70 research outputs found

    Science for Standards: a driver for innovation - JRC Thematic Report

    Get PDF
    This report aims to give a comprehensive overview of the work of the Commission's in-house science service, the Joint Research Centre (JRC) in relation to global standardisation challenges. The description of the JRC's work on standards is divided into six chapters. For each chapter, the detailed policy context is cited, showing clearly how and where the JRC is providing its scientific and technical support to standardisation-related policies.JRC.A.6-Communicatio

    Report of the 4th World Climate Research Programme International Conference on Reanalyses

    Get PDF
    The 4th WCRP International Conference on Reanalyses provided an opportunity for the international community to review and discuss the observational and modelling research, as well as process studies and uncertainties associated with reanalysis of the Earth System and its components. Characterizing the uncertainty and quality of reanalyses is a task that reaches far beyond the international community of producers, and into the interdisciplinary research community, especially those using reanalysis products in their research and applications. Reanalyses have progressed greatly even in the last 5 years, and newer ideas, projects and data are coming forward. While reanalysis has typically been carried out for the individual domains of atmosphere, ocean and land, it is now moving towards coupling using Earth system models. Observations are being reprocessed and they are providing improved quality for use in reanalysis. New applications are being investigated, and the need for climate reanalyses is as strong as ever. At the heart of it all, new investigators are exploring the possibilities for reanalysis, and developing new ideas in research and applications. Given the many centres creating reanalyses products (e.g. ocean, land and cryosphere research centres as well as NWP and atmospheric centers), and the development of new ideas (e.g. families of reanalyses), the total number of reanalyses is increasing greatly, with new and innovative diagnostics and output data. The need for reanalysis data is growing steadily, and likewise, the need for open discussion and comment on the data. The 4th Conference was convened to provide a forum for constructive discussion on the objectives, strengths and weaknesses of reanalyses, indicating potential development paths for the future

    Ozone depletion, greenhouse gases, and climate change

    Get PDF
    This symposium was organized to study the unusual convergence of a number of observations, both short and long term that defy an integrated explanation. Of particular importance are surface temperature observations and observations of upper atmospheric temperatures, which have declined significantly in parts of the stratosphere. There has also been a dramatic decline in ozone concentration over Antarctica that was not predicted. Significant changes in precipitation that seem to be latitude dependent have occurred. There has been a threefold increase in methane in the last 100 years; this is a problem because a source does not appear to exist for methane of the right isotopic composition to explain the increase. These and other meteorological global climate changes are examined in detail

    Space Application Institute annual report 1997. EUR 18077 EN

    Get PDF

    The role of water vapor in climate. A strategic research plan for the proposed GEWEX water vapor project (GVaP)

    Get PDF
    The proposed GEWEX Water Vapor Project (GVaP) addresses fundamental deficiencies in the present understanding of moist atmospheric processes and the role of water vapor in the global hydrologic cycle and climate. Inadequate knowledge of the distribution of atmospheric water vapor and its transport is a major impediment to progress in achieving a fuller understanding of various hydrologic processes and a capability for reliable assessment of potential climatic change on global and regional scales. GVap will promote significant improvements in knowledge of atmospheric water vapor and moist processes as well as in present capabilities to model these processes on global and regional scales. GVaP complements a number of ongoing and planned programs focused on various aspects of the hydrologic cycle. The goal of GVaP is to improve understanding of the role of water vapor in meteorological, hydrological, and climatological processes through improved knowledge of water vapor and its variability on all scales. A detailed description of the GVaP is presented
    corecore