪 in the jth orthogonal direction; 𝐠𝐫′(𝐲) =

[
𝐠𝐫′,𝟏(𝐲)

𝐠𝐫′,𝟐(𝐲)
] is the feeding coefficients to be solved; 𝐆(𝐫, 𝐫′) Green’s tensor when a 

dipole at 𝐫′ emitting in the background medium and 𝐪 is any arbitrary polarization 

vector tangential to measurement surface 𝚪 at measurement point 𝐫. In [9], it is stated 

that the equation in (2.10) has a finite solution only when the sampling point 𝐫′ falls 

into a scatterer. Thus, reciprocal of the L2 norm of the solution vector is an indicator 

for LSM: 

𝑾(𝐫′) =  
𝟏

∑ |𝐠𝐫′,𝟏(𝐲𝐧)|
𝟐

𝐧 +∑ |𝐠𝐫′,𝟐(𝐲𝐧)|
𝟐

𝐧
                                 (2.19) 

Here, the equation in (2.10) is severely ill-posed and its solution requires an 

appropriate regularization technique [9]. In this thesis, we always apply Tikhonov 

regularization technique for this purpose. In Tikhonov regularization, the inversion is 

performed as [9]: 

𝐠𝐫′(𝐲) = (𝜶𝐈 +  𝐄𝐬∗(𝐫, 𝐲)𝐄𝐬(𝐫, 𝐲))−𝟏(𝐄𝐬
∗
(𝐫, 𝐲)𝐆(𝐫, 𝐫′)𝐪)               (2.20) 

where 𝜶 is the regularization parameter.  Here, the regularization parameter 𝛼 can 

determined by imposing the following condition: 

𝜎𝑁

𝛼2+𝜎𝑁
2

∑ |〈𝐆(⋅,𝐫ℓ
′),𝐮𝐍(⋅)〉|

𝐿
ℓ=1

𝑄
=

1

𝜎1
max
1≤ℓ≤𝐿

|〈𝐆(⋅, 𝐫ℓ
′), 𝐮𝟏(⋅)〉|              (2.21) 

where 𝑸 is total number sampling points, which are 𝐫𝟏
′ , 𝐫𝟐

′ , … , 𝐫𝑳
′, ⟨⋅,⋅⟩ denotes the inner 

product on receiving points and 𝚺 =  {𝛔𝟏, 𝛔𝟐, . . . , 𝛔𝐍};  𝐔 = {𝐮𝟏, 𝐮𝟐, . . . , 𝐮𝐍} stand for 

the singular values, the left singular vectors of 𝐄𝐬, respectively [28]. Another approach 
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for determination of  𝜶 is to fix to 
𝛔𝟏

𝟏𝟎𝒓
, where 𝒓 is an arbitrary integer ranging from 2 

to 5 [24]. 

Similarly, factorization method investigates the solvability of the following equation: 

(𝐄𝐬∗𝐄𝐬)
𝟏

𝟒(𝐫, 𝐲)𝐠𝐫′(𝐲) = 𝐆(𝐫, 𝐫′)𝐪                                     (2.22) 

where (⋅)∗ is the conjugate transpose and 𝐅
𝟏

𝟒 = 𝐒−𝟏𝚲
𝟏

𝟒𝐒, where 𝚲 = [𝛌𝐧] is the matrix 

whose diagonal elements 𝛌𝐧 are eigenvalues of 𝐅 and 𝐒 = [𝐒𝐧] is the matrix whose 

columns 𝐒𝐧 are eigenvectors of 𝐅. In [10], it is shown that (2.12) has finite solutions if 

and only if the following indicator function diverges from zero: 

𝑾(𝐫′) =  
𝟏

∑
|∑ 𝐒𝐧

∗ (𝐫𝐦)𝐆(𝐫𝐦,𝐫′)𝒎 |
𝟐

|𝝀𝒏|
𝐧

                                           (2.23) 
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 MICROWAVE SUBSURFACE IMAGING OF OBJECTS UNDER A 

ROUGH AIR-SOIL INTERFACE1 

We consider subsurface imaging of buried objects under a rough air – soil interface 

and present a microwave imaging method that is capable of determining the 

geometrical properties of multiple objects without requiring any a-priori information 

on the objects. The theoretical background of the method relies on factorization of 

scattering operators and the locations of buried objects are qualitatively determined 

from limited aperture near-field measurements performed with a short antenna array 

moving over the investigated region. The efficiency and accuracy of the method is 

shown with numerical results. 

 Introduction 

Imaging of buried targets under the rough ground is a challenging inverse scattering 

problem with many applications in engineering. Conventional technology that uses 

microwaves for subsurface sensing is ground penetrating radar (GPR) which generates 

radargrams that require further interpretation by experts [19]. On the other hand, 

various inverse scattering methods have been attempted to generate more intuitive 

subsurface images of underground as well as providing additional information on the 

morphological and electrical properties of buried obstacles [14,19-24,37,41]. While 

the surface roughness is a critical factor that determines the limits of subsurface 

imaging, very few studies take surface roughness into account [25,26,31,40]. 

In this context, qualitative inverse scattering methods, which are almost exclusively 

used for reconstructing the shape of inaccessible targets from the scattered field 

measurements, are particularly interesting since such methods can image multiple 

objects without requiring a-priori knowledge [38]. Despite their attractive features 

                                                 

 

1
 This chapter is based on the paper "Akıncı, M. N., Çayören, M., 2014. Microwave subsurface imaging 

of buried objects under a rough air–soil interface, Remote Sensing Letters, 5(8), 703-712.” 
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such as requiring fewer measurements and lower computational resources, usage of 

qualitative inverse scattering methods for subsurface imaging is rarely investigated 

[14,19-22,24,31]. This is due to the fact that these methods are not formulated 

depending on physical scattering mechanism that makes them obscure from 

engineering perspective. 

In this letter, we present a qualitative imaging method for subsurface sensing. The 

method relies on the theoretical framework derived in [27], where the aim is to retrieve 

the shape of unknown dielectric objects embedded inside a dielectric body whose 

closed boundary and electrical parameters are known a priori. The theoretical model 

in [27] extensively depends on the properties of far-field operators, which are 

computed from far-field measurements, and requires the dielectrics to be lossless. 

While such restrictions seem to be incompatible with the requirements of microwave 

subsurface imaging, we demonstrate that the approach can be successfully adapted for 

subsurface sensing. To this aim, we first consider a feasible, near-field measurement 

configuration with a short antenna array of few elements that are distributed 

equidistantly with spacing Δ . The field measurements are performed above the 

investigated region by moving the antenna array by a distance Δ at each step. This 

discrete measurement configuration lets us to collect enough data that are to be 

measured with multiple fixed antennas in theory. Theoretical justification for near-

field versions of qualitative inverse scattering methods generally depends on 

transforming near-field data to far field which inherently smoothen the data. Instead 

of using near- to far-field data transformation as described in [10], we directly use 

near-field data by introducing a near-field operator. We numerically verify the 

resulting near-field formulation and observe that the approach performs better than 

transforming near-field data to far field. Provided that estimate of electrical properties 

of soil and surface profile are known a priori, the method can inherently handle very 

rough surfaces due to its differential imaging mechanism. Furthermore, we 

demonstrate that it is possible to obtain reconstructions while the measurements are 

still being made. 

 Qualitative Imaging Applied to Subsurface Sensing 

Let us confine our analysis to 2D scattering configuration depicted in Figure 3.1. Here 

multiple dielectric objects with various electrical properties are buried into soil, which  
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Figure 3.1 : Geometry of problem (Txn: n
th Transmitter, Rxn: n

th Receiver;               

𝐷: sampling domain; 𝑧:sampling point; 𝛤 : measurement domain; 𝜖0: dielectric 

permittivity of vacuum; 𝜖, 𝜖′ dielectric permittivities of soil and buried obstacles 

respectively; 𝜇0: magnetic permeability of vacuum; 𝜎, 𝜎′ conductivities of soil and 

buried obstacles respectively). 

is modelled with its average electrical parameters. We assume that the buried objects 

can be considered infinitely long in one direction and illuminated with time-harmonic 

microwaves that are polarized along the same direction as well. The field 

measurements are performed with an antenna array that moves on a planar route at a 

fixed height from the ground. The basic principle of the qualitative inverse scattering 

methods is evaluating an indicator function 𝑤(𝑧) at each point z in sampling domain, 

and an image is generated by plotting the variation of 𝑤(𝑧). The indicator function 

𝑤(𝑧) is constructed such that its value diverges whenever sampling points fall inside 

an object. While selection of different indicator functions is possible, such methods 

exhibit certain characteristic features. In general, determination of electrical 

parameters such as dielectric permittivity is not the primary concern and only shapes 

of objects are retrieved. A recent work [27] presented a new qualitative inverse 

scattering method that allows us to determine shapes of multiple objects embedded 

inside a dielectric body with a closed surface. As noted earlier, the presented 

theoretical framework of [27] is not applicable to subsurface imaging in its original 

form and straightforward extension of similar methods to near-field case requires 

transforming near-field data to far field, which practically discards all advantage of 

near-field measurements. To adapt the theoretical framework to subsurface imaging as 

well as to refrain from performance degradations due to far-field conversion, let us 

first define a near-field operator 𝑁 with a test function  : 
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𝑁𝜑 = 〈𝜑|𝑢𝑠𝑐𝑡̅̅ ̅̅ ̅〉𝐿2(Γ) = ∫ 𝜑𝑢
𝑠𝑐𝑡𝑑Γ

Γ
                                            (3.1) 

where overbar indicates complex conjugate and 〈⋅ | ⋅〉𝐿2(Γ) denotes the inner product 

defined on measurement domain Γ. In (3.1), scattered electric field 𝑢𝑠𝑐𝑡 = 𝑢𝑡𝑜𝑡 − 𝑢𝑖𝑛𝑐 

is the difference between total electric field 𝑢𝑡𝑜𝑡 and incident electric field 𝑢𝑖𝑛𝑐.  

Considering the near-field operator in (3.1), the indicator function w(z) can be defined 

as follows (Grisel et al. 2012): 

𝑤(𝑧) =  (∑
|〈𝑢0(𝑧,.)|𝜙𝑛̅̅ ̅̅ 〉𝐿2(Γ)|

2

𝜎𝑛
𝑛 )

−1

                                    (3.2) 

In (3.2), 𝑢0 denotes the total electric field inside the soil when there is no buried object. 

Since it is not possible to measure the field inside the soil, the total field 𝑢0 is needed 

to be computed by considering the surface curvature and electrical properties of the 

soil. In fact, the total field values 𝑢0 are only needed for the sampling domain that is a 

portion of soil where we actually search for the objects. The quantities {𝜙𝑛, 𝜎𝑛} in (3.2) 

form the eigensystem of the operator 𝑊𝑓 = 𝑅𝑒(𝑊) + 𝐼𝑚(𝑊) with the conventions of 

𝑅𝑒(𝑊) =
𝑊+𝑊∗

2
 and 𝐼𝑚(𝑊) =

𝑊−𝑊∗

2𝑖
, where 𝑊∗ denotes adjoint operator of 𝑊. The 

operator W is defined as: 

𝑊 = 𝑆0
∗(𝑁1 − 𝑁0)                                                      (3.3) 

Here 𝑆0
∗ denotes the adjoint of operator: 

𝑆0 = 𝐼 +
𝑖

4𝜋
𝑁0                                                       (3.4) 

where 𝐼 is the unitary operator. In (3.3) and (3.4), the near-field operators 𝑁0𝜑 =

〈𝜑|𝑢0
𝑠𝑐𝑡̅̅ ̅̅ ̅〉𝐿2(Γ) and 𝑁1𝜑 = 〈𝜑|𝑢1

𝑠𝑐𝑡̅̅ ̅̅ ̅〉𝐿2(Γ)1 are defined for the scattered fields 𝑢0
𝑠𝑐𝑡and 

𝑢1
𝑠𝑐𝑡, respectively. The scattered field 𝑢0

𝑠𝑐𝑡 corresponds to the calculated field when 

there is no buried object and the scattered field 𝑢1
𝑠𝑐𝑡stands for the measured field. We 

refer to [27] for the development of theoretical framework. 

From the implementation point of view, we require three data sets that are the scattered 

fields 𝑢1
𝑠𝑐𝑡 and 𝑢0

𝑠𝑐𝑡and the total field 𝑢0 at each point in sampling domain. As noted 

earlier, 𝑢0
𝑠𝑐𝑡and 𝑢0 are required to be computed, thus a fast forward solver is needed 

to be integrated into the reconstruction procedure. To this aim, we utilize the buried 

object approach of [36], where a numerical Green's function for rough surface 

scattering is derived. However, since the formulations do not use Green's functions 
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explicitly, any other method such as finite element method can be preferred as well. 

For measuring the scattered field 𝑢1
𝑠𝑐𝑡 ; instead of using multi-static configurations 

with multiple fixed antennas, we propose to use a moving antenna array with very few 

elements where all antennas in array act both as transmitter and receiver similar to 

GPR. Let us assume that each element of the array is separated with distance Δ and 

there are total of 𝑀 antennas as depicted in Figure 3.1. From numerical simulations, 

we observed a typical antenna array length of 𝛥 (𝑀 −  1), which corresponds to one 

or two wavelengths in free space, is capable of reconstructing a complete image. We 

transverse the air – soil interface by shifting the antenna array with a distance of 𝛥 at 

each step. If we consider discretized version of operator 𝑊 in (3.3), this operation 

mode lets us to fill a band in the diagonal of the resulting matrix. It is obvious that the 

resulting matrix is a stripped version of a complete matrix that can be filled with total 

of 𝑁 static antennas (𝑀 << 𝑁): By employing highly directional antennas, the length 

of the moving array 𝛥 (𝑀 −  1) can be shortened since the field contribution due to 

surface outside the main lobes of antennas becomes negligible. Therefore, we can 

collect sufficient data to fill 𝑊 without using total of 𝑁 static antennas or long antenna 

arrays. 

 Numerical Validation 

In this section, we present several numerical results to demonstrate the capabilities of 

the presented method. In all examples unless otherwise stated, operating frequency is 

200 MHz and an antenna array of six line sources, which are equidistantly distributed 

along the free-space wavelength λ, is employed. The dry soil is modelled as a homo- 

geneous medium having relative dielectric permittivity of 𝜖𝑟  =  3.6 and conductivity 

of 𝜎 =  10−5
𝑆

𝑚
  [39]. The rough surface is given with the parametric representation: 

𝑦(𝑥) = {

0.22

𝛼
(
𝑥

15
)
0.3

𝑒−
3|𝑥|+10𝑥

30 cos (
𝜋𝑥

3
) ;      𝑥 ≥ 0

−0.24

𝛼
|
𝑥

15
|
0.3 𝑥+3

3
𝑒−

|𝑥|

10 cos (
𝜋𝑥

3
) ;     𝑥 < 0

                        (3.5) 

where 𝛼 is used for adjusting surface roughness and (𝑥, 𝑦) stands for the coordinate 

system, as depicted in Figures 3.2 and 3.3. In all cases three objects are buried into the 

soil, which are (i) a circular object centred at ( − 3.00 m, − 3.50 m) with radius 0.50 m 

and with electrical parameters 𝜖𝑟  =  18,  𝜎 =  0.024
𝑆

𝑚
, (ii) another circular object 
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centred at (3.00 m, −1.50 m) with radius 0.40 m and 𝜖𝑟  =  15,  𝜎 =  0.020
𝑆

𝑚
, and 

(iii) an ellipse shaped object centred at (−0.20 m, −2.50 m) with radii (0.60 m, 0.85 m) 

and 𝜖𝑟  =  16.5,  𝜎 =  0.022
𝑆

𝑚
. In addition to the computation of field values 𝑢0

𝑠𝑐𝑡 and 

𝑢0, the scattered field 𝑢1
𝑠𝑐𝑡, which is to be measured with the antenna array, is 

synthetically generated by solving the associated forward problem via method of 

moments [36] and corrupted by additive Gaussian noise with an signal-to-noise ratio 

of 25 dB.  

As we mentioned earlier, the method can reconstruct an image while field 

measurements are still in progress, which enables to operate in a real-time like manner. 

To demonstrate this capability, we consider the boundary with =
2

7
 , where maximum 

peak- to-peak roughness is around 0.53 m and measurements are performed at y = 0.40 

m. In all results, we plot the reconstructed 𝑤(𝑧) after normalizing with its maximum. 

In Figure 3.2(a), the first buried object becomes apparent when the field measurements 

are completed up to − 1.80 m. As the measurements progress up to 0.75 m, the second 

buried object becomes visible as shown in Figure 3.2(b). Finally, when the field 

measurements are completed for the whole surface, all three objects clearly appear as 

shown in Figure 3.2(c). We can conclude from Figure 3.2(a) – (c), as the number of 

measurements increase, quality of reconstructions improves such that the contour of 

shallow objects becomes distinctive. Nevertheless the reconstructions of deeper 

objects are still blurred even with complete measurements since the contribution of the 

shallow obstacles suppresses the deeper ones.  

As noted earlier, conventional approach to formulate near-field counterparts of 

qualitative inverse scattering methods is to use a near-to-far-field transform. While we 

intentionally avoided this approach, to demonstrate the performance of the method in 

such case, we repeat the preceding numerical simulation by applying near-to-far-field 

transformation given in [10]. The reconstructed image is shown in Figure 3.2(d), and 

as expected, the performance of presented method is better with near-field data.  

Another advantageous feature of the method is its ability to reconstruct objects with 

high dielectric contrasts, which is a challenging issue for non-linear optimization 

methods. To further attest the performance of the method by means of dielectric 

contrast, we multiply the complex dielectric permittivities of objects from deeper to 

shallower with factors 2, 5 and 4, respectively. The accuracy of the reconstruction that 
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is shown in Figure 3.2(e) is quite comparable to the case with lower dielectric contrast 

of Figure 3.2(c). This is, in fact, the result of the qualitative nature of the presented 

method. In non-linear optimization methods, an image is formed in terms of dielectric 

distribution of the targets that limits their efficiency with higher dielectric contrast, 

whereas an image in our case is formed as a plot of an indicator function w(z) that is 

not directly associated with the dielectric contrast. 

To better understand the effect of the surface roughness on the results, we choose a 

very rough surface with 𝛼 =  0.1, where the maximum peak-to-peak surface 

roughness is about 1.50 m and measurements are made on 𝑦 = 1.15 m. In Figure 3.2(f), 

the reconstructed buried objects are shown. While the buried objects are still 

distinguishable, there are clutters in the final image. To overcome such unwanted 

artefacts, the measurements are needed to be performed on a larger aperture. In Figure 

3.2(g), the reconstruction is repeated for the measurements performed with an antenna 

array of 12 elements whose total length is 2λ . It is obvious that Figure 3.2(g) provides 

a better reconstruction at the expense of a larger measurement system. Although 

increase in surface roughness deteriorates the accuracy of reconstructions in 

subsurface imaging, the presented method provides quite successful reconstruction 

even with such large variations.  

To further understand the capabilities of the presented method, we consider another 

surface given with the parametric representation: 

𝑦(𝑥) = {

11

30
𝑥𝑒−

3|𝑥|+20𝑥

60 cos (
𝜋𝑥

3
) ;                    𝑥 ≥ 0

−2

5
|𝑥| (

2𝑥+15

15
) 𝑒−

|𝑥|

20 cos (
𝜋𝑥

3
) ;     𝑥 < 0

                          (3.6) 

where peak-to-peak surface roughness is around 1.00 m. In this configuration, two 

objects are buried into the ground which are (i) a circular object centred at ( − 4.00 m, 

− 3.50 m) with radius r = 0.50 m and with electrical parameters 𝜖𝑟  =  8,  𝜎 =  0.032
𝑆

𝑚
 

and (ii) a square-shaped object centred at (3.50 m, − 2.00 m) with a side length ℓ = 

1.00 m and with electrical parameters 𝜖𝑟  =  10,  𝜎 =  0.040
𝑆

𝑚
. First, we investigate 

the effects of different operating frequencies. In Figure 3.3(a) – (c), reconstructed 

images are shown for frequencies 400, 300 and 200 MHz, respectively. It is obvious 

that deeper objects become less apparent as operating frequency increases while  
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Figure 3.2 : Values of 
𝑤(𝑧)

max(𝑤(𝑧))
 for reconstructed subsurface images: (a) when 

measurements are completed upto − 1.80 m; (b) when measurements are completed 

upto 0.75 m; (c) when completed for whole surface; (d) when near-to-far-field 

transform is applied to near-field measurements; (e) for higher dielectric contrast 

among objects; (f) for very rough surface case with 6 antennas with an equal spacing 

of 
𝜆

6
 and (g) for very rough surface case with 12 antennas with an equal spacing of 

𝜆

6
. 

The coordinates shown are measured in terms of 𝜆. 
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Figure 3.3 : Values of 
𝑤(𝑧)

max(𝑤(𝑧))
 for reconstructed subsurface images for (a) dry soil 

at 400 MHz, (b) dry soil at 300 MHz, (c) dry soil at 200 MHz, (d) soil with 5% 

moisture at 200 MHz, (e) soil with 10% moisture at 200 MHz, (f) randomly varying 

electrical parameters of soil at 200 MHz, (g) wrongly estimated surface case (dashed: 

wrongly estimated surface, solid: exact profile) and (h) wrongly estimated surface 

case with 12 antennas with an equal spacing of 
𝜆

6
 (dashed: wronglyestimated surface, 

solid: exact profile). 
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reconstructed images get sharper. This is in fact the result of the well-known trade-off 

between skin depth and spatial resolution such that microwaves can penetrate deeper 

into soil as the operating frequency decreases, which in turn degrades spatial 

resolution. Besides, increase in conductivity exponentially reduces penetration of 

microwaves into soil, and the main factor that contributes to conductivity of soil is 

moisture content. To reveal outcomes of increased moisture content to the presented 

method, we consider soils with 5% and 10% moisture contents. In these case, electrical 

properties of soils are 𝜖𝑟  =  5, 𝜎 =  0.001
𝑆

𝑚
 for 5% and 𝜖𝑟  =  7,  𝜎 =  0.002

𝑆

𝑚
  for 

10% moisture content [39]. In Figure 3.3(d) and (e), reconstructed images are shown 

for moisture contents 5% and 10%, respectively. If we compare results depicted in 

Figure 3.3(c) – (e), increasing moisture content severely degrades reconstructions such 

that deeper objects become non-distinguishable. This is a combined result of two 

effects: first, increase in soil conductivity reduces the penetration of microwaves into 

soil as mentioned earlier; second, with increasing moisture, the effective dielectric 

permittivity of soil increases, which in turn lowers dielectric contrast between the 

objects and the soil. As a consequence of low contrast, scattered field from the buried 

objects gets weaker, which makes the objects hard to distinguish from the soil. 

We formulate the presented method depending on effective electrical properties of soil, 

but in reality determination of effective electrical properties of soil may not be 

straightforward. To stress the fact that the formulation does not require such strict a-

priori information, we consider an example where electrical properties of soil change 

randomly. To this aim, we added separate random variations to both relative dielectric 

permittivity and conductivity of soil in the form of 𝜖�̌� = (1 + 𝛼)𝜖𝑟 and �̌� = (1 + 𝛽)𝜎; 

respectively. Here 𝛼, 𝛽 ∈  [0,1) are uniformly distributed random variables. As shown 

in Figure 3.3(f), the square-shaped object is apparent while the deeper circular object 

is no longer visible. This is indeed the result of two main factors: first, there is high 

level of variation in electrical properties, and second, the effective electrical 

parameters used in simulation are not valid anymore due non-zero mean of 

randomness. 

Up to this point, we assume that the surface curvature is known. To attest performance 

of the presented method when the surface profile is wrongly estimated, we consider a 

deformed surface: 
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�̆�(𝑥) = 0.6𝑦(𝑥) − 0.01 cos (
𝜋𝑥

3
) ;         −7.5𝑚 ≤ 𝑥 ≤ 7.5𝑚                  (3.7) 

where y (x) is the exact surface profile given by (3.6). The reconstructed subsurface 

image is shown in Figure 3.3(g). By comparing against Figure 3.3(c), we infer that 

errors in surface profile cause large artefacts. This is mainly due to fact that wrongly 

estimated surface profile results large deviations in total field on the sampling domain 

which may induce large indicator function values where there is no objects. For 

alleviating deterioration in the image, we repeat the same simulation with an antenna 

array of 12 elements equidistantly distributed along the length of 2λ . From the 

reconstructed image shown in Figure 3.3(h), we can conclude that using a large array 

suppresses artefacts, but it might not be enough to capture sufficient information for 

deeper objects. In fact, Figure 3.3(g) and (h) demonstrates a very general characteristic 

of microwave subsurface imaging, such that the exact knowledge of surface profile is 

a critical factor that determines both accuracy and reliability of the reconstructions. 

When the estimated surface profile deviates from the exact surface, the field 

contribution due to these deviations corrupts the scattered field from the buried objects. 

Thus variation of surface profile is needed to be known accurately and only very slight 

deviations can be tolerated. 

 Conclusions and Future Work 

We present a microwave imaging method for detecting and localizing buried objects 

under a rough air – soil interface. The formulation depends on factorization of 

scattering operators where locations of objects are qualitatively determined as the 

norm of an indicator function diverges. The method is capable to reconstruct locations 

of multiple targets from a limited aperture, near-field measurements that are performed 

with a short antenna array moving over the soil. In addition to an estimate of effective 

electrical parameters of soil in which the method can tolerate certain degree of 

randomness, the surface curvature is needed to be known a priori. Other than that, there 

are no limitations on electrical properties of buried targets such that lossy dielectric 

materials even with high dielectric contrasts among them can be handled accurately. 

Numerical simulations reveal that the method can perform in a real-time-like operation 

mode where reconstructed image is updated while measurements are still in progress. 

Another capability of the method is its ability to handle very rough surfaces. Further 
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research will be towards extending the method to 3D electromagnetic case and 

validating against experimental measurements. 

 



27 

 QUALITATIVE MICROWAVE IMAGING WITH SCATTERING 

PARAMETERS MEASUREMENTS2 

Microwave imaging (MWI) systems extensively employ vector network analyzers for 

microwave measurements due to their high availability and accuracy. This is in 

contrast to theoretical models, which are naturally formulated in terms of scattered 

electric field vectors. Accordingly, experimental verification of MWI methods requires 

an intermediate step where measured scattering parameters are converted to scattered 

electric fields. In parallel to recent researches, we develop formulations of two closely 

related qualitative inverse scattering methods—the linear sampling method and the 

factorization method—directly in terms of scattering parameters to avoid the 

intermediate conversion step. To this aim, we introduce vector S-parameters and we 

extend the vector Green’s function for S-parameters to the dyadic case. There are 

certain advantages of these formulations. First, the formulations incorporate the 

antenna radiation characteristics. Moreover, they reduce the measurement time since 

they do not require any pre- or post-measurement process. Experimental results show 

that the proposed methodologies can accurately reconstruct the shape of the targets. 

 Introduction 

Microwave imaging (MWI) emerges as a novel technology that aims to extract 

physical properties of inaccessible objects from scattered electric field measurements 

at the microwave frequency range. These imaging approaches have prominent 

applications in nondestructive testing (NDT) and especially in medical imaging where 

microwaves are quite attractive due to their non-ionizing nature when interacting with 

biological tissues [30]. 

                                                 

 

2 This chapter is based on the paper “Akıncı, M. N., Çağlayan, T., Özgür, S., Alkaşı, U., Ahmadzay, 

H., Abbak, M., Çayören M., Akduman, İ., 2015. Qualitative microwave imaging with scattering 

parameters measurements, IEEE Transactions on Microwave Theory and Techniques, 63(9), 2730-

2740” 
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Figure 4.1 : Problem geometry (D: Sampling domain, Ω: Support of all scatterers, 

Λ: Illumination-measurement domain, 𝐮𝐢, 𝐮𝐣 , 𝐮𝐤: A right handed coordinate system) 

MWI systems extensively incorporate vector network analyzers (VNAs) instead of 

implementing additional modules to perform microwave measurements. This is 

particularly driven by the availability of high-performance VNAs. While there are 

alternative ways of reconstructing an image in MWI, imaging methods are naturally 

formulated in terms of scattered electric field vectors, whereas measured scattering 

parameters (S-parameters) are only auxiliary quantities. Consequently, an intermediate 

step is required for experimental setups where measured S-parameters are mapped to 

scattered electric fields. This is mostly handled by comparing simulated electric fields 

against measured S-parameters [28,29,42]. In particular, we also utilize from the 

canonical S-parameters—electric fields’ conversion method given in [29] for 

experimentally comparing the electric field-based formulations of qualitative imaging 

methods [43]. 

Inverse scattering theory provides a group of highly theoretical approaches known as 

qualitative imaging methods [8]. These methods are based on inverting an integral 

equation for each point over a reconstruction domain to determine the shape and 

position of unknown scatterers without requiring any a priori information. Comparing 

with nonlinear optimization methods [1]–[5], which model the physical scattering 

mechanism to determine electrical properties of dielectric objects, qualitative inverse 

scattering methods are generally easier to implement and more efficient in use of 

computational resources. Despite their attractive features, such methods are not 
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frequently used in engineering applications due to their mathematical background 

[28,29,44,45]. Two well-known representatives of qualitative inverse scattering 

methods are: 1) the linear sampling method (LSM) [9] and 2) the factorization method 

(FM) [16]. These two methods are in fact quite similar in formulation as well as in 

performance [11]–[14]. 

As a better alternative to the calibration step between the S-parameters and the electric 

fields, recent studies demonstrated that measured S-parameters can be effectively 

modeled with vector spherical wave functions [46]. Besides, the Born iterative method 

can be directly formulated in terms of S-parameters, by defining integral equations 

comprised of a vector Green’s function for S-parameters [47]. In this direction, we 

consider LSM and FM to develop novel formulations of their S-parameter 

counterparts. For this purpose, we introduce two novel notions: vector S-parameters 

and the dyadic Green’s function for S-parameters, where the second is the 

generalization of the vector Green’s function given in [46]. Such formulations are quite 

important from an engineering perspective for two main reasons. First, antenna 

radiation characteristics are inherently incorporated into the solution procedure 

without any simplification. Second, measured S-parameters can be directly applied to 

the imaging methods as input without any preprocessing, which spares the 

measurement time associated with the calibration. The developed theoretical models 

are experimentally verified with scattering parameters measured inside an anechoic 

chamber. Reconstructions, which are obtained directly from measurements, indicate 

the accuracy and stability of the proposed formulations. Moreover, the effectiveness 

of incorporating multi-frequency measurements is demonstrated experimentally. Note 

that this work is different from the authors recent study in [43], which performs an 

experimental comparison of the electric-field-based LSM and FM, as indicated above.  

This paper is organized as follows. In Section II, we briefly outline the canonical 

formulations of the LSM and FM to stress the analogy between electric-field-based 

and S-parameter-based microwave scattering mechanisms. In Section III, the novel 

formulations of S-parameter-based LSM and FM are then explained in detail. Later, in 

Section IV, we present several reconstructions that are achieved with the proposed 

formulations. Throughout this paper, time convention is assumed and suppressed. 
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 Qualitative Microwave Imaging 

Qualitative inverse scattering methods attempt to reconstruct the shape of inaccessible 

targets from scattered fields without making any assumptions on the number of targets 

or their electrical properties. These methods have been successfully applied in various 

subjects such as: NDT [48], medical imaging [32]–[34], or subsurface imaging 

[14,31,49,50]. Two closely related representatives of such formulations are the LSM 

and the FM. Here we first briefly introduce the LSM and FM to further develop 

formulations based on S-parameters. 

Let us consider a 3-D electromagnetic scattering mechanism from arbitrary dielectrics 

in free space, as depicted in Figure 4.1. It is well known that scattered electric field is 

governed by the data equation: 

𝐄𝐬𝐜𝐭(𝑟) = ∫ 𝐆(𝑟, 𝑟′)𝜒(𝑟′)𝐄𝐭𝐨𝐭(𝑟′)𝑑𝑟′
Ω

;   𝑟′ ∈ Ω, 𝑟 ∈ ℝ3                     (4.1) 

where Ω is the total volume of all corresponding objects. Here, 𝐆(𝑟, 𝑟′) is the dyadic 

Green’s function given by: 

𝐆(𝑟, 𝑟′) = (𝐈 +
1

𝑘0
2 ∇∇)

exp(𝑖𝑘0|𝑟−𝑟
′|)

4𝜋|𝑟−𝑟′|
                                (4.2) 

where 𝑘0 is the complex wavenumber of the medium and 𝜒(𝑟′) = 𝑘2(𝑟′) − 𝑘0
2 is the 

so-called object function. The electric field is determined by inverting the object 

equation, which is: 

𝐄𝐭𝐨𝐭(𝑟) = 𝐄𝐢𝐧𝐜(𝑟) + ∫ 𝐆(𝑟, 𝑟′)𝜒(𝑟′)𝐄𝐭𝐨𝐭(𝑟′)𝑑𝑟′
𝐷

;   𝑟′, 𝑟 ∈ Ω               (4.3) 

where 𝐄𝐢𝐧𝐜(𝑟) stands for the incident electric field. In this setting, let us define the 

near-field operator 𝐹(⋅) and the near-field equation as [9]: 

(𝐹𝜙𝑧)(𝑥) ≔ ∫𝛎(𝑥) × 𝐄𝐬𝐜𝐭(𝑥, 𝑦, 𝜙𝑧(𝑦))𝑑𝑦
Λ

 

= 𝛎(𝑥) × 𝐆(𝑥, 𝑧)𝐪;          𝑥, 𝑦 ∈ Λ; z ∈ D; 𝐪 ∈ ℝ3                            (4.4) 

In (4.4), for arbitrary polarization, 𝐪, x, and, y denote source and observation positions, 

respectively, z stands for a point in the sampling domain D, 𝛎 is the unit normal vector 

defined on the observation surface Λ, and 𝜙𝑧 stands for the test function on which 

operates. As proven in [9], the main condition of the LSM is: 

𝑧 ∉ Ω ∧ (𝐹𝜙𝑧) → 𝛎 × 𝐆(⋅, 𝑧)𝐪 ⇒ ||𝜙𝑧||𝐿2(Λ)
−1

→ 0                           (4.5) 
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where ||⋅||
𝐿2(Λ)

stands for the Euclidian norm for the Hilbert space defined on the 

surface Λ: 

||𝑓||
𝐿2(Λ)

= ∫ |𝑓|2𝑑Λ
Λ

                                                (4.6) 

This condition can be interpreted as: provided that a sampling point z falls inside an 

object Ω, there exists a function 𝜙𝑧 that satisfies the near field equation (4.4) such that 

the indicator function 𝑊(𝑧) ≔ ||𝜙𝑧||𝐿2(Λ)
−1

 becomes greater than zero. Here, the 

proposal in (4.5) is proven to be true, but 𝑧 ∈ Ω does not always imply that 𝑊(𝑧) > 0, 

i.e., there can be some regularization schemes which can come up with a non-finite 

solution of (4.4) [9]. Therefore, all scatterers can be reconstructed by plotting the 

indicator function 𝑊(𝑧) on the entire sampling domain D. (It is assumed that the 

sampling domain D completely encapsulates the scatterers Ω.) For this goal, the ill-

posed near field equation in (4.4) must be inverted via Tikhonov regularization [9]. 

The choice of the regularization parameter has a great influence on the quality of the 

obtained images and choosing optimal parameter for each sampling point requires an 

estimate of noise power, which may not be available in real measurement systems [44]. 

Apart from that, the computation of an optimal parameter for each sampling point is 

the most time consuming part of LSM [44]. No-sampling version of LSM in [51,52] 

and regularization routine in [28] are a few solutions to these limitations. 

Similarly, as proven in [11,16,53], the main condition of FM is: 

𝑧 ∉ Ω ∧ 𝛎 × 𝐆(⋅, 𝑧)𝐪 ∉ 𝑅 ((𝐹∗𝐹)
1
4) ⇔ 

𝑊(𝑧) ≔  (∑
|〈𝛎×𝐆(⋅,𝑧)𝐪,𝜓𝑙〉𝐿2(Λ)|

2

|𝜆𝑙|
𝑙 )

−1

→ 0                                (4.7) 

where (⋅)∗ denotes the conjugation operator, 𝑅(⋅) denotes the range of related operator, 

{𝜆𝑙, 𝜓𝑙} is the eigensystem of 𝐹 and 〈⋅,⋅〉𝐿2(Λ) denotes the inner product for the Hilbert 

space defined on the surface 𝛬, which is given by: 

〈𝑓, 𝑔〉𝐿2(Λ) = ∫ 𝑓𝑔∗𝑑Λ
Λ

                                               (4.8) 

Eventually, whenever a sampling point z falls inside an object and 𝛎 × 𝐆(⋅, 𝑧)𝐪 

belongs to the range of the operator (𝐹∗𝐹)
1

4 (i.e., (𝐹∗𝐹)
1

4𝜙𝑧 = 𝛎 × 𝐆(⋅, 𝑧)𝐪 has a 

solution) then the indicator function given in (4.7) becomes greater than zero. Plotting 
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the indicator function over the entire sampling domain reveals the objects in a similar 

fashion. Note that, in contrast to LSM, FM fully characterizes the sampling points as 

stressed in (4.7) [16]. Nonetheless as stated in [9], LSM is shown to be applicable to a 

wide range of problems, whereas generalization of FM is a more challenging issue. 

For further discussion of the theoretical aspects of the LSM and FM, we refer to 

monographs [9,16] and physical interpretations of the methods can be found in [45,54].  

Although the above formulations are for a monochromatic case, multi-frequency 

measurements must be carried out to obtain better image reconstruction. Both LSM 

and FM can be easily adapted to the multi-frequency case, since they only aim to 

recover the shape instead of the frequency dependent dielectric parameters of the 

target. For more detailed discussions about multi-frequency techniques we propose the 

reader to see [14,55–58]. 

 Formulating LSM and FM in terms of Scattering Parameters 

There are certain practical issues in the above theoretical model if an experimental 

configuration is considered. First, the scattered electric field vector 𝐄𝐬𝐜𝐭 and incident 

electric field vector 𝐄𝐢𝐧𝐜 must be measured over the measurement domain Λ for all 

tangential polarizations. It is obvious from (4.4) that measuring only amplitude of the 

electric field is not sufficient and phase must be measured accurately as well. 

Furthermore, multiple antennas are utilized in microwave measurement setups for both 

exciting and sensing electromagnetic fields thus their radiation characteristics become 

an integral part of the measurement systems. While in practice, antennas are generally 

approximated as analytical sources such as line/point sources or Gaussian beams, this 

is in fact an oversimplification of the actual case. Therefore, a generic antenna 

characterization method must be included in reconstruction procedures. Among all 

practical considerations, the actual measurement device is the most important factor. 

Real-world microwave measurement systems exclusively use laboratory grade VNAs 

due to their accuracy as well as commercial availability. This leads to measuring S-

parameters instead of electric field values for a fixed polarization. In this context, if we 

consider using either LSM or FM in practice, we need to map the measured S 

parameters to the scattered electric field 𝐄𝐬𝐜𝐭 in (4.4). Conventional techniques are to 

apply calibrations, which simply find coefficients by comparing simulated electric 
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fields and measured S-parameters for canonical objects such as spheres or long 

cylinders [28,29,42,44,45]. 

4.3.1 Incorporating antenna radiation characteristics 

Recent research proposed an elegant way to tackle such restrictions by representing S-

parameters with spherical wave functions [46,47,59]. To this aim, the incident field 

𝐄𝐢𝐧𝐜 is first expanded into series of divergenceless spherical vector wave functions as 

[46,47,59]: 

𝐄𝐢𝐧𝐜(𝑟) = ∑ ∑ 𝛼𝑝𝑘𝐌𝐩𝐤(𝑟)
𝑝
𝑘=−𝑝 + 𝛽𝑝𝑘𝐍𝐩𝐤(𝑟)

∞
𝑝=1 ,      𝑟 ∈ ℝ3;   𝛼𝑝𝑘, 𝛽𝑝𝑘 ∈ ℂ   (4.9) 

where 𝐌𝐩𝐤, 𝐍𝐩𝐤 are spherical harmonics [2]. This representation allows simulating 

models of real antennas in 3D electromagnetic solvers. The unknown coefficients 𝛼𝑝𝑘 

and 𝛽𝑝𝑘 are determined by inverting (4.9) using simulated electric fields 𝐄𝐢𝐧𝐜 over a 

sphere enclosing the antenna. In fact, inversion of (4.9) is an ill-posed problem and an 

approximate but stable solution can only be achieved in a least square sense by using 

a form of regularization such as Tikhonov inversion [47]. Once the unknown 

coefficients are determined, the incident electric field from the antenna can be 

evaluated in whole space. At this stage, we propose a simple strategy for optimal 

selection of the total number of harmonics. Let us assume that the electric fields 𝐄𝟏
𝐢𝐧𝐜 

and 𝐄𝟐
𝐢𝐧𝐜correspond to simulated field values over two concentric spheres enclosing 

the antenna model. Then the coefficients in (4.9) are determined in a least square sense 

by inverting 𝐄𝟏
𝐢𝐧𝐜. With these coefficients, the electric field 𝐄𝟐

𝐢𝐧𝐜̃  can be evaluated on 

the same sphere where the 𝐄𝟐
𝐢𝐧𝐜 was simulated previously. The optimal number of 

harmonics is determined as the minimum number of harmonics for which the error 

norm 
||𝐄𝟐

𝐢𝐧𝐜− 𝐄𝟐
𝐢𝐧�̃�||

||𝐄𝟐
𝐢𝐧𝐜||

 becomes lower than an arbitrarily selected threshold 𝜏. 

Let us define a normalized incident field 𝐞𝐢𝐧𝐜 [46]: 

𝐞𝐢𝐧𝐜 =
𝐄𝐢𝐧𝐜

√2𝑃𝑎𝑣𝑒𝑍0
                                                (4.10) 

where 𝑃𝑎𝑣𝑒 is the average input power and 𝑍0 is the input impedance of the antenna. 

With the normalization in (4.10), the object equation for the electric field given by 

(4.3) becomes [46]: 

𝐞𝐭𝐨𝐭(𝑥𝑚, 𝑦𝑛) = 𝐞𝐢𝐧𝐜(𝑥𝑚, 𝑦𝑛) + ∫ 𝐆(𝑦𝑛, 𝑧)𝜒(𝑧)𝐞
𝐭𝐨𝐭(𝑧)𝑑𝑧

𝐷
;   𝑥𝑚, 𝑦𝑛 ∈ Λ, z ∈ Ω  (4.11) 
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Here 𝑥𝑚 and 𝑦𝑛 denote the positions of mth transmitting antenna and nth receiving 

antenna, respectively. In parallel to the definition of the scattered electric field, 

scattered S-parameters 𝑆𝑛,𝑚
𝑠𝑐𝑡  are defined as a difference between measured S-

parameters 𝑆𝑛,𝑚
𝑡𝑜𝑡  when the objects are present and 𝑆𝑛,𝑚

𝑖𝑛𝑐  when there are only antennas 

[46]: 

𝑆𝑛,𝑚
𝑠𝑐𝑡 = 𝑆𝑛,𝑚

𝑡𝑜𝑡 − 𝑆𝑛,𝑚
𝑖𝑛𝑐                                                       (4.12) 

Based on the field expansion in (4.9) and the normalization in (4.10), it is proved that 

scattered S-parameters can be expressed as [46]: 

𝑆𝑚𝑛
𝑠𝑐𝑡 = ∫ 𝐠(𝑦𝑛, 𝑧)𝜒(𝑧)𝐞

𝐭𝐨𝐭(𝑧)𝑑𝑧
𝐷

;   𝑥𝑚, 𝑦𝑛 ∈ Λ, z ∈ Ω                       (4.13) 

where 𝑔(𝑦𝑛, 𝑧) is the so-called vector Green’s function: 

𝐠(𝑦𝑛, 𝑧) =
𝑖𝑍0

2𝜔𝜇
𝐞𝐢𝐧𝐜(𝑦𝑛, 𝑧);    𝑧 ∈ ℝ

3, 𝑦𝑛 ∈ Λ                           (4.14) 

The equations expressed in (4.11) and (4.13) are valid under two assumptions: first, 

there is no incoming field in the frame of the transmitting antenna and there is no 

outgoing field in the coordinates of the receiving antenna; second, there is no multiple 

scattering between any two antennas, antennas and objects [59]. Although these 

assumptions seem to be restrictive at first glance, such representation is demonstrated 

to be useful in practical cases [46,47]. Interested reader can find the validations and a 

comprehensive analysis of (4.9), (4.13) in [46,47,59]. 

4.3.2 Vector S-parameters based formulations of LSM and FM 

A careful examination of (4.1), (4.3) and their S-parameter counterparts (4.11), (4.13) 

reveals that there is a direct analogy between scattered electric field and measured S-

parameters for a specific polarization. To further emphasize this analogy, let us 

introduce the vector form of scattered S-parameters as: 

𝐒𝑠𝑐𝑡 = 𝑆𝑖
𝑠𝑐𝑡𝐮𝐢  +  𝑆𝑗

𝑠𝑐𝑡𝐮𝐣  +  𝑆𝑘
𝑠𝑐𝑡𝐮𝐤                                      (4.15) 

where (𝑆𝑖
𝑠𝑐𝑡, 𝑆𝑗

𝑠𝑐𝑡, 𝑆𝑘
𝑠𝑐𝑡) are scattered S-parameters for orthogonal polarizations (𝐮𝐢, 𝐮𝐣, 

𝐮𝐤). With this new definiton of S-parameters, (4.13) becomes: 

𝐒𝑚𝑛
𝑠𝑐𝑡 = ∫ 𝐆𝐬(𝑦𝑛, 𝑧)𝜒(𝑧)𝐞

𝐭𝐨𝐭(𝑧)𝑑𝑧
𝐷

;   𝑥𝑚, 𝑦𝑛 ∈ Λ, z ∈ Ω                       (4.16) 

where 𝐆𝐬 is the dyadic Green’s function for S-parameters given by: 
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𝐆𝐬 =
𝑖𝑍0

2𝜔𝜇
∑ ∑ 𝑒𝑚𝑛

𝑖𝑛𝑐
𝑛∈(𝑖,𝑗,𝑘)𝑚∈(𝑖,𝑗,𝑘) 𝐮𝐦𝐮𝐧                                    (4.17) 

In (4.17), 𝑒𝑚𝑛
𝑖𝑛𝑐 is the 𝐮𝐧 component of normalized incident electric field produced by 

a 𝐮𝐦 polarized antenna. While not formally defined, 𝐆𝐬 in (4.17) acts as a Green’s 

function in a sense that it generates measured S-parameters for arbitrary antennas. 

Then making use of the obvious analogy between (4.1), (4.3) and (4.11), (4.16) we can 

define a new near field operator: 

(𝐿𝜙𝑧)(𝑥) ≔ ∫ 𝛎(𝑥) × 𝐒𝐬𝐜𝐭(𝑥, 𝑦, 𝜙𝑧(𝑦))𝑑𝑦Λ
    𝑥, 𝑦 ∈ Λ; z ∈ D;           (4.18) 

which is the S-parameter complement of the near field operator in (4.4). Thereby, the 

main condition of LSM for S-parameters can be written as: 

𝑧 ∉ Ω ∧ (𝐿𝜙𝑧) → 𝛎 × 𝐆𝐬(⋅, 𝑧)𝐪 ⇒ ||𝜙𝑧||𝐿2(Λ)
−1

→ 0                     (4.19) 

As in the case of traditional LSM, the shape of all scatterers can be obtained by plotting 

the indicator function 𝑊(𝑧) after inverting the ill-conditioned near field equation 

(4.19) by means of Tikhonov regularization. Although it is not formally shown to be 

an optimal solution, this paper exploits the regularization procedure in [28] due to its 

simplicity and effectiveness. 

In a similar way to LSM, the condition for FM with S-parameters becomes: 

𝑧 ∉ Ω ∧ 𝛎 × 𝐆(⋅, 𝑧)𝐪 ∉ 𝑅 ((𝐿∗𝐿)
1
4) ⇔ 

𝑊(𝑧) ≔  (∑
|〈𝛎×𝐆𝐬(⋅,𝑧)𝐪,𝜓𝑙〉𝐿2(Λ)|

2

|𝜆𝑙|
𝑙 )

−1

→ 0                     (4.20) 

where {𝜆𝑙, 𝜓𝑙} is the eigensystem of 𝐿. 

The conditions in (4.19), (4.20) inherently take antennas into account, which is an 

important aspect of the developed formulations. Arbitrary antennas such as corrugated 

horn antennas or Vivaldi antennas, which are extensively used in MWI systems, can 

be accurately incorporated into the solution procedure without any simplification. 

Furthermore, as a consequence of the newly introduced near field operator in (4.18), 

the measured S-parameters are directly included in the solution methodologies without 

requiring to be converted into electric field. Despite the affinity between electric field 

based formulations of (4.5), (4.7) and S-parameters based formulations of (4.19), 

(4.20) these conditions differ radically. The main difference is the dyadic Green’s 
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function for S-parameters 𝐆𝐬 in (4.17) is heavily dependent on antenna radiation 

characteristics, whereas the canonical Green’s function 𝐆 in (4.2) is independent of 

excitation. 

Finally, note that the derived algorithms can also be modified for multi-frequency 

measurement scenarios in a similar way to electric field based formulations. Here for 

simplicity we prefer integrating over all available frequencies [55]: 

𝑊(𝑧) = ∫ 𝑊(𝑧, 𝑓)𝑑𝑓
𝑓𝑚𝑎𝑥

𝑓𝑚𝑖𝑛
                                         (4.21) 

where 𝑊(𝑧, 𝑓) stands for the indicator function for a single frequency, which is defined 

in (4.19) or (4.20). Through the measurements, it is observed that even such a simple 

summation operation for incorporating multi-frequency data dramatically increases 

the quality of the results. 

4.3.3 Implementation for cylindrical microwave scanners 

Cylindrical scanning for MWI systems is a common configuration due to its simplicity 

[60,61]. Here we discuss the discretization of the presented formulations for such 

mechanisms. 

For implementing LSM, surface normal and polarization vectors are explicitly selected 

as 𝛎 =  𝐚𝛒 and  =  𝐚𝐳 , respectively; where (𝐚𝛒,𝐚𝛉, 𝐚𝐳) is the well-known basis of 

cylindrical coordinates [2]. Then, by discretizing the sampling domain into M cuboid 

cells centered around points 𝑧1, 𝑧2, . . , 𝑧𝑀 near field equation in (4.19) can be written 

as: 

𝐋𝜙 = 𝐔                                                          (4.22) 

Here L = [𝐿𝑚,𝑛]  = [𝑆𝑛,𝑚
𝑠𝑐𝑡 𝑅𝛥𝜃𝛥𝑧], where 𝑆𝑛,𝑚

𝑠𝑐𝑡  denotes the z component of the 

scattered vector S-parameter, 𝑅𝛥𝜃𝛥𝑧 is the Jacobian resulting from the integration and 

𝑚, 𝑛 ∈ 1, 2, . . . , 𝑁 denote the numbers associated with transmitting and receiving 

antennas respectively. In (4.22), 𝑈 = [𝑈𝑛,𝑘] = [𝐞𝐳𝐤,𝐧
𝐢𝐧𝐜 . 𝐚𝐳]; 𝑘 ∈  1, 2, . . . , 𝑀, 𝑛 ∈

1, 2, . . . , 𝑁 is the matrix whose entries are the 𝐚𝐳 component of the normalized incident 

field produced by the receiving antenna while illuminating the sampling domain. Then, 

this equation is solved as explained in [9] and the indicator function is computed as: 

𝑊(𝑧𝑘) = ||𝜙𝑧𝑘||𝐿2(Λ)

−1

= (∑ |𝜙𝑧𝑘,𝑛|
2𝑅Δ𝜃 𝑁

𝑛=1 )
−1
;   𝑘 ∈ 1,2, … ,𝑀            (4.23) 
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Figure 4.2 : Measured - Computed normalized gain of the ridged horn antenna 

at 𝑅 = 0.85 𝑚, 𝜑 =  0∘ and 90∘ < 𝜃 < 180∘ where x, y and z denote the canonical 

Cartesian coordinates. The major lobe of the antenna is directed towards x-axis. 

(Spherical coordinates are defined as: 𝑅 = √𝑥2 + 𝑦2 + 𝑧2, 𝜃 = cos−1 (
𝑧

𝑅
)  and 

𝜃 = tan−1 (
𝑦

𝑥
). When computing the normalized gain the representations in (9) and 

(10) are employed. Here the coefficients 𝛼𝑝𝑘, 𝛽𝑝𝑘 are calculated from the simulated 

electric fields on the sphere having a radius of 𝑅 =  0.725 𝑚. Mean square errors 

between the measured and computed values are 4.58%, 1.72% and 3.63% for 1.0 

GHz, 1.5 GHz and 2.0 GHz, respectively.) 

Similarly, for implementation of FM, using the same notation conventions, the 

indicator function is evaluated as: 

𝑊(𝑧𝑘) = [∑
|〈𝑈𝑘,𝜓𝑛〉𝐿2(Λ)|

2

|𝜆𝑛|
𝑁
𝑛=1 ]

−1

;   𝑘 ∈ 1,2, … ,𝑀                    (4.24) 

where {𝜆𝑛, 𝜓𝑛}is the eigensystem of the scattering matrix L and  𝑈𝑘 is the kth column 

of 𝑈. Consequently, the final indicator function is computed as: 

𝑊(𝑧𝑘) = ∑ 𝑊(𝑧𝑘, 𝑓𝑙)𝑙 Δ𝑓𝑙;   𝑘 ∈ 1,2, … ,𝑀                         (4.25) 

where {Δ𝑓𝑙} is the Jacobian resulting from the integration in (4.21) and 𝑊(𝑧𝑘, 𝑓𝑙) is 

the indicator function at frequency 𝑓𝑙, which is computed from (4.23) or (4.24). 
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Figure 4.3 : (a) Experimental configuration for single metallic scatterer case. (b) 

Amplitude and phase of the measured scattered S-parameters of the rectangular 

target at 0.8, 2.0 and 4.0 GHz. (Transmitting antenna is located at 0∘.) Result 

obtained with: (c) LSM, at 0.8 GHz. (d) LSM, at 2.0 GHz. (e) LSM, at 4.0 GHz. (f) 

LSM, using all frequencies. (g) FM, using all frequencies. (h) LSM, with calibration 

in [42], using all frequencies. (i) FM, with calibration in [42], using all frequencies. 

(Exact borders are marked with dashed white lines.) 

 

Figure 4.4 : (a) Experimental configuration for single dielectric scatterer case. Result 

obtained with: (b) LSM, using all frequencies. (c) FM, using all frequencies. (Exact 

borders are marked with dashed white lines.)  
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Figure 4.5 : (a) Experimental configuration for multiple metallic scatterers case. 

Result obtained with: (b) LSM, using all frequencies. (c) FM, using all frequencies. 

(Exact borders are marked with dashed white lines.) 

 

Figure 4.6 : (a) Experimental configuration for multiple dielectric scatterers case. 

Result obtained with: (b) LSM, using all frequencies. (c) FM, using all frequencies. 

(Exact borders are marked with dashed white lines.) 

 Localization Errors (𝜖𝑙𝑜𝑐: Quality Measure in (4.26), 𝑇: Threshold) 

Name 𝜖𝑙𝑜𝑐(%) 𝑇 Name 𝜖𝑙𝑜𝑐(%)  𝑇        Name  𝜖𝑙𝑜𝑐(%)    𝑇 

4.3(c) 3.50 0.7 4.3(h) 2.81    0.7 4.5(c) 5.81 0.7 

4.3(d) 3.19 0.7  4.3(i) 2.31    0.7 4.6(b) 2.69 0.7 

4.3(e) 3.44 0.7 4.4(b) 1.38    0.7 4.6(c) 1.19 0.7 

4.3(f) 1.69 0.7 4.4(c) 1.13    0.7 4.7(b) 1.96 0.5 

4.3(g) 0.56 0.7 4.5(b) 5.94    0.7    4.7(c) 3.87 0.5 
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Figure 4.7 : (a) Experimental configuration for T-shaped object. Result obtained 

with: (b) LSM, xz view, using all frequencies. (c) FM, xz view, using all frequencies. 

(d) LSM, xy view, using all frequencies. (e) FM, xy view, using all frequencies. (f) 

LSM, yz view, using all frequencies. (g) FM, yz view, using all frequencies. 
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 Experimental Verification 

Experimental configurations shown through Figure 4.3(a) to Figure 4.7(a) are set up 

inside an anechoic chamber to verify the developed formulations with measured S-

parameters. The measurement system employs a VNA (Agilent N5230A) to measure 

the S-parameters. For each configuration, the reference frame is chosen as the right 

handed coordinate system whose z-axis is vertical to the ground plane and whose y- 

axis is directed towards the antenna on the right side. Unless otherwise stated, 

measurements are performed on a circle located in the z = 0 m plane with two ridged 

horn antennas, which are polarized in z direction. For the results given through Figure 

4.3 - Figure 4.6 the antennas are positioned at R = 0.85 m away from the center, 

whereas for the results given in Figure 4.7 they are located on a R = 1 m radius circle. 

The calibration between the reference plane of the VNA and the input of the antennas 

is made by using an Agilent N4691B electronic calibration module. We utilize HFSS 

from Ansys to simulate the realistic antenna models when computing the coefficients 

in (4.9). The optimal number of harmonics is determined as explained previously. For 

the above mentioned ridged horn antennas, it is calculated that the harmonics upto 

order 10 (1 ≤  𝑝 ≤  10) must be used in (4.9) in order to achieve an error norm less 

than 𝜏 =  0.01, which is sufficient for the experiments as it can be observed from 

Figure 4.2. Note that both LSM and FM require to measure all tangential components 

of the scattered vector S-parameters on the observation surface Λ. However, 

measuring only one component of the vector S-parameters is demonstrated to be 

enough in many cases [14,28,29,42,44,45]. Hence, only the z component of the 

scattered vector S-parameters is measured for all reconstructions and the collected data 

is used in (4.19), (4.20) without any pre-processing. The sampling domain D is 

selected as a square 40 ×  40 𝑐𝑚2 lattice for the reconstructions in Figure 4.3 - Figure 

4.6 and a 40 ×  40 ×  30 𝑐𝑚3 prism for the results in Figure 4.7. For all cases, the 

sampling points are equidistantly distributed with 1 cm separations in each directions 

and the values of the indicator functions are calculated for the entire lattice. Then, these 

indicators are normalized with respect to their maximum value to force all images to 

the same scale. After obtaining the normalized indicator functions 𝑊𝑛(𝑧𝑘), the 

qualities of the reconstructions are assessed by the localization error: 

𝜖𝑙𝑜𝑐 =
𝑁𝑀𝑃

𝑁𝑆𝑃
                                                             (4.26) 
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where 𝑁𝑀𝑃 and 𝑁𝑆𝑃 are the number of misclassified pixels and sampling points 

respectively [14,49]. Here a point 𝑧𝑘 is classified as a pixel inside a scatterer if 

𝑊𝑛(𝑧𝑘) ≥ 𝑇, where 𝑊𝑛(𝑧𝑘) is the heuristically selected threshold. [44,49].  

As a first experiment to verify the presented formulations, the rectangular metallic 

object shown in Figure 4.3(a) is measured. Dimensions of this object are 5 cm×11 

cm×50 cm and measurements are taken at 11 different frequencies, which are 

uniformly distributed between 800 MHz and 4.8 GHz. The object is positioned at the 

center and S-parameters are sampled with 30∘ angular variations, thus in total 12×12 

measurements are performed for each frequency. In Figure 4.3(b), measured S- 

parameters are plotted for the incidence angle of 0∘ degrees. Reconstructed images of 

the rectangular scatterer with LSM are given in Figure 4.3(c), Figure 4.3(d) and Figure 

4.3(e), for 0.8 GHz, 2.0 GHz and 4.0 GHz, respectively. From these results one can 

infer that using single frequency data individually can produce blurry reconstructions, 

as in Figure 4.3(c), even if the number of measurements is sufficient [62]. The 

reconstructions for the multi-frequency case are given in Figure 4.3(f) for LSM and 

Figure 4.3(g) for FM. As it can be observed from these results and the values of 𝜖𝑙𝑜𝑐 

given in Table I, using multi-frequency data mitigates the effect of the noise and 

reconstructions become more accurate. 

For the sake of completeness, here we proceed with a comparison of the presented 

formulations against their electric field counterparts. As mentioned earlier, the electric 

field based formulations require scattered electric field, which can be obtained with 

standard calibration procedures. Such calibration methods are based on calculating 

coefficients 𝛾 by comparing simulated electric field and measured S-parameters of a 

canonical target. After the coefficients are computed, the scattered electric field of any 

target 𝐸𝑠𝑐𝑡(𝑓, 𝑥, 𝑦) is assumed as: 

𝐸𝑠𝑐𝑡(𝑓, 𝑥, 𝑦) = 𝛾(𝑓, 𝑥, 𝑦)𝑆𝑠𝑐𝑡(𝑓, 𝑥, 𝑦)                                     (4.27) 

Here the coefficient 𝛾 is generally dependent on the illumination frequency 𝑓, the 

position of transmitter 𝑥, and the position of receiver 𝑦. In this paper the calibration 

procedure in [42], where the coefficients 𝛾 are assumed to be only a function of the 

illumination frequency 𝑓, is used to obtain the scattered electric field. The explicit 

formula for 𝛾 is given as [42]: 
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𝛾(𝑓) =
∑ ∑ 𝐸𝑠𝑖𝑚,𝑟𝑒𝑓(𝑓,𝑥,𝑦)(𝑆𝑚𝑒𝑎𝑠,𝑟𝑒𝑓)

∗
(𝑓,𝑥,𝑦)𝑦𝑥

∑ ∑ |𝑆𝑚𝑒𝑎𝑠,𝑟𝑒𝑓(𝑓,𝑥,𝑦)|2𝑦𝑥
                         (4.28) 

where (⋅)∗ denotes complex conjugation and 𝐸𝑠𝑖𝑚,𝑟𝑒𝑓, 𝑆𝑚𝑒𝑎𝑠,𝑟𝑒𝑓 stand for the 

simulated scattered electric fields, the measured scattered S-parameters for the 

reference target. As the canonical target, a metallic sphere with radius of 5 cm is 

employed and its measured S-parameters are compared with the analytical solution 

[63]. The imaging results for the electric field based inversions are given in Figure 

4.3(h) for LSM and Figure 4.3(i) for FM. The localization errors indicate that the 

presented formulations perform slightly better than the electric field based methods, 

but as it can be seen from Figure 4.3(f) - Figure 4.3(i), both procedures can accurately 

determine the shape and position of the object. One of the reason for this small 

performance difference can be the inclusion of the antenna radiation characteristics 

into the presented formulations. Consequently, these results can only give an idea 

about the performance of the S-parameter based formulations compared to their 

electric field based counterparts. For a comparison of the existing calibration 

techniques we propose the reader to see [64]. 

From the aspect of computational complexity, the requirements of the presented 

formulations are very close to the original LSM and FM formulations, since the 

mathematical operations are the same except for the computation of the incident field. 

The calculation of each term in (4.9) takes approximately the same time as the 

computation of the electric Green’s function, which may cause S-parameter based 

inversions to be slower than their electric field complements. The time difference is 

not significant for the multi-frequency reconstructions presented in Figure 4.3, where 

generation of each result takes less than 1 minute on a standard PC. As the number of 

sampling points increases the total duration becomes noticeable, particularly, the 

results in Figure 4.7 take 15 minutes on the same PC. Nevertheless, the computation 

time solely depends on the order of expansion in (4.9), which changes from antenna to 

antenna. On the other hand, if we consider the calculation of antenna coefficients α, β 

and the calibration coefficients γ in (4.27), both require a single simulation for each 

illumination frequency. However, the calibration coefficients γ are unique to the 

experimental setup whereas antenna coefficients α, β are reusable as long as the 

electrical properties of the surrounding medium remain the same. 
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Next, to verify the presented formulations for dielectric structures, the same 

measurements are repeated for a wooden cylinder with diameter 5.9 cm and height 100 

cm as shown in Figure 4.4(a). The object is intentionally placed off-centered and 

reconstructed images of the cross-section are shown in Figure 4.4(b) and Figure 4.4(c), 

for LSM and FM respectively. The methods successfully reconstruct dielectric targets 

as well and obtained images are quite comparable with each other, as can be 

understood from Table I. These results not only verify the presented formulations but 

also demonstrate flexibility of qualitative inverse scattering methods, since LSM and 

FM can be applied to both dielectric and conducting objects without any modification. 

Furthermore, the localization errors given in Table I indicate that the quality of 

reconstructions for both kinds of scatterers is quite similar. Indeed, this is an expected 

outcome, since the number of measurements is sufficient for solving the inverse 

imaging problem [62]. Another reason for this phenomenon can be the resistance of 

these algorithms against the marginal variations in the multiple scattering (or 

nonlinearity) [65].  

As mentioned earlier, one of the advantages of qualitative inverse scattering methods 

is that these methods do not require the number of scatterers a-priori. To demonstrate 

this capability, the measurement configuration shown in Figure 4.5(a) is prepared. In 

this case, two rectangular metallic objects having dimensions of 5 cm×11 cm×50 cm 

are placed off-centered. S-parameter measurements are performed in 1 – 3 GHz range 

with 250 MHz steps and antennas are rotated with 15∘ angular variations. Thereby, in 

total 24×24 measurements are performed for each illumination frequency. Using 

multi-frequency data with LSM and FM, the results given in Figure 4.5(b) and Figure 

4.5(c) are obtained respectively. While the result in Figure 4.5(c) reveals the shape of 

scatterers more clearly, the error norms in Table I imply that the reconstructions of 

LSM and FM have almost the same quality for this particular setup.  

To further investigate performance of the formulations with multiple dielectric 

scatterers, another measurement configuration is prepared as shown in Figure 4.6(a). 

In this setup, two identical wooden cylinders with diameters 5.9 cm and heights 100 

cm are placed off-centered. The same measurements, which are performed for multiple 

metallic scatterers, are repeated for this configuration. Reconstructed images are 

shown in Figure 4.6(b) for LSM and Figure 4.6(c) for FM. By examining the error 

values in Table I, it can be inferred that FM produces more satisfying reconstruction 



45 

compared to LSM. Apart from that, in contrast to the single scatterer case, the quality 

of Figure 4.6(b) and Figure 4.6(c) is relatively higher than the quality of the 

reconstructions for multiple metallic scatterers case, which are given in Figure 4.5(b) 

and Figure 4.5(c). This performance degradation can be ascribed to several factors: 

different errors in the measurement process (the errors due to misplacement of the 

antennas or the objects, random measurement errors) or the selection of the threshold 

level T etc. Another reason, which causes this deterioration, could be a slight increase 

in the multiple scattering effect between the antennas and the targets due to the 

conductor scatterers [65]. 

Finally, the increase in the number of degrees of freedom for the conductor targets, 

which is due to their larger size when compared to dielectrics, can have an impact on 

the quality of the results [62]. Nonetheless, the results demonstrated through Figure 

4.5 - Figure 4.6 indicate that the presented methods can tolerate such effects up to a 

certain extent. Finally, to illustrate 3D reconstruction capability of the methodologies, 

another experimental setup shown in Figure 4.7(a) is designed. For this case, the target 

is selected to be a T-shaped object, which consists of two rectangular prisms of wood 

having dimensions of 4 cm×4 cm×30 cm. This T-shaped object is placed on a small 

reference stick for ease of physical stabilization. S-parameters are measured within a 

frequency range of 1−6 GHz with 250 MHz steps. To be able to reconstruct dimensions 

along the z-axis, measurements for this configuration are performed with 15∘ angular 

variations on five different planes, which are z = 0 cm, z = 5 cm, z = 10 cm, z = 15 cm 

and z = 20 cm surfaces. Thus, in total 120 × 120 bistatic measurements are performed 

for this particular case. After obtaining the scattering matrix from these measurements, 

indicator functions are computed using (4.23), (4.25) and (4.24), (4.25) for LSM and 

FM, respectively. Finally, to have a reconstruction of the T-shaped object, the indicator 

function is normalized to its maximum value and the W = 0.5 surface is plotted for 

both algorithms. Results are given in Figure 4.7(b), Figure 4.7(d), Figure 4.7(f) for 

LSM and in Figure 4.7(c), Figure 4.7(e), Figure 4.7(g) for FM. From the 

reconstructions, it is clear that both algorithms correctly reconstruct the shape and 

dimensions of the investigated object, while the error levels in Table I imply that the 

result of LSM is slightly better than that of FM. This quality difference is related to 

the choice of regularization parameter, which is critical for LSM as noted earlier. 
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These results are quite important to demonstrate 3D imaging capability of developed 

formulations. 

Consequently, achieved reconstructions can be improved in many aspects such as 

increasing the total number of measurements and applying further image processing 

techniques to obtained images. However, we have implemented the experiments with 

a minimalistic approach (with minimum number of measurements and without using 

any pre- or post- processing) to verify the presented formulations. 

 Conclusions and Future Work 

In this paper, we have developed S-parameters based novel formulations of two closely 

related qualitative inverse scattering methods, which are the linear sampling method 

(LSM) and the factorization method (FM). The proposed algorithms include the 

antenna radiation pattern implicitly, which makes it possible to work with realistic 

antennas. Besides, they relieve us from any pre- or post- processing steps in exchange 

for computation of a finite number of antenna parameters. Beyond this, S-parameter 

based methods have the same computational complexity as their electric field 

complements. 

Apart from introducing S-parameter based LSM and FM, we have experimentally 

verified them with real measurements for various configurations. It has been 

demonstrated that S-parameter based formulations yield high quality reconstructions 

for multi-frequency measurements. 

Finally, it is worth mentioning that the developed framework can provide a guideline 

to reformulate other qualitative inverse scattering methods in terms of S-parameters. 

Future research will be devoted to extending the presented model for imaging of 

targets embedded inside inhomogeneous mediums in order to utilize them in real world 

problems, such as medical imaging and non-destructive testing. 
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 EXPERIMENTAL ASSESSMENT OF LINEAR SAMPLING AND 

FACTORIZATION METHODS FOR MICROWAVE IMAGING OF 

CONCEALED TARGETS3 

Shape reconstruction methods are particularly well suited for imaging of concealed 

targets. Yet, these methods are rarely employed in real nondestructive testing 

applications, since they generally require the electrical parameters of outer object as a 

priori knowledge. In this regard, we propose an approach to relieve two well known 

shape reconstruction algorithms, which are the linear sampling and the factorization 

methods, from the requirement of the a priori knowledge on electrical parameters of 

the surrounding medium. The idea behind this paper is that if a measurement of the 

reference medium can be supplied to these methods, reconstructions with very high 

qualities can be obtained even when there is no information about the electrical 

parameters of the surrounding medium. Taking the advantage of this idea, we consider 

that it is possible to use shape reconstruction methods in buried object detection. 

Accuracy and stability of the obtained results show that both methods can be quite 

useful for various buried obstacle imaging problems. 

 Introduction 

Imaging of concealed targets have different applications ranging from medical 

imaging [66–68] to subsurface sensing [14,19,31,40,50,69]. Main challenge for such 

problems is that the solution procedures are expected to capture the electrical 

parameters (relative dielectric constant 𝜖𝑟, conductivity 𝜎) of whole medium, which 

includes the buried objects [1,5,13,30]. Up to date, many quantitative techniques are 

developed to obtain the electrical parameter distribution of the whole medium [1,11]. 

However, the quantitative formulations involve a considerable amount of 

computational burden. Being contradictory to quantitative techniques, qualitative 

                                                 

 

3 This chapter is based on the paper “Akıncı, M. N., Çağlayan, T., Özgür, S., Alkaşı, U., Abbak, M., 

Çayören, M., 2015. Experimental Assessment of Linear Sampling and Factorization Methods for 

Microwave Imaging of Concealed Targets. International Journal of Antennas and Propagation, 1-11.” 
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inversion methods, which aim to recover only the shape of the scatterers, have 

relatively simple formulations and require lower computational resources [8,13,30]. In 

contrast to such obvious advantages, qualitative inversion techniques are rarely 

employed in buried obstacle detection, since these methods have strong a priori 

knowledge requirements in their original form. In particular, to be able to detect the 

shape of an inclusion by means of these methods, we must supply these two a priori 

pieces of information: (i) the dielectric parameters of the surrounding medium and (ii) 

the scattered field when there is no buried object inside the surrounding medium 

[8,13]. It is obvious that fulfilling such strong conditions altogether is of a serious issue 

in any imaging problem. 

There are already several studies to remedy the a priori information problems of 

qualitative imaging methods [6,7,31–34,70,71]. In [31], the reciprocity gap-linear 

sampling method (RG-LSM) is utilized to relieve LSM from the above mentioned 

constraints. In [32–34,71], different qualitative methods are assessed in biomedical 

applications for which a limited a priori information is available. Finally, in [6,7,70] 

LSM is employed in quantitative imaging processes, which can provide an estimate of 

the dielectric parameters of the whole target.  

This paper introduces a practical solution procedure for two famous qualitative 

inversion schemes, which are the linear sampling method (LSM) [9] and the 

factorization method (FM) [10]. To this end, we propose a strategy to overcome the a 

priori knowledge requirement on the dielectric parameters of the surrounding medium. 

Explicitly, we state that it is possible to use LSM and FM in practical situations, 

whenever the condition (ii) is satisfied. It is important to notice that if (i) is satisfied 

(ii) is already fulfilled, but the converse is not true. Furthermore, the second condition 

can be satisfied in certain practical applications like mine sweeping [72,73], subsurface 

sensing [14,19,31,40,50,69] or through-wall imaging [49,74], and so forth. (For the 

sake of clarity, let us further explain the through-wall example: it is not easy to 

completely characterize the dielectric parameters of a wall, but we can easily make a 

measurement on the different parts of this wall and use one of these measurements as 

reference.) Consequently, after having the second condition in hand, an accurate shape 

reconstruction of the inclusion can be obtained by just assuming the outer medium as 

free space. We prove the effectiveness of the proposed methods with real 

measurements taken inside an anechoic chamber. Obtained results show that it is  
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Figure 5.1 : Configuration of the problem (𝐷: the background medium, Ω: the 

scatterer(s), Γ: the excitation-measurement line, 𝑥: the position of the transmitting 

antenna, 𝑦: the position of the receiving antenna, and 𝑧: the points inside the 

sampling domain). 

possible to localize the buried obstacles whenever we can find a reference medium, 

which is available to measurement. In the following section, we briefly revise the LSM 

and FM, and then, in the subsequent part, we give the formulations of the modified 

LSM and FM for concealed target detection. Consequently, in the experimental 

verification section, we will present the results for two different inclusions buried 

inside dry soil. Throughout the paper, time convention is assumed 𝑒𝑥𝑝(−𝑖𝜔𝑡) and 

factored out. 

 Review of Shape Reconstruction Methods 

Consider the scenario in Figure 5.1, where an object Ω, whose relative dielectric 

permittivity and conductivity are 𝜖𝑟
′ (𝑧) and 𝜎′(𝑧), is buried into another medium 𝐷 

with electrical parameters of 𝜖𝑟(𝑧), 𝜎(𝑧). The remaining part of the medium is filled 

with air, which can be modeled as free space. Throughout the paper the wavenumber 

of any medium is defined as 𝑘 =  √𝜔2𝜇𝜖 + 𝑖𝜔𝜎𝜇, where 𝜔 is the angular frequency 

of illuminating sources and 𝜖, 𝜇 are the electrical permittivity, the magnetic 

permeability of the related medium, respectively. The transmitting and measuring 

antennas are placed on an arc 𝛤 and we assume that 𝛤 ⋂ 𝐷 = ∅; that is, the 

measurements are done from outside of the surrounding medium. Here, the 
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measurement arc 𝛤 does not necessarily enclose the object 𝐷. The forward scattering 

mechanism in such a system can be expressed with the well known data and object 

equations [2]: 

𝐄𝐬𝐜𝐭(𝑦) = ∫ 𝐆(𝑦, 𝑧)𝑂(𝑧)𝐄𝐭𝐨𝐭(𝑧)𝑑𝑧
𝐷

;   𝑦 ∈ Γ, 𝑧 ∈ 𝐷                       (5.1) 

𝐄𝐭𝐨𝐭(𝑧) = 𝐄𝐢𝐧𝐜(𝑧) + ∫ 𝐆(𝑧, 𝑧′)𝑂(𝑧′)𝐄𝐭𝐨𝐭(𝑧′)𝑑𝑧′
𝐷

;   𝑧′, 𝑧 ∈ 𝐷                (5.2) 

where 𝑂(𝑧)  =  𝑘(𝑧)2  −  𝑘0
2 is the so-called object function and 𝐄𝐢𝐧𝐜 , 𝐄𝐭𝐨𝐭, and 𝐄𝐬𝐜𝐭 

stand for the incident, total, and scattered electric fields, respectively. In (5.1) and 

(5.2), 𝐆(⋅,⋅) is the dyadic Green’s function of free space, which is defined as [2]: 

𝐆(𝑧, 𝑧′) = (𝐈 +
1

𝑘0
2 ∇∇)

exp(𝑖𝑘0|𝑧−𝑧
′|)

4𝜋|𝑧−𝑧′|
                            (5.3) 

where 𝐈 denotes the identity tensor. 

5.2.1 Linear sampling method 

The general objective of the shape reconstruction methods is to recover an estimate of 

the support of the inclusion Ω, given the electrical properties of background medium 

𝐷. Using the electrical properties of the background medium 𝐷, the scattered field 

when there is no object in the reference medium 𝐄𝑟𝑒𝑓
𝑠𝑐𝑡  can be calculated. Then, the 

scattered field when there is a scatterer Ω in the reference medium 𝐄𝑎𝑙𝑙
𝑠𝑐𝑡 is measured. 

Let us assume that Γ is a circle and all antennas are polarized vertically. Then, it is 

obvious that only vertical component of the scattered electric field 𝐸𝑎𝑙𝑙
𝑣,𝑠𝑐𝑡

 can be 

measured. To identify the location of the inclusion, such methods use a common 

mechanism, which is assigning an indicator function to each sampling point in 𝐷 

[8,13]. This indicator function exhibits a particular characteristic when the sampling 

point belongs to inclusion Ω [8,13]. By plotting the indicator function over all 

sampling domain 𝐷 and searching for the locations at which the particular behavior 

exists one can reconstruct the shape of the inclusion Ω [8,13]. 

Linear sampling method (LSM) is a common example of such support identification 

methods [9,44,45,75]. The main problem that LSM aims to solve is the far field 

equation [9]. In the above mentioned circular measurement configuration, where 𝑁 

vertical polarized antennas are uniformly distributed on a circle having radius 𝑅, the 

discretized far field equation reduces to: 
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𝐅𝐠 = 𝐆                                                                  (5.4) 

where 𝐠 =  [𝑔(𝑥𝑛 , 𝑧𝑞)];  1 ≤  𝑛 ≤ 𝑁 , 1 ≤  𝑞 ≤ 𝑄 is the matrix of coefficients that 

is to be solved, 𝐅 =  [𝐸𝑣,𝑠𝑐𝑡(𝑦𝑚 , 𝑥𝑛)]  =  [𝐸𝑎𝑙𝑙
𝑣,𝑠𝑐𝑡(𝑦𝑚, 𝑥𝑛)]  − [𝐸𝑟𝑒𝑓

𝑣,𝑠𝑐𝑡 (𝑦𝑚, 𝑥𝑛)];   1 ≤

 𝑚, 𝑛 ≤ 𝑁 stands for the discretized far field operator, whose elements are the vertical 

component of the scattered electric field measured by 𝑚th antenna when 𝑛th antenna 

acts as source. In (5.4), 𝐆  = [�̃�𝑣𝑣(𝑦𝑚, 𝑧𝑞)];  1 ≤  𝑚 ≤ 𝑁 , 1 ≤  𝑞 ≤ 𝑄 is the vertical 

component of the electrical field measured at point 𝑧𝑞 ∈  𝐷, 1 ≤  𝑞 ≤ 𝑄 when a 

vertically polarized infinite small dipole, which is located at the position of 𝑚th 

receiving antenna, illuminates the reference medium. LSM states that the solutions of 

(5.4) is finite only if the sampling point 𝑧𝑞 ∈  𝐷, 1 ≤  𝑞 ≤ 𝑄 coincides with a scatterer 

Ω. It is important to note that (5.4) is severely ill posed and a regularization scheme 

must be utilized to obtain a stable solution [9]. Here, we can utilize from the Tikhonov 

regularization 

𝐠 = (𝛼𝐈 + 𝐅∗𝐅)−𝟏𝐅∗�̃�                                             (5.5) 

where (⋅)∗ stands for the conjugate transpose operator. Here, the regularization 

parameter 𝛼 is determined by imposing the following condition: 

𝜎𝑁

𝛼2+𝜎𝑁
2

∑ |〈�̃�𝑣𝑣(⋅,𝑧𝑞),𝑢𝑁(⋅)〉|
𝑄
𝑞=1

𝑄
=

1

𝜎1
max
1≤𝑞≤𝑄

|〈�̃�𝑣𝑣(⋅, 𝑧𝑞), 𝑢1(⋅)〉|       (5.6) 

where ⟨⋅,⋅⟩ denotes the inner product on receiving points and 𝛴 =

 {𝜎1, 𝜎2, . . . , 𝜎𝑁};  𝑈 = {𝑢1, 𝑢2, . . . , 𝑢𝑁} stand for the singular values, the left singular 

vectors of 𝐅, respectively [28]. Hence, the indicator function for LSM is defined as the 

reciprocal of norm of the solutions of (5.4) [9], which can be given as: 

𝐼(𝑧𝑞) ≔ (∑ |𝑔(𝑥𝑛, 𝑧𝑞)|
2𝑁

𝑛=1 )
−1

;       1 ≤ 𝑞 ≤ 𝑄                       (5.7) 

By plotting 𝐼 on the entire sampling domain, an illustration of the shape of the inclusion 

Ω can be recovered. For a more detailed investigation of the theoretical framework of 

the LSM, the reader is proposed to see [9,44]. 

5.2.2 Factorization method 

Another famous support identification algorithm is the factorization method (FM), 

which is developed as an alternative to LSM [10,11,53]. The purpose of FM is to 

investigate the solvability of the following matrix equation [10]: 
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(𝐅∗𝐅)
𝟏

𝟒 𝐠 = 𝐆                                                         (5.8) 

where 𝐅 and 𝐆 stand for the far field operator and the matrix of Green’s functions 

defined in (5.4). The equation in (5.8) has finite solutions if and only if the sampling 

point 𝑧𝑞 ∈ 𝐷, 1 ≤  𝑞 ≤ 𝑄 coincides with an object Ω [10]. In [10], it is shown that 

the above equation has finite solutions if and only if: 

𝐼(𝑧𝑞) ≔ (∑
|〈�̃�𝑣𝑣(⋅,𝑧𝑞),𝜓𝑚(⋅)〉

2|

|𝜆𝑚|
𝑀
𝑚=1 )

−1

;       1 ≤ 𝑞 ≤ 𝑄,𝑀 ≤ 𝑁             (5.9) 

is greater than 0. Here, 𝛹 =  {𝜓1, 𝜓2, . . . , 𝜓𝑁} and 𝛬 =  {𝜆1, 𝜆2, . . . , 𝜆𝑁} are the sets of 

eigenfunctions-eigenvalues of the far field operator 𝐅, respectively. Note that the 

regularization for (5.9) can be done by a spectral cut-off of the eigensystem of 𝐅 at      

𝑚 =  𝑀 ≤ 𝑁. Similar to the LSM, a plot of 𝐼 on the sampling domain 𝐷 gives an 

estimate of the support of the inclusion. More detailed mathematical discussions 

regarding FM can be found in [10,11,53]. 

 Solution to Imaging of Buried Objects 

Although the above procedures are simple to implement and stable in nature, they are 

rarely employed in experimental concealed target detection. This is basically due to 

the fact that they require some a priori information, which cannot be available in most 

of the practical problems. Those requirements in the above scenarios can be stated as 

follows.  

   (i) Far field equation in (5.4) requires one to know the dyadic Green’s function 𝐆, 

which is directly connected with the electrical parameters of the surround ing medium 

(i.e., 𝜖𝑟(𝑧), 𝜎(𝑧) in Figure 5.1). 

   (ii) Furthermore, to be able to construct the equation system in (5.4) the scattered 

field due to inclusion, that is, 𝐸𝑣,𝑠𝑐𝑡 in (5.4), must be known. Therefore, we must 

compute (or at least approximate) 𝐸𝑟𝑒𝑓
𝑣,𝑠𝑐𝑡

, which is the scattered field from the reference 

medium 𝐷. 

It is very important to distinguish between these two conditions. First of all, satisfying 

the first condition, which states that one must have dyadic Green’s function 𝐆, seems 

to be unrealistic in many microwave measurement systems. However, the second 

condition can be satisfied in certain imaging problems for which an extra measurement 
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of a reference medium is feasible [14,19,31,40,49,50,69,72-74]. As an example, in 

through-wall imaging or subsurface sensing problems, it is not hard to find a reference 

medium available to measurement, but measuring such a reference does not provide 

us a model for the distribution of the electrical parameters of the surrounding medium 

𝐷. Let us think of such cases in which we have a reference medium available to 

measurement, and then we propose that the far field equation in (5.4) can be modified 

as: 

𝐅𝐠 = 𝐆                                                                (5.10) 

where Green’s function of free space 𝐆 is replaced with Green’s function of the 

background medium 𝐆. The dyadic Green’s operator 𝐆 can be computed by (5.3); 

therefore, by solving the modified equation in (5.10) via Tikhonov regularization 

defined in (5.5), (5.6) and by plotting the indicator function 𝐼 as in (5.7), an estimate 

of the support of the inclusion Ω can be obtained. 

Similarly, the main equation of FM can be changed as: 

(𝐅∗𝐅)
𝟏

𝟒 𝐠 = 𝐆                                                      (5.11) 

Hence, the indicator function 𝐼 for FM can be obtained in a similar manner to (5.9). 

Although there are different approaches for an optimal regularization of the FM 

[76,77], we set 𝑀 =𝑁 by relying on our numerical observations. Consequently, a plot 

of 𝐼 over the entire sampling domain 𝐷 provides a reconstruction of the shape of the 

buried targets. 

 Experimental Verification 

In the light of the theoretical evaluations, this section includes the discussions of what 

kind of results can be obtained for different scatterers and for what applications the 

approach that we have proposed can be useful. To illustrate the applicability of the 

methodologies, we prepare the measurement setup shown in Figure 5.2. The system 

consists of computer controlled turn table, a vector network analyzer (VNA, Agilent 

N5230A), and two vertically polarized Vivaldi  
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Figure 5.2 : Measurement setup. 

antennas, which are examples of classical ultrawideband antennas [61,78-80]. 

Calibration between VNA and the antennas is done by means of the Agilent N4691B 

electronic calibration module. For all cases, the reference medium is dry soil. 𝑆-

parameters are sampled at 24 points when the scatterer is chosen as water and 12 points 

when the scatterer is air. (The number of measurements is selected according to the 

number of degrees of freedom of the scattering problem. Note that the radii of the 

targets are smaller than one wavelength (wavelength in free-space) even for the highest 

frequency. Hence 2𝑘0𝑎 ≈ 12 measurements are sufficient in general. To guarantee a 

better reconstruction quality for the water filled target, we increase the number of 

measurements to 24 [62].) Unless otherwise stated, the measurement points are 

uniformly distributed on the circle having a radius of 17 cm. For the conversion 

between 𝑆-parameters and electric field, the method proposed in [42] is employed. 

Basically, using a canonical target, a single coefficient for each frequency 𝑓, is 

calculated as: 

𝐶(𝑓) ≔
∑ ∑ 𝐸𝑠𝑖𝑚(𝑥,𝑦,𝑓)𝑆𝑚𝑒𝑎𝑠

∗ (𝑥,𝑦,𝑓)𝑦𝑥

∑ ∑ |𝑆𝑚𝑒𝑎𝑠(𝑥,𝑦,𝑓)𝑦 |2𝑥
;                             (5.12) 
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Figure 5.3 : Measured (red squares) and simulated (blue circles) electric fields for 

canonical target at 4 GHz: (a) normalized absolute values (b) phase. 

where 𝐸𝑠𝑖𝑚(𝑥, 𝑦) denotes the vertical component of simulated scattered field and 

𝑆𝑚𝑒𝑎𝑠(𝑥, 𝑦) stands for the measured scattered 𝑆-parameter for the same polarization.  

In (5.12), the transmitter is located at 𝑥, whereas the position of the receiver is given 

by 𝑦. After calculating the conversion coefficients (𝑓), the vertical component of the 

scattered electrical field for any target can be given as: 

𝐸𝑚𝑒𝑎𝑠(𝑥, 𝑦, 𝑓) = 𝐶(𝑓)𝑆𝑚𝑒𝑎𝑠(𝑥, 𝑦, 𝑓)                                       (5.13) 

In our measurement configuration, the calibration target is selected as a metallic 

cylinder with a radius of 10 cm and its simulated field is computed analytically [63]. 

As given in Figure 5.3, calibrated electric field of the cylinder and the analytical 

solution have a good agreement. To increase the frequency diversity of the 

measurement, 𝑆-parameters are sampled at 41 frequencies equilinearly distributed on 

2 GHz–6 GHz interval. Multifrequency reconstructions are obtained by summing all 

single frequency indicators and normalizing the final values with respect to their 

maximum value [55]. To be able to make pointwise summations on single frequency 

reconstructions, the sampling domain is discretized into 40×40 points for all 

frequencies. As a final note, it must be emphasized that this measurement setup can 

only produce 2D slice images, since the antennas do not sweep along vertical axis [28]. 

Therefore, all reconstructions given here is for the horizontal slice going through the 

midpoints of the  
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Figure 5.4 : (a) Measured material, (b) LSM reconstruction with the proposed 

formulation, (c) FM reconstruction with the proposed formulation, (d) LSM 

reconstruction with the exact Green’s function, and (e) FM reconstruction with the 

exact Green’s function, for the scatterer filled with water. 

antennas. (Although we stress that the algorithms produce 2D images, full 3D 

modeling is employed for all configurations. Explicitly, the equations given in (5.10), 

(5.11) are solved without simplifying the operators to 2D case. The only modification 

is that (5.10) and (5.11) are solved for only those points, which belong to the horizontal 

slice that is going through the midpoints of the antennas.) 
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Figure 5.5 :  (a) Measured material, (b) LSM reconstruction, and (c) FM 

reconstruction for the scatterer filled with air. 

The first material, for which the measurements are performed, is shown in Figure 

5.4(a). In this case, two measurements are performed. First the dry soil is measured 

and, then for the second measurement, a water filled balloon with a radius of 3 cm is 

buried into soil. The center of the balloon is located at (𝑢 =− 1 cm, 𝑣 = 3 cm). Here, 

we adopt the following axis definitions: 𝑣 axis is parallel to ruler in Figures 5.4(a) and 

5.5(a) and its positive end is directed towards right side, 𝑢 is the axis, which can be 

obtained by rotating v at an amount of 90∘  in the counter clockwise direction. 

Obtained results for LSM and FM are given in Figures 5.4(b) and 5.4(c), respectively. 

Obviously, both methods recover the horizontal profile correctly without using any a 

priori knowledge on the electrical properties of the dry soil. An important point that 

must be mentioned is that both algorithms reconstruct the support of the midslice of 

the inclusion, although the antennas are not aligned with the midslice of the scatterer. 

By referring to our empirical observations, we can say that these methods exhibit this 

peculiar behavior in general. Another interesting point is the quality of the 

reconstructions for these two methods are very close to each other. 
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Figure 5.6 : Reconstructions obtained for the water filled scatterer by using (a) 

LSM, (b) FM when the transmitting and receiving antennas are located on 90∘ <
𝜃 < 270∘,      𝑟 =  17 cm, and (c) LSM, (d) FM when the transmitting and receiving 

antennas are located on 90∘ < 𝜃 < 270∘ , 𝑟 =  17 cm, and −90∘ < 𝜃 < 90∘ , 𝑟 =

 17 cm, respectively. (Here 𝜃 = tan−1(
𝑢

𝑣
) and 𝑟 = √𝑢2 + 𝑣2.) 

This in fact is expected since these methods originate from similar mathematical 

principles. 

After demonstrating the applicability of the proposed approach, we investigate how 

the information of the exact Green’s function affects the quality of the results. For this 

aim, the dyadic Green’s function of the reference medium is computed with a 3D 

Method of Moments solver, utilized from biconjugate gradient fast Fourier transform 

method [35]. Here, the relative dielectric permittivity and conductivity of the dry soil 

is taken as 𝜖𝑟 =  3.5 and 𝜎 =  0.05
𝑆

𝑚
 for all frequencies of illumination [81,82]. The 

results with the exact Green’s function are given in Figures 5.4(d) and 5.4(e) for LSM 

and FM, respectively. As can be seen the reconstructions of proposed formulations 
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Figure 5.7 : Reconstructions obtained for the air-filled scatterer by using (a) LSM, 

(b) FM when the transmitting and receiving antennas are located on 90∘ < 𝜃 <
270∘. (c) LSM, (d) FM when the transmitting and receiving antennas are located 

on 90∘ < 𝜃 < 270∘, 𝑟 =  17 cm, and −90∘ < 𝜃 < 90∘ , 𝑟 =  17 cm, respectively. 

are very similar to Figures 5.4(d) and 5.4(e). Hence, it can be concluded that, with the 

proposed method, unavailability of the exact dyadic Green’s function does not cause 

a significant quality degradation. 

Next, we continue with a second example to further illustrate the performance when 

the scatterer is weak (i.e., the electrical properties of the buried material is low.) and 

the electrical contrast between the inclusion and the surrounding medium is low. (Note 

that the electrical properties of the water is 𝜖 𝑟 = 75 and 𝜎= 2 S/m at 3 GHz [83].) To 

this end, the material shown in Figure 5.5(a) is prepared. For this case, an air filled 

balloon is buried into dry soil. The coordinates of the center of the balloon are 

measured as (𝑢= 6 cm, 𝑣 = 1 cm) and the radius of the scatterer is 2 cm. 

Reconstructions for LSM and FM are shown in Figures 5.5(b) and 5.5(c), respectively. 
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As it can be observed from the results, the proposed formulations produce an estimate 

of the shape of the inclusion even when the scatterer is weaker in electrical contrast. 

Up to now, we show the feasibility of the presented method when the measurements 

are taken on a full aperture. However, the common measurement schemes for 

concealed target detection problems consist of a limited incidence-observation angles. 

Thus, to be able to give a merit to the presented formulations, they must be analyzed 

when such a measurement configuration is employed. For this aim, certain parts of the 

obtained scattering matrix are cut and the inversions are applied by using only these 

measurements. The imaging results when the scatterer is water filled balloon are given 

in Figure 5.6. Here, for Figures 5.6(a) and 5.6(b), the transmitting and measuring 

antennas are located on the same arc, which is defined as 90∘  < 𝜃 <  270∘, 𝑟= 17 cm. 

Such a measurement scheme is mostly employed in subsurface sensing 

[14,19,31,40,50,69] and through-wall imaging problems [49,74]. As can be seen from 

the results, the quality of the reconstructions decreases for both LSM and FM, when 

compared with the previous results. Nevertheless, both methods can provide some 

clues about the shape of the scatterers. Another typical measurement configuration is 

the one in which the transmitting and receiving antennas are located on different arcs. 

Here, the union of these two arcs can enclose the material under test. Such a 

configuration may be useful in nondestructive testing problems [84-86]. The results 

for this type of measurement scenario are given in Figures 5.6(c) and 5.6(d) for LSM, 

FM, respectively. For these results, the scatterer is the water filled balloon as in Figures 

5.6(a) and 5.6(b). As can be observed from these images, this kind of measurement 

produces better reconstructions than the results in Figures 5.6(a) and 5.6(b). This 

phenomenon can be simply explained as the increase in the union of the measurement-

excitation apertures leads to better results. 

Finally, the same measurement configurations can be applied to the air filled scatterer. 

The obtained results, when the transmitting and receiving antennas are located on the 

same arc, are given in Figures 5.7(a) and 5.7(b) for LSM, FM, respectively. It is 

obvious that both algorithms are also capable of providing an estimate of the shape of 

the air filled scatterer. Another point that must be stressed is that the reconstruction for 

LSM is more clear than the one for FM. In fact, there can be many factors which can 

cause such performance differences. A few of them can be stated as selection of 

regularization parameter for LSM, the number of eigenvalues taken into account for 
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FM and, and so forth. As for the two last examples for the weak scattering target, the 

case in which the transmitting and receiving antennas are located on different arcs is 

considered. The obtained reconstructions for LSM and FM are given in Figures 5.7(c) 

and 5.7(d), respectively. By observing the results, it can be inferred that both methods 

can give an estimate of the shape and the location of the scatterer. Similar to the results 

in Figures 5.7(a) and 5.7(b), LSM gives a more clear estimate compared to the FM. 

This performance difference can be explained by using the same arguments stressed 

in the above. Consequently, we can conclude that the modified formulations can be 

employed in such real measurement scenarios to obtain an estimate of the shape and 

the location of the buried obstacles. 

 Conclusions and Future Work 

In this paper, we propose an experimental technique to move around the a priori 

information requirements of the qualitative methods. The proposed approach works 

for the situations where an extra measurement for the reference medium is feasible. In 

particular, we modified the formulations of two well known qualitative methods, the 

linear sampling method (LSM) and the factorization method (FM). The accuracy of 

the modified formulations is tested against realistic measurements. Besides showing 

the accuracy of the presented formulations, the obtained results imply the feasibility 

of proposed approach, especially for subsurface imaging, where the targets are buried 

into soil. 

Lastly, we want to emphasize that the proposed formulations are important from the 

aspect that it can make the usage of qualitative methods possible in many real world 

problems. Future research will be devoted to application of these methods in more 

realistic environments. 
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 CONCLUSIONS AND RECOMMENDATIONS 

In this thesis, we investigate the application of qualitative inversion techniques in 

microwave imaging, which are rarely analyzed from an engineering perspective.   

The first part of the thesis present a microwave imaging method for detecting and 

localizing buried objects under a rough air – soil interface. The formulation depends 

on factorization method in which the positions of scatterers are qualitatively 

determined with the norm of a properly defined indicator function. The method can 

retrieve positions and shapes of multiple objects with a near field limited aperture 

measurement configuration where the measurements are performed with a short 

antenna array moving over the soil. In particular, the short array of antennas are slided 

over the surface step by step and measurements are recorded in a bistatic scattering 

matrix. Here, due to short length of the array only a small portion of the whole bistatic 

scattering matrix, which is around the diagonal, can be filled with measurements. The 

parts of the scattering matrix that is missing is simply filled with zeros. This scattering 

matrix is then utilized in the factorization method and the indicator functions are 

computed accordingly. Numerical simulations prove that the presented method can be 

operated in a real-time-like mode where reconstructed image is updated while 

measurements are still in progress. Moreover, the method is tested for many realistic 

scenarios such as the roughness of surface is too high or the electrical parameters of 

the soil is not exactly known and when the surface soil is wrongly estimated. Results 

show that the proposed method can handle with such realistic challenges upto a certain 

point. 

In the second part of this thesis, S-parameter-based novel formulations of two closely 

related qualitative inverse scattering methods, which are the LSM and FM, are 

presented. Historically, LSM and FM are developed by mathematicians under some 

infeasible assumptions. Then, these methods are applied in many different inverse 

problems by assuming the input of the LSM and FM is the scattered electric field 

measurements. Yet, in the real applications the measurements at microwave ranges are 

exclusively performed with vector network analyzers (VNA), which can only measure 

scattering parameters. Besides, previous works assume that the exciting and measuring 
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antennas are singular sources, which are also practically infeasible to obtain. In this 

direction, we reformulate the LSM and FM when the input of these algorithms are 

scattering parameters. Furthermore, the proposed algorithms are extended to include 

the antenna radiation pattern implicitly, which makes it possible to work with realistic 

antennas. Consequently, the introduced methods relieve us from any pre- or post-

processing steps in exchange for computation of a finite number of antenna parameters. 

The accuracy and stability of presented methods are experimentally verified with real 

measurements for various configurations. 

In the third and last part of this thesis, we take a look on an experimental technique to 

move around the a priori information requirements of the qualitative methods in 

concealed target detection. The main challenges that has to be solved for the usage of 

qualitative methods in concealed  target detection are (i) the computation of Green’s 

function of the medium in the hand or in other words finding an appropriate reference 

medium (ii) the difference between the measured fields between the 

background+target and background. In general, the fulfilling the condition in (i) is 

almost impossible but for many concealed target detection problems (ii) can be 

satisfied with an additional reference medium measurement. In particular, we modified 

the formulations of two well known qualitative methods, the linear sampling method 

(LSM) and the factorization method (FM) so that the scattered field data is the 

difference between background+target and a reference background while the Green’s 

function of the background medium is replaced with the Green’s function of free space, 

which can be computed analytically. The accuracy of the modified formulations is 

tested against realistic measurements. Besides showing the accuracy of the presented 

formulations, the obtained results imply the feasibility of proposed approach. 

Consequently, it has to be stated that the developed algorithms are in the  MMT 

(Mikrodalga Meme Tomografi – Microwave Breast Tomography) scanner, which is 

developed by our group named as ITU-ERG (Istanbul Technical University-

Electromagnetic Research Group). This scanner is currently tested in the Medical 

School of Cerrahpaşa University. Our future work is devoted to develop more robust 

and efficient algorithms to improve the performance of this scanner.
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