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QUALITATIVE METHODS IN MICROWAVE IMAGING

SUMMARY

Microwave imaging (MWI) emerges as a novel technology that aims to extract
physical properties of inaccessible objects from the scattered electric field
measurements. MWI1 covers a very wide range of applications which includes but not
limited to nondestructive testing (NDT), subsurface imaging, through wall imaging,
biological imaging. The most important factor that tends the scientists to imaging with
microwaves is non-ionizing nature of MWI when interacted with biological tissues.
Therefore, MWI can be regarded as a healthy alternative of current imaging
technologies, which are mostly based on ionizing radiation.

Inverse scattering theory provides a group of highly theoretical approaches, known as
qualitative method. These methods are based on inverting an integral equation for each
point over a reconstruction domain to determine only the shape and the position of
unknown scatterers without requiring any a-priori information. Two well-known
representatives of qualitative inverse scattering methods are (i) linear sampling method
(LSM) and (ii) factorization method (FM). These two methods are in fact quite similar
in formulation as well as performance. These qualitative approaches are also usable in
the MWI, where the inverse problem can be casted into two integral equations.

Traditional solution approaches for MWI are based on non-linear or linear
optimization methods. These methods recasts the nonlinear scattering problem in form
of a minimization problem. Additionally, they can utilize Born approximation to
linearize the problem and then the cost function is minimized via one of the canonical
optimization approaches such as conjugate gradient method, newton’s method. In
other words, these methods model the physical scattering mechanism to determine
electrical properties of dielectric objects and attempts to minimize a cost functional by
using a canonical minimization procedure. In contrast to these approaches, the
qualitative inverse scattering methods uses linearity of the scattering problem or the
duality principle to reach their final aim, which is obtaining the support of the scatterer.
Thus, their modest goals and linear nature make these qualitative approaches easier to
implement and more efficient in use of computational resources. In contrast to all these
attractive features, both LSM and FM are rarely investigated from an engineering
perspective due to their mathematical background. Hence, analyzing these methods
from an engineering perspective and making these methods applicable in real world
imaging scenarios is an important problem.

In the first part of the thesis, we analyze the problem of imaging buried targets under
a rough surface for a two dimensional transverse magnetic scattering scenario. In fact,
imaging of buried targets under the rough ground is a challenging inverse scattering
problem with many applications in engineering such as land mine detection and remote
sensing of archaeological artefacts. Conventional technology that uses microwaves for
subsurface sensing of the underground is ground penetrating radar (GPR) which
generates radargrams that require further interpretation by experts. Also, various
quantitative inverse scattering methods are existent in the literature to provide
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additional information on the morphological and electrical properties of buried
obstacles. Furthermore, the surface roughness, which is a critical factor that determines
the limits of subsurface imaging, are only considered in a very few studies. In this
context, qualitative inverse scattering methods, which are almost exclusively used for
reconstructing the shape of inaccessible targets from the scattered field measurements,
are particularly interesting since such methods can image multiple objects without
requiring a-priori knowledge. Thus, we present a qualitative imaging method for
subsurface sensing under a rough surface. The method relies on FM, where the aim is
to retrieve the shape of unknown dielectric objects embedded inside a dielectric body
whose closed boundary and electrical parameters are known a priori. Results show the
stability and accuracy of the proposed method under very realistic conditions.

In the second part of this thesis, the problem of using the qualitative methods in the
real world measurement scenario is addressed. In the real world applications imaging
systems extensively incorporate vector network analyzers (VNASs) instead of
implementing additional modules to perform microwave measurements. This is
particularly driven by availability of high performance VNAs. While there are
alternative ways of reconstructing an image in MWI, imaging methods are naturally
formulated in terms of scattered electric field vectors whereas measured scattering
parameters (S-parameters) are only auxiliary quantities. Consequently, an intermediate
step is required for experimental setups where measured S-parameters are mapped into
scattered electric field. This is mostly handled by comparing simulated electric fields
against measured S-parameters. As a better alternative to the canonical calibration
procedures, we develop novel qualitative microwave imaging algorithms, which uses
the measured S-parameters directly. Obtained experimental results prove the accuracy
and the stability of the presented method.

In the third and last part of the thesis, we consider the problem of using qualitative
imaging methods in real world concealed target imaging scenarios. Real world
concealed target detection can have different applications ranging from medical
imaging to subsurface sensing, as mentioned above. Main challenge for such inverse
problems is that the solution procedures are expected to capture the electrical
parameters (relative dielectric constant e,., conductivity o) of whole medium, which
includes the buried objects. Up to date, many quantitative techniques are developed to
obtain the complete electrical parameter distribution of a medium. However, if we take
a glance at these formulations, we can see that they involve a considerable
computational burden. Being contradictory to quantitative techniques, qualitative
inversion methods, which aim to recover only the shape of the scatterers, have
relatively simple formulations and require lower computational resources. In contrast
to such obvious advantages, qualitative inversion techniques are rarely employed in
buried obstacle detection, since these methods have strong a priori knowledge
requirements in their original form. In particular, to be able to detect the shape of an
inclusion by means of these methods, we must supply these two a priori pieces of
information: (i) the dielectric parameters of the surrounding medium and (ii) the
scattered field when there is no buried object inside the surrounding medium. It is
obvious that fulfilling such strong conditions altogether is of a serious issue in any
imaging problem. To this end, we propose a strategy to overcome the a priori
knowledge requirement on the dielectric parameters of the surrounding medium.
Results, which are obtained from real experiments performed in an anechoic chamber,
confirm the accuracy and the stability of the proposed formulations.
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MIKRODALGA GORUNTULEMEDE NiTEL YONTEMLER

OZET

Mikrodalga goriintiileme dogrudan erisilemeyen sagicilarin elektriksel ozelliklerini
(goreli dielektrik sabiti €,., goreli manyetrik gegirgenlik katsayis1 u,. iletkenlik o yahut
debye parametreleri) sagtiklart elektrik alandan tespiti ile ilgilenen yeni bir
teknolojidir. Mikrodalga goriintilleme hasarsiz muayene, toprak alt1 goriintiileme,
duvar arkasi goriintiileme ve biyolojik doku goriintiileme gibi ¢esitli tibbi ve askeri
uygulamalarda gelecek vaadeden bir teknikdir. Mikrodalga gdrintilenmenin
giiniimiiz biliminde bu denli 6nemli olmasinin temel nedeni ise biyolojik dokularla
etkilesime gectiginde ionize edici bir 6zelligi olmamasidir. Bu nedenle mikrodalga
goriintiileme giliniimiizde sik¢a kullanilan ve ¢ogu ionize edici radrasyona bagli olan
goruntileme teknolojilerinin tima icin cok 6nemli bir yedek secenektir.

Ters sagilma teorisi nitel goriintiileme yontemleri adi altinda oldukga teorik bir takim
yontemleri literatiirde barindirmakradir. Nitel goriintilleme yoOntemleri integral
denklemlerden sagicinin yalnizca sekil ve konumunun tespiti i¢in kullanilir olup ve
sacicilarin yapisi ve sekli ile ilgili herhangi bir 6n bilgiye ihtiya¢ duymamaktadir. Nitel
goriintiileme yontemlerinin en bilindik iki tanesi: (1) dogrusal 6rnekleme yontemi ve
(11) faktorizasyon yontemidir. Dogrusal 6rnekleme yontemi ve faktérizasyon yontemi
formiilasyon ve performans agisindan birbirine oldukca benzerdir. Kisaca anlatmak
gerekirse, dogrusal ornekleme yontemi tarihsel olarak faktorizasyon yonteminden
once Onerilmis olup heniliz matematiksel olarak tam olarak ispat edilememistir.
Faktorizasyon yontemi ise dogrusal drnkeleme yonteminden esinlenerek gelistirilmis
olup dogrulugu matematiksel olarak da kanitlanmistir. Bu iki yOnteminde ters
problemin birbirine bagh iki dogrusal olmayan integral denklem olarak ifade
edilebildigi mikrodalga goriintiilemede kullanilmas1 miimkiindiir.

Mikrodalga goriintiilemede geleneksel ¢6ziim yolu dogrusal olan veya dogrusal
olmayan optimizasyon metodlaridir. Bu metotlar eldeki dogrusal olmayan
elektromanyeik sacilma problemini bir minimizasyon problemi haline doniistiiriir. Ek
olarak bu yontemlerin bazilar1 dogrusal olmayan sa¢ilma problemini dogrusal hale
getirebilmek amaciyla Born yaklagimini da kullanir. Sonu¢ olarak eldeki amag
fonksiyonunu minimize etmek amaciyla bilindik bir optimizasyon yontemini (konjuge
gradyan metodu, Newton yontemi vs.) kullanir. Diger bir deyisle nicel goriintiileme
yontemi olan bu metotlar fiziksel sacilma mekanizmasini kullaranarak elde edilen
ol¢iilmiis elektrik alani olusturacak sagicinin seklini ve elektriksel 6zelliklerini (g6reli
dielektrik sabiti €,., goreli manyetrik gecirgenlik katsayis1 u, iletkenlik o yahut debye
parametreleri) kestirmeye calisir. Bu nicel yontemlerin disinda bir de yukarida da
bahsettigimiz nitel goriintiileme yontemleri vardir ki bunlar sagilma problemini sadece
sacicilarin seklini ve konumunu bulmak amaciyla ¢ozerler. Nitel goriintiillenme
yontemleri, nicel goriintiilleme metotlarindan farkli olarak hedef cisimlerin sekli ve
konumunu tespit amaciyla genellikle elektromanyetik sagilma probleminin belirli bir
sagicl veya sacicilar kiimesi i¢in dogrusal olmasi gergegini ve dualite prensiplerini
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kullanir. Nitel goriintiileme yontemlerinin bu gorece diisiik beklentisi ve dogrusal
yapilar1 onlarim bilgisayar ortaminda kolayca gerceklenebilmesini ve nicel
goruntileme yontemlerine oranla ¢cok daha az surelerde ve ¢ok daha az bir hesaplama
yiikii ile bilgisayar ortaminda calistirilabilmesini saglar. Tecriibelerimize dayanarak
ornek vermek gerekirse, ii¢ boyutlu (yaklasik 150 bin — 300 bin bilinmeyen iceren) bir
sacilma probleminin kontrast kaynak yontemi ile ¢oziilmesi ortalama bir bilgisayarda
(8 GB RAM) olarak 1-2 saat alirken, ayni probleme LSM veya FM nin uygulanmasi
icin maksimum 5 — 10 dk. gibi bir siire yeterli olacaktir. Tiim bu avantajalrina ragmen,
basta LSM ve FM olmak {izere tiim nitel goriintiileme yontemleri miihendislik
alaninda ¢ok da uygulama alani bulamamaktadir. Bunun baglica sebepleri nitel
goruntileme yontemlerinin genellikle cok Ust duzey bir matematiksel arkaplana
dayanmasi, bu yontemlerin matematikgiler tarafindan fiziksel sartlarin ve gercek hayat
durumlarinin pek de diisiiniilmeden ortaya konulmus olmasi (yani bu yontemlerin pek
cogu esas olarak diizlem dalga aydinlatmasi altinda ve Slgiimlerin 6l¢iim mesafesi
sonsuza yaklasirkenki asimptotik halleri i¢in kanitlanmistir) ve bu yontemlerin fiziksel
bir zemine oturtulmasinin zor olmasidir. Iste bu sebeblerle nitel goriintiileme
yontemlerinin incelemesi ve nitel goruntileme yontemlerinin gercek hayatta
kullanabilecegimiz algoritmalar haline getirilip onlarin fiziksel arkaplanlarinin ve
uygulama icin gerekli kosullarin ortaya konulmast 6nemli bir ¢alisma alani teskil
etmektedir.

Bu tezin ilk kisminda, iki boyutlu bir uzayda enine manyetik sagilma senaryosu i¢in
engebeli bir yiizey altindaki gdmiilii cisimlerin tespiti amaciyla bir faktorizasyon
metodu Onerilmis ve benzetimlerle elde edilmis sonuclarla olduk¢a gercekei durumlar
icin  dogrulanmistir. Esasinda engebeli ylizey altinda gomiilii cisimlerin
gorlintiillenmesi mayin tespiti ve arkelojik gomiilerin goriintiilenmesi gibi ¢cok degisik
uygulamalar1 olan olduk¢a karmasik bir problemdir. Giliniimiizde  yeraltinin
gorlintiillenmesi i¢in mikrodalgalar1 kullanan temel teknoloji uzmanlar tarafindan
yorumlanmasi gereken ve sonugta radaragramlar olusturan yer radari (ground
penetrating radar, GPR) oldugu bilinmektedir. Bunun haricinde goriintiilenmek
istenen yeralt1 bolgenin elektriksel ve sekilsel 6zellikleri ile ilgili bilgi veren bazi nitel
ters sacilma yontemleri de literatiirde bulunmaktadir. Ayrica, yeralti goriintiillemede
cok onemli bir faktor olan ve ¢ogu zaman uygulanan yontemin basarisini belirleyen
ylizey engebesinin ise pek az sayida calismada dikkate alindigi gercegi de
bilinmektedir. Bu baglamda, pek ¢ok goriintiileme probleminde sagic1 cisimlerin yer
ve seklinin tespiti amacl kullanilabilecek olan ve ayni anda pek c¢ok sayida degisik
ozellige sahip sagicilar da goriintiileyebilen nicel mikrodalga goriintiileme yontemleri
bu problem 6zelinde de (engebeli bir ylizey altinda gomiilii sagic1 hedeflerin tespiti)
oldukea ilging bir alternatif teskil etmektedir. Bundan dolay1 tezimizin ilk kismi bu
konu Uzerine olan calismalarimiza ayrilmistir. Ozel olarak bu kisimda yeraltina
gomiili herhangi bir sayida ve herhangi bir 6zellige sahip sagicilarin yer ve konumlari
faktorizasyon metodu ile tespit edilecektir. Calismamizda sinirl agiklikli bir anten
dizisi ile belirli bir toprak alti bdlgenin taranmasi durumu degisik aydinlatma
frekanslari, degisik nem oranina haiz toprak, degisik engebe profilleri, topragin ve
engebe profillerinin kismen bilindigi durumlar i¢cin ayr1 ayri incelenmis olup her
durumda yontemin basarimi ortaya konmustur. Elde edilen sonuglar uygulanan
yontemin gercek hayattaki problemler i¢in de umut verici oldugunu ortaya koymustur.

Tezin ikinci kisminda ele alinan temel nicel goriintiileme yontemlerinin gercek dlgiim
diizenekleri i¢in nasil kullanilacagi problemi ele alinmistir. Mikrodalga frekanslarinda
yapilan dl¢limlerde yaygin olarak vektor ag analizorleri (vector network analyzer,
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VNA) kullanimaktadir. Bu yaygin kullanimin baglica sebebi vektor ag analizorlerinin
piyasada kolayca bulunabilir olusu ve bu cihazlarin gosterdigi yiiksek performansdir.
Birkag istisnai durum haricinde mikrodalga goriintiileme problemleri hep sacilan
elektrik alan bilgisini kullanip sagict hedeflerin elektriksel parametrelerinin (goreli
dielektrik sabiti €,., géreli manyetrik gegirgenlik katsayis1 y,. iletkenlik o yahut debye
parametreleri) hesaplanmasini amaglar. Buna karsin, vektor ag ¢ozlimleyicilerinin
olctiigii temel biiylikliik sagilma parametreleridir. Bu nedenle genellikle yapilan is
Olciilen sacilma parametrelerinin sacilan elektrik alana c¢evrilmesi i¢in belli bagh
prosediirleri uygulamaktir. Sag¢ilma parametreleri ile sacgilan elektrik alan arasindaki
bu baglantiy1 saglayan doniisiim ise genellikle belirli bir geometrik sekle haiz (diizlem,
diizglin dairesel silindir veya kire) ve bilindik elektriksel 6zellikteki cisimlerin 6lcilen
sacilma parametreleri ile benzetimden elde edilmis sagilan elektrik alanini
karsilastirmak tizerine kuruludur. Tezin ikinci kisminda bu bilindik kalibrasyon
prosediirlerinin yerine daha iyi bir alternatif olarak ele alinan nitel goriintiileme
yontemlerini (dogrusal Orneklem yontemi ve faktorizasyon yontemi) dogrudan
sacilma parametreleri iizerinden yendien formiile ettik. Elde edilen sonuclar gelistirlen
yontemin hem iki boyutlu hem de ii¢ boyutlu goriintiileme de ¢ok satbil ve dogru bir
sekilde calistigin1 gostermektedir.

Tezin tgilincii ve son kisminda ise ele alinan nitel goriintiileme yontemleri (dogrusal
orneklem yontemi ve faktorizasyon yontemi) ile sakli cisim tespiti probleminin
¢Oziimii iizerine yogunlastik. Sakli cisim tespiti problemi ger¢ek hayat
uygulamalarinda, 6zellikle gesitli medikal ve askeri uygulamalarda, pek ¢ok durumda
karsimiza ¢ikmaktadir. Sakli cisim tespiti problemleminin ¢éziimiindeki temel zorluk
ele alman (goriintilenmesi hedeflenen) ortamin her noktasindaki elektriksel
parametrelerin (goreli dielektrik sabiti €,, goreli manyetrik gegirgenlik katsayist u,
iletkenlik ¢ yahut debye parametreleri) hesaplanmasinin gerekliligidir. Bugiine kadar
ele alian ortamin tiim elektriksel parametrelerinin her noktadaki hesabi i¢in pek ¢ok
degisik nicel gorlintiilime yontemi gelistirilmis ve dogrulanmistir. Ancak tim nicel
gorlintiilleme yontemleri gibi bu yontemlerinde olduk¢a agir bir hesaplama yiikii
icerdigi gergegi ortadadir. Daha dnce de bahsedildigi lizere nicel yontemlerin aksine
nitel goriintiileme yontemleri daha basit sekilde bilgisayar ortaminda gerceklenebilen
daha basit formiilasyonlara sahip ve hesaplama zamani ve yiikii nicel goriintiileme
yontemlerine oranla oldukca diisiik olan yontemlerdir. Tiim bu avantajlarina ragmen
nitel goriintiileme yontemleri sakli cisim tespitinde olduk¢a az kullanilmistir. Bunun
baslica sebepleri, yukarida da bahsedildigi iizere, bu yontemlerin ¢ok list diizey bir
matematiksel arkaplana dayanmasi, nitel goriintiileme yontemlerinin matematikgiler
tarafindan fiziksel sartlarin ve gercek hayat durumlarinin pek de diistiniilmeden ortaya
konulmus olmasi ve bu yontemlerin fiziksel bir zemine oturtulmasinin zor olmasidir.
Ozel olarak sakli cisim tespiti problemi icin bakacak olursak, nitel goriintiileme
yontemleri sakli cisim tespiti probleminde su iki temel bilgiye ihtiya¢ duyar: (i)
cisimlerin gomiilii oldugu ortamin elektriksel ozellikleri (goreli dielektrik sabiti €,
goreli manyetrik gegirgenlik katsayisi u, iletkenlik o yahut debye parametreleri) (ii)
goémiili cisimlerin olmadg1 duumda arka plandan sacilan elektrik alan bilgisi. Agiktir
ki bu iki bilginin her ikisini de ayn1 anda saglamak neredeyse tiim problemler igin
imkansizdir. Bu sebeple biz tzin bu tigilincii ve son kisminda bu 6nsel bilgi probleminin
¢oziimii amaciyla bir yontem oOnerdik. Ozel olarak, pek ¢ok sakli cisim tespiti
probleminde yukaridaki ikinci bilgi ((i1)) gomiilii cisimlerin olmadgi duumda arka
plandan sagilan elektrik alan bilgisi) aslinda elde edilebilir olup bu bilgi 1s181nda ilk
onsel bilgiyi kullanmadan eldeki nitel gorlntileme yontemlerinin yiksek bir
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basarimla calistirilabilegini Onerdik. Elde edilen sonuglar onerdigimiz yOntemin
oldukgca stabil ve dogru bir bigimde ¢alistigin1 dogrular niteliktedir.
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1. INTRODUCTION

Microwave imaging is an important and newly developing technology for specialized
needs arising in military, medical and other applications. Microwaves have important
advantages when compared with other conventional imaging modalities. Firstly, many
imaging technology, which are consistently employed in military and medical area,
highly depends on ionizing radiation, which is quite harmful for health. Microwaves
do not have an ionizing property, thus regardless of the the final aim, the developed
method will not as harmful as the currently used modalities. Furthermore, the
wavelengths utilized in microwaves are well suitable (i.e. are resonance with targets)
for many real world applications while they can penetrate into biological tissues (for
medical applications), in soil (for subsurface imaging) and in air (for radar and military
applications). In contrast to such advantages, using microwaves raises several
problems, which constitutes the basis of many researches made on microwave imaging
technologies today. The first and biggest problem is that the imaging with microwaves
requires solving Maxwell’s equation for scatterers having sizes in the order of
wavelength (i.e. in resonance region). Unfortunately, the electromagnetic scattering
problem is turned out to be a nonlinear problem in resonance region, while imaging
with higher frequencies, which are mostly used in the many imaging modalities like
computerized tomography, can generally be modeled with linear scattering problem
approximations. Thus, microwave imaging requires specialized algorithms, which can
handle with nonlinear optimization problems. It is obvious that these improved
algorithms will take certainly more time to be solved and will occupy more
computational space in any computer system. Additionally, the systems that are to be
designed for microwave imaging operations can have relatively large sizes and their
calibration requires additional operations. Nevertheless, in the recent years many
researches prove that with the increasing computational power of the commercially

available computers, it will be possible to solve these problems in a near future.



Microwave imaging technologies can mainly be separated into two different groups:
(i) quantitative inversion methods [1-7] (ii) qualitative inversion methods [8-14]. First
group of methods aim to recover the electrical parameters (relative dielectric
constant e,., relative magnetic permeability w,., conductivity o or debye parameters) of
the investigated region. By doing so, such methods can retrieve all information (shape,
location and electrical parameter distribution) of the whole investigated region.
Quantitative inversion approaches either set the non-linear scattering problem as
minimization of a non-linear function [2-5] or they utilize from Born approximation
[1,2] and/or the concept of virtual experiments [6,7] to convert the scattering problem
into minimization of a linear function. After setting up the optimization problem,
quantitative inversion methods employ canonical minimization-maximization
procedures like conjugate gradient method, Newton’s method to obtain the most
suitable electrical parameter distribution, which can generate the measured scattered
electric field under given incident field excitation. Examples of these methods includes
but not limited to Contrast Source Inversion method [3-5], Born Iterative method [1,2],
Distorted Born Iterative method [2]. Quantitative imaging methods are shown to be
stable and accurate for many practical microwave imaging problems [1-7]. In contrast
to such advantageous the quantitative inversion methods, they generally require a
significant amount of computational time-computational space and due to these large
computational requirements their implementation are not generally straightforward in
any computer system. Specifically, there are ongoing researches on how to implement
the quantitative inversion methods more efficiently [6,7,15-18]. Possible solutions
include but not limited to using parallel computing approaches [15,16], reducing
computational size of the scattering problem via certain assumptions like virtual

experiments technique [6,7], sparsity constrained optimization techniques [17,18].

Qualitative inversion approaches aim to retrieve only the shape and the location of the
scatterers and they do not provide information about the electrical properties (relative
dielectric constant €,, relative magnetic permeability u,, conductivity o or debye
parameters) of the targets [8-14]. For this aim, qualitative inversion methods utilize
from the fact that the scattering problem is linear when the scatterer remains the same
and they also employ duality/reciprocity principles to obtain so called indicator
functions, which have the information of the shape and the location of the targets.

Examples of qualitative inversion techniques include but not limited to linear sampling



method [9], factorization method [10], point source method [13], no-response test [13].
From those examples, the most remarkable ones are the linear sampling method
[9,12,14] and the factorization method [10,11]. The qualitative inverse scattering
methods are well established in mathematical literature, but their applications in real
world engineering problems are rarely investigated [6,7,14]. The reasons behind this
fact are: (i) their sophisticated mathematical background, which highly depends on
special subjects of functional analysis (ii) their unrealistic assumptions, which are hard
to satisfy in real world applications, e.g. most of those methods are proposed for plane
wave excitation and far field measurements, they can require some a-priori information
about the target, especially for the concealed target detection problems [13].
Nevertheless, the qualitative inverse scattering methods constitute an important option
for microwave imaging problems, when one considers their modest computational
time-computational space requirements [13]. Thus investigation of the usability of
qualitative inverse scattering methods in real world microwave imaging problems is
an important problem, which can find many applications in different areas ranging
from medical imaging to military purposes.

1.1 Purpose of Thesis

In the context described above, the general aim of this thesis is to analyze the
qualitative imaging methods from an engineering perspective as well as explaining

how to use these qualitative approaches in real world imaging problems.

In the first part of the thesis, we analyze the problem of imaging buried targets under
a rough surface for a two dimensional transverse magnetic (2D-TM) scattering
scenario. In fact, imaging of buried targets under the rough ground is a challenging
inverse scattering problem with many applications in engineering such as land mine
detection and remote sensing of archaeological artefacts. Conventional technology that
uses microwaves for subsurface sensing of the underground is ground penetrating
radar (GPR) which generates radargrams that require further interpretation by experts
[19]. On the other hand, as we declared above, various quantitative inverse scattering
methods have been attempted to generate more intuitive subsurface images of
underground as well as providing additional information on the morphological and
electrical properties of buried obstacles [19-24]. While the surface roughness is a

critical factor that determines the limits of subsurface imaging, very few studies take



surface roughness into account [25,26]. In this context, qualitative inverse scattering
methods, which are almost exclusively used for reconstructing the shape of
inaccessible targets from the scattered field measurements, are particularly interesting
since such methods can image multiple objects without requiring a-priori knowledge
[13]. Thus, we present a qualitative imaging method for subsurface sensing. The
method relies on the theoretical framework derived in [27], where the aim is to retrieve
the shape of unknown dielectric objects embedded inside a dielectric body whose

closed boundary and electrical parameters are known a priori.

In the second part of this thesis, the problem of using the qualitative methods in the
real world measurement scenario is addressed. In the real world applications imaging
systems extensively incorporate vector network analyzers (VNAS) instead of
implementing additional modules to perform microwave measurements. This is
particularly driven by availability of high performance VNAs. While there are
alternative ways of reconstructing an image in MWI, imaging methods are naturally
formulated in terms of scattered electric field vectors whereas measured scattering
parameters (S-parameters) are only auxiliary quantities. Consequently, an intermediate
step is required for experimental setups where measured S-parameters are mapped into
scattered electric field. This is mostly handled by comparing simulated electric fields
against measured S-parameters [28,29]. As a better alternative to the canonical
calibration procedures, we develop novel qualitative microwave imaging algorithms,

which uses the measured S-parameters directly.

In the third and last part of the thesis, we consider the problem of using qualitative
imaging methods in real world concealed target imaging scenarios. Real world
concealed target detection can have different applications ranging from medical
imaging to subsurface sensing, as mentioned above. Main challenge for such inverse
problems is that the solution procedures are expected to capture the electrical
parameters (relative dielectric constant €,., conductivity o) of whole medium, which
includes the buried objects. Up to date, many quantitative techniques are developed to
obtain the complete electrical parameter distribution of a medium [1-7]. However, if
we take a glance at these formulations, we can see that they involve a considerable
computational burden. Being contradictory to quantitative techniques, qualitative
inversion methods, which aim to recover only the shape of the scatterers, have

relatively simple formulations and require lower computational resources [8,13]. In



contrast to such obvious advantages, qualitative inversion techniques are rarely
employed in buried obstacle detection, since these methods have strong a priori
knowledge requirements in their original form. In particular, to be able to detect the
shape of an inclusion by means of these methods, we must supply these two a priori
pieces of information: (i) the dielectric parameters of the surrounding medium and (ii)
the scattered field when there is no buried object inside the surrounding medium
[8,13]. It is obvious that fulfilling such strong conditions altogether is of a serious issue
in any imaging problem. To this end, we propose a strategy to overcome the a priori

knowledge requirement on the dielectric parameters of the surrounding medium.

1.2 Literature Review

For the first part of the thesis, the situation is as we explained in the above. Today’s
conventional technology utilizes from GPR to obtain a map of the targets buried under
soil [19]. In addition to this, there are some works to extent usage of microwaves to
localization of buried targets’ case [20-24]. Yet, only a small portion of these works
consider the case when the surface profile has a roughness, which is the case for many
circumstances [25,26]. Thus, in the author’s opinion, the contribution of the first part
of this thesis, which is applied a recently proposed factorization method for a realistic

near field measurement scenario, becomes meaningful.

For the second part of the thesis, the previous works states nothing but using LSM,
which is described in [9], or FM, which is introduced in [10,11], after a conventional
calibration procedure [1-7]. Yet, this calibration procedure does not take the antenna
patterns into account explicitly [1-7]. Also to be able to obtain an image, the S-
parameter data must undergo some processing to be converted into electrical field
values [1-7]. Thus, in the author’s opinion, the contribution of the second part of this
thesis, which is developing the S-parameter based linear sampling method (S-LSM)

and S-parameter based factorization method (S-FM), becomes meaningful.

Lastly, for the final part, it has to be said that there are already several studies to remedy
the a priori information problems of qualitative imaging methods [31-34]. In [31], the
reciprocity gap-linear sampling method (RG-LSM) is utilized to relieve LSM from the
above mentioned constraints. In [32-34], different qualitative methods are assessed in
biomedical applications for which a limited a priori information is available. Yet, the

methods, which are presented in the thesis, distinguish from these works. Simply, the



introduced methods proposes a practical solution procedure and they are
experimentally verified by means of the real measurements. We stated before that to
be able to detect the shape of an inclusion by means of these methods, we must supply
these two a priori pieces of information: (i) the dielectric parameters of the surrounding
medium and (ii) the scattered field when there is no buried object inside the
surrounding medium. Explicitly, we state that it is possible to use LSM and FM in
practical situations, whenever the condition (ii) is satisfied. It is important to notice
that if (i) is satisfied (ii) is already fulfilled, but the converse is not true. Furthermore,
the second condition can be satisfied in certain practical applications like mine
sweeping, subsurface sensing or through-wall imaging, and so forth. Thus, in the
author’s opinion, the contribution of the final part of this thesis, which is giving a
practical recipe for application of LSM and FM in real world concealed target imaging

scenarios, becomes meaningful.

1.3 Hypothesis

The hypotheses and contributions, which are newly proposed and confirmed in this
thesis, can be given as in the below:

1. In the first part of the thesis, we have applied a recently proposed
factorization method, which uses far field measurement data inherently, to
a rough-subsurface imaging problem, where the measurements are near
field.

2. In the first part of the thesis, we have described how this factorization
method can be utilized when the exciting-measuring antennas do not cover
whole surface (i.e. for the limited aperture situation).

3. Inthe first part of the thesis, we also analyze the performance of the method
for other realistic cases, where the dielectric parameters of the soil or the
roughness profile is not exactly known.

4. In the second part of the thesis, we develop the S-parameter based linear
sampling method (S-LSM) and S-parameter based factorization method (S-
FM), which uses S - parameters measurements instead of electric field

measurements.



In the second part of the thesis, we define two novel quantity, which are
vector S-parameters and dyadic Green’s function for S-parameters to
develop the S-LSM and S-FM.

In the second part of the thesis, we experimentally prove the developed
formulations for 2D-TM scattering setup.

In the second part of the thesis, we experimentally prove the developed
formulations for 3D vectorial scattering setup.

In the third part of the thesis, we improve the LSM and FM to cope with
real world concealed target imaging problems. In particular we release the
methods from their a-priori information requirements.

In the third part of the thesis, we experimentally prove the developed

formulations for 2D-TM scattering setup






2. MICROWAVE IMAGING

2.1 Direct Scattering Problem

Consider a 3D scattering problem scenario in which several objects Q;,Q,, ..., Qp,
which are encapsulated by a domain D and which have with different electromagnetic
parameters (€,1, Ur1, 01), (€r2, Ur2) 02), -, (€rp, Uyrp, Op), are hosted in a background
medium, whose electromagnetic parameters are (€,p, Urp, 0p). Assume that this
system is excited by the plane wave E'(r) = exp(iky.r), Where Ky, = kpn'; k2 =
W2 Uy Erplo€o + 10p 1y Uow; w is the angular frequency of illumination and n'! is the
direction of the propagation of the plane wave. Then, Helmholtz equations that has to

be satisfied can be given as in the below:
AE(r) + k%E(r) = 0 (2.1)
AEN(r) + kZE'(r) =0 (2.2)

where k? is wavenumber in the medium containing the scatterers, E(r) and ES(r) =

E(r) — Ei(r) are the total and scattered electrical fields excited in the whole medium.
The below modifications can be done on (2.1) and (2.2):
AE(r) + k?E(r) = AE(r)+k2E!(r) + (k? — k2)E!(r) + AES(r)+k2?ES(r) (2.3)
= (k? — k2)E(r) + AES(r)+k?ES(r) = 0 (2.4)
Then, the Helmholtz equation for scattered field can be written as:

AES(r) + kpES(r) = —(k? — k) (E'(r) + E*(1)) (2.5)
(A + k2)ES(r) = —(k? — k2)E(r) (2.6)
Now, solution of the above equation can be simply written as a convolution of the

sources (which is the the term at the right hand side) with the Green’s function of the

Helmholtz equation in the scatterer free space, which is given by:

G(r,r') = (1 +é vv)w (2.7)

4m|r—r’'|



Thus:
ES(r) = [, (k* — k)G(r,r") x(rYE(@)dr', reR? (2.8)

Then by writing the above equation for r € D, we can obtain the below Fredholm

equation of second kind
E(r) = E'(r) + [, (k* — k)G(r,r) x(r)E(r)dr', reD (2.9)

The above equation is shown to be a well posed problem and its solution can be made
by using the traditional method of moments technique [35]. After solving (2.9) and
obtaining the total electric field inside the D, we can use (2.8) to compute the scattered
field in R3.

2.2 Computational Aspects of Direct Scattering Problem

Let us select D as the minimal cube containing all P scatterers and say the edge length

of the sampling domain D is L. Then, by dividing this sampling domain to N in each
orthogonal direction, Q=N?* many cubic cell is obtained with each of edge length %
The centers of these cubic cells are selected as our sampling points ry, ry, ..., rg.
In this setting the equations in (2.8) and (2.9) can be written as in the below:
ES=GyOE (2.10)
E=E +GxQE (2.11)
where E = [E,(ry); Ey(rq); Ez(rq)]stl; 1 < q < Q is the total electric field induced
on the domain D, E'= [Ex(rq); Ey(rq) E5(rg)], ;1 < q < Q stands for the
incident electric field on the sampling domain, x = [x(rq); x(rq); x(rg)]

1<
30x1
q < Q denotes the object function, ©® stands for the Hadamard product and

Gixx (rq' rp) Gy (rq' rp) Gz (rq' rp)
G = |Gyx(ry1y) Gyy(rgrp) Gya(rg ) ;1<qp=<Q (212
Gox (T Tp)  Gry(TqTp)  Gpo(rg 1) 30%30

is the matrix whose cells hold the integration of Green’s function over a cubic cell.
Here, the elements of Green’s function matrix can be computed as given in the below
[35]:
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{(‘“T_a (Sink(ka) — cos(ka)) (I + = VV) exp(ik|r-r']) ) ee,|lr—r'|>a

2 a ki 41|r—r'|

Gij =3 /- 14(2)1—ika)eika (2.13)
i( 1H{g)a-ikae >6i-, Ir—r'|<a
k2 J

where a = 3\/%% is the effective radius of the cubic cell. When we take a glance on

the formulation above it is obvious that solution of (2.11) requires computation of
Green’s matrix, whose number of elements 3Q x 3Q. Such a memory requirement
cannot be satisfied in many commercially available computers. Besides the inversion
of Green matrix requires (3Q)3 operation, which is also not an acceptable time
requirement. Thus to reduce the memory requirement the solution of (2.11) is
performed with biconjugate gradient minimization method [35]. Thus the problem is
reduced to evaluation of Green’s matrix and performing matrix multiplications
including G. To further simplify the problem matrix multiplications including Green’s
matrix G can be performed with application of fast Fourier transform (FFT) due to
being Toeplitz of Green’s matrix G. Particularly, letr = (x,y,z) andr’' = (x',y’, 2",
then:

Gx,y,z;x",y,z2)=Gx—x",y—y',z—-2") (2.14)

[GE)yjpe = oy Xy Zhrey G(xs — X003 — vy, 2k — 230 )E(xyr, yjr, 24r) - (2.15)
[GFijne = Xy Xrmy Tierea GCrimir, ¥imjr, Ziemer ) Ceir, vjr, 1) (2.16)

Gf = IFFT;p{FFT5p{G} © FFT5p{f}} (2.17)

Thus, solution of (2.11) is achieved with a biconjugate gradient fast Fourier transform
(BiCG-FFT) whose overall complexity is 3Qlog(3Q) and whose memory
comsumption is 6Q [35]. At the final step of forward problem, the computation of
scattered field can be done by (2.10) with a canonical matrix product thanks to

relatively small number of measurement points.

2.3 Inverse Scattering Problem

Inverse scattering problem is to calculate the electrical properties inside the domain D

given the noisy scattered field measured on some arc T € R3. Here qualitative
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inversion algorithms aim to reconstruct only the shapes and positions of the scatterers,
ie. 0,9y, .., Qp.

Let us consider the configuration described in the above where the measuring and
illuminating antennas are located on surface I', which surrounds the scattering objects
Q4,Q,, ..., Qp and the sampling domain D. The idea behind linear sampling method is

investigating the approximate solvability of near field equation, which is given by [9]:
ES(r,y)gn (y) = G(r,1)q (2.18)

Ei,l(rl Y) Ei,Z (l“, Y)
E3:1(ry) E,(ry)

E;;(r,y) is the scattered electric field measured at r € T in the i orthogonal direction

Where ES(r,y) =l is the scattered electric field matrix;

where the illumination is made at y € T' in the j™ orthogonal direction; g,/ (y) =

[gr’,l(Y)
8r'2 (Y)

dipole at r’ emitting in the background medium and q is any arbitrary polarization

is the feeding coefficients to be solved; G(r,r') Green’s tensor when a

vector tangential to measurement surface I' at measurement point r. In [9], it is stated
that the equation in (2.10) has a finite solution only when the sampling point r’ falls
into a scatterer. Thus, reciprocal of the L2 norm of the solution vector is an indicator

for LSM:

1

W' =
( ) En|gr"1(Yn)|2+Zn|gr"2(YI1)|2

(2.19)

Here, the equation in (2.10) is severely ill-posed and its solution requires an
appropriate regularization technique [9]. In this thesis, we always apply Tikhonov
regularization technique for this purpose. In Tikhonov regularization, the inversion is

performed as [9]:

g (y) = (al + ES"(r,y)E(r,y)) "1 (ES (1, y)G(r, 1) q) (2.20)

where a is the regularization parameter. Here, the regularization parameter a can

determined by imposing the following condition:

L ) oun (-
on_ Zp=a KGCrp)unON _ 1 max [(G(-, 1)), uy ()] (2.21)

a?+of Q 01 1<f<L

where @ is total number sampling points, which are ry, r, ..., 1y, {-,-) denotes the inner
product on receiving points and £ = {04,05,...,0x}; U = {uq, u,,..., uy} stand for

the singular values, the left singular vectors of E®, respectively [28]. Another approach

12



for determination of « is to fix to %, where 7 is an arbitrary integer ranging from 2

to 5 [24].

Similarly, factorization method investigates the solvability of the following equation:
1
(ESE)3(r,y)g () = G(r,r)q (2.22)

1 1
where (-)* is the conjugate transpose and Fz = S™1AaS, where A = [A,] is the matrix
whose diagonal elements A, are eigenvalues of F and S = [S,] is the matrix whose
columns S,, are eigenvectors of F. In [10], it is shown that (2.12) has finite solutions if

and only if the following indicator function diverges from zero:

1

* 2
|Zm Sh(m) G (rm.r’)|
[Anl

w(r') =

(2.23)

Zn
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3. MICROWAVE SUBSURFACE IMAGING OF OBJECTS UNDER A
ROUGH AIR-SOIL INTERFACE!

We consider subsurface imaging of buried objects under a rough air — soil interface
and present a microwave imaging method that is capable of determining the
geometrical properties of multiple objects without requiring any a-priori information
on the objects. The theoretical background of the method relies on factorization of
scattering operators and the locations of buried objects are qualitatively determined
from limited aperture near-field measurements performed with a short antenna array
moving over the investigated region. The efficiency and accuracy of the method is

shown with numerical results.

3.1 Introduction

Imaging of buried targets under the rough ground is a challenging inverse scattering
problem with many applications in engineering. Conventional technology that uses
microwaves for subsurface sensing is ground penetrating radar (GPR) which generates
radargrams that require further interpretation by experts [19]. On the other hand,
various inverse scattering methods have been attempted to generate more intuitive
subsurface images of underground as well as providing additional information on the
morphological and electrical properties of buried obstacles [14,19-24,37,41]. While
the surface roughness is a critical factor that determines the limits of subsurface

imaging, very few studies take surface roughness into account [25,26,31,40].

In this context, qualitative inverse scattering methods, which are almost exclusively
used for reconstructing the shape of inaccessible targets from the scattered field
measurements, are particularly interesting since such methods can image multiple

objects without requiring a-priori knowledge [38]. Despite their attractive features

L This chapter is based on the paper "Akinci, M. N., Cayo6ren, M., 2014. Microwave subsurface imaging
of buried objects under a rough air—soil interface, Remote Sensing Letters, 5(8), 703-712.”
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such as requiring fewer measurements and lower computational resources, usage of
qualitative inverse scattering methods for subsurface imaging is rarely investigated
[14,19-22,24,31]. This is due to the fact that these methods are not formulated
depending on physical scattering mechanism that makes them obscure from

engineering perspective.

In this letter, we present a qualitative imaging method for subsurface sensing. The
method relies on the theoretical framework derived in [27], where the aim is to retrieve
the shape of unknown dielectric objects embedded inside a dielectric body whose
closed boundary and electrical parameters are known a priori. The theoretical model
in [27] extensively depends on the properties of far-field operators, which are
computed from far-field measurements, and requires the dielectrics to be lossless.
While such restrictions seem to be incompatible with the requirements of microwave
subsurface imaging, we demonstrate that the approach can be successfully adapted for
subsurface sensing. To this aim, we first consider a feasible, near-field measurement
configuration with a short antenna array of few elements that are distributed
equidistantly with spacing A . The field measurements are performed above the
investigated region by moving the antenna array by a distance A at each step. This
discrete measurement configuration lets us to collect enough data that are to be
measured with multiple fixed antennas in theory. Theoretical justification for near-
field versions of qualitative inverse scattering methods generally depends on
transforming near-field data to far field which inherently smoothen the data. Instead
of using near- to far-field data transformation as described in [10], we directly use
near-field data by introducing a near-field operator. We numerically verify the
resulting near-field formulation and observe that the approach performs better than
transforming near-field data to far field. Provided that estimate of electrical properties
of soil and surface profile are known a priori, the method can inherently handle very
rough surfaces due to its differential imaging mechanism. Furthermore, we
demonstrate that it is possible to obtain reconstructions while the measurements are

still being made.

3.2 Qualitative Imaging Applied to Subsurface Sensing

Let us confine our analysis to 2D scattering configuration depicted in Figure 3.1. Here

multiple dielectric objects with various electrical properties are buried into soil, which
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Figure 3.1 : Geometry of problem (Txn: n' Transmitter, Rxn: n'" Receiver;

D: sampling domain; z:sampling point; I" : measurement domain; €,: dielectric
permittivity of vacuum; €, €’ dielectric permittivities of soil and buried obstacles
respectively; uo: magnetic permeability of vacuum; o, ¢’ conductivities of soil and
buried obstacles respectively).

is modelled with its average electrical parameters. We assume that the buried objects
can be considered infinitely long in one direction and illuminated with time-harmonic
microwaves that are polarized along the same direction as well. The field
measurements are performed with an antenna array that moves on a planar route at a
fixed height from the ground. The basic principle of the qualitative inverse scattering
methods is evaluating an indicator function w(z) at each point z in sampling domain,
and an image is generated by plotting the variation of w(z). The indicator function
w(z) is constructed such that its value diverges whenever sampling points fall inside
an object. While selection of different indicator functions is possible, such methods
exhibit certain characteristic features. In general, determination of electrical
parameters such as dielectric permittivity is not the primary concern and only shapes
of objects are retrieved. A recent work [27] presented a new qualitative inverse
scattering method that allows us to determine shapes of multiple objects embedded
inside a dielectric body with a closed surface. As noted earlier, the presented
theoretical framework of [27] is not applicable to subsurface imaging in its original
form and straightforward extension of similar methods to near-field case requires
transforming near-field data to far field, which practically discards all advantage of
near-field measurements. To adapt the theoretical framework to subsurface imaging as
well as to refrain from performance degradations due to far-field conversion, let us

first define a near-field operator N with a test function :
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N = (@[ust) 2y = [ Quctdl (3.1)

where overbar indicates complex conjugate and (- | -};2(ry denotes the inner product
defined on measurement domain I'. In (3.1), scattered electric field us¢t = utot — yin¢
is the difference between total electric field ut°t and incident electric field 1™,
Considering the near-field operator in (3.1), the indicator function w(z) can be defined
as follows (Grisel et al. 2012):

-1

|<u0<z..)|ﬁ>Lzm|2) (3.2)

On

w) = (Zn

In (3.2), u, denotes the total electric field inside the soil when there is no buried object.
Since it is not possible to measure the field inside the soil, the total field wu, is needed
to be computed by considering the surface curvature and electrical properties of the
soil. In fact, the total field values u, are only needed for the sampling domain that is a
portion of soil where we actually search for the objects. The quantities {¢,,, g,,} in (3.2)

form the eigensystem of the operator Wy = Re(W) + Im(W) with the conventions of

w+w*
2

operator W is defined as:

Re(W) =

and Im(W) = % where W* denotes adjoint operator of W. The

W = Sy(N; — No) (3.3)

Here S; denotes the adjoint of operator:
So=1+-No (3.4)

where [ is the unitary operator. In (3.3) and (3.4), the near-field operators Nyp =
(¢|@)Lz(r) and Ny = (<p|@)Lz(F)1 are defined for the scattered fields ug“‘and
ut, respectively. The scattered field u3* corresponds to the calculated field when

there is no buried object and the scattered field u“stands for the measured field. We

refer to [27] for the development of theoretical framework.

From the implementation point of view, we require three data sets that are the scattered
fields u;°* and u$‘and the total field u, at each point in sampling domain. As noted
earlier, u3‘and u, are required to be computed, thus a fast forward solver is needed
to be integrated into the reconstruction procedure. To this aim, we utilize the buried
object approach of [36], where a numerical Green's function for rough surface

scattering is derived. However, since the formulations do not use Green's functions
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explicitly, any other method such as finite element method can be preferred as well.
For measuring the scattered field u$°* ; instead of using multi-static configurations
with multiple fixed antennas, we propose to use a moving antenna array with very few
elements where all antennas in array act both as transmitter and receiver similar to
GPR. Let us assume that each element of the array is separated with distance A and
there are total of M antennas as depicted in Figure 3.1. From numerical simulations,
we observed a typical antenna array length of A (M — 1), which corresponds to one
or two wavelengths in free space, is capable of reconstructing a complete image. We
transverse the air — soil interface by shifting the antenna array with a distance of 4 at
each step. If we consider discretized version of operator W in (3.3), this operation
mode lets us to fill a band in the diagonal of the resulting matrix. It is obvious that the
resulting matrix is a stripped version of a complete matrix that can be filled with total
of N static antennas (M << N): By employing highly directional antennas, the length
of the moving array 4 (M — 1) can be shortened since the field contribution due to
surface outside the main lobes of antennas becomes negligible. Therefore, we can
collect sufficient data to fill W without using total of N static antennas or long antenna

arrays.

3.3 Numerical Validation

In this section, we present several numerical results to demonstrate the capabilities of
the presented method. In all examples unless otherwise stated, operating frequency is
200 MHz and an antenna array of six line sources, which are equidistantly distributed
along the free-space wavelength A, is employed. The dry soil is modelled as a homo-

geneous medium having relative dielectric permittivity of €, = 3.6 and conductivity

ofo = 10‘5% [39]. The rough surface is given with the parametric representation:

0.3 3|x|+10x
022 x _3lxl+10x x
— (E) e 30 COS (n?), x=0
y(x) ={

-0.24
a

(3.5)

0.3

. |x|
X x+ B X
o e 10cos(?); x <0

15

where a is used for adjusting surface roughness and (x, y) stands for the coordinate
system, as depicted in Figures 3.2 and 3.3. In all cases three objects are buried into the

soil, which are (i) a circular object centred at ( — 3.00 m, — 3.50 m) with radius 0.50 m

and with electrical parameters €, = 18, ¢ = 0.024%, (i) another circular object

19



centred at (3.00 m, —1.50 m) with radius 0.40 mand €, = 15, ¢ = 0.0ZO%, and
(ii1) an ellipse shaped object centred at (—0.20 m, —2.50 m) with radii (0.60 m, 0.85 m)
ande, = 16.5, ¢ = 0.022 % In addition to the computation of field values u3¢* and

ug, the scattered field ui°*, which is to be measured with the antenna array, is
synthetically generated by solving the associated forward problem via method of
moments [36] and corrupted by additive Gaussian noise with an signal-to-noise ratio
of 25 dB.

As we mentioned earlier, the method can reconstruct an image while field

measurements are still in progress, which enables to operate in a real-time like manner.
To demonstrate this capability, we consider the boundary with = % , Where maximum

peak- to-peak roughness is around 0.53 m and measurements are performed at y = 0.40
m. In all results, we plot the reconstructed w(z) after normalizing with its maximum.
In Figure 3.2(a), the first buried object becomes apparent when the field measurements
are completed up to — 1.80 m. As the measurements progress up to 0.75 m, the second
buried object becomes visible as shown in Figure 3.2(b). Finally, when the field
measurements are completed for the whole surface, all three objects clearly appear as
shown in Figure 3.2(c). We can conclude from Figure 3.2(a) — (c), as the number of
measurements increase, quality of reconstructions improves such that the contour of
shallow objects becomes distinctive. Nevertheless the reconstructions of deeper
objects are still blurred even with complete measurements since the contribution of the

shallow obstacles suppresses the deeper ones.

As noted earlier, conventional approach to formulate near-field counterparts of
qualitative inverse scattering methods is to use a near-to-far-field transform. While we
intentionally avoided this approach, to demonstrate the performance of the method in
such case, we repeat the preceding numerical simulation by applying near-to-far-field
transformation given in [10]. The reconstructed image is shown in Figure 3.2(d), and

as expected, the performance of presented method is better with near-field data.

Another advantageous feature of the method is its ability to reconstruct objects with
high dielectric contrasts, which is a challenging issue for non-linear optimization
methods. To further attest the performance of the method by means of dielectric
contrast, we multiply the complex dielectric permittivities of objects from deeper to

shallower with factors 2, 5 and 4, respectively. The accuracy of the reconstruction that
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is shown in Figure 3.2(e) is quite comparable to the case with lower dielectric contrast
of Figure 3.2(c). This is, in fact, the result of the qualitative nature of the presented
method. In non-linear optimization methods, an image is formed in terms of dielectric
distribution of the targets that limits their efficiency with higher dielectric contrast,
whereas an image in our case is formed as a plot of an indicator function w(z) that is

not directly associated with the dielectric contrast.

To better understand the effect of the surface roughness on the results, we choose a
very rough surface with a = 0.1, where the maximum peak-to-peak surface
roughness is about 1.50 m and measurements are made on y = 1.15 m. In Figure 3.2(f),
the reconstructed buried objects are shown. While the buried objects are still
distinguishable, there are clutters in the final image. To overcome such unwanted
artefacts, the measurements are needed to be performed on a larger aperture. In Figure
3.2(9), the reconstruction is repeated for the measurements performed with an antenna
array of 12 elements whose total length is 2 . It is obvious that Figure 3.2(g) provides
a better reconstruction at the expense of a larger measurement system. Although
increase in surface roughness deteriorates the accuracy of reconstructions in
subsurface imaging, the presented method provides quite successful reconstruction

even with such large variations.

To further understand the capabilities of the presented method, we consider another

surface given with the parametric representation:

11 _3|x|+20x .
—xe 60 cos(?); x=0

-2 2x+15 _lxl X
—le( T )e zocos(?); x <0

(3.6)

where peak-to-peak surface roughness is around 1.00 m. In this configuration, two

objects are buried into the ground which are (i) a circular object centred at ( — 4.00 m,
—3.50 m) with radius r = 0.50 m and with electrical parameterse, = 8, 0 = 0.032%
and (i) a square-shaped object centred at (3.50 m, — 2.00 m) with a side length € =
1.00 m and with electrical parameters €, = 10, o = 0.040 % First, we investigate

the effects of different operating frequencies. In Figure 3.3(a) — (c), reconstructed
images are shown for frequencies 400, 300 and 200 MHz, respectively. It is obvious

that deeper objects become less apparent as operating frequency increases while
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The coordinates shown are measured in terms of A.

Figure 3.2 : Values of for reconstructed subsurface images: (a) when
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Figure 3.3 : Values of max(w ) for reconstructed subsurface images for (a) dry soil

at 400 MHz, (b) dry soil at 300 MHz, (c) dry soil at 200 MHz, (d) soil with 5%
moisture at 200 MHz, (e) soil with 10% moisture at 200 MHz, (f) randomly varying
electrical parameters of soil at 200 MHz, (g) wrongly estimated surface case (dashed:
wrongly estimated surface, solid: exact profile) and (h) wrongly estimated surface

case with 12 antennas with an equal spacing of % (dashed: wronglyestimated surface,
solid: exact profile).
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reconstructed images get sharper. This is in fact the result of the well-known trade-off
between skin depth and spatial resolution such that microwaves can penetrate deeper
into soil as the operating frequency decreases, which in turn degrades spatial
resolution. Besides, increase in conductivity exponentially reduces penetration of
microwaves into soil, and the main factor that contributes to conductivity of soil is
moisture content. To reveal outcomes of increased moisture content to the presented

method, we consider soils with 5% and 10% moisture contents. In these case, electrical
properties of soilsare e, = 5,0 = 0.001 % for5%ande, = 7, 0 = 0.002% for

10% moisture content [39]. In Figure 3.3(d) and (e), reconstructed images are shown
for moisture contents 5% and 10%, respectively. If we compare results depicted in
Figure 3.3(c) — (e), increasing moisture content severely degrades reconstructions such
that deeper objects become non-distinguishable. This is a combined result of two
effects: first, increase in soil conductivity reduces the penetration of microwaves into
soil as mentioned earlier; second, with increasing moisture, the effective dielectric
permittivity of soil increases, which in turn lowers dielectric contrast between the
objects and the soil. As a consequence of low contrast, scattered field from the buried
objects gets weaker, which makes the objects hard to distinguish from the soil.

We formulate the presented method depending on effective electrical properties of soil,
but in reality determination of effective electrical properties of soil may not be
straightforward. To stress the fact that the formulation does not require such strict a-
priori information, we consider an example where electrical properties of soil change
randomly. To this aim, we added separate random variations to both relative dielectric
permittivity and conductivity of soil in the form of €. = (1 + a)e,and & = (1 + B)o;
respectively. Here «, f € [0,1) are uniformly distributed random variables. As shown
in Figure 3.3(f), the square-shaped object is apparent while the deeper circular object
is no longer visible. This is indeed the result of two main factors: first, there is high
level of variation in electrical properties, and second, the effective electrical
parameters used in simulation are not valid anymore due non-zero mean of

randomness.

Up to this point, we assume that the surface curvature is known. To attest performance
of the presented method when the surface profile is wrongly estimated, we consider a

deformed surface:

24



(x) = 0.6y(x) —0.01cos (Z);  -7.5m<x <7.5m (3.7)

where y (X) is the exact surface profile given by (3.6). The reconstructed subsurface
image is shown in Figure 3.3(g). By comparing against Figure 3.3(c), we infer that
errors in surface profile cause large artefacts. This is mainly due to fact that wrongly
estimated surface profile results large deviations in total field on the sampling domain
which may induce large indicator function values where there is no objects. For
alleviating deterioration in the image, we repeat the same simulation with an antenna
array of 12 elements equidistantly distributed along the length of 2L . From the
reconstructed image shown in Figure 3.3(h), we can conclude that using a large array
suppresses artefacts, but it might not be enough to capture sufficient information for
deeper objects. In fact, Figure 3.3(g) and (h) demonstrates a very general characteristic
of microwave subsurface imaging, such that the exact knowledge of surface profile is
a critical factor that determines both accuracy and reliability of the reconstructions.
When the estimated surface profile deviates from the exact surface, the field
contribution due to these deviations corrupts the scattered field from the buried objects.
Thus variation of surface profile is needed to be known accurately and only very slight
deviations can be tolerated.

3.4 Conclusions and Future Work

We present a microwave imaging method for detecting and localizing buried objects
under a rough air — soil interface. The formulation depends on factorization of
scattering operators where locations of objects are qualitatively determined as the
norm of an indicator function diverges. The method is capable to reconstruct locations
of multiple targets from a limited aperture, near-field measurements that are performed
with a short antenna array moving over the soil. In addition to an estimate of effective
electrical parameters of soil in which the method can tolerate certain degree of
randomness, the surface curvature is needed to be known a priori. Other than that, there
are no limitations on electrical properties of buried targets such that lossy dielectric
materials even with high dielectric contrasts among them can be handled accurately.
Numerical simulations reveal that the method can perform in a real-time-like operation
mode where reconstructed image is updated while measurements are still in progress.

Another capability of the method is its ability to handle very rough surfaces. Further
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research will be towards extending the method to 3D electromagnetic case and

validating against experimental measurements.
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4, QUALITATIVE MICROWAVE IMAGING WITH SCATTERING
PARAMETERS MEASUREMENTS?

Microwave imaging (MWI) systems extensively employ vector network analyzers for
microwave measurements due to their high availability and accuracy. This is in
contrast to theoretical models, which are naturally formulated in terms of scattered
electric field vectors. Accordingly, experimental verification of MWI methods requires
an intermediate step where measured scattering parameters are converted to scattered
electric fields. In parallel to recent researches, we develop formulations of two closely
related qualitative inverse scattering methods—the linear sampling method and the
factorization method—directly in terms of scattering parameters to avoid the
intermediate conversion step. To this aim, we introduce vector S-parameters and we
extend the vector Green’s function for S-parameters to the dyadic case. There are
certain advantages of these formulations. First, the formulations incorporate the
antenna radiation characteristics. Moreover, they reduce the measurement time since
they do not require any pre- or post-measurement process. Experimental results show
that the proposed methodologies can accurately reconstruct the shape of the targets.

4.1 Introduction

Microwave imaging (MWI) emerges as a novel technology that aims to extract
physical properties of inaccessible objects from scattered electric field measurements
at the microwave frequency range. These imaging approaches have prominent
applications in nondestructive testing (NDT) and especially in medical imaging where
microwaves are quite attractive due to their non-ionizing nature when interacting with

biological tissues [30].

2 This chapter is based on the paper “Akinci, M. N., Caglayan, T., Ozgiir, S., Alkasi, U., Ahmadzay,
H., Abbak, M., Caydoren M., Akduman, 1., 2015. Qualitative microwave imaging with scattering
parameters measurements, IEEE Transactions on Microwave Theory and Techniques, 63(9), 2730-
2740”
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Figure 4.1 : Problem geometry (D: Sampling domain, Q: Support of all scatterers,
A: Illumination-measurement domain, u;, u; , uy: A right handed coordinate system)

MWI systems extensively incorporate vector network analyzers (VNAS) instead of
implementing additional modules to perform microwave measurements. This is
particularly driven by the availability of high-performance VNAs. While there are
alternative ways of reconstructing an image in MWI, imaging methods are naturally
formulated in terms of scattered electric field vectors, whereas measured scattering
parameters (S-parameters) are only auxiliary quantities. Consequently, an intermediate
step is required for experimental setups where measured S-parameters are mapped to
scattered electric fields. This is mostly handled by comparing simulated electric fields
against measured S-parameters [28,29,42]. In particular, we also utilize from the
canonical S-parameters—electric fields’ conversion method given in [29] for
experimentally comparing the electric field-based formulations of qualitative imaging
methods [43].

Inverse scattering theory provides a group of highly theoretical approaches known as
qualitative imaging methods [8]. These methods are based on inverting an integral
equation for each point over a reconstruction domain to determine the shape and
position of unknown scatterers without requiring any a priori information. Comparing
with nonlinear optimization methods [1]-[5], which model the physical scattering
mechanism to determine electrical properties of dielectric objects, qualitative inverse
scattering methods are generally easier to implement and more efficient in use of
computational resources. Despite their attractive features, such methods are not

28



frequently used in engineering applications due to their mathematical background
[28,29,44,45]. Two well-known representatives of qualitative inverse scattering
methods are: 1) the linear sampling method (LSM) [9] and 2) the factorization method
(FM) [16]. These two methods are in fact quite similar in formulation as well as in
performance [11]-[14].

As a better alternative to the calibration step between the S-parameters and the electric
fields, recent studies demonstrated that measured S-parameters can be effectively
modeled with vector spherical wave functions [46]. Besides, the Born iterative method
can be directly formulated in terms of S-parameters, by defining integral equations
comprised of a vector Green’s function for S-parameters [47]. In this direction, we
consider LSM and FM to develop novel formulations of their S-parameter
counterparts. For this purpose, we introduce two novel notions: vector S-parameters
and the dyadic Green’s function for S-parameters, where the second is the
generalization of the vector Green’s function given in [46]. Such formulations are quite
important from an engineering perspective for two main reasons. First, antenna
radiation characteristics are inherently incorporated into the solution procedure
without any simplification. Second, measured S-parameters can be directly applied to
the imaging methods as input without any preprocessing, which spares the
measurement time associated with the calibration. The developed theoretical models
are experimentally verified with scattering parameters measured inside an anechoic
chamber. Reconstructions, which are obtained directly from measurements, indicate
the accuracy and stability of the proposed formulations. Moreover, the effectiveness
of incorporating multi-frequency measurements is demonstrated experimentally. Note
that this work is different from the authors recent study in [43], which performs an

experimental comparison of the electric-field-based LSM and FM, as indicated above.

This paper is organized as follows. In Section II, we briefly outline the canonical
formulations of the LSM and FM to stress the analogy between electric-field-based
and S-parameter-based microwave scattering mechanisms. In Section Ill, the novel
formulations of S-parameter-based LSM and FM are then explained in detail. Later, in
Section 1V, we present several reconstructions that are achieved with the proposed
formulations. Throughout this paper, time convention is assumed and suppressed.
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4.2 Qualitative Microwave Imaging

Qualitative inverse scattering methods attempt to reconstruct the shape of inaccessible
targets from scattered fields without making any assumptions on the number of targets
or their electrical properties. These methods have been successfully applied in various
subjects such as: NDT [48], medical imaging [32]-[34], or subsurface imaging
[14,31,49,50]. Two closely related representatives of such formulations are the LSM
and the FM. Here we first briefly introduce the LSM and FM to further develop
formulations based on S-parameters.

Let us consider a 3-D electromagnetic scattering mechanism from arbitrary dielectrics
in free space, as depicted in Figure 4.1. It is well known that scattered electric field is

governed by the data equation:
ES¢t(r) = fQ G(r, ) xy(PHE®(rNdr'; v € Q,r € R3 (4.1)

where Q is the total volume of all corresponding objects. Here, G(r, ") is the dyadic

Green’s function given by:

exp(iko|r—7'])

G(r,r) = (1+ k—lgvv) (4.2)

4m|r—r1|

where k, is the complex wavenumber of the medium and y(r") = k?(r") — k2 is the
so-called object function. The electric field is determined by inverting the object

equation, which is:
E°'(r) = E™(r) + [, G(r, 7 x(XE® (r)dr'; r',r € Q (4.3)

where E"¢(r) stands for the incident electric field. In this setting, let us define the

near-field operator F(-) and the near-field equation as [9]:
(F9)00) = [ v00) x B*(x, 7,6, (0)dy
A

=v(x) X G(x, z)q; x,y €EA;z€D;q€RS3 (4.4)

In (4.4), for arbitrary polarization, q, X, and, y denote source and observation positions,
respectively, z stands for a point in the sampling domain D, v is the unit normal vector
defined on the observation surface A, and ¢, stands for the test function on which

operates. As proven in [9], the main condition of the LSM is:

2@ QA (Fg,) > vxG(,2)q= |lp,l 0 (4.5)

-1
2wy
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where ||-|| stands for the Euclidian norm for the Hilbert space defined on the

L%(A)

surface A:
1f1] 20 = Sulf12d (4.6)

This condition can be interpreted as: provided that a sampling point z falls inside an

object Q, there exists a function ¢, that satisfies the near field equation (4.4) such that
the indicator function W(z) = ||¢Z||;21(A) becomes greater than zero. Here, the

proposal in (4.5) is proven to be true, but z € Q does not always imply that W(z) > 0,
i.e., there can be some regularization schemes which can come up with a non-finite
solution of (4.4) [9]. Therefore, all scatterers can be reconstructed by plotting the
indicator function W(z) on the entire sampling domain D. (It is assumed that the
sampling domain D completely encapsulates the scatterers €2.) For this goal, the ill-
posed near field equation in (4.4) must be inverted via Tikhonov regularization [9].
The choice of the regularization parameter has a great influence on the quality of the
obtained images and choosing optimal parameter for each sampling point requires an
estimate of noise power, which may not be available in real measurement systems [44].
Apart from that, the computation of an optimal parameter for each sampling point is
the most time consuming part of LSM [44]. No-sampling version of LSM in [51,52]

and regularization routine in [28] are a few solutions to these limitations.
Similarly, as proven in [11,16,53], the main condition of FM is:
1
2&QAVXG(,2)q &R ((F*F)z) o

-1

-0 4.7

(vXG(.2)q 1), 2 51
O e

where (-)* denotes the conjugation operator, R(-) denotes the range of related operator,

{4, ¥} is the eigensystem of F and (-,-),2(,) denotes the inner product for the Hilbert

space defined on the surface A, which is given by:
(f,g>L2(A) = fAfg*dA (4.8)
Eventually, whenever a sampling point z falls inside an object and v X G(,z)q

belongs to the range of the operator (F*F)= (i.e., (F*'F)s¢, =v X G(:,z)q has a

solution) then the indicator function given in (4.7) becomes greater than zero. Plotting
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the indicator function over the entire sampling domain reveals the objects in a similar
fashion. Note that, in contrast to LSM, FM fully characterizes the sampling points as
stressed in (4.7) [16]. Nonetheless as stated in [9], LSM is shown to be applicable to a
wide range of problems, whereas generalization of FM is a more challenging issue.
For further discussion of the theoretical aspects of the LSM and FM, we refer to

monographs [9,16] and physical interpretations of the methods can be found in [45,54].

Although the above formulations are for a monochromatic case, multi-frequency
measurements must be carried out to obtain better image reconstruction. Both LSM
and FM can be easily adapted to the multi-frequency case, since they only aim to
recover the shape instead of the frequency dependent dielectric parameters of the
target. For more detailed discussions about multi-frequency techniques we propose the
reader to see [14,55-58].

4.3 Formulating LSM and FM in terms of Scattering Parameters

There are certain practical issues in the above theoretical model if an experimental
configuration is considered. First, the scattered electric field vector ES* and incident
electric field vector E™¢ must be measured over the measurement domain A for all
tangential polarizations. It is obvious from (4.4) that measuring only amplitude of the
electric field is not sufficient and phase must be measured accurately as well.
Furthermore, multiple antennas are utilized in microwave measurement setups for both
exciting and sensing electromagnetic fields thus their radiation characteristics become
an integral part of the measurement systems. While in practice, antennas are generally
approximated as analytical sources such as line/point sources or Gaussian beams, this
is in fact an oversimplification of the actual case. Therefore, a generic antenna
characterization method must be included in reconstruction procedures. Among all
practical considerations, the actual measurement device is the most important factor.
Real-world microwave measurement systems exclusively use laboratory grade VNAs
due to their accuracy as well as commercial availability. This leads to measuring S-
parameters instead of electric field values for a fixed polarization. In this context, if we
consider using either LSM or FM in practice, we need to map the measured S
parameters to the scattered electric field ES€* in (4.4). Conventional techniques are to

apply calibrations, which simply find coefficients by comparing simulated electric
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fields and measured S-parameters for canonical objects such as spheres or long
cylinders [28,29,42,44,45].

4.3.1 Incorporating antenna radiation characteristics

Recent research proposed an elegant way to tackle such restrictions by representing S-
parameters with spherical wave functions [46,47,59]. To this aim, the incident field
EI" is first expanded into series of divergenceless spherical vector wave functions as
[46,47,59]:

Einc(r) = 2?:1 2p=_p apkMpk(r) + ﬁpkNpk(r) ’ re RB; apk' ﬂpk €C (4-9)

where Mpy, Ny are spherical harmonics [2]. This representation allows simulating
models of real antennas in 3D electromagnetic solvers. The unknown coefficients ay
and S, are determined by inverting (4.9) using simulated electric fields EI"¢ over a
sphere enclosing the antenna. In fact, inversion of (4.9) is an ill-posed problem and an
approximate but stable solution can only be achieved in a least square sense by using
a form of regularization such as Tikhonov inversion [47]. Once the unknown
coefficients are determined, the incident electric field from the antenna can be
evaluated in whole space. At this stage, we propose a simple strategy for optimal
selection of the total number of harmonics. Let us assume that the electric fields EI*
and E“correspond to simulated field values over two concentric spheres enclosing
the antenna model. Then the coefficients in (4.9) are determined in a least square sense
by inverting Ei". With these coefficients, the electric field EI can be evaluated on
the same sphere where the E"® was simulated previously. The optimal number of
harmonics is determined as the minimum number of harmonics for which the error

Tl

norm ——;—
I[E2I

becomes lower than an arbitrarily selected threshold t.

Let us define a normalized incident field e [46]:

R Einc
inc _
et = T (4.10)

where P,,,. is the average input power and Z, is the input impedance of the antenna.
With the normalization in (4.10), the object equation for the electric field given by
(4.3) becomes [46]:

e (X, ) = €M (X, yn) + [, GOy, 2) X (2)€'°(2)dz; X,y € A,z € Q (4.11)
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Here x,,, and y, denote the positions of m™ transmitting antenna and n'" receiving
antenna, respectively. In parallel to the definition of the scattered electric field,

scattered S-parameters S;5%, are defined as a difference between measured S-
parameters S£5¢ when the objects are present and S5 when there are only antennas
[46]:

Sash, = Skoh, — Sine (4.12)
Based on the field expansion in (4.9) and the normalization in (4.10), it is proved that

scattered S-parameters can be expressed as [46]:
Sir = [, 80m 2)x(2)e** (2)dz; X, yn € Az € Q (4.13)

where g(y,, z) is the so-called vector Green’s function:
g0m2) = ;e (y,2); 2 € Ry, €A (4.14)

The equations expressed in (4.11) and (4.13) are valid under two assumptions: first,
there is no incoming field in the frame of the transmitting antenna and there is no
outgoing field in the coordinates of the receiving antenna; second, there is no multiple
scattering between any two antennas, antennas and objects [59]. Although these
assumptions seem to be restrictive at first glance, such representation is demonstrated
to be useful in practical cases [46,47]. Interested reader can find the validations and a
comprehensive analysis of (4.9), (4.13) in [46,47,59].

4.3.2 Vector S-parameters based formulations of LSM and FM

A careful examination of (4.1), (4.3) and their S-parameter counterparts (4.11), (4.13)
reveals that there is a direct analogy between scattered electric field and measured S-
parameters for a specific polarization. To further emphasize this analogy, let us

introduce the vector form of scattered S-parameters as:
$%¢ = Sy + SP%wy 4+ Siuy (4.15)

where (57, §7°¢, S§¢t) are scattered S-parameters for orthogonal polarizations (u;, u;,

uy). With this new definiton of S-parameters, (4.13) becomes:
Sfr(l:fl = fD Gs(yn’ Z)X(Z)etOt(Z)dZ; xm; Yn € A,Z € 'Q (416)

where G is the dyadic Green’s function for S-parameters given by:

34



iZ ,
G = le_(;lz:me(i,j,k) ZnE(i,j,k) 811-,71175 Uu,uy, (4.17)

In (4.17), el is the u,, component of normalized incident electric field produced by
a u,, polarized antenna. While not formally defined, Gg in (4.17) acts as a Green’s
function in a sense that it generates measured S-parameters for arbitrary antennas.
Then making use of the obvious analogy between (4.1), (4.3) and (4.11), (4.16) we can

define a new near field operator:
(L)) = [, v(x) xS*(x,y,6,())dy x,y €Az€D;  (418)

which is the S-parameter complement of the near field operator in (4.4). Thereby, the
main condition of LSM for S-parameters can be written as:

z& QA (Lp,) - vXGs(-,2)q = |¢,]| 0 (4.19)

-1

2w
As in the case of traditional LSM, the shape of all scatterers can be obtained by plotting
the indicator function W (z) after inverting the ill-conditioned near field equation
(4.19) by means of Tikhonov regularization. Although it is not formally shown to be
an optimal solution, this paper exploits the regularization procedure in [28] due to its

simplicity and effectiveness.

In a similar way to LSM, the condition for FM with S-parameters becomes:

1
z&QAVXG(,2)q&R ((L*L)Z) =

GS ) g 2 -
[(vxGg(-,2)q lpl)LZ(A)' ) >0 (4.20)

|24

W) = (%
where {4;,,} is the eigensystem of L.

The conditions in (4.19), (4.20) inherently take antennas into account, which is an
important aspect of the developed formulations. Arbitrary antennas such as corrugated
horn antennas or Vivaldi antennas, which are extensively used in MW!I1 systems, can
be accurately incorporated into the solution procedure without any simplification.
Furthermore, as a consequence of the newly introduced near field operator in (4.18),
the measured S-parameters are directly included in the solution methodologies without
requiring to be converted into electric field. Despite the affinity between electric field
based formulations of (4.5), (4.7) and S-parameters based formulations of (4.19),

(4.20) these conditions differ radically. The main difference is the dyadic Green’s
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function for S-parameters Gg in (4.17) is heavily dependent on antenna radiation
characteristics, whereas the canonical Green’s function G in (4.2) is independent of

excitation.

Finally, note that the derived algorithms can also be modified for multi-frequency
measurement scenarios in a similar way to electric field based formulations. Here for

simplicity we prefer integrating over all available frequencies [55]:
W) = [["W(z f)df (4.21)

where W (z, f) stands for the indicator function for a single frequency, which is defined
in (4.19) or (4.20). Through the measurements, it is observed that even such a simple
summation operation for incorporating multi-frequency data dramatically increases

the quality of the results.

4.3.3 Implementation for cylindrical microwave scanners

Cylindrical scanning for MWI systems is a common configuration due to its simplicity
[60,61]. Here we discuss the discretization of the presented formulations for such

mechanisms.

For implementing LSM, surface normal and polarization vectors are explicitly selected
asv = a, and = a, , respectively; where (a, ag,a,) is the well-known basis of
cylindrical coordinates [2]. Then, by discretizing the sampling domain into M cuboid
cells centered around points z;, z,, .., z); near field equation in (4.19) can be written

as:
Ly =U (4.22)

Here L = [Lyn] = [Sp5hRA0Az], where S;5 denotes the z component of the
scattered vector S-parameter, RA6Az is the Jacobian resulting from the integration and
m,n€1,2,...,N denote the numbers associated with transmitting and receiving
antennas respectively. In (4.22), U =[U,;] =[el%.a,];k€ 1,2,...,M,n €
1,2,..., N is the matrix whose entries are the a, component of the normalized incident
field produced by the receiving antenna while illuminating the sampling domain. Then,
this equation is solved as explained in [9] and the indicator function is computed as:

-1

-1
= (Zﬁ=1|¢zk,n|2RA9) i kel2,..,M (4.23)

W(z) = |||

L*(A)
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Figure 4.2 : Measured - Computed normalized gain of the ridged horn antenna
atR =0.85m, @ = 0°and 90° < 8 < 180° where X, y and z denote the canonical
Cartesian coordinates. The major lobe of the antenna is directed towards x-axis.

(Spherical coordinates are defined as: R = \/x2 + y2 + 22,0 = cos™! (%) and

# =tan! (%) When computing the normalized gain the representations in (9) and

(10) are employed. Here the coefficients a,y, B« are calculated from the simulated
electric fields on the sphere having a radius of R = 0.725 m. Mean square errors
between the measured and computed values are 4.58%, 1.72% and 3.63% for 1.0

GHz, 1.5 GHz and 2.0 GHz, respectively.)

Similarly, for implementation of FM, using the same notation conventions, the

indicator function is evaluated as:

1

KUk y2 2]
—ETRW . kel,2,..,M (4.24)

|2nl

W) = [T,

where {1,,, 1, }is the eigensystem of the scattering matrix L and U, is the k™ column

of U. Consequently, the final indicator function is computed as:
W(Zk) = Zl W(Zk'fl) Afl, k € 1,2,...,M (425)

where {Af;} is the Jacobian resulting from the integration in (4.21) and W (zy, f;) is

the indicator function at frequency f;, which is computed from (4.23) or (4.24).
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Figure 4.3 : (a) Experimental configuration for single metallic scatterer case. (b)
Amplitude and phase of the measured scattered S-parameters of the rectangular
target at 0.8, 2.0 and 4.0 GHz. (Transmitting antenna is located at 0°.) Result
obtained with: (c) LSM, at 0.8 GHz. (d) LSM, at 2.0 GHz. (e) LSM, at 4.0 GHz. (f)
LSM, using all frequencies. (g) FM, using all frequencies. (h) LSM, with calibration
in [42], using all frequencies. (i) FM, with calibration in [42], using all frequencies.
(Exact borders are marked with dashed white lines.)
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Figure 4.4 : (a) Experimental configuration for single dielectric scatterer case. Result
obtained with: (b) LSM, using all frequencies. (c) FM, using all frequencies. (Exact
borders are marked with dashed white lines.)
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Figure 4.5 : (a) Experimental configuration for multiple metallic scatterers case.
Result obtained with: (b) LSM, using all frequencies. (¢) FM, using all frequencies.
(Exact borders are marked with dashed white lines.)
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Figure 4.6 : (a) Experimental configuration for multiple dielectric scatterers case.
Result obtained with: (b) LSM, using all frequencies. (c) FM, using all frequencies.
(Exact borders are marked with dashed white lines.)

Table 4.1 : Localization Errors (€;,.: Quality Measure in (4.26), T: Threshold)

Name Eloc(%) T Name Eloc(%) T Name Eloc(%) T
4.3(c) 350 0.7 43(h) 281 0.7 45() 581 0.7
4.3(d) 319 07 43(G) 231 0.7 46() 269 0.7
4.3(e) 344 07 4.4(b) 138 0.7 46(c) 119 07
4.3(f) 169 07 44(c) 113 0.7 47(0) 196 05
4.3(g) 056 0.7 45(b) 5094 0.7 47(c) 387 05
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Figure 4.7 : (a) Experimental configuration for T-shaped object. Result obtained
with: (b) LSM, xz view, using all frequencies. (c) FM, xz view, using all frequencies.
(d) LSM, xy view, using all frequencies. (e) FM, xy view, using all frequencies. (f)
LSM, yz view, using all frequencies. (g) FM, yz view, using all frequencies.
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4.4 Experimental Verification

Experimental configurations shown through Figure 4.3(a) to Figure 4.7(a) are set up
inside an anechoic chamber to verify the developed formulations with measured S-
parameters. The measurement system employs a VNA (Agilent N5230A) to measure
the S-parameters. For each configuration, the reference frame is chosen as the right
handed coordinate system whose z-axis is vertical to the ground plane and whose y-
axis is directed towards the antenna on the right side. Unless otherwise stated,
measurements are performed on a circle located in the z = 0 m plane with two ridged
horn antennas, which are polarized in z direction. For the results given through Figure
4.3 - Figure 4.6 the antennas are positioned at R = 0.85 m away from the center,
whereas for the results given in Figure 4.7 they are located on a R = 1 m radius circle.
The calibration between the reference plane of the VNA and the input of the antennas
is made by using an Agilent N4691B electronic calibration module. We utilize HFSS
from Ansys to simulate the realistic antenna models when computing the coefficients
in (4.9). The optimal number of harmonics is determined as explained previously. For
the above mentioned ridged horn antennas, it is calculated that the harmonics upto
order 10 (1 < p < 10) must be used in (4.9) in order to achieve an error norm less
than T = 0.01, which is sufficient for the experiments as it can be observed from
Figure 4.2. Note that both LSM and FM require to measure all tangential components
of the scattered vector S-parameters on the observation surface A. However,
measuring only one component of the vector S-parameters is demonstrated to be
enough in many cases [14,28,29,42,44,45]. Hence, only the z component of the
scattered vector S-parameters is measured for all reconstructions and the collected data
is used in (4.19), (4.20) without any pre-processing. The sampling domain D is
selected as a square 40 x 40 c¢m? lattice for the reconstructions in Figure 4.3 - Figure
4.6 and a 40 x 40 x 30 cm3 prism for the results in Figure 4.7. For all cases, the
sampling points are equidistantly distributed with 1 cm separations in each directions
and the values of the indicator functions are calculated for the entire lattice. Then, these
indicators are normalized with respect to their maximum value to force all images to
the same scale. After obtaining the normalized indicator functions W, (z;), the

qualities of the reconstructions are assessed by the localization error:

N
€loc — ﬁ (426)
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where Nyp and Ngp are the number of misclassified pixels and sampling points
respectively [14,49]. Here a point z, is classified as a pixel inside a scatterer if
W, (z,) = T, where W, (z,) is the heuristically selected threshold. [44,49].

As a first experiment to verify the presented formulations, the rectangular metallic
object shown in Figure 4.3(a) is measured. Dimensions of this object are 5 cmx11
cmx50 cm and measurements are taken at 11 different frequencies, which are
uniformly distributed between 800 MHz and 4.8 GHz. The object is positioned at the
center and S-parameters are sampled with 30° angular variations, thus in total 12x12
measurements are performed for each frequency. In Figure 4.3(b), measured S-
parameters are plotted for the incidence angle of 0° degrees. Reconstructed images of
the rectangular scatterer with LSM are given in Figure 4.3(c), Figure 4.3(d) and Figure
4.3(e), for 0.8 GHz, 2.0 GHz and 4.0 GHz, respectively. From these results one can
infer that using single frequency data individually can produce blurry reconstructions,
as in Figure 4.3(c), even if the number of measurements is sufficient [62]. The
reconstructions for the multi-frequency case are given in Figure 4.3(f) for LSM and
Figure 4.3(g) for FM. As it can be observed from these results and the values of €;,.
given in Table I, using multi-frequency data mitigates the effect of the noise and

reconstructions become more accurate.

For the sake of completeness, here we proceed with a comparison of the presented
formulations against their electric field counterparts. As mentioned earlier, the electric
field based formulations require scattered electric field, which can be obtained with
standard calibration procedures. Such calibration methods are based on calculating
coefficients y by comparing simulated electric field and measured S-parameters of a
canonical target. After the coefficients are computed, the scattered electric field of any

target ESC¢(f, x, y) is assumed as:

ESt(f,x,y) = y(f, x,¥)S5(f, x,¥) (4.27)

Here the coefficient y is generally dependent on the illumination frequency f, the
position of transmitter x, and the position of receiver y. In this paper the calibration
procedure in [42], where the coefficients y are assumed to be only a function of the
illumination frequency f, is used to obtain the scattered electric field. The explicit

formula for y is given as [42]:
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o Zy gsimref (f,x,v) (Smells.ref)* 9
Yx Xy |smeasref (f x,y)|?

y(f) =

(4.28)

where ()* denotes complex conjugation and EStmref smeasref stand for the
simulated scattered electric fields, the measured scattered S-parameters for the
reference target. As the canonical target, a metallic sphere with radius of 5 cm is
employed and its measured S-parameters are compared with the analytical solution
[63]. The imaging results for the electric field based inversions are given in Figure
4.3(h) for LSM and Figure 4.3(i) for FM. The localization errors indicate that the
presented formulations perform slightly better than the electric field based methods,
but as it can be seen from Figure 4.3(f) - Figure 4.3(i), both procedures can accurately
determine the shape and position of the object. One of the reason for this small
performance difference can be the inclusion of the antenna radiation characteristics
into the presented formulations. Consequently, these results can only give an idea
about the performance of the S-parameter based formulations compared to their
electric field based counterparts. For a comparison of the existing calibration

techniques we propose the reader to see [64].

From the aspect of computational complexity, the requirements of the presented
formulations are very close to the original LSM and FM formulations, since the
mathematical operations are the same except for the computation of the incident field.
The calculation of each term in (4.9) takes approximately the same time as the
computation of the electric Green’s function, which may cause S-parameter based
inversions to be slower than their electric field complements. The time difference is
not significant for the multi-frequency reconstructions presented in Figure 4.3, where
generation of each result takes less than 1 minute on a standard PC. As the number of
sampling points increases the total duration becomes noticeable, particularly, the
results in Figure 4.7 take 15 minutes on the same PC. Nevertheless, the computation
time solely depends on the order of expansion in (4.9), which changes from antenna to
antenna. On the other hand, if we consider the calculation of antenna coefficients a, 3
and the calibration coefficients y in (4.27), both require a single simulation for each
illumination frequency. However, the calibration coefficients y are unique to the
experimental setup whereas antenna coefficients o, [ are reusable as long as the

electrical properties of the surrounding medium remain the same.
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Next, to verify the presented formulations for dielectric structures, the same
measurements are repeated for a wooden cylinder with diameter 5.9 cm and height 100
cm as shown in Figure 4.4(a). The object is intentionally placed off-centered and
reconstructed images of the cross-section are shown in Figure 4.4(b) and Figure 4.4(c),
for LSM and FM respectively. The methods successfully reconstruct dielectric targets
as well and obtained images are quite comparable with each other, as can be
understood from Table I. These results not only verify the presented formulations but
also demonstrate flexibility of qualitative inverse scattering methods, since LSM and
FM can be applied to both dielectric and conducting objects without any modification.
Furthermore, the localization errors given in Table | indicate that the quality of
reconstructions for both kinds of scatterers is quite similar. Indeed, this is an expected
outcome, since the number of measurements is sufficient for solving the inverse
imaging problem [62]. Another reason for this phenomenon can be the resistance of
these algorithms against the marginal variations in the multiple scattering (or

nonlinearity) [65].

As mentioned earlier, one of the advantages of qualitative inverse scattering methods
is that these methods do not require the number of scatterers a-priori. To demonstrate
this capability, the measurement configuration shown in Figure 4.5(a) is prepared. In
this case, two rectangular metallic objects having dimensions of 5 cmx11 cmx50 cm
are placed off-centered. S-parameter measurements are performed in 1 — 3 GHz range
with 250 MHz steps and antennas are rotated with 15° angular variations. Thereby, in
total 24x24 measurements are performed for each illumination frequency. Using
multi-frequency data with LSM and FM, the results given in Figure 4.5(b) and Figure
4.5(c) are obtained respectively. While the result in Figure 4.5(c) reveals the shape of
scatterers more clearly, the error norms in Table I imply that the reconstructions of
LSM and FM have almost the same quality for this particular setup.

To further investigate performance of the formulations with multiple dielectric
scatterers, another measurement configuration is prepared as shown in Figure 4.6(a).
In this setup, two identical wooden cylinders with diameters 5.9 cm and heights 100
cm are placed off-centered. The same measurements, which are performed for multiple
metallic scatterers, are repeated for this configuration. Reconstructed images are
shown in Figure 4.6(b) for LSM and Figure 4.6(c) for FM. By examining the error

values in Table I, it can be inferred that FM produces more satisfying reconstruction
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compared to LSM. Apart from that, in contrast to the single scatterer case, the quality
of Figure 4.6(b) and Figure 4.6(c) is relatively higher than the quality of the
reconstructions for multiple metallic scatterers case, which are given in Figure 4.5(b)
and Figure 4.5(c). This performance degradation can be ascribed to several factors:
different errors in the measurement process (the errors due to misplacement of the
antennas or the objects, random measurement errors) or the selection of the threshold
level T etc. Another reason, which causes this deterioration, could be a slight increase
in the multiple scattering effect between the antennas and the targets due to the

conductor scatterers [65].

Finally, the increase in the number of degrees of freedom for the conductor targets,
which is due to their larger size when compared to dielectrics, can have an impact on
the quality of the results [62]. Nonetheless, the results demonstrated through Figure
4.5 - Figure 4.6 indicate that the presented methods can tolerate such effects up to a
certain extent. Finally, to illustrate 3D reconstruction capability of the methodologies,
another experimental setup shown in Figure 4.7(a) is designed. For this case, the target
is selected to be a T-shaped object, which consists of two rectangular prisms of wood
having dimensions of 4 cmx4 cmx30 cm. This T-shaped object is placed on a small
reference stick for ease of physical stabilization. S-parameters are measured within a
frequency range of 1—6 GHz with 250 MHz steps. To be able to reconstruct dimensions
along the z-axis, measurements for this configuration are performed with 15° angular
variations on five different planes, whicharez=0cm,z=5cm,z=10cm,z=15cm
and z = 20 cm surfaces. Thus, in total 120 x 120 bistatic measurements are performed
for this particular case. After obtaining the scattering matrix from these measurements,
indicator functions are computed using (4.23), (4.25) and (4.24), (4.25) for LSM and
FM, respectively. Finally, to have a reconstruction of the T-shaped object, the indicator
function is normalized to its maximum value and the W = 0.5 surface is plotted for
both algorithms. Results are given in Figure 4.7(b), Figure 4.7(d), Figure 4.7(f) for
LSM and in Figure 4.7(c), Figure 4.7(e), Figure 4.7(g) for FM. From the
reconstructions, it is clear that both algorithms correctly reconstruct the shape and
dimensions of the investigated object, while the error levels in Table I imply that the
result of LSM is slightly better than that of FM. This quality difference is related to
the choice of regularization parameter, which is critical for LSM as noted earlier.
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These results are quite important to demonstrate 3D imaging capability of developed

formulations.

Consequently, achieved reconstructions can be improved in many aspects such as
increasing the total number of measurements and applying further image processing
techniques to obtained images. However, we have implemented the experiments with
a minimalistic approach (with minimum number of measurements and without using

any pre- or post- processing) to verify the presented formulations.

4.5 Conclusions and Future Work

In this paper, we have developed S-parameters based novel formulations of two closely
related qualitative inverse scattering methods, which are the linear sampling method
(LSM) and the factorization method (FM). The proposed algorithms include the
antenna radiation pattern implicitly, which makes it possible to work with realistic
antennas. Besides, they relieve us from any pre- or post- processing steps in exchange
for computation of a finite number of antenna parameters. Beyond this, S-parameter
based methods have the same computational complexity as their electric field

complements.

Apart from introducing S-parameter based LSM and FM, we have experimentally
verified them with real measurements for various configurations. It has been
demonstrated that S-parameter based formulations yield high quality reconstructions

for multi-frequency measurements.

Finally, it is worth mentioning that the developed framework can provide a guideline
to reformulate other qualitative inverse scattering methods in terms of S-parameters.
Future research will be devoted to extending the presented model for imaging of
targets embedded inside inhomogeneous mediums in order to utilize them in real world

problems, such as medical imaging and non-destructive testing.
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5. EXPERIMENTAL ASSESSMENT OF LINEAR SAMPLING AND
FACTORIZATION METHODS FOR MICROWAVE IMAGING OF
CONCEALED TARGETS?

Shape reconstruction methods are particularly well suited for imaging of concealed
targets. Yet, these methods are rarely employed in real nondestructive testing
applications, since they generally require the electrical parameters of outer object as a
priori knowledge. In this regard, we propose an approach to relieve two well known
shape reconstruction algorithms, which are the linear sampling and the factorization
methods, from the requirement of the a priori knowledge on electrical parameters of
the surrounding medium. The idea behind this paper is that if a measurement of the
reference medium can be supplied to these methods, reconstructions with very high
qualities can be obtained even when there is no information about the electrical
parameters of the surrounding medium. Taking the advantage of this idea, we consider
that it is possible to use shape reconstruction methods in buried object detection.
Accuracy and stability of the obtained results show that both methods can be quite
useful for various buried obstacle imaging problems.

5.1 Introduction

Imaging of concealed targets have different applications ranging from medical
imaging [66-68] to subsurface sensing [14,19,31,40,50,69]. Main challenge for such
problems is that the solution procedures are expected to capture the electrical
parameters (relative dielectric constant €,,, conductivity o) of whole medium, which
includes the buried objects [1,5,13,30]. Up to date, many quantitative techniques are
developed to obtain the electrical parameter distribution of the whole medium [1,11].
However, the quantitative formulations involve a considerable amount of

computational burden. Being contradictory to quantitative techniques, qualitative

3 This chapter is based on the paper “Akinci, M. N., Caglayan, T., Ozgiir, S., Alkasi, U., Abbak, M.,
Cayoren, M., 2015. Experimental Assessment of Linear Sampling and Factorization Methods for
Microwave Imaging of Concealed Targets. International Journal of Antennas and Propagation, 1-11.”
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inversion methods, which aim to recover only the shape of the scatterers, have
relatively simple formulations and require lower computational resources [8,13,30]. In
contrast to such obvious advantages, qualitative inversion techniques are rarely
employed in buried obstacle detection, since these methods have strong a priori
knowledge requirements in their original form. In particular, to be able to detect the
shape of an inclusion by means of these methods, we must supply these two a priori
pieces of information: (i) the dielectric parameters of the surrounding medium and (ii)
the scattered field when there is no buried object inside the surrounding medium
[8,13]. It is obvious that fulfilling such strong conditions altogether is of a serious issue

in any imaging problem.

There are already several studies to remedy the a priori information problems of
qualitative imaging methods [6,7,31-34,70,71]. In [31], the reciprocity gap-linear
sampling method (RG-LSM) is utilized to relieve LSM from the above mentioned
constraints. In [32-34,71], different qualitative methods are assessed in biomedical
applications for which a limited a priori information is available. Finally, in [6,7,70]
LSM is employed in quantitative imaging processes, which can provide an estimate of

the dielectric parameters of the whole target.

This paper introduces a practical solution procedure for two famous qualitative
inversion schemes, which are the linear sampling method (LSM) [9] and the
factorization method (FM) [10]. To this end, we propose a strategy to overcome the a
priori knowledge requirement on the dielectric parameters of the surrounding medium.
Explicitly, we state that it is possible to use LSM and FM in practical situations,
whenever the condition (ii) is satisfied. It is important to notice that if (i) is satisfied
(i) is already fulfilled, but the converse is not true. Furthermore, the second condition
can be satisfied in certain practical applications like mine sweeping [72,73], subsurface
sensing [14,19,31,40,50,69] or through-wall imaging [49,74], and so forth. (For the
sake of clarity, let us further explain the through-wall example: it is not easy to
completely characterize the dielectric parameters of a wall, but we can easily make a
measurement on the different parts of this wall and use one of these measurements as
reference.) Consequently, after having the second condition in hand, an accurate shape
reconstruction of the inclusion can be obtained by just assuming the outer medium as
free space. We prove the effectiveness of the proposed methods with real

measurements taken inside an anechoic chamber. Obtained results show that it is
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Figure 5.1 : Configuration of the problem (D: the background medium, Q: the
scatterer(s), I': the excitation-measurement line, x: the position of the transmitting
antenna, y: the position of the receiving antenna, and z: the points inside the
sampling domain).
possible to localize the buried obstacles whenever we can find a reference medium,
which is available to measurement. In the following section, we briefly revise the LSM
and FM, and then, in the subsequent part, we give the formulations of the modified
LSM and FM for concealed target detection. Consequently, in the experimental
verification section, we will present the results for two different inclusions buried
inside dry soil. Throughout the paper, time convention is assumed exp(—iwt) and

factored out.

5.2 Review of Shape Reconstruction Methods

Consider the scenario in Figure 5.1, where an object Q, whose relative dielectric
permittivity and conductivity are €,.(z) and ¢'(z), is buried into another medium D
with electrical parameters of €,.(z), (z). The remaining part of the medium is filled
with air, which can be modeled as free space. Throughout the paper the wavenumber
of any medium is defined as k = \/w2ue + iwopu, where w is the angular frequency
of illuminating sources and e, u are the electrical permittivity, the magnetic
permeability of the related medium, respectively. The transmitting and measuring
antennas are placed on an arc I' and we assume that I' N D = @; that is, the

measurements are done from outside of the surrounding medium. Here, the
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measurement arc I does not necessarily enclose the object D. The forward scattering
mechanism in such a system can be expressed with the well known data and object

equations [2]:
ES(y) = fD G(y,2)0(z)E*(2)dz; y€T,z€eD (5.1)
Et°l(z) = E"°(2) + fD G(z,z)0(Z)E*(z)dz'; z',z€D (5.2)

where 0(z) = k(z)? — k2 is the so-called object function and E™¢ | E*t, and ES¢t
stand for the incident, total, and scattered electric fields, respectively. In (5.1) and

(5.2), G(:,-) is the dyadic Green’s function of free space, which is defined as [2]:

G(z,z") = (] + évv) exp(iko|z—2"]) (5.3)

4m|z—z/|

where I denotes the identity tensor.

5.2.1 Linear sampling method

The general objective of the shape reconstruction methods is to recover an estimate of
the support of the inclusion Q, given the electrical properties of background medium
D. Using the electrical properties of the background medium D, the scattered field

when there is no object in the reference medium EJ¢7 can be calculated. Then, the

scattered field when there is a scatterer Q in the reference medium E35f is measured.
Let us assume that I' is a circle and all antennas are polarized vertically. Then, it is
obvious that only vertical component of the scattered electric field EZ;i can be
measured. To identify the location of the inclusion, such methods use a common
mechanism, which is assigning an indicator function to each sampling point in D
[8,13]. This indicator function exhibits a particular characteristic when the sampling
point belongs to inclusion Q [8,13]. By plotting the indicator function over all
sampling domain D and searching for the locations at which the particular behavior

exists one can reconstruct the shape of the inclusion Q [8,13].

Linear sampling method (LSM) is a common example of such support identification
methods [9,44,45,75]. The main problem that LSM aims to solve is the far field
equation [9]. In the above mentioned circular measurement configuration, where N
vertical polarized antennas are uniformly distributed on a circle having radius R, the

discretized far field equation reduces to:
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Fg=G (5.4)
whereg = [g(x,,2,)]; 1 < n <N,1 < g < Q is the matrix of coefficients that
istobesolved, F = [E”*" (¥, %n)] = [Eqy” Wmo %)) = [Eff” GUmxa)]; 1 <
m,n < N stands for the discretized far field operator, whose elements are the vertical
component of the scattered electric field measured by m™ antenna when n'" antenna
actsassource. In (5.4), G = [6" (Y, 2,); 1 < m <N,1 < q < Qisthevertical
component of the electrical field measured at point z, € D,1 < q < Q when a
vertically polarized infinite small dipole, which is located at the position of m™
receiving antenna, illuminates the reference medium. LSM states that the solutions of
(5.4) is finite only if the sampling pointz, € D,1 < q < Q coincides with a scatterer
Q. It is important to note that (5.4) is severely ill posed and a regularization scheme

must be utilized to obtain a stable solution [9]. Here, we can utilize from the Tikhonov

regularization
g = (al + F'F)"'F*G (5.5)

where (-)* stands for the conjugate transpose operator. Here, the regularization

parameter « is determined by imposing the following condition:

Q_ GY(-,z0), . ~
ON EQ—ll( CZg)un )| = L max |(GW(';Zq), ul())l (56)

a?+af; Q 011<q<Q

where (-,-) denotes the inner product on receiving points and’X =
{01,02,...,0x}; U = {uq,u,,...,uy} stand for the singular values, the left singular
vectors of F, respectively [28]. Hence, the indicator function for LSM is defined as the

reciprocal of norm of the solutions of (5.4) [9], which can be given as:

1(zg) = (2Nl g (n zq)lz)_l; 1<q<Q (5.7)

By plotting I on the entire sampling domain, an illustration of the shape of the inclusion
Q can be recovered. For a more detailed investigation of the theoretical framework of
the LSM, the reader is proposed to see [9,44].

5.2.2 Factorization method

Another famous support identification algorithm is the factorization method (FM),
which is developed as an alternative to LSM [10,11,53]. The purpose of FM is to

investigate the solvability of the following matrix equation [10]:
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(F*F)i g=0G (5.8)

where F and G stand for the far field operator and the matrix of Green’s functions
defined in (5.4). The equation in (5.8) has finite solutions if and only if the sampling
point z;, € D,1 < q < Q coincides with an object Q [10]. In [10], it is shown that
the above equation has finite solutions if and only if:

-1

AVV( . \2
I(zq) = (Z%=1|<G ('lei’:fm()) ') ; 1<q<QM<N (5.9)

is greater than 0. Here, ¥ = {1, Y5,,...,¥y}and A = {14, 1,,..., Ay} are the sets of
eigenfunctions-eigenvalues of the far field operator F, respectively. Note that the
regularization for (5.9) can be done by a spectral cut-off of the eigensystem of F at
m = M < N. Similar to the LSM, a plot of I on the sampling domain D gives an
estimate of the support of the inclusion. More detailed mathematical discussions
regarding FM can be found in [10,11,53].

5.3 Solution to Imaging of Buried Objects

Although the above procedures are simple to implement and stable in nature, they are
rarely employed in experimental concealed target detection. This is basically due to
the fact that they require some a priori information, which cannot be available in most
of the practical problems. Those requirements in the above scenarios can be stated as

follows.

(i) Far field equation in (5.4) requires one to know the dyadic Green’s function G,
which is directly connected with the electrical parameters of the surround ing medium

(i.e., €-(2),0(z) in Figure 5.1).

(ii) Furthermore, to be able to construct the equation system in (5.4) the scattered

field due to inclusion, that is, EVS¢ in (5.4), must be known. Therefore, we must

EV,SCt

ef » Which is the scattered field from the reference

compute (or at least approximate)

medium D.

It is very important to distinguish between these two conditions. First of all, satisfying
the first condition, which states that one must have dyadic Green’s function G, seems
to be unrealistic in many microwave measurement systems. However, the second

condition can be satisfied in certain imaging problems for which an extra measurement
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of a reference medium is feasible [14,19,31,40,49,50,69,72-74]. As an example, in
through-wall imaging or subsurface sensing problems, it is not hard to find a reference
medium available to measurement, but measuring such a reference does not provide
us a model for the distribution of the electrical parameters of the surrounding medium
D. Let us think of such cases in which we have a reference medium available to
measurement, and then we propose that the far field equation in (5.4) can be modified

as.
Fg=G (5.10)

where Green’s function of free space G is replaced with Green’s function of the
background medium G. The dyadic Green’s operator G can be computed by (5.3);
therefore, by solving the modified equation in (5.10) via Tikhonov regularization
defined in (5.5), (5.6) and by plotting the indicator function I as in (5.7), an estimate

of the support of the inclusion Q can be obtained.

Similarly, the main equation of FM can be changed as:

(F*F)i g=G (5.11)

Hence, the indicator function I for FM can be obtained in a similar manner to (5.9).
Although there are different approaches for an optimal regularization of the FM
[76,77], we set M =N by relying on our numerical observations. Consequently, a plot
of I over the entire sampling domain D provides a reconstruction of the shape of the

buried targets.

5.4 Experimental Verification

In the light of the theoretical evaluations, this section includes the discussions of what
kind of results can be obtained for different scatterers and for what applications the
approach that we have proposed can be useful. To illustrate the applicability of the
methodologies, we prepare the measurement setup shown in Figure 5.2. The system
consists of computer controlled turn table, a vector network analyzer (VNA, Agilent
N5230A), and two vertically polarized Vivaldi
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Figure 5.2 : Measurement setup.

=

antennas, which are examples of classical ultrawideband antennas [61,78-80].
Calibration between VNA and the antennas is done by means of the Agilent N4691B
electronic calibration module. For all cases, the reference medium is dry soil. S-
parameters are sampled at 24 points when the scatterer is chosen as water and 12 points
when the scatterer is air. (The number of measurements is selected according to the
number of degrees of freedom of the scattering problem. Note that the radii of the
targets are smaller than one wavelength (wavelength in free-space) even for the highest
frequency. Hence 2kya = 12 measurements are sufficient in general. To guarantee a
better reconstruction quality for the water filled target, we increase the number of
measurements to 24 [62].) Unless otherwise stated, the measurement points are
uniformly distributed on the circle having a radius of 17 cm. For the conversion
between S-parameters and electric field, the method proposed in [42] is employed.
Basically, using a canonical target, a single coefficient for each frequency f, is

calculated as:

o Zx 2y Esim(0y,f)Smeas(x.y.f) .
C(f) - Yx 2y [Smeas(x.y.f)|? ’ (512)
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Figure 5.3 : Measured (red squares) and simulated (blue circles) electric fields for
canonical target at 4 GHz: (a) normalized absolute values (b) phase.

where Eg;,(x,y) denotes the vertical component of simulated scattered field and

Smeas(x,y) stands for the measured scattered S-parameter for the same polarization.

In (5.12), the transmitter is located at x, whereas the position of the receiver is given
by y. After calculating the conversion coefficients (f), the vertical component of the

scattered electrical field for any target can be given as:

Emeas(x,y, f) = C(f)Smeas(x' v, f) (5.13)

In our measurement configuration, the calibration target is selected as a metallic
cylinder with a radius of 10 cm and its simulated field is computed analytically [63].
As given in Figure 5.3, calibrated electric field of the cylinder and the analytical
solution have a good agreement. To increase the frequency diversity of the
measurement, S-parameters are sampled at 41 frequencies equilinearly distributed on
2 GHz-6 GHz interval. Multifrequency reconstructions are obtained by summing all
single frequency indicators and normalizing the final values with respect to their
maximum value [55]. To be able to make pointwise summations on single frequency
reconstructions, the sampling domain is discretized into 40x40 points for all
frequencies. As a final note, it must be emphasized that this measurement setup can
only produce 2D slice images, since the antennas do not sweep along vertical axis [28].
Therefore, all reconstructions given here is for the horizontal slice going through the

midpoints of the
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Figure 5.4 : (a) Measured material, (b) LSM reconstruction with the proposed
formulation, (c) FM reconstruction with the proposed formulation, (d) LSM
reconstruction with the exact Green’s function, and (e) FM reconstruction with the
exact Green’s function, for the scatterer filled with water.

antennas. (Although we stress that the algorithms produce 2D images, full 3D
modeling is employed for all configurations. Explicitly, the equations given in (5.10),
(5.11) are solved without simplifying the operators to 2D case. The only modification
is that (5.10) and (5.11) are solved for only those points, which belong to the horizontal
slice that is going through the midpoints of the antennas.)
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Figure 5.5 : (a) Measured material, (b) LSM reconstruction, and (c) FM
reconstruction for the scatterer filled with air.

The first material, for which the measurements are performed, is shown in Figure
5.4(a). In this case, two measurements are performed. First the dry soil is measured
and, then for the second measurement, a water filled balloon with a radius of 3 cm is
buried into soil. The center of the balloon is located at (u =— 1 cm, v = 3 cm). Here,
we adopt the following axis definitions: v axis is parallel to ruler in Figures 5.4(a) and
5.5(a) and its positive end is directed towards right side, u is the axis, which can be
obtained by rotating v at an amount of 90° in the counter clockwise direction.
Obtained results for LSM and FM are given in Figures 5.4(b) and 5.4(c), respectively.
Obviously, both methods recover the horizontal profile correctly without using any a
priori knowledge on the electrical properties of the dry soil. An important point that
must be mentioned is that both algorithms reconstruct the support of the midslice of
the inclusion, although the antennas are not aligned with the midslice of the scatterer.
By referring to our empirical observations, we can say that these methods exhibit this
peculiar behavior in general. Another interesting point is the quality of the
reconstructions for these two methods are very close to each other.
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Figure 5.6 : Reconstructions obtained for the water filled scatterer by using (a)
LSM, (b) FM when the transmitting and receiving antennas are located on 90° <
6 <270°, r = 17 cm, and (c) LSM, (d) FM when the transmitting and receiving
antennas are located on 90° < 8 < 270°,r = 17 cm,and —90° < 6 <90° ,r =

17 cm, respectively. (Here 8 = tan‘l(%) andr = Vu? + v2))

This in fact is expected since these methods originate from similar mathematical
principles.

After demonstrating the applicability of the proposed approach, we investigate how
the information of the exact Green’s function affects the quality of the results. For this
aim, the dyadic Green’s function of the reference medium is computed with a 3D
Method of Moments solver, utilized from biconjugate gradient fast Fourier transform

method [35]. Here, the relative dielectric permittivity and conductivity of the dry soil
istakenas e, = 3.5and o = 0.05% for all frequencies of illumination [81,82]. The

results with the exact Green’s function are given in Figures 5.4(d) and 5.4(e) for LSM

and FM, respectively. As can be seen the reconstructions of proposed formulations
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Figure 5.7 : Reconstructions obtained for the air-filled scatterer by using (a) LSM,
(b) FM when the transmitting and receiving antennas are located on 90° < 6 <
270°. (c) LSM, (d) FM when the transmitting and receiving antennas are located
on90° < 6 < 270°,r = 17 cm,and —90° < 68 < 90°,r = 17 cm, respectively.
are very similar to Figures 5.4(d) and 5.4(e). Hence, it can be concluded that, with the
proposed method, unavailability of the exact dyadic Green’s function does not cause

a significant quality degradation.

Next, we continue with a second example to further illustrate the performance when
the scatterer is weak (i.e., the electrical properties of the buried material is low.) and
the electrical contrast between the inclusion and the surrounding medium is low. (Note
that the electrical properties of the water is e r = 75 and o= 2 S/m at 3 GHz [83].) To
this end, the material shown in Figure 5.5(a) is prepared. For this case, an air filled
balloon is buried into dry soil. The coordinates of the center of the balloon are
measured as (u= 6 ¢cm, v = 1 c¢cm) and the radius of the scatterer is 2 cm.

Reconstructions for LSM and FM are shown in Figures 5.5(b) and 5.5(c), respectively.
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As it can be observed from the results, the proposed formulations produce an estimate

of the shape of the inclusion even when the scatterer is weaker in electrical contrast.

Up to now, we show the feasibility of the presented method when the measurements
are taken on a full aperture. However, the common measurement schemes for
concealed target detection problems consist of a limited incidence-observation angles.
Thus, to be able to give a merit to the presented formulations, they must be analyzed
when such a measurement configuration is employed. For this aim, certain parts of the
obtained scattering matrix are cut and the inversions are applied by using only these
measurements. The imaging results when the scatterer is water filled balloon are given
in Figure 5.6. Here, for Figures 5.6(a) and 5.6(b), the transmitting and measuring
antennas are located on the same arc, which is defined as 90° < 6 < 270°, r=17 cm.
Such a measurement scheme is mostly employed in subsurface sensing
[14,19,31,40,50,69] and through-wall imaging problems [49,74]. As can be seen from
the results, the quality of the reconstructions decreases for both LSM and FM, when
compared with the previous results. Nevertheless, both methods can provide some
clues about the shape of the scatterers. Another typical measurement configuration is
the one in which the transmitting and receiving antennas are located on different arcs.
Here, the union of these two arcs can enclose the material under test. Such a
configuration may be useful in nondestructive testing problems [84-86]. The results
for this type of measurement scenario are given in Figures 5.6(c) and 5.6(d) for LSM,
FM, respectively. For these results, the scatterer is the water filled balloon as in Figures
5.6(a) and 5.6(b). As can be observed from these images, this kind of measurement
produces better reconstructions than the results in Figures 5.6(a) and 5.6(b). This
phenomenon can be simply explained as the increase in the union of the measurement-

excitation apertures leads to better results.

Finally, the same measurement configurations can be applied to the air filled scatterer.
The obtained results, when the transmitting and receiving antennas are located on the
same arc, are given in Figures 5.7(a) and 5.7(b) for LSM, FM, respectively. It is
obvious that both algorithms are also capable of providing an estimate of the shape of
the air filled scatterer. Another point that must be stressed is that the reconstruction for
LSM is more clear than the one for FM. In fact, there can be many factors which can
cause such performance differences. A few of them can be stated as selection of

regularization parameter for LSM, the number of eigenvalues taken into account for
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FM and, and so forth. As for the two last examples for the weak scattering target, the
case in which the transmitting and receiving antennas are located on different arcs is
considered. The obtained reconstructions for LSM and FM are given in Figures 5.7(c)
and 5.7(d), respectively. By observing the results, it can be inferred that both methods
can give an estimate of the shape and the location of the scatterer. Similar to the results
in Figures 5.7(a) and 5.7(b), LSM gives a more clear estimate compared to the FM.
This performance difference can be explained by using the same arguments stressed
in the above. Consequently, we can conclude that the modified formulations can be
employed in such real measurement scenarios to obtain an estimate of the shape and

the location of the buried obstacles.

5.5 Conclusions and Future Work

In this paper, we propose an experimental technique to move around the a priori
information requirements of the qualitative methods. The proposed approach works
for the situations where an extra measurement for the reference medium is feasible. In
particular, we modified the formulations of two well known qualitative methods, the
linear sampling method (LSM) and the factorization method (FM). The accuracy of
the modified formulations is tested against realistic measurements. Besides showing
the accuracy of the presented formulations, the obtained results imply the feasibility
of proposed approach, especially for subsurface imaging, where the targets are buried

into soil.

Lastly, we want to emphasize that the proposed formulations are important from the
aspect that it can make the usage of qualitative methods possible in many real world
problems. Future research will be devoted to application of these methods in more

realistic environments.
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6. CONCLUSIONS AND RECOMMENDATIONS

In this thesis, we investigate the application of qualitative inversion techniques in

microwave imaging, which are rarely analyzed from an engineering perspective.

The first part of the thesis present a microwave imaging method for detecting and
localizing buried objects under a rough air — soil interface. The formulation depends
on factorization method in which the positions of scatterers are qualitatively
determined with the norm of a properly defined indicator function. The method can
retrieve positions and shapes of multiple objects with a near field limited aperture
measurement configuration where the measurements are performed with a short
antenna array moving over the soil. In particular, the short array of antennas are slided
over the surface step by step and measurements are recorded in a bistatic scattering
matrix. Here, due to short length of the array only a small portion of the whole bistatic
scattering matrix, which is around the diagonal, can be filled with measurements. The
parts of the scattering matrix that is missing is simply filled with zeros. This scattering
matrix is then utilized in the factorization method and the indicator functions are
computed accordingly. Numerical simulations prove that the presented method can be
operated in a real-time-like mode where reconstructed image is updated while
measurements are still in progress. Moreover, the method is tested for many realistic
scenarios such as the roughness of surface is too high or the electrical parameters of
the soil is not exactly known and when the surface soil is wrongly estimated. Results
show that the proposed method can handle with such realistic challenges upto a certain

point.

In the second part of this thesis, S-parameter-based novel formulations of two closely
related qualitative inverse scattering methods, which are the LSM and FM, are
presented. Historically, LSM and FM are developed by mathematicians under some
infeasible assumptions. Then, these methods are applied in many different inverse
problems by assuming the input of the LSM and FM is the scattered electric field
measurements. Yet, in the real applications the measurements at microwave ranges are
exclusively performed with vector network analyzers (VNA), which can only measure

scattering parameters. Besides, previous works assume that the exciting and measuring
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antennas are singular sources, which are also practically infeasible to obtain. In this
direction, we reformulate the LSM and FM when the input of these algorithms are
scattering parameters. Furthermore, the proposed algorithms are extended to include
the antenna radiation pattern implicitly, which makes it possible to work with realistic
antennas. Consequently, the introduced methods relieve us from any pre- or post-
processing steps in exchange for computation of a finite number of antenna parameters.
The accuracy and stability of presented methods are experimentally verified with real

measurements for various configurations.

In the third and last part of this thesis, we take a look on an experimental technique to
move around the a priori information requirements of the qualitative methods in
concealed target detection. The main challenges that has to be solved for the usage of
qualitative methods in concealed target detection are (i) the computation of Green’s
function of the medium in the hand or in other words finding an appropriate reference
medium (ii) the difference between the measured fields between the
background+target and background. In general, the fulfilling the condition in (i) is
almost impossible but for many concealed target detection problems (ii) can be
satisfied with an additional reference medium measurement. In particular, we modified
the formulations of two well known qualitative methods, the linear sampling method
(LSM) and the factorization method (FM) so that the scattered field data is the
difference between background+target and a reference background while the Green’s
function of the background medium is replaced with the Green’s function of free space,
which can be computed analytically. The accuracy of the modified formulations is
tested against realistic measurements. Besides showing the accuracy of the presented
formulations, the obtained results imply the feasibility of proposed approach.

Consequently, it has to be stated that the developed algorithms are in the MMT
(Mikrodalga Meme Tomografi — Microwave Breast Tomography) scanner, which is
developed by our group named as ITU-ERG (Istanbul Technical University-
Electromagnetic Research Group). This scanner is currently tested in the Medical
School of Cerrahpasa University. Our future work is devoted to develop more robust

and efficient algorithms to improve the performance of this scanner.
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