76 research outputs found

    Clearing the Clouds: Extracting 3D information from amongst the noise

    Get PDF
    Advancements permitting the rapid extraction of 3D point clouds from a variety of imaging modalities across the global landscape have provided a vast collection of high fidelity digital surface models. This has created a situation with unprecedented overabundance of 3D observations which greatly outstrips our current capacity to manage and infer actionable information. While years of research have removed some of the manual analysis burden for many tasks, human analysis is still a cornerstone of 3D scene exploitation. This is especially true for complex tasks which necessitate comprehension of scale, texture and contextual learning. In order to ameliorate the interpretation burden and enable scientific discovery from this volume of data, new processing paradigms are necessary to keep pace. With this context, this dissertation advances fundamental and applied research in 3D point cloud data pre-processing and deep learning from a variety of platforms. We show that the representation of 3D point data is often not ideal and sacrifices fidelity, context or scalability. First ground scanning terrestrial LIght Detection And Ranging (LiDAR) models are shown to have an inherent statistical bias, and present a state of the art method for correcting this, while preserving data fidelity and maintaining semantic structure. This technique is assessed in the dense canopy of Micronesia, with our technique being the best at retaining high levels of detail under extreme down-sampling (\u3c 1%). Airborne systems are then explored with a method which is presented to pre-process data to preserve a global contrast and semantic content in deep learners. This approach is validated with a building footprint detection task from airborne imagery captured in Eastern TN from the 3D Elevation Program (3DEP), our approach was found to achieve significant accuracy improvements over traditional techniques. Finally, topography data spanning the globe is used to assess past and previous global land cover change. Utilizing Shuttle Radar Topography Mission (SRTM) and Moderate Resolution Imaging Spectroradiometer (MODIS) data, paired with the airborne preprocessing technique described previously, a model for predicting land-cover change from topography observations is described. The culmination of these efforts have the potential to enhance the capabilities of automated 3D geospatial processing, substantially lightening the burden of analysts, with implications improving our responses to global security, disaster response, climate change, structural design and extraplanetary exploration

    Development of a High-Resolution Land Cover Dataset to Support Integrated Water Resources Planning and Management in Northern Utah

    Get PDF
    Integrated planning and management approaches, including bioregional planning and integrated water resources planning, are comprehensive strategies that strive to balance the sustainability of natural resources and the integrity of ecosystem processes with human development and activities. Implementation of integrated plans and programs remains complicated. However, geospatial technologies, such as geographic information systems and remote sensing, can significantly enhance planning and management processes. Through a United States Environmental Protection Agency Region 8 Wetland Program Development Grant, a high-resolution land cover dataset, with a primary emphasis on mapping and quantifying impervious surfaces, was developed for three watershed sub-basins in northern Utah - Lower Bear-Malad, Lower Weber, and Jordan - to support integrated water resources planning and management. This high-resolution land cover dataset can serve as an indicator of cumulative stress from urbanization; it can support the development of ecologically relevant metrics that can be integrated into watershed health and wetland condition assessments; it can provide general assessments of watershed condition; and it can support the identification of sites in need of restoration and protection

    Remote sensing/global change. A special bibliography

    Get PDF
    The first portion of this bibliography contains citations (with abstracts, when available) to unclassified literature contained in the NASA STI Database. These citations also appeared in issues of the abstract journal 'Scientific and Technical Aerospace Reports (STAR)', or in other announcement products offered by the NASA STI Program. The citations appear in ascending accession number order. A second section provides several indexes to the citations. They are subject term, personal author, report number, and accession number. The citations are included for the following disciplines as they relate to remote sensing and global change: astronautics, engineering, geosciences, life sciences, mathematical and computer sciences, social sciences, and space sciences

    Environmental Research Newsletter June 1992 No. 9

    Get PDF

    Advanced Sensors and Applications Study (ASAS)

    Get PDF
    The present EOD requirements for sensors in the space shuttle era are reported with emphasis on those applications which were deemed important enough to warrant separate sections. The application areas developed are: (1) agriculture; (2) atmospheric corrections; (3) cartography; (4) coastal studies; (5) forestry; (6) geology; (7) hydrology; (8) land use; (9) oceanography; and (10) soil moisture. For each application area. The following aspects were covered: (1) specific goals and techniques, (2) individual sensor requirements including types, bands, resolution, etc.; (3) definition of mission requirements, type orbits, coverages, etc.; and (4) discussion of anticipated problem areas and solutions. The remote sensors required for these application areas include; (1) camera systems; (2) multispectral scanners; (3) microwave scatterometers; (4) synthetic aperture radars; (5) microwave radiometers; and (6) vidicons. The emphasis in the remote sensor area was on the evaluation of present technology implications about future systems

    International program for Earth observations

    Get PDF
    During the 1990 summer session of the International Space University, graduate students of many different countries and with various academic backgrounds carried out a design project that focused on how to meet the most pressing environmental information requirements of the 1990's. The International Program for Earth Observations (IPEO) is the result of the students labor. The IPEO report examines the legal and institutional, scientific, engineering and systems, financial and economic, and market development approaches needed to improve international earth observations and information systems to deal with environmental issues of global importance. The IPEO scenario is based on the production of a group of lightweight satellites to be used in global remote sensing programs. The design and function of the satellite is described in detail

    Fire

    Get PDF
    Vegetation plays a crucial role in regulating environmental conditions, including weather and climate. The amount of water and carbon dioxide in the air and the albedo of our planet are all influenced by vegetation, which in turn influences all life on Earth. Soil properties are also strongly influenced by vegetation, through biogeochemical cycles and feedback loops (see Volume 1A—Section 4). Vegetated landscapes on Earth provide habitat and energy for a rich diversity of animal species, including humans. Vegetation is also a major component of the world economy, through the global production of food, fibre, fuel, medicine, and other plantbased resources for human consumptio

    Assessing productive soil landscapes in Victoria using digital soil mapping

    Get PDF
    Spatial soil information is used to support questions on agriculture and the environment from global to local scales. Historically, soil mapping has been used to inform and guide a multitude of land users with their decisions. Demand for specific spatial soil information is increasing in response from a wider range of users operating across agricultural and environmental domains. To satisfy these demands, users must be provided with practical and relevant spatial soil information. Novel approaches are required to deal with global deficiencies in available soil information. A major limitation to this is the plethora of incongruent legacy data with poor spatial and temporal coverage. This research study initially identifies the specific needs of users for spatial soil information with a focus on the requirements of biophysical modellers. Secondly, error sources that hamper Digital Soil Mapping (DSM) are identified, described and assessed using pH in practical and relevant examples. A final aim is to spatially predict soil properties (e.g. clay mineralogy) that underpin soil chemical behaviour. This is achieved by harmonising legacy data in combination with new spectroscopy techniques and a spatial inference approach. The spatial soil information needs of biophysical modellers in Victoria, Australia were found to be consistent with global needs for information including soil water characteristics, organic carbon and effective rooting depth. To accommodate stochastic and epistemic uncertainties in spatial soil information, uncertainty frameworks proved effective to deal with, and understand the limitations of legacy data in spatial inference models. Robust and reliable spectroscopic models for properties that are linked to functions and services delivered by soil were achieved and used in 3D spatial models. These findings will enable a tactical response through the delivery of pertinent spatial soil information that is contemporary, quality assured and sought by users. Learnings presented should enable producers of spatial soil information to be more comprehensive in their delivery of products that are easy to use, accessible and understood by a growing user community.Doctor of Philosph

    Protected Areas in Forest Conservation: Challenges and Opportunities

    Get PDF
    Forest ecosystems are important habitats for a vast number of species worldwide. These ecosystems are degrading faster than they are regenerating, due to the increased demand for natural resources. In order to protect these ecosystems, the designation of Protected Areas (PAs) has become the primary policy tool for forest conservation. The articles included in this book explore challenges and opportunities within forest PAs, focusing on four main themes. The first theme refers to current initiatives in forest management across the world, reflecting the efforts of several organizations in halting deforestation. Major challenges are also identified, reflecting the declining rates of forest coverage across the world. A second theme refers to policy planning processes withing existing governance frameworks focusing, in particular, on the level of engagement of local stakeholders. A third theme of the book refers to social equity and how the impacts of forest PAs are distributed among different users. A final theme in the SI refers to potential solutions in order to halt the loss of biodiversity within forest ecosystems. Several directions are proposed by the authors that can be useful for policy makers and practitioners, especially in the context of the 30 by 30 targets
    • …
    corecore