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ABSTRACT 

Spatial soil information is used to support questions on agriculture and the environment 

from global to local scales. Historically, soil mapping has been used to inform and guide a 

multitude of land users with their decisions. Demand for specific spatial soil information 

is increasing in response from a wider range of users operating across agricultural and 

environmental domains. 

To satisfy these demands, users must be provided with practical and relevant spatial soil 

information. Novel approaches are required to deal with global deficiencies in available 

soil information. A major limitation to this is the plethora of incongruent legacy data with 

poor spatial and temporal coverage. 

This research study initially identifies the specific needs of users for spatial soil 

information with a focus on the requirements of biophysical modellers. Secondly, error 

sources that hamper Digital Soil Mapping (DSM) are identified, described and assessed 

using pH in practical and relevant examples. A final aim is to spatially predict soil 

properties (e.g. clay mineralogy) that underpin soil chemical behaviour. This is achieved 

by harmonising legacy data in combination with new spectroscopy techniques and a 

spatial inference approach. 

The spatial soil information needs of biophysical modellers in Victoria, Australia were 

found to be consistent with global needs for information including soil water 

characteristics, organic carbon and effective rooting depth. To accommodate stochastic 

and epistemic uncertainties in spatial soil information, uncertainty frameworks proved 

effective to deal with, and understand the limitations of legacy data in spatial inference 
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models. Robust and reliable spectroscopic models for properties that are linked to 

functions and services delivered by soil were achieved and used in 3D spatial models. 

These findings will enable a tactical response through the delivery of pertinent spatial soil 

information that is contemporary, quality assured and sought by users. Learnings 

presented should enable producers of spatial soil information to be more comprehensive 

in their delivery of products that are easy to use, accessible and understood by a growing 

user community. 
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PREFACE 

This study presents the results and findings from five journal papers undertaken with the 

PhD candidate as the lead author on uncertainty assessment and Digital Soil Mapping 

(DSM), using case studies to demonstrate their implementation for real-world application. 

Of the five papers, three are published and two have been submitted for review. 

The introduction, study region overview and literature review (chapters 1, 2 and 3) 

provide an overview of the current demand and utility for soil mapping from a Victorian 

perspective with a focus on the chronological development of soil mapping and digital 

soil mapping as a discipline in soil science. Current knowledge gaps and research 

priorities are described as: (i) the requirement for new environmental covariates to 

improve spatial prediction qualities; (ii) assessment and validation of DSM techniques 

using different environmental covariates in different physiographic settings requires 

testing; (iii) understanding user requirements (including representation) and products for 

user groups is required; (iv) an ongoing need for continuous spatial predictions of soil 

properties across the globe; (v) integration of expert systems and/or fuzzy systems in soil 

survey should be supported; (vi) the next evolution of DSM (excluding Digital Soil 

Assessment) is to predict soil properties in space and time, and (vii) development of 

spatial soil inference systems is needed. Chapter 2 provides a brief overview of the study 

region (western Victoria) for chapters 5, 6 and 8. 

The first paper, Soil data for biophysical models in Victorian landscapes: current needs 

and challenges (Geoderma Regional – 2016; Chapter 4) explore user requirements for 

soil information with a focus on the needs of biophysical modellers. The changing 

requirements of modellers over the last 5-years and the soil properties that are required 
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and impact model sensitivity are discussed. The following papers as chapters 5 and 6: 

Identification and interpretation of sources of uncertainty in soils change in a global 

systems-based modelling process (Soil Research - 2015) and Improving information 

content in soil pH maps: a case study in south-western Victoria (submitted to European 

Journal of Soil Science) present a conceptual framework to consider implementation of a 

more holistic assessment of uncertainty by accommodating stochastic and epistemic error 

sources. A worked example for soil pH in south-western Victoria highlights key aspects 

of this framework in a Digital Soil Mapping context. Chapter 7 (Assessment of error 

sources in measurements of field pH: effect of operator experience, time-of-day and test 

kit differences – submitted to Communications in Soil Science and Plant Analysis) 

explores further elements of error and uncertainty in field and laboratory measurement of 

pH used for soil mapping purposes. The final paper The 3D distribution of phyllosilicate 

clay minerals in western Victoria (Geoderma - 2016) as Chapter 8 presents a DSM 

implementation that integrates spectroscopic models formed using mid-infrared (MIR) 

and legacy quantitative XRD measurements with spatial inference models to predict clay 

mineral (kaolinite, illite and smectite) abundance for agricultural landscapes of western 

Victoria. Investigations and findings of these papers are condensed with conclusions 

derived and further work identified in Chapter 9. 

The candidate has also co-authored three journal papers that are relevant to the setting and 

discussion of this thesis and are included in Appendix A. An additional five book chapters 

have been produced by the candidate and are presented in Appendix B. Appendix C 

provides a detailed overview for western Victoria that supplements descriptions and 

details in Chapter 2 and those in Chapter 5, 7 and 8. 



vi 
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This thesis is submitted in accordance with Federation University Australia Regulation 

5.1, thesis incorporating published papers. Publications from the candidate undertaken for 

this degree include five journal papers (led by the candidate) as the foundation of the 

thesis: 

Refereed journal papers 

1. Robinson, N.J., Dahlhaus, P.G., MacEwan, R.J., Alexander, J., 2016. Soil data for 
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Geoderma Regional 7(3), 259-270 http://dx.doi.org/10.1016/j.geodrs.2016.03.004.  
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candidates contribution 

4 Soil data for biophysical 
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landscapes: current 
needs and challenges 

Published 
Geoderma Regional 

Initiation, ideas, set up, data 
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results, leading write up. 
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Published Soil 
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Initiation, ideas, set up, data 
preparation, methodology, 
analysis of results, leading 
write up. 

50% 

6 Improving information 
content in soil pH maps: 
a case study in south-
western Victoria 

Submitted European 
Journal of Soil 
Science 

Initiation, ideas, set up, data 
preparation, methodology, 
analysis of results, leading 
write up. 

60% 

7 Assessment of error 
sources in 
measurements of field 
pH: effect of operator 
experience, time-of-day 
and test kit differences 

Submitted 
Communications in 
Soil Science and 
Plant Analysis 

Joint initiation, ideas, set up, 
data preparation, analysis of 
results, leading write up. 

35% 

8 The 3D distribution of 
phyllosilicate clay 
minerals in western 
Victoria 

Published 
Geoderma 

Initiation, ideas, set up, data 
preparation, methodology, 
analysis of results, leading 
write up. 

95% 



ix 

ACKNOWLEDGEMENTS 

 Jodie, Sebastian and Noah. Without your tolerance and patience none of this 

would be possible. Thank-you for lasting the journey with me, and now let the 

good times roll. 

 My parents (Ray and Yvonne) have always advocated trying your best and to use 

your initiative. Thank-you for sustaining and supporting my other pursuits and 

hobbies in farming and agriculture. Big thanks to Pam and Spud who have always 

been there for our family when study duties have called. My grandparents have 

always been supportive of all my pursuits in life, and I hope this thesis is some 

recognition of their contribution and drive for higher achievement. 

 This thesis would not be possible without the guidance and enthusiasm of my 

supervisors – Pete Dahlhaus and Richard MacEwan. You have made a tremendous 

impression on me in the time I have studied under, and beside you. I hope this is a 

continuation of the journey towards making a difference to the longevity and 

sustainability of our landscapes. 

 Colleagues and co-authors: Doug Crawford, David Rees, Mark Imhof, Grant 

Boyle, Kurt Benke, Sorn Norng, Steve Williams, Jonathan Hopley, Rob Clark, 

Kohleth Chia, Matt Kitching, Michelle Davey, Jenny Alexander, Sonia Thompson 

– a big thank-you for sustaining the effort in publishing joint works and 

contributions. 

 Federation University and DEDJTR (previously DEPI) – Without the efforts of 

Frank Stagniti, Peter Vamplew (associated supervisor) Mark Imhof and Angela 

Avery for supporting industry and federal scholarships, none of this would be 

possible. Current and past projects including the Understanding Farming Systems 



x 

and Soil, and the Land Knowledge Foundations project have underpinned 

contributions in this thesis. 

 CERDI and Federation University researchers (Peter Vamplew (co-supervisor), 

Helen Thompson, Andrew Macleod, Stafford McKnight, Kim Dowling) – I hope 

the steps we have taken towards providing new insight and data on soils and 

landscapes of Victoria continues to be used in valuable approaches and techniques 

you are establishing. 

 The DEDJTR Macleod team – Bruce Shelley, George Croatto, Maureen 

DePasquale, Ron Walsh, Stuart Wells, Silvia and Carlos Aguirre and Tom Baker. 

Apologies for occupying all the space with soil samples and getting you into 

OH&S troubles as a result. 

 CSIRO – Mark Raven, Raphael Viscarra Rossel, Peter Wilson, Linda Karsies, 

Mike Grundy and Ross Searle. The opportunities to travel to workshops and 

conferences over the last 5-years have been invaluable and only possible with your 

support. Thanks for your assistance with archive samples, data and guidance. 

 DPIPWE (Tasmania) – Darren Kidd and Mat Webb. A big thank-you for helping 

me with R coding and implementing techniques you have refined. Always great to 

chat on how the Blues will fair next year! 

 DSM colleagues of the working group – Mark Thomas, John Wilford, Karen 

Holmes, Craig Liddicoat, Jon Gray, Noel Schoknecht, Jason Hill, Dan Brough, 

Budiman Minasny, Brendan Malone. Always great to catch up and share our ideas 

in the pursuit of better soil maps. 

 Soil surveyors and geoscientists who through their life-time contribution to soil 

survey in Victoria and other states, we are all indebted. Thanks to John Martin 



xi 

who has been a ceaseless ball of enthusiasm and continues to unearth lost 

treasures. 

 International colleagues (Ben Marchant, Allan Lilly, Murray Lark and Helaina 

Black) who have hosted me while visiting, and spent time in Victoria as part of 

visits. 

  



xii 

TABLE OF CONTENTS 

Chapter 1 Introduction ......................................................................................................... 1 

Understanding user needs for spatial soil information .................................................... 3 

Accommodating various sources of error in modelling and mapping ............................. 4 

Implementation of spatial prediction methods to derive novel maps for properties 
linked to soil functions ..................................................................................................... 6 

Overall aim: ..................................................................................................................... 7 

Summary of research contribution ................................................................................... 8 

Data and methods summary ............................................................................................. 9 

Thesis structure and linkages ......................................................................................... 10 

References ...................................................................................................................... 15 

Chapter 2 Western Victoria overview ................................................................................ 20 

Landscapes of western Victoria ..................................................................................... 21 

Climate ....................................................................................................................... 26 

Vegetation, land use and agriculture .......................................................................... 26 

References ...................................................................................................................... 28 

Chapter 3 Spatial soil information: user needs, new prediction methods and uncertainties
 ............................................................................................................................................ 30 

3.1 Introduction .............................................................................................................. 32 

3.2  Why is spatial soil information needed? ............................................................. 33 

3.2.1 Global to local needs for spatial soil information ............................................. 33 

3.2.2 Users of spatial soil information in Australia ................................................... 34 

3.2.3 Inadequacy of user needs assessment ............................................................... 37 

3.2.4 Evolving needs of users .................................................................................... 40 

3.2.5 User needs and participatory action .................................................................. 41 

3.2.6 Access and delivery of spatial soil information ................................................ 44 

3.3 Soil mapping, benefits, costs and utility .................................................................. 47 

3.3.1 The changing purpose and needs for soil mapping in Victoria ........................ 48 

3.3.2 Supporting government and policy making ...................................................... 58 

3.3.3 Benefit vs costs and the investment logic for soil mapping .............................. 60 

3.3.4 Utility of soil survey, including legacy maps for new applications .................. 64 



xiii 

3.4  Digital Soil Mapping (DSM) ............................................................................... 66 

3.4.1 What is DSM? ................................................................................................... 67 

3.4.2 DSM and conventional mapping ...................................................................... 68 

3.4.3 Digital Soil Assessment and Digital Soil Risk Assessment .............................. 70 

3.4.4 Data and knowledge deficiencies ...................................................................... 72 

3.4.5 Method performance/robustness and user perceptions ..................................... 73 

3.4.6 New environmental covariates .......................................................................... 75 

3.4.7 New soil sites .................................................................................................... 76 

3.5 Uncertainty ............................................................................................................... 77 

3.5.1 What is uncertainty? ......................................................................................... 77 

3.5.2 Uncertainty and risk .......................................................................................... 78 

3.5.3 Support, scale and reducing uncertainty ........................................................... 79 

3.5.4 User perception ................................................................................................. 80 

3.5.5 Inclusion and representation of uncertainty with DSM products ..................... 81 

3.6 Research directions .................................................................................................. 83 

Acknowledgements ........................................................................................................ 85 

References ...................................................................................................................... 85 

Chapter 4 Soil data for biophysical models in Victorian landscapes: current needs and 
challenges ......................................................................................................................... 102 

4.1 Introduction ............................................................................................................ 104 

4.1.1 Model limitations ............................................................................................ 104 

4.1.2 Soil data availability ....................................................................................... 105 

4.1.3 Understanding soil data needs of biophysical models .................................... 106 

4.1.4 Collection of soil data for modelling .............................................................. 106 

4.2 Methods .................................................................................................................. 107 

4.2.1 Study design and data collection ..................................................................... 108 

4.2.2 Biophysical models ......................................................................................... 109 

4.2.3 Modelling scale ............................................................................................... 110 

4.2.4 Industry/land use ............................................................................................. 114 

4.2.5 Soil data requirements of models .................................................................... 114 

4.2.6 Model sensitivity ............................................................................................. 115 

4.3 Results .................................................................................................................... 118 



xiv 

4.3.1 Model users ..................................................................................................... 118 

4.3.2 What models, scales and industries? ............................................................... 119 

4.3.3 Model sensitivity to soil properties ................................................................. 121 

4.4 Discussion .............................................................................................................. 122 

4.4.1 Soil properties in models ................................................................................ 126 

4.4.2 Changes in demand for soil property data ...................................................... 127 

4.5 Looking forwards ................................................................................................... 129 

4.6 Conclusion ............................................................................................................. 131 

References .................................................................................................................... 132 

Chapter 5 Identification and interpretation of sources of uncertainty in soils change in a 
global systems-based modelling process ......................................................................... 141 

5.1 Introduction ............................................................................................................ 143 

5.2 Types of Uncertainty .............................................................................................. 147 

5.2.1 Taxonomy of uncertainty ................................................................................ 148 

5.3 Sources of uncertainty ............................................................................................ 151 

5.4 Example 1: Disaggregation of error sources .......................................................... 166 

5.5 Example 2: Spatial uncertainty and geostatistics ................................................... 170 

5.6 Conclusion ............................................................................................................. 174 

Future research ......................................................................................................... 175 

References .................................................................................................................... 176 

Chapter 6 Improving information content in soil pH maps: a case study in south-western 
Victoria ............................................................................................................................ 182 

6.1 Introduction ............................................................................................................ 184 

6.2 Methods .................................................................................................................. 187 

6.2.1 Study area ........................................................................................................ 187 

6.2.2 Land use .......................................................................................................... 187 

6.2.3 Soil data .......................................................................................................... 188 

6.2.4 Digital Soil Mapping ....................................................................................... 191 

6.3 Results .................................................................................................................... 195 

6.3.1 Establishing fixed and random effects ............................................................ 195 

6.3.2 Spatial prediction of pHw ............................................................................... 197 

6.3.3 Probability of limiting soil pH conditions ...................................................... 199 



xv 

6.4 Discussion .............................................................................................................. 200 

6.5 Conclusion ............................................................................................................. 205 

6.6 Appendix ................................................................................................................ 206 

References .................................................................................................................... 207 

Chapter 7 Assessment of error sources in measurements of field pH: effect of operator 
experience, test kit differences and time-of-day .............................................................. 212 

7.1 Introduction ............................................................................................................ 214 

7.2 Materials and methods ........................................................................................... 218 

7.2.1 Materials ......................................................................................................... 218 

7.2.2 Experimental design ........................................................................................ 221 

7.2.3 Statistical analyses .......................................................................................... 222 

7.3 Results .................................................................................................................... 225 

7.3.1 Experiment 1 ................................................................................................... 225 

7.3.2 Experiment 2 ................................................................................................... 230 

7.4 Discussion .............................................................................................................. 235 

7.4.1 Assessor experience ........................................................................................ 235 

7.4.2 Model and bias ................................................................................................ 237 

7.4.3 Time-of-day (light quality) ............................................................................. 238 

7.4.4 Kit type differences ......................................................................................... 238 

7.4.5 General comments .......................................................................................... 239 

7.5 Conclusion ............................................................................................................. 242 

References .................................................................................................................... 243 

Chapter 8 The 3D distribution of phyllosilicate clay minerals in western Victoria ........ 246 

8.1 Introduction ............................................................................................................ 248 

8.1.1 Measurement of clay minerals ........................................................................ 249 

8.1.2 Prediction of clay minerals using IR (VIS, NIR and MIR) ............................ 250 

8.1.3 Mapping of clay minerals ............................................................................... 250 

8.2 Methods .................................................................................................................. 252 

8.2.1 Study area ........................................................................................................ 252 

8.2.2 Soil sites .......................................................................................................... 253 

8.2.3 MIR spectra acquisition .................................................................................. 253 

8.2.4 XRD calibration samples ................................................................................ 254 



xvi 

8.2.5 Spectroscopic calibration models ................................................................... 257 

8.2.6 Mapping clay minerals .................................................................................... 260 

8.3 Results .................................................................................................................... 263 

8.3.1 Clay mineral MIR calibration models ............................................................. 263 

8.3.2 Key absorption features of clay minerals (kaolinite, illite, smectite) ............. 265 

8.3.3 Application of clay mineral spectroscopic models to MIR spectra with sites 267 

8.3.4 Mapping of clay mineral abundances ............................................................. 269 

8.3.5 Interpretation of prediction variables and relationship to western Victoria 
(kaolinite, illite, smectite) ........................................................................................ 272 

8.3.6 Comparison of clay mineral predictions against existing studies and 
investigations ........................................................................................................... 281 

8.4 Discussion .............................................................................................................. 285 

8.4.1 MIR calibration models .................................................................................. 285 

8.4.2 Maps of soil clay minerals .............................................................................. 287 

8.4.3 Looking forwards ............................................................................................ 291 

8.5 Conclusion ............................................................................................................. 292 

References .................................................................................................................... 293 

Chapter 9 Conclusions ..................................................................................................... 303 

Discussion .................................................................................................................... 303 

Summaries of research findings ................................................................................... 305 

Research objective 1: Identify what are users’ needs for spatial soil information and 
how this has changed in Victoria over the last century............................................ 305 

Research objective 2: Develop an approach to accommodate, and illustrate to users 
of spatial soil information, the various error sources in modelling and mapping. ... 310 

Research objective 3: Investigate the potential use of legacy data supplemented with 
new spectroscopic predictions to predict the regional distribution of two key soil 
properties - pH and clay mineralogy – for areas of western Victoria. ..................... 314 

Overall research conclusions ....................................................................................... 320 

Future work .................................................................................................................. 321 

References .................................................................................................................... 324 

Appendix A ...................................................................................................................... 327 

Appendix B ...................................................................................................................... 424 

Appendix C ...................................................................................................................... 500 



xvii 

 LIST OF FIGURES 

Figure 1.1. Structure and linkages between chapters of the thesis. ......................................... 12 

Figure 2.1. Western Victoria. ................................................................................................... 22 

Figure 2.2. Landscape features of Western Victoria (background shading is terrain)............. 24 

Figure 3.1. Generalised soil information requirements............................................................ 36 

Figure 3.2. Documented uses of spatial soils information in Victoria between 2009 and 
2014 from spatial soil information requests (source: DEDJTR 2014). ................................... 38 

Figure 3.3. Questions requiring spatial soils information against the six levels of inquiry 
for the Steinitz framework (Robinson unpublished results). ................................................... 42 

Figure 3.4. Ecosystem services inventory and questions that will require spatial soil 
information to address these (Robinson unpublished results). ................................................ 43 

Figure 3.5. Spatial soil information products supplied between 2009 and 2012, shown 
against 2013-2014. ................................................................................................................... 48 

Figure 3.6. Primary reasons for soil survey in Victoria as relative proportions (1890-
2015). ....................................................................................................................................... 50 

Figure 3.7. Verbal uncertainties using probabilistic data: from Lark et al. (2014). ................. 83 

Figure 4.1. Agricultural industries and land uses in Victoria (2014). .................................... 114 

Figure 4.2. Comparison of soil properties that were considered sensitive in models for the 
2009 and 2014 surveys. .......................................................................................................... 123 

Figure 4.3. Soil attributes that models were sensitive to and thresholds to identify soil 
attributes to focus data provision in support of future model applications. ........................... 128 

Figure 5.1. Hierarchy of the Steinitz Framework identifies the six primary iterative 
questions posed in the modelling process (Steinitz, 1990). ................................................... 152 

Figure 5.2. Sources of uncertainty expressed in a conceptual process modelling 
representation.. ....................................................................................................................... 154 

Figure 5.3. (a) Original area of an exemplar soil attribute, A (adapted from Benke et al., 
2011), and (b) uncertainty in geometric properties represented by standard deviations of 
soil attribute, A, its boundary, B, its position (centre-of-mass), C, and rotation, D. ............. 157 

Figure 5.4. Example of spatial inaccuracy in georeferencing soil sites (see overlaid red 
lines).. ..................................................................................................................................... 160 

Figure 5.5. Random error possibilities of the true pixel location for a point in a legacy soil 
site relative to surrounding pixels.. ........................................................................................ 161 

Figure 5.6. Data for pH measurements from the Hopkins River and Curdies River 
catchments in south-western Victoria for the time period 1989-91. ...................................... 172 



xviii 

Figure 5.7. Data for pH measurements from the Hopkins River and Curdies River 
catchments in south-western Victoria for the time period 1992-94. ...................................... 173 

Figure 6.1. Soil sites and their space-time distribution in south-western Victoria. ............... 188 

Figure 6.2. (a) Land use in 2000 and (b) 2014 and (c) changes between 2000 and 2014. .... 190 

Figure 6.3. pH distribution for sample depth for the two levels (0 – 10 or 0 – 10+ cm). ...... 194 

Figure 6.4. Seasonal differences in pHw. .............................................................................. 196 

Figure 6.5. Spatial prediction (left) and variance estimates (right) for Model 1 (top) and 
Model 2 (bottom) for summer. ............................................................................................... 198 

Figure 6.6. Spatial prediction (left) and variance estimates (right) for Winter (top) and 
Spring (bottom). ..................................................................................................................... 199 

Figure 6.7. Spatial prediction (left) and variance estimates (right) for Summer (top) and 
Autumn (bottom). .................................................................................................................. 201 

Figure 6.8. (a) Mapped probabilities that pHw was less than, or equal to 6.0 (top), and (b) 
5.3 (bottom) for autumn. ........................................................................................................ 202 

Figure 7.1. Samples used in experiments with pH level. ....................................................... 219 

Figure 7.2. Trellis plot of field pH versus lab pH by Assessor. ............................................. 225 

Figure 7.3. Trellis plot of field pH versus lab pH by Experience. ......................................... 226 

Figure 7.4. Field pH versus lab pH with fitted models using LM (black line) and MLFR 
(blue line). The red dashed line is the 1:1 line. ...................................................................... 229 

Figure 7.5. Field pH versus lab pH for the four different scenarios - (Case 1) Experienced 
and 1PM (top left-hand corner), (Case 2) Experienced and 5PM (top right-hand corner), 
(3) Inexperienced and 1PM (bottom left-hand corner) and (4) Inexperienced and 5PM 
(bottom right-hand corner). The black line is the 1:1 line. .................................................... 231 

Figure 7.6. Trellis plots of field pH versus lab pH by Kit by Assessor. ................................ 232 

Figure 7.7. Trellis plot of field pH versus lab pH for Kit by Assessor Type. ........................ 234 

Figure 8.1. Soil sites and quantitative XRD calibration sites against 1st tier 
geomorphological divisions of the VGF for western Victoria, Australia. ............................. 255 

Figure 8.2. MIR spectra of clay mineral calibration samples. ............................................... 256 

Figure 8.3. Histogram of clay mineral (kaolinite, illite and smectite) content of samples 
used in PLSR calibration models. .......................................................................................... 265 

Figure 8.4. Clay mineral calibration models for kaolinite, illite and smectite. ...................... 266 

Figure 8.5. VIP and SR scores for the PLSR clay mineral models. ...................................... 266 

Figure 8.6. Clay mineral predictions for kaolinite (a), illite (b), smectite (c) and associated 
errors for samples. .................................................................................................................. 268 



xix 

Figure 8.7. Ternary diagram of kaolinite, illite and smectite predictions from the 
spectroscopic models. ............................................................................................................ 269 

Figure 8.8. Map predictions (lower, mean and upper) from left to right for kaolinite (top), 
illite (middle) and smectite (lower) for 0-5 cm. ..................................................................... 275 

Figure 8.9. Map predictions (lower, mean and upper) from left to right for kaolinite (top), 
illite (middle) and smectite (lower) for 5-15 cm. ................................................................... 276 

Figure 8.10. Map predictions (lower, mean and upper) from left to right for kaolinite 
(top), illite (middle) and smectite (lower) for 15-30 cm. ....................................................... 277 

Figure 8.11. Map predictions (lower, mean and upper) from left to right for kaolinite 
(top), illite (middle) and smectite (lower) for 30-60 cm. ....................................................... 278 

Figure 8.12. Map predictions (lower, mean and upper) from left to right for kaolinite 
(top), illite (middle) and smectite (lower) for 60-100 cm. ..................................................... 279 

Figure 8.13. Map predictions (lower, mean and upper) from left to right for kaolinite 
(top), illite (middle) and smectite (lower) for 100-200 cm. ................................................... 280 

Figure 8.14. Major predictor variables used for kaolinite maps. ........................................... 281 

Figure 8.15. Major predictor variables used for illite maps. .................................................. 282 

Figure 8.16. Major predictor variables used for smectite maps. ............................................ 283 

 

  



xx 

LIST OF TABLES 

Table 3.1. Highly sensitive soil parameters for landscape models (from Robinson et al. 
2010). ....................................................................................................................................... 41 

Table 3.2. Selected surveys from Victoria against the phases of soil mapping in Australia. .. 59 

Table 3.3. Benefit-cost ratios for spatial soil data (survey). .................................................... 63 

Table 4.1. Identified models that have been applied in Victoria. .......................................... 111 

Table 4.2. Land use, estimated area and value of agricultural commodities in Victoria. ...... 115 

Table 4.3. Hydrological, physical, chemical, biological and ancillary properties required 
for models. ............................................................................................................................. 116 

Table 4.4. Survey summaries. ................................................................................................ 118 

Table 4.5. Responses from modellers to application of a model at a particular spatial 
modelling scale for agricultural industries for the 2009 workshop and 2014 survey. ........... 119 

Table 4.6. Number of modellers to apply a simulation model for the primary agricultural 
industries from the 2009 workshop and 2014 survey. ........................................................... 120 

Table 4.7. Model applications at the four spatial modelling scales for the 2009 workshop 
and 2014 survey. .................................................................................................................... 121 

Table 5.1. Links between decision-making and uncertainty in the Steinitz Framework. ...... 153 

Table 5.2. Comparison of error sources for error-budget model for data quality of clay 
(indicative data from Nelson et al., 2011).. ............................................................................ 169 

Table 6.1. Soil sites (N) for the collection periods. ............................................................... 189 

Table 6.2. Summary statistics for pH measurements. ............................................................ 190 

Table 6.3. Environmental (spatial) covariates available for model-based geostatistics. ....... 192 

Table 6.4. Verbal scale for likelihood (probability) used for pHw scenarios (≤5.3 and 
≤6.0) ....................................................................................................................................... 195 

Table 6.5. Summary statistics for environmental covariates and factors (e.g. Sample 
depth) used in the Likelihood ratio test for the LMM (Model 2). ......................................... 196 

Table 6.6. Mean soil pH prediction and variance estimates for Model 2; and Model 1 (in 
brackets). ................................................................................................................................ 197 

Table 7.1. Site, sampled depth, ASC order and soil properties. ............................................ 219 

Table 7.2. ANOVA for the absolute difference between lab pH and field pH with two 
types of assessors and thirteen levels of pH. .......................................................................... 227 



xxi 

Table 7.3. Summary of LM and MLFR model parameters between pH data measured in 
the field (from our experiment) as the response variable (y) and pH data measured in the 
laboratory as the fixed variable (x). ....................................................................................... 228 

Table 7.4. Summary of MLFR model parameters for field pH (y) and lab pH data (x) for 
four scenarios: (Case 1) Experienced and 1PM, (Case 2) Experienced and 5PM, (3) 
Inexperienced and 1PM and (4) Inexperienced and 5PM. ..................................................... 230 

Table 7.5. ANOVA for the absolute difference between lab pH and field pH with two kits 
and twelve levels of pH. Mean values are presented. ............................................................ 235 

Table 8.1. Soil properties for MIR calibration samples. ........................................................ 257 

Table 8.2. Environmental covariates used in Digital Soil Mapping. ..................................... 261 

Table 8.3. Summary statistics for samples used for calibration purposes (* number of 
samples used in PLSR model). .............................................................................................. 263 

Table 8.4. Summary statistics for clay mineral data used in the Cubist model trees. ............ 270 

Table 8.5. Map diagnostic results for kaolinite, illite and smectite.. ..................................... 271 

 

  



xxii 

 

 “There are few subjects upon which it is more difficult to make an 

accurate, and at the same time intelligible report, than upon soils. 

The difficulty arises partly from the nature of the subject and partly 

from the vagueness of the terms used in speaking of soils”  

(T.C. Chamberlin, 1877) 

 

“The difficulty is that attributes which are relevant are not 

necessarily mappable, just as those that are mappable are not 

always relevant.” 

(Frank Gibbons, 1981) 

 

Oils ain’t oils, and soils ain’t soils 

(Castrol GTX advertisement) 
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Chapter 1 Introduction 

As a physical medium, soil is the veneer of organic and unconsolidated material on the 

Earth’s surface derived from infinite combinations of chemical, physical, biological and 

morphological properties and characteristics. Soil is a vital natural resource asset that 

delivers many ecosystem services to support and sustain flora and fauna. Degradation of 

this global resource is recognised as a major threat to provisioning and regulating 

ecosystem services such as storing carbon, filtering water, energy production, regulation 

of green-house-gas emissions and agri-food production (FAO and ITPS, 2015; Robinson 

et al., 2012). Soil is essential to the interactions of water, plant and atmosphere domains, 

from water infiltration and filtering, to engineering, or the provision of shelter for ground 

burrowing organisms. The demand on soil to deliver many services, often at once, places 

this asset under tremendous pressure given its inherent qualities, fragility and variable 

resilience. This competing demand for soil and land by humans is recognised in the 

Millennium Goals (www.un.org/millenniumgoals) and has instigated global initiatives 

such as the Global Soil Partnership (www.fao.org/globalsoilpartnership) and is ably 

supported by endeavours such as the GlobalSoilMap.net project 

(www.globalsoilmap.net). 

Australian soils are pedologically diverse, some being very old and of low soil fertility, 

others, from more recent landscape formations, are young and fertile. Landscapes can be 

highly vulnerable to degradation from the threats to sustainable land management 

including salinization, acidification, structure decline, waterlogging and physio-chemical 

constraints. These are real threats to soil security (McBratney et al., 2014) and soils long-

term provisioning roles including a global need to increase yield and quality of food 

production (van Ittersum et al., 2013). Increasing food security, addressing the significant 
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loss of arable land to erosion or pollution and the restoration of productive soils are 

identified as global priorities (FAO and ITPS, 2015). The potential loss of arable land to 

rising sea-levels and impacts to soil functions from climate change exasperates the current 

degraded state of soil for many countries. Since European colonisation over 200 years 

ago, changes in land use and management have contributed greatly to the degraded state 

of many soils and landscapes for this continent. For example, acidification in surface soil 

for Australia is considered to impact upon 50 million hectares of agricultural land with 

estimated annual production losses of $1.59 billion. In the state of Victoria alone, 

acidification is estimated to cost over $470 million each year (NLWRA, 2002). Changes 

in land use and the adoption of modern farming system practices are occurring across 

extensive areas of Victoria in response to changing environmental conditions (e.g. 

decreased rainfall), volatile global commodity markets and evolving labour markets. 

Understanding the nuances of agro-ecological interactions for these landscapes is 

challenging. However, by combining spatial knowledge and information on soil and 

terrain with developing trends in weather patterns, there is the potential to define and 

tailor management and farming systems for these landscapes. 

The demand for spatial soil information1 for purposes such as land use planning and to 

support implementation of global climate and carbon models (e.g. Reich and Hobbie, 

2013; Wieder et al., 2013) is increasing (Hartemink, 2008; Sanchez et al., 2009). Land 

use planning has traditionally been guided by land evaluation techniques that use spatial 

soil information to identify resource potential and limitations, and prescribe inputs (e.g. 

fertilizer and chemicals) with management strategies to fulfil production capacity while 

protecting the environment. Conventionally, user needs for spatial soil information has 

focused on traditional users and frameworks such as land evaluation. A considerably 

                                                 
1 used to represent the quantitative expression of maps and soil databases in a spatial domain 
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wider market of users exists that is either unaware or not exposed to this information 

(Wilson, 2012). In Australia, land use planning and government policy has been 

supported by soil survey and mapping. However, major deficiencies exist in current and 

reliable soil data (often referred to as legacy data) to support endeavours to derive spatial 

soil information for many nations including Australia. 

To respond to this inadequacy of spatial soil information, the key objective of this thesis 

is to demonstrate the importance and contribution of various error sources to uncertainty 

in the production of spatial soil information relevant to users and linked to soil functions 

including primary production. 

 

Understanding user needs for spatial soil information 

Soil information is required at adequate resolutions (spatial and temporal), in an 

acceptable delivery format and has accuracies and uncertainties provided that can assist 

land managers with decisions on agriculture and the environment. These users of spatial 

soil information, e.g. broadacre dryland farmers, horticultural managers, rural consultants 

and government policy makers, all have spatial soil information needs that can be as 

diverse within, as among, user groups. This added complexity is a potential reason why so 

little published information exists on the needs of users (Omuto et al., 2013). 

Understanding the agro-ecological context of spatial soil information needs and how 

questions posed by users are likely to evolve in response to advances in technology and 

the rapid expansion of sensors is an ongoing challenge to the pedological community. 

It is timely given these rapid advances in technology over the last decade (Roudier et al., 

2015) and new approaches to soil data acquisition and sharing from crowd sourcing and 

citizen science (Rossiter et al., 2015) to review what, when and how this information 
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should be provided for future users. In Australia (with specific examples for Victoria) 

there has been considerable change in the motivations for producing spatial soil 

information over the last century that reflect government priorities surrounding 

colonisation and settlement, enhancing agricultural production, nature and conservation 

and urban development. Specific and evolving spatial soil information requirements are 

valuable for key users (e.g. biophysical modellers) that operate across many agricultural 

and environmental domains as this will support targeted delivery of spatial soil 

information for current and future uses. By understanding these specific needs, the current 

paucity of spatial soil information can be addressed through Digital Soil Mapping (DSM, 

McBratney et al., 2003) which provides an approach to predict soil properties (e.g. pH, 

EC, salinity, clay content) at various scales (e.g. paddock to catchment) with remotely and 

proximally sensed data (e.g. geophysics, terrain derivatives) using spatial inference 

techniques. 

 

Accommodating various sources of error in modelling and mapping 

In the delivery of spatial soil information from DSM approaches, it is important that 

errors and uncertainties are quantified to communicate to users if the information is 

appropriate for their needs (Carré et al., 2007; Heuvelink 2014). Uncertainty, which is a 

lack of assurance or conviction (knowledge) in an observation or model (Goovaerts, 

1997) has a negative connotation that suggests unreliability. Often in DSM, uncertainty is 

defined only from statistical uncertainty whereas it is actually based on a dichotomy of 

aleatory uncertainty (statistical variability or error) and epistemic uncertainty (lack of 

information). 
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In the production of a digital soil map using modelling procedures, sources of error that 

lead to uncertainty can be documented, quantified and their overall contribution to error 

propagation quantified. Legacy soil site data for example can be littered with issues 

including data format, lack of harmonisation, imprecision and inadequate georeferencing 

(Krol et al., 2008). These data errors all contribute to model error which has proven to be 

a major factor in the aleatory uncertainty of DSM (Nelson et al., 2011). Few if any studies 

have accounted for spatial and temporal dependence in their mapping implementation 

including the temporal uncertainty of parameter values used (Finke, 2012). This is a key 

consideration in the use of model-based techniques to produce predictive maps for 

properties of interest that are susceptible to change from climatic or anthropogenic 

impacts. 

In modelling and simulation, generally a two-step process is adhered to with model 

selection uncertainty (epistemic uncertainty) and then statistical variability which is 

treated through error propagation or other approaches (aleatory uncertainty). While 

sources of stochastic and epistemic uncertainty have been identified and discussed 

(Refsgaard et al., 2007; Benke et al., 2011), there appears to be no instances worldwide in 

soil modelling or mapping where these have been brought together to enable a 

comprehensive assessment of uncertainty in the analytical process. Approaches to 

accommodate uncertainty through-out the analytical process from problem definition to 

prediction and error, and finally implementation in a decision making process require 

consideration. 
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Implementation of spatial prediction methods to derive novel maps for 

properties linked to soil functions 

Current mapping efforts through the GlobalSoilMap project have focused on key soil 

properties linked to carbon and water storage and production (organic carbon, particle 

size distribution, bulk density, depth to rock or limiting layer, available water capacity, 

cation exchange capacity), and degradation issues such as acidification and salinization 

(pH, EC). These properties are the focus of new maps produced for Australia (Grundy et 

al., 2015) and Africa (Hengl et al., 2015) for example. There is a need to provide 

contemporary spatial assessments of soil condition and scenario maps (McBratney et al., 

2003) for governments and policy interventions. Embodying the time dimension into 

assessments of soil condition remains a challenge in DSM (Lagacherie et al., 2008) 

especially when dealing with legacy data that can be sparse in space and time, and 

changes in land use and management regimes. 

There is an enduring deficiency in spatial information for fundamental soil properties 

such as clay mineralogy (Grunwald, 2009) that are implicitly connected to functions of 

soil health (Viscarra Rossel, 2011). Functions such as sustaining life and society; 

resistance to erosion; providing a physical medium for plants, animals and infrastructure; 

cycling and storage of matter (e.g. carbon); and storage and filtration of water are central 

to concepts of soil health. Clay mineralogy and pH as soil properties (focus of this thesis) 

are connected in provisioning roles affecting the availability of nutrients to plants and 

animals, supporting soil biological communities, storing of organic matter and filtering of 

water. 

Many countries around the globe can benefit from the wealth of legacy data resources 

they possess including archived soil samples that can be re-used and analysed using non-

destructive spectroscopic techniques for properties such as mineralogy (Viscarra Rossel et 
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al., 2009). Yielding information contained in legacy databases from methods with 

qualitative and quantitative determinations could be harmonised with spectroscopic 

models and spatial inference methods to predict the distribution of key properties linked 

to ecosystem services embodied in soil health.  

Opportunities exist to advance our knowledge on these soil properties (pH and clay 

mineralogy) by exploiting the resources available and succinctly unravelling the stories 

that can be told on landscape process and interactions with agriculture and the 

environment. Here the role of the soil scientist is critical to ensure that pedological 

realities are not lost (MacEwan et al., 2014) and that opportunities exist to reconstruct 

profiles from the spatial predictions of soil properties under the guidance and evaluation 

of pedologists. 

 

Overall aim: 

To improve the global knowledge of the various sources of error contributing to 

uncertainty in Digital Soil Mapping, three objectives were defined that focus on aspects 

of data inputs to DSM and the modelling techniques implemented to deliver maps of key 

properties linked to primary production for agricultural landscapes. 

The primary objectives are to: 

1. Define what spatial soil information is sought by users to support biophysical 

models for agricultural landscapes. 

2. Understand and account for potential error sources as input variables in DSM 

applications. 
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3. Produce spatial predictions of soil properties (e.g. pH, clay mineralogy) 

connected to soil functions supporting agriculture. 

The specific research aims of this thesis are to: 

a. Identify what are users’ needs for spatial soil information and how this has 

changed in Australia and Victoria over the last century. 

b. Develop an approach to accommodate, and illustrate to users of spatial soil 

information, the various error sources in modelling and mapping. 

c. Investigate the potential use of legacy data supplemented with new 

spectroscopic predictions to predict the regional distribution of two key soil 

properties - pH and clay mineralogy – for areas of western Victoria. 

 

Summary of research contribution 

The research questions posed in this project will have national strategic value and 

relevance to global initiatives such as the Global Soil Partnership and GlobalSoilMap 

projects. This research project will identify DSM techniques to predict soil properties for 

key agricultural landscapes of western Victoria, and to define if available legacy data can 

be used to predict changes for dynamic soil properties in response to natural and 

anthropogenic impacts. The research will have wider practical applicability across south-

eastern Australia and similar soil-landscapes in Mediterranean climatic environments for 

these key soil properties. Understanding the relative contributions and defining 

frameworks to accommodate uncertainty for soil assessments will benefit DSM 

practitioners and make users of these products aware of DSM error sources. Agriculture 

and the environment are also expected to benefit from new soil maps for properties that 
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can be applied in precision agriculture, natural resource management and strategic 

planning. 

 

Data and methods summary 

The datasets used in research investigations have been made available by the Department 

of Economic Development, Jobs, Transport and Resources (DEDJTR), the 

Commonwealth Scientific and Industrial Research Organisation (CSIRO) as part of the 

Soil and Landscape Grid of Australia project (Grundy et al., 2015), and undergraduate 

and postgraduate studies from Federation University Australia. 

Soil site data (discussed further in Appendix C) has been collated from various sources 

including the Victorian Soil Information System (VSIS), CSIRO National Soil Site 

Database (https://data.csiro.au), published and unpublished reports (e.g. Colwell, 1977; 

Crawford and Robinson, 2014). Sites have been supplemented with Mid Infrared (MIR) 

predictions for samples where archive samples exist in either the National Soil Archive 

(www.clw.csiro.au/aclep/archive/) or Victorian Soil Archive (Johnstone, 2011) and have 

been linked to soil site databases. 

Spatial environmental predictors such as terrain models and their derivatives have also 

been collated from the DEDJTR and the CSIRO. Organising these covariates using a 

single coordinate system (VicGrid94), establishing a base grid and resampling all datasets 

has also been undertaken. Numerous derivative products (e.g. Timesat parameters) from 

core covariates (e.g. MODIS time-series) were delivered as part of this exercise. Ongoing 

maintenance of these datasets is also necessary for the different study (spatial) extents and 

resolution of covariates sought. 
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Mapping methods applied in this research (Cubist model trees, ordinary kriging and 

Linear Mixed Models (LMM)) are core techniques used by the DSM community. While 

the original intent was to evaluate a suite of different model procedures, it became 

apparent that computational proficiency and practicability made it impossible to apply all 

available techniques. 

Data analysis procedures were undertaken using Matlab 

(www.mathworks.com/products/matlab), GenStat (www.vsni.co.uk/software/genstat) or 

R (www.r-project.org). Analysis of MIR spectra were undertaken using Matlab and the 

PLS toolbox (www.eigenvector.com/software/pls_toolbox.htm). Spectral models were 

run iteratively and refined as existing quantitative X-Ray Diffraction (XRD) 

determinations were sourced or new analysis was undertaken. 

Uncertainty estimation procedures were also implemented using all of the aforementioned 

software, Table Curve 3D (www.sigmaplot.com/products/tablecurve3d/tablecurve3d.php) 

and @RISK (www.palisade.com/risk). 

 

Thesis structure and linkages 

The thesis comprises nine chapters, of which five are journal papers as detailed with the 

candidate’s contribution listed in the Preface. Chapter 1 provides an introductory account 

of the demand for spatial soil information and understanding user needs, uncertainty 

assessment to account for the various sources of error in modelling and mapping, and 

delivery of soil mapping for soil properties (pH and clay mineralogy) that are linked to 

soil functions and services. Chapter 2 describes the study region of interest for the thesis. 

A literature review (Chapter 3) provides background context to research investigations 

presented in chapters 4 to 8. Findings from presented research are synthesized and 
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summarised in Chapter 9 as a conclusion to this thesis. The linkages between chapters and 

their organisation for the thesis are illustrated in Figure 1.1. The theme that links these 

chapters is the importance of understanding user needs for spatial soil information, 

tailoring this information through integrating legacy data with new methods to provide 

greater certainty in decisions by users of soil information. 

Chapter 2 describes western Victoria and its physiographic setting, climate, geology and 

geomorphology, soils and land use. While there is inevitable duplication here with 

regional context information presented in later chapters (5, 6 and 8), this study region 

overview provides a more detailed and comprehensive description of western Victoria 

than any of the individual papers. Chapters 3, 4 and 7 are largely based upon data 

(including soils, industry and natural resource management) for Victoria. Attempts have 

been made to minimise duplication, however this has been inevitable with the structure of 

this thesis by incorporating published papers. 

Chapter 3 presents a detailed literature review that explores the history of soil mapping in 

Victoria, its roots in colonisation and changing emphasis over the last century. The review 

discusses the evolution of conventional soil survey to Digital Soil Mapping and the 

challenges that exist to its successful widespread implementation (e.g. understanding user 

needs, uncertainty and its communication to users). Baseline concepts on the evolution of 

soil mapping and how the needs or priorities for soil mapping for Victoria, Australia have 

evolved are discussed including the investment logic for soil mapping. The new digital 

age in soil mapping is detailed with future potential to use a wealth of free and accessible 

spatial datasets. Topics of this review are central to the research questions posed and 

research initiated in the following chapters. 
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 Figure 1.1. Structure and linkages between chapters of the thesis. 
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Chapter 4 is a review of the soil data requirements for biophysical modellers, a key 

primary user group of spatial soil information. Changing patterns of model application 

that reflect government and industry priorities to enhance primary production are 

discussed with an increasing demand for higher resolution digital soil mapping. Soil 

properties that affect model sensitivity are identified, although some properties considered 

important in land evaluation and linked to soil functions and processes (e.g. pH and clay 

mineralogy) were either overlooked or excluded as part of this review. This may be due to 

a mismatch between the models and their simplified data needs, inadequate agro-

ecological process understandings or failure to deliver soil data at fine scale for properties 

of interest. 

Chapter 5 presents a novel systems-based framework to integrate various sources of error 

including geometry, position and polygon attributes for modelling and mapping purposes. 

Two case studies, one of which is linked to changes in soil pH are presented as examples 

of the Global Representation of Uncertainty in the Modelling Process (GRUMP) 

framework. The importance of these errors contributing to uncertainty and 

communicating these to users through maps or models is important to support appropriate 

use of this information. Identified as a research priority, this chapter explores the many 

aspects of uncertainty analysis such as statistical variability (aleatory uncertainty) which 

is often discussed in the absence of epistemic uncertainty (lack of information), and 

connects these as part of a more fulsome approach to uncertainty analysis than previous 

examples. 

Chapter 6 provides a logical extension and implementation of the GRUMP framework 

presented in Chapter 5, using an example implementation of the uncertainty framework in 

Digital Soil Mapping for pH in south-western Victoria. As a threat to primary production 

and protection of arable land, soil acidification and understanding the baseline on soil pH 
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is a priority for many countries. Epistemic error sources that contribute to uncertainty in 

the mapping of soil pH are identified and discussed in detail including temporal 

variability, harmonisation of legacy observations, integration of expert opinions and 

model structure adequacy from epistemic learnings. Spatial predictions of pH using 

conditional simulation and a Linear Mixed Model approach are transformed into more 

informative products for users of spatial information for agronomic and land management 

decisions. This is achieved by focusing on critical agronomic thresholds to plant 

production and likelihood of being below these thresholds. 

Chapter 7 continues the focus on soil pH by examining if the prediction accuracy and 

error in a field pH determination method using different field kits and user experience 

were significant, and how this would affect the relationship between field and laboratory 

pH measurements. Given the spatial and temporal paucity of available laboratory pH 

measurements across large areas of Australia (and Victoria), field pH measurements with 

greater certainty could be used to populate gaps in available pH observations for mapping 

and monitoring purposes at regional to national scales. Two experiments were undertaken 

to examine effects and error due to different test kits, assessor experience and the time of 

assessment. This enabled the error bounds of the prediction and confidence intervals to be 

defined and confirmed factors that contribute to field pH uncertainty can be addressed 

with adequate training and quality assurance procedures to minimise potential errors. 

Chapter 8 presents a novel approach using quantitative XRD analysis to calibrate MIR 

spectroscopy and implement these predictions using model trees to map clay mineral 

distribution. Soil survey has tended to focus on the collection and measurement of 

properties that are easy to observe. Clay mineralogy however is expensive and time 

consuming to acquire, therefore it is rarely measured or observed and hence a likely 

reason for its exclusion in soil data needs for many users including biophysical modellers. 
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The implementation of calibration models to predict clay mineral abundance for 

exhaustive spectral libraries was undertaken for nearly 3000 sites (11,500 samples) in 

western Victoria. Predictions were harmonised to the six GlobalSoilMap specified depth 

intervals. Spatial modelling methods including cross-validation procedures and linkages 

to key soil forming factors from model-tree implementation are described. Kaolinite was 

found to be the dominant clay mineral across all six depth intervals, followed by smectite 

then illite. The approach has delivered useful results based upon relatively few calibration 

samples and can be easily implemented by organisations with available spectral libraries. 

Chapter 9 is a summary of the key findings and associated strengths/weaknesses of the 

research investigations undertaken. The chapter draws together the threads of discussion 

from research presented across the five papers and identifies future directions for research 

including areas of further investigation on the topics of understanding user needs, and 

delivering useful and specific spatial soil information with uncertainties defined. 

Supplementary information and detail is provided in: Appendix A (selected conference 

papers and journal papers with the candidate as lead or co-author on Digital Soil Mapping 

implementation in Victoria, error sources associated with digital soil mapping production 

and assessment of measurement errors in soil analytical chemistry data; Appendix B (five 

book chapters with the candidate as lead or co-author on Digital Soil Mapping and 

uncertainty assessment); and Appendix C (an overview of western Victorian landscapes, 

their uses and inherent characteristics (e.g. geology, geomorphology, soil) and 

background soil sites and mapping for this region). 
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Chapter 2 Western Victoria overview 

This chapter provides an overview of the physical geography for the landscapes of 

western Victoria. The use of these landscapes for agricultural production, nature 

conservation and colonisation since European settlement is discussed. The clearance of 

native vegetation from land and changes in land use over the last 180 years is described in 

this chapter. Summaries are provided of the geological and current geomorphological 

setting which when connected with climate and vegetation influence the distribution of 

soil types and their characteristics. A comprehensive overview of the physiographic, 

climatic, geological, geomorphological, soil and land use setting for the region is 

provided in Appendix C. 

To enable a thorough evaluation of Digital Soil Mapping and research techniques 

developed as part of this thesis, Western Victoria and areas within were selected for 

chapters 5, 6 and 8 due to the diversity and complexity of landscapes within. The region 

is noted for its highly productive landscapes from farming systems including wool, lamb, 

grains (cereal and pulses), beef, dairy and horticulture. Interactions of land use with soil, 

and changing uses for land were considered in the selection of this region. The findings 

from this research are anticipated to have wider applicability with the soil mapping 

community in landscapes of south-eastern Australia and like Mediterranean 

environments. 

Study areas for investigations presented in this thesis are all located within the bounds of 

Western Victoria which comprises over 135,000 km2 of agricultural and environmental 

landscapes (Figure 2.1). Soil management issues known to limit production capacity in 

western Victorian are summarised in assessments for the Primary Production Landscapes 

of Victoria 
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(http://vro.agriculture.vic.gov.au/dpi/vro/vrosite.nsf/pages/primary_prod_landscapes) 

including the effects of soil acidity in surface and subsoil, limitations to plant roots caused 

by shrink-swell clays, soils that can be prone to compaction, and the resilience of soils 

when challenged with physical and chemical changes due to management or climate 

impacts. Changing climatic conditions and global agricultural commodity volatility have 

resulted in large structural adjustment (i.e. include more agricultural commodities in their 

income stream) for primary producers in western Victoria. Changes in land use and 

regional de-population trends are set against a backdrop of growing global demand for 

food and loss of arable land (FAO and ITPS, 2015) that is likely to require soils to 

become more productive. 

 

Landscapes of western Victoria 

Western Victoria has erosional and depositional landscapes as reflections of their diverse 

geological and climatic evolution. Landscapes are spatially delineated using a hierarchical 

system called the Victorian Geomorphology Framework (VGF; Rees et al., 2010) that 

combines areas of common geological, landform, climate, soils and vegetation. For 

western Victoria, with five tier-one divisions of the VGF have been delineated including 

the North Western Dunefields and Plains, Northern Riverine Plains, Western Uplands, 

Western Plains and Southern Uplands. The north of the region is bound by the Murray 

River as part of the Murray Basin of south eastern Australia (Figure 2.2). Nested within 

the Murray Lowlands are landscapes of the Northern Riverine Plain and the North 

Western Dunefields and Plains (otherwise known as the Victorian Mallee and Wimmera 

Plain). Trending east-west across western Victoria is the Great Dividing Range with 

highlands that terminate at the western margin of the Dundas Tableland - the Glenelg 
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River (Hills, 1975). Plateaus, strike ridges and valleys of the Western Uplands; the low 

elevation ranges from faulted and tilted sandstone blocks of the Southern Uplands; and 

the extensive volcanic and sedimentary deposits of the Western Plains form the southern 

part of western Victoria. 

 

Figure 2.1. Western Victoria. 

 

The Northern Riverine Plain includes a series of modern major tributaries (Campaspe, 

Loddon, Richardson, Avoca and Wimmera rivers) that begin as streams in the Western 

Uplands and flow north towards the Murray River. Lakes and basins (often bordered with 

lunettes) are scattered across the Riverine Plains and fill from periodic inflows during 
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floods, localised rainfall events and groundwater discharge. Red texture contrast soils 

(Sodosols; Isbell, 2002) associated with the prior stream complexes (Butler, 1950) are 

common with Calcarosols and Vertosols less so. 

The Victorian Mallee north western Victoria have formed from a series of arid phases in 

the mid to late Pleistocene period (Bowler et al., 2006). Calcareous deposits from 

lacustrine, aeolian and alluvial sediments blanket much of the underlying geology 

including a series of NNW/SSE trending stranded beach ridges with intervening 

depressions and flats. Gradational or uniform soils (Vertosols and Calcarosols) with 

texture contrast soils (Sodosols) occur across the aeolian landscapes. Parallel and 

parabolic dunes from erosion of these ridges form extensive siliceous sand sheets with 

sandy soils (Tenosols and Rudosols) of the Big, Little and Sunset deserts (Lawrence, 

1966). 

Further south, the self-mulching to poorly structured clay plains of the Wimmera are 

extensive and overlay the series of stranded beach ridges to the north of the West 

Victorian Uplands. To the south of the Wimmera Plain is the West Victorian Uplands 

(also known as the Western Highlands; Hills, 1940). The highest peaks include Mt 

William (1168 m) and the Major Mitchell Plateau (over 1100 m) of the Grampians 

Ranges. The Grampians Ranges have abundant sandy soils that have weak to no 

pedological development. To the west of the Grampians Ranges is the Dundas Tableland 

as a low elevation plateau (320-360 m). This tableland has been deeply weathered, tilted 

and faulted giving it a domed topography. Texture contrast soils (Chromosols and 

Sodosols) with abundant ferruginous nodules in bleached horizons above strongly mottled 

(often as tiger mottles) dense clay subsoils are widespread across this landscape. 
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Figure 2.2. Landscape features of Western Victoria (background shading is terrain). 
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Ridges, plateaux and hills east of the Grampians Ranges include the peaks of Mt 

Macedon (1001 m) and the Camels Hump (1011 m), Mount Buangor (966 m) and 

volcanic cones of Mt Buninyong (745 m) and Mt Warrenheip (741 m). The upland 

bedrock residuals comprise volcanic, sedimentary, metamorphic rocks and granitic 

plutons of Cambrian and Ordovician age (Joyce et al., 2003). Undulating hills and valleys 

with alluvial systems occur on northern and southern slopes of the Great Dividing Range. 

Texture contrast soils are common and occur with sodic subsoils (red, brown and yellow); 

non-sodic subsoils in slightly higher rainfall environments (Chromosols); and 

occasionally with acidic subsoils (Kurosols). Dermosols (gradational texture profiles) 

including iron rich soils (Ferrosols) are found on greenstone ridges and basalt flows. The 

northern slopes are gentle and asymmetrical while southern slopes tend to be shorter and 

deeply dissected (Hills, 1975). 

South of the West Victorian Uplands are the West Victorian Plains encompassing the 

Western District Volcanic Plains (Hills, 1940). Volcanic eruptions have produced an 

extensive veneer of basalt, scoria and ash that extends into South Australia. Basalt flows 

are layered with inter-mixed ash and scoria that have buried palaeosols. Sodosols, 

Chromosols and Vertosols are found in various associations depending upon the age of 

the parent material, its formation and climatic history. Dermosols and Ferrosols are 

associated with more recent volcanic deposits. Stream systems are poorly developed due 

to the disruptive volcanic history with stony rises representing the most recent volcanic 

activity and some of the youngest landforms in Australia (Stone et al., 1977). 

Acidic texture contrast soils (Kurosols) and sandy soils of various pedological 

organisation (Podosols and Rudosols) are found in the dune, swamp and plain series of 

the Millicent Plain extending south towards the Victorian coastline where strongly 
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structured red and friable loams (Ferrosols and Chromosols) have formed on the 

limestone calcareous dunes. 

In the southern-most areas of western Victoria are the coastal plains and elevated fault 

blocks of the South Victorian Uplands including the Otway Range, Barrabool Hills and 

Bellarine Peninsula. The plateaux and gentle slopes include strongly structured 

gradational soils (Dermosols) that can be deep and organic-rich, with shallow and stony 

soils occurring on steeper slopes. 

Climate 

Western Victoria includes the driest and wettest landscapes in Victoria, from the semi-

arid Murray Dunefield in the north to the temperate plateau and valleys of the Otway 

Range in the south. Paleoclimates have been key determinants of landscape evolution 

including soil distribution and formation, e.g. aeolian-arid phases in the Mallee. Winter 

and spring with July and August are traditionally the wettest months from modern 

records. Generally rainfall in south-western Victoria exceeds evapotranspiration. On the 

plateau of the Otway Range, Weeaproinah has Victoria's highest mean annual rainfall of 

1936 mm (records from 1901 to 2014). In northern Victoria, the climate story is 

considerably different. Evapotranspiration here can be 5 times greater than annual rainfall 

and has significant implications for primary production due to short growing seasons. 

Ouyen in the central Mallee has a mean annual rainfall of 331 mm (1911 to 2015) with 

October as the wettest month (mean monthly rainfall of34 mm). 

Vegetation, land use and agriculture 

Since European settlement, selective clearance of native vegetation has occurred largely 

for agricultural purposes. The intensification of land use and impacts on the natural 

resources have altered many of these ecosystems for human purposes (MacEwan et al., 
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2010). As a result, there has been considerable change to the vegetation of some 

bioregions (e.g. Victorian Volcanic Plains) while other bioregions (e.g. Otway Range) 

remain largely intact (Dahlhaus, 2012). 

Colonisation by early European squatters began in the 1830’s where large areas of land 

were taken for purposes of grazing by livestock. This settlement period and the discovery 

of gold in the 1850’s had widespread impacts on land, its use and how it was managed. 

Significant clearance of native vegetation begun in earnest to support the gold rush that 

stared at Ballarat and Buninyong in 1851. Native forests and grasslands were rapidly 

modified or cleared for mining and agricultural purposes to support the influx of migrants 

from overseas. Agriculture continued to thrive in the following two decades with the 

decline in mining and development of new railway lines between Melbourne and Ballarat 

and Bendigo. Land clearance and removal of native vegetation continued to support these 

developments (Nathan, 1999). Dryland agriculture had spread further north into the drier 

parts of the state including the first pastoral leases in the Mallee country. The first wave 

of soldier settlement schemes were enacted to support returning servicemen post the First 

World War, leading to higher density agriculture including the formation of irrigation 

systems in the north near Kerang and along the Murray River (Powell, 1970). Clearance 

of Mallee landscapes was initiated with the modernization of farming through mechanical 

harvesters, new cereal varieties and land management practices, e.g. fallowing. The first 

30-years of the 20th century coincided with rapid advances in agriculture, but also 

considerable damage to soil from erosion due to wind and water from mis-management 

(Victorian Institute of Surveyors, 1940). Effectively agriculture and the mining of soil 

was the next resource boom post the gold rush. 

The end of the Second World War saw a second wave of soldier settlements developed as 

part of rural recovery efforts across Australia (Powell, 1970). Replacement of native 
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pastures with ‘improved pastures’ and increasing knowledge on the role of soil fertility 

and production lead to some rapid increases in production from land including that which 

was previously considered worthless to agriculture (e.g. northern Mallee). Population 

centres such as Ballarat, Geelong, Bendigo, Warrnambool and Mildura have continued to 

expand and grow (resulting in land use change) with the decline in rural populations 

outside these growth centres. Significant increases in land value prices over the last two 

decades with changing climatic conditions has favoured the expansion of grains 

production in southern Victoria where it was previously considered too wet to do so 

(Myers, 1963). 
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Chapter 3 Spatial soil information: user needs, new prediction 

methods and uncertainties 

Why do we produce soil maps? Aren’t they just pretty wall paper from a stamp collecting 

phase? Throughout human history there has been a desire to better understand the 

occurrence of natural phenomena such as flora, fauna, hydrology, climate and geology 

and their spatial interactions. Pedology and pedodiversity represent one such natural 

phenomenon which is largely a manifestation of many interacting phenomena known as 

soil forming factors (Dokuchaev, 1886; Jenny, 1941). There has been a desire to 

understand ecology and agricultural dynamics throughout civilization. This has led to a 

perceived need for spatial soil information for purposes such as land evaluation to 

enhance primary production from soil without compromising its longevity. Challenges 

remain to ensure that these ‘pretty maps’ aren’t just static statements in time, rather they 

become the spatial template from which we communicate with a wider audience the latest 

knowledge on the issues of food security and production, carbon storage, water storage 

and infiltration and human health. 

This review strives to establish some baseline concepts on the evolution of soil mapping 

and how the needs or priorities for soil mapping from a retrospective glance for Victoria, 

Australia have evolved. The roles of soil science and policy making will be touched upon 

including the investment logic for soil mapping and failings in existing paradigms such as 

willingness to pay, user pays and benefit-cost. With the rapid uptake of technology over 

the last few decades, the production of soil maps has evolved greatly leading to a new 

digital age in soil mapping (Digital Soil Mapping). These advances are encouraging and 

allow the exploitation of a wealth of available spatial environmental predictors, e.g. 

terrain models. However, the promise of this new suite of seamless and easily updatable 
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maps raises fundamental issues that exist for any soil map: who are the users, what format 

do they want the information in and is the map fit for their required purpose? A decline in 

new soil survey and the potential loss of existing pedological knowledge is also a 

potential issue. 

The review briefly defines some of these concerns and raises opportunities for the 

advancement of modern soil mapping practices. This includes the importance of 

understanding error sources and their contribution to uncertainty in spatial soil 

information (topic of Chapters 5, 6 and 7). Ideas are synthesized and discussed at the 

completion of this chapter setting the scene for the following chapters and the research 

questions posed (listed in Chapter 1). 
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3.1 Introduction 

Soil mapping is fundamental to land evaluation, understanding the interactions of 

physical, chemical and biological processes in the pedosphere (Bouma, 1989) and the 

variability of these phenomena in space and time. Soil information is recognised as one of 

the five pillars of action for the Global Soil Partnership 

(www.fao.org/globalsoilpartnership) and one of the five goals of the National Soil 

Research, Development and Extension Strategy in Australia (Department of Agriculture 

2014). 

Previous works have summarised for Australia the history of: soil mapping (Taylor, 1970; 

Gibbons, 1983); soil classification (Isbell, 1992) and Digital Soil Mapping (Bui, 2006). 

Recent productions by Minasny and McBratney (2015) and Brevick et al. (2015) paint a 

historical and future scene for soil mapping and pedology. This review explores the 

history of soil mapping in Victoria, Australia as context for issues on: understanding user 

needs for spatial soil information, the evolution of soil mapping to the current soil 

mapping paradigm – Digital Soil Mapping (DSM), and the importance of quantifying and 

communicating uncertainty in spatial soil information to users. The review is structured 

around the topics: 

 Why is spatial soil information needed? 

 Soil mapping, benefits, costs and utility, 

 Digital Soil Mapping, and 

 Uncertainty. 

For this review, the terms spatial soil information is used to quantitatively represent the 

maps and soil databases in a spatial domain, and soil attributes is used to represent soil 



33 

properties (e.g. pH, organic carbon, mineralogy, texture, clay %, total phosphorus) or 

classes (e.g. soil order, structure, permeability, drainage or colour).  

 

3.2 Why is spatial soil information needed? 

3.2.1 Global to local needs for spatial soil information 

There is an acknowledged global demand for spatial soil information (Hartemink 2008; 

Sanchez et al., 2009) to support global climate and carbon models (e.g. Reich and Hobbie, 

2013; Wieder et al., 2013). Climate and carbon models (Amundson et al., 2015) require 

soil information to represent soil processes embedded in these models.  

There has been a lack of reliable high-resolution spatial soil information to support 

requirements at global (Sanchez et al., 2009), national (McKenzie et al., 2008), state and 

territory (Robinson et al., 2010) scales. Recent efforts to address this deficiency in spatial 

soil information at a global scale include SoilGrids1km (Hengl et al., 2014) and organic 

carbon change assessments (Stockmann et al., 2015). At a national scale, the Soil and 

Landscape Grid of Australia (Grundy et al., 2015) using three-dimensional spatial 

modelling (Viscarra Rossel et al., 2015) has produced soil maps for 10 soil properties 

including organic carbon, pH and particle size fractions (clay, sand and silt). Tasmania 

(Kidd et al., 2015) and Western Australia (Holmes et al., 2015) are examples of recent 

state-based soil mapping efforts.  

In Australia, there still remains little reliable information suitable for decision-making 

even post the pleas of McKenzie (1991). This is largely due to most soil data used in 

producing spatial soil information being outdated, incomplete, inconsistent or 

unavailable. The deficiency in reliable spatial soil information coincides with an 

increasing and diverse set of uses for soil mapping, and has led to an evolution of 
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traditional approaches to adapt modern techniques in analysis and presentation (Basher, 

1997). 

 

3.2.2 Users of spatial soil information in Australia 

The National Soil Research, Development and Extension Strategy for Australia 

(Department of Agriculture, 2014) identified the primary users of soil information as 

broadacre dryland farmers, tree plantation managers, irrigation farmers, rural consultants 

(e.g. agronomists), infrastructure managers, catchment management authorities, 

government authorities at local, state and national levels, and the scientific community 

(researchers). These user groups are consistent with those identified by Omuto et al. 

(2013) as part of a global user needs assessment. 

What information do users want 

There is a variety of soil properties required for modelling, research and decision making 

purposes including soil moisture availability, nutrition, toxicity and physical constraints. 

The major physical and chemical properties are the most frequently sought as they are 

linked to global programs to increase food production. All users would prefer high 

resolution data, but it is unclear how many users actually need data of this resolution to 

make informed judgements. There remains a preference for site data especially by 

modellers and researchers, whereas in contrast, those in policy and extension are more 

interested in continuous and consistent products for extension purposes at coarse 

resolution (Wood and Auricht, 2011). Biophysical modellers represent a large user group 

seeking digital soil maps. Modellers’ preference for soil information is varied though, 

depending upon the agricultural industry and their operational scale (e.g. site, paddock, 

region or state). Access to primary soil information (i.e. data) will remain important as 
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uses for soil information will continue to evolve through adaptation for purposes linked to 

agriculture and the environment (Alexander et al., 2015). Given the uses of data have 

changed and will continue to do so, it will be important to have access to all the primary 

data that is available, allowing adaptation to a variety of purposes. 

Within user groups, information needs can be diverse exposing the multidimensional 

utility of soil information. Scale requirements vary among the user groups, e.g. a farmer 

generally requires point, paddock or farm scale information whereas for government and 

policy making purposes, information is generally required at a district, region, state or 

national level (Omuto et al., 2013). Soil information products that users seek are 

classified into four areas: primary (soil site observations); soil map (general or specific 

purpose map with attributed soil properties or classes that reflect the original utility of the 

map); derived map (maps that have been re-interpreted or harmonised to predict soil 

properties of interest) and interpreted service (soil information including maps that have 

been used in either risk assessments or simulation models to support their decision 

making, e.g. wind erosion threat index). Generalised user requirements for spatial soil 

information are contrasted against delivery scale (e.g. resolution of information sought) in 

Figure 3.1 to illustrate the diverse and overlapping requirements of user groups across 

map scales. 

To support future requirements for soil mapping, promotion of the specific benefits and 

actions (such as targeted investment and understanding production risks) that can be 

achieved due to this information are required (Cook et al., 2008). A shift from soil class 

assignment to mapping of soil properties that support implementation of simulation 

models has occurred in response to the need for quantification and uncertainty estimation. 
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Figure 3.1. Generalised soil information requirements. 

 

Case study – Victoria 

In 2014, a series of workshops and surveys was undertaken in Victoria to identify the 

spatial soil information requirements of users, the key datasets or products they required, 

and the issues they encountered in accessing and using this information (Alexander et al., 

2015). Key findings of this engagement with users were that: 

 Not all users are aware of the soil data and information that is already available, 

 Users need easy access to soil information,  

 Users find that the soils information and data on the web is difficult to access 

(navigation of web), 
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 Needs of users and within user groups are quite varied, some requiring primary or 

raw data, others needing interpreted products for their specific purposes, 

 Currency of soil information is important to users – products must be kept up to 

date, 

 Confidence in the information is necessary for users (e.g. precision, accuracy, 

independent, trustworthy, fit-for-purpose and current). 

Further findings identified that user preference was for the information to be provided in a 

consistent and structured manner via the web or smartphone application. Access to soil 

mapping is important to enable users to apply these maps where gaps in user soil 

information and knowledge exist (Alexander et al., 2015). Favourable responses were 

received from extension providers (knowledge brokers) for the potential of new soil maps 

to support advisers and farmers. Ongoing engagement with users to further and maintain 

understandings of their requirements for soil information is valuable to ensure that 

relevant and specific soil information to land management in delivered by government. 

3.2.3 Inadequacy of user needs assessment 

There remains an absence of detailed evidence and justification of the ‘need’ to produce 

spatial soils information (Omuto et al., 2013). Few studies (e.g. Robinson et al., 2010; 

Wood and Auricht, 2011) have assessed the requirements for users of spatial soil 

information systems, e.g. Australian Soil Resource Information System 

(www.asris.csiro.au). The use of spatial soils information has tended to focus on the needs 

of traditional users, yet there remains a considerably wider user market that is unaware or 

not exposed to this information (Wilson, 2012). Three examples of user needs analysis in 

Victoria follow. 
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User needs for spatial soil information – Victorian examples 

A local survey of users of spatial soil information in Victoria from documented 

information supply requests for DEDJTR2 between 2009 and 2014 identified that 

mapping was used to address questions on: management issues and production 

constraints; for engagement with stakeholders or inventory; and resource assessment 

reporting purposes (Figure 3.2). Some of the uses of existing soil maps include land 

capability assessment, land use planning and stakeholder engagement using visualisation 

examples. 

 

Figure 3.2. Documented uses of spatial soils information in Victoria between 2009 and 

2014 from spatial soil information requests (source: DEDJTR 2014). 

 

                                                 
2 DEDJTR - Department of Economic Development, Jobs, Transport and Resources is the custodian of soil 
and land information for the Victorian government. Note that the number of data requests over this time 
period was undertaken using a manual recording process through a nominated data supplier. Data supplies 
are now largely automated and have increased considerably since 2014 through electronic delivery systems 
such as Data.vic.gov.au. 
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The second user needs example is for biophysical modellers that use numerous tools 

(such as agronomic models) to support users with management decisions at various 

spatial scales. Models used for production and environmental purposes are directed 

towards quantitative simulation rather than qualitative or semi-quantitative interpretations 

(Bouma et al., 1986). These agronomic models require soil information to develop 

simulations and rely on the model structure and the quality of the input information to 

produce meaningful and reliable results (Zaks and Kucharik, 2011). Finer-scale and 

quality controlled soil information are desired by biophysical modellers as they require 

this information to refine, develop and run simulation and process models to address 

questions on production constraints and environmental impacts (e.g. rainfall, physical or 

chemical soil limitations or variety suitability). Hydrological and ecological model 

domains require specific and sometimes interpreted soil information to operate. Key soil 

properties used in biophysical models in Victoria have been defined by Nichol (2006) and 

refined by Robinson et al. (2010) and are listed in Table 3.1. 

The third user-needs example involved a review of landscape analysis questions from two 

catchment management authority regions in south western Victoria (Glenelg Hopkins and 

Corangamite). This revealed that significant dependencies exist for spatial soils 

information to address Natural Resource Management issues. Questions from specialists, 

managers and individuals (Shanks, 2006) were assessed to identify if they had a spatial 

soil information requirement. Of nearly 300 questions collated including those from 

strategic reports relevant to the management of agricultural landscapes, 32% had a 

likelihood of requiring spatial soils information to answer the question. This subset of 

questions requiring spatial soil information was assessed against the Steinitz framework 

(Steinitz, 1990) to identify where the questions corresponded with a ‘level of inquiry’ in 

the framework. The six levels of this landscape and environmental design framework are: 
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representation, process, evaluation, changes, impact and decisions. Spatial soil 

information was found to be useful across all of the six stages (Figure 3.3). When 

questions were tested against an ecosystems services inventory (Binning et al., 2001), 

maintenance of soil health is overwhelmingly recognised as the primary ecosystem 

service where spatial soils information can contribute (Figure 3.4). 

3.2.4 Evolving needs of users 

User demand for soil maps continue to evolve as the data on specific themes of the 

Earth’s surface (e.g. vegetation, hydrology, farmed land) have increased in spatial and 

temporal definition. The advent of new technologies such as GIS has equipped today’s 

resource scientists with capabilities to handle complex and continuously variable 

information that is ‘outstripping’ the capacity of conventional maps (Cook et al., 1996). 

Numerous authors including Bouma (1986), Cook et al. (1996) and McKenzie et al. 

(2008) highlight that user requirements continue to evolve as the environmental questions 

change and the resolution of soil mapping sought increases. 

Historically there has been a perceived requirement for soil survey, rather than clearly 

defined proven needs (Cook et al., 2008). External demand for soil survey during the last 

40-years has not been strong and a supply-driven mantra has existed. Lack of demand by 

potential users including planners and farmers (Basher, 1997; Manderson and Palmer, 

2006) are reported. A failing of a supply-driven process is that potential users may not be 

aware that spatial soil information exists in a format that can support and influence their 

decisions (Alexander et al., 2015). A favoured approach from users and stakeholders is 

for participatory-type approaches to support decision-making (Bouma, 2001).  
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Table 3.1. Highly sensitive soil parameters for landscape models (from Robinson et al. 

2010). 

  Model domain 

  Hydrological processes Crops, nutrients 
and pastures 
(agricultural 
production) 

Carbon and 
greenhouse 

Forestry 
and 

biodiversity 

H
yd

ro
lo

gi
ca

l 

Air-dry moisture content 
 

PWP, CLL 
 

FC, DUL  
Ksat  
Infiltration rate  
Rooting depth  
Moisture retention  

P
hy

si
ca

l 

Clay % 
 

Sand %   
Silt %   
Stones % 

 

 
Bulk density 

 

Soil structure    
Soil texture    

C
he

m
ic

al
 

C/N ratio 
 

 
CEC   

 

NH4 
 

NO3 
 

Organic carbon 
 

P 
 

Total N 
 

Carbon fractions     

O
th

er
 

Soil depth   
  

 

3.2.5 User needs and participatory action 

Current decision-making processes are more comprehensive than in the past due to the 

increased complexity and diversity of stakeholders involved and uses to be addressed 

(Christian, 1978; Bouma, 2001). Beckenstein et al. (1996) define stakeholders in 

environment and natural resource issues as citizens, companies and their share-owners, 

employers, customers, communities and policy makers. While stakeholders aren’t 

necessarily direct users of spatial soils information, or have contributed to the production 

of such information, they do have a desire to be consulted and engaged in the 

participatory phases of a decision-making process. Engagement of stakeholders in this 
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process can be defined according to the complexity of the problems linked to land use, 

and the mechanisms or capacity of the spatial soils information to explain these.  

 

 

Figure 3.3. Questions requiring spatial soils information against the six levels of inquiry 

for the Steinitz framework (Robinson unpublished results). 

 

To solve decision-making issues and recognising the role of spatial soils information in 

this process, engagement and participatory action with stakeholders is a key activity. 

Elements to be considered in this process include (adapted from Bouma, 2001): 

 Negotiate – be involved in the planning phase (where practical) of the problem 

definition and proposed approach, e.g. multi-disciplinary teams. 
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 Understand the ‘best-fit’ of spatial soils information to answer the specific 

question posed. Consideration of scale, quality/utility and the process in which the 

information will be used, e.g. catchment hydrology mapping. The phrase – 'fit-for-

purpose' - applies here. 

 Recognise that there are possible research and development deficiencies in 

knowledge and explicitly what assumptions have been made and what research is 

required. This includes base soil science and understanding of human impacts to 

ecosystem services. 

 Inter-disciplinary teams provide the opportunity for enhanced understanding and 

learning collectively, and as individuals. This should lead to better outcomes in 

the decision making process. 

 

Figure 3.4. Ecosystem services inventory and questions that will require spatial soil 

information to address these (Robinson unpublished results). 

 



44 

Engagement with users and the development of solutions as part of multi-disciplinary 

teams is critical to answering these modern questions (Bouma, 2001). It is here where soil 

scientists can make their greatest contribution (Bouma, 2015). The application of soil 

mapping in tandem with latest soil science research provides a unique opportunity to 

guide and solve these environmental issues. Innovative solutions should be based on the 

application of new technology and approaches to translate legacy soil mapping into what 

is required (Bouma, 1997). Soil scientists need to be supportive, responsive and clear with 

their messages to support policy makers and the questions they pose. Unfortunately, and 

all too often, soil science is neglected and therefore conclusions are often simplifications 

of reality with a weak foundation. 

3.2.6 Access and delivery of spatial soil information 

Cartographically, maps today are represented either as a raster or vector data structure. 

Modellers and research scientists preference is for spatial soil information to be available 

in these formats (Wood and Auricht, 2011; Omuto et al., 2013). Nationally, modellers 

would like direct access to available soil site data online to exploit for their purposes 

(Wood and Auricht, 2011) while farmers and consultants have expressed a desire for 

information available in hard copy such as reports (Omuto et al., 2013). Modellers often 

have the benefit of technological expertise and therefore are able to transform soil 

information into specific inputs for their modelling requirements. 

The widespread use of smartphones and applications has seen a major shift in the way we 

provide digital information to users. The SoilMapp application provides users with access 

to Australian soil property information for simulation modelling purposes on crop growth 

(Thomas et al., 2012). Making users aware of where and what soil sites exist through a 

Google service has been recommended (Wood and Auricht, 2011; Alexander et al., 

2015). The open interfaces and protocols defined by OpenGIS specifications (Open 
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Source Geospatial Foundation (www.osgeo.org)) enable interoperable solutions including 

the web, wireless and location-based services that empower technology developers to 

make complex digital spatial information and services accessible to numerous 

applications. Internet services such as Web Feature Service (WFS) and Web Coverage 

Service (WCS) (Open Geospatial Consortium (www.opengeospatial.org)) can provide 

users with direct links between data and information services. New technologies and web 

delivery standards such as WFS and WCS enable the delivery of soil data and information 

for expedient consumption and use by service providers and end-users 

(http://www.opengeospatial.org/projects/initiatives/soildataie). Integration of this data in 

real-time with proximal and remote sensing systems represents the next significant 

advancement to support agricultural production. Online access to reports from systems 

such as Victorian Resources Online (VRO) provides valuable contextual information and 

knowledge captured in web delivered pages (Imhof et al., 2011) to link sites with 

delivered maps. 

Users of spatial soil information are also requesting supporting metadata including error 

and uncertainty estimates and details on the information delivered, e.g. map making 

method and details on soil sites used (Omuto et al., 2013; Alexander et al., 2015). Spatial 

soil information should also be easily downloadable with fitness-for-purpose statements 

to guide users (Wood and Auricht, 2011; Alexander et al. 2015). 

The current paradigm to make spatial soil information available and accessible for reuse 

by the public has gained considerable momentum (Zuiderwijk and Janssen, 2014). 

Globally this view is shared amongst all inter-government organisations and initiatives 

such as GlobalSoilMap and the Global Soil Partnership. In Australia access to spatial soil 

information has been limited but this situation is rapidly changing. A goal of the National 

Soil Research, Development and Extension Strategy (Department of Agriculture, 2014) is 
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to ‘Improve quality, availability and access to soil data and information’ that includes 

providing users with ‘Maps of functional properties of soils at appropriate resolutions’. 

These goals are consistent with the few accounts of user needs for soil information (e.g. 

Wood and Auricht, 2011; Robinson et al., 2010; Omuto et al., 2013). 

Accessibility and availability of spatial soils information in Victoria since 2013 has 

changed with introduction of an open access policy and the implementation of the 

Victorian Government Data Directory (www.data.vic.gov.au). Data requests have 

increased dramatically as a result of this open access policy (Figure 3.5). Open access to 

spatial soils information is expected to support the delivery of new services to community 

and business, increase productivity, improve research outcomes and establish more 

effective management of spatial soils information. It is anticipated that open access to soil 

information will contribute significantly in the future to eResearch and the increasing 

demand for international connectivity (Wilson 2012). 

Nevertheless, challenges exist to make soil information freely accessible including: 

establishment and implementation of governance roles and responsibilities; development 

of metadata standards; formalisation of copyright and licensing; data quality statements 

and data provision channels. These can be addressed through commitment, management 

and collaboration between public and private organisations. There are other untold issues 

that should be considered in open access to spatial soils information that depend on the 

‘type’ of licencing agreement with the jurisdiction and the opportunity for dialogue 

between users and producers (e.g. privacy conditions and terms). Issues that need to be 

addressed in the provision of spatial soil information via open access include: 

 How to identify what spatial soil information was used for and is the information 

being used correctly? 
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 What question or issue is the information being used to address? 

 How can the producers of this information improve it for future users and uses? 

 What deficiencies and issues (limitations) associated with the product is identified 

by the user? 

 How should producers guide users on the use, and the limitations of the 

information (is metadata appropriately detailed)? 

 Does a process exist where newly derived products by users can be accessed by 

other users and used to inform and update existing products? 

 What resources are necessary to support the process between the spatial soil 

information producer and user including responding to feedback and further 

support requests from users? 

 What process improvement strategy is provided for information sharing and what 

level of financial support is required to deliver this? 

 What resourcing is necessary to maintain and reticulate products? 

 In what from, and by what channels, should information be made available to 

users? 

 

3.3 Soil mapping, benefits, costs and utility 

This section briefly describes the evolution of soil mapping in Victoria with reference to 

the changing purposes for survey (needs) and the motivations for these changes (e.g. land 

degradation). The utility of these maps for existing and new applications, benefits, costs 

and the utility of soil mapping are also discussed to highlight the value proposition of soil 

mapping to users. 
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Figure 3.5. Spatial soil information products supplied between 2009 and 2012, shown 

against 2013-2014 (CASS – Coastal Acid Sulphate Soils, DSMap – Digital Soil Map of 

Victoria version 1, GV – 1:250,000 Geomorphology of Victoria, LRA – Land Resource 

Assessments (<=1:100,000), LSYS – 1:250,000 Land systems, LSs – Local soil map 

surveys (<1:100,000), SS – sites from the Victorian Soil Information System (VSIS), PPL 

– Primary Production Landscapes of Victoria). 

 

3.3.1 The changing purpose and needs for soil mapping in Victoria 

Traditionally, the purpose of soil and land surveys has been considered in a ‘categorical 

perspective’ as either ‘General’ purpose (providing a broad range of soil information 

products for many different uses by one or more clients who may not be defined) or 

‘Special’ purpose – interchangeably used with ‘Specific’ purpose (where data products, 

i.e. single soil property maps, are defined and targeted to meet the particular need of a 

user) (Beckett and Burrough, 1971; Dent and Young, 1993; Schoknecht et al., 2008). 
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Behind every soil map is a set of underlying principles, philosophies or objectives for 

undertaking that survey. As Gibbons (1981) states, in Australia we like to ‘have it both 

ways – general purpose and specific purpose, all used side by side’. 

Through the phases of soil mapping in Victoria, the purpose of surveys appears to have 

alternated, signifying the changing requirements of users and the evolving need for 

knowledge on land resources. Since the 1840’s, the primary reasons for soil mapping in 

Victoria has reflected concerns and priorities including conservation (environment), 

productive agriculture (e.g. irrigation development), settlement (including colonization 

and land clearance primarily for dryland agricultural purposes) and urban development. 

Figure 3.6 presents a subjective assessment of the evolving purposes for soil mapping in 

Victoria. The agriculture versus environment paradigm for soil mapping (Bouma, 1989) 

has endured through mapping programs in Victoria for nearly a century. 

Surveys before 1927 include broad-scale soil assessments of Victoria’s agricultural 

landscapes as part of an exploratory phase of soils in Australia (Taylor, 1970). Here the 

priority was the identification of relatively suitable land for agricultural settlement 

(Gibbons, 1983). This included initial chemical and mechanical assessment of soils from 

different geologies. In the early 1900’s there was a desire to correlate soil analysis with 

field trials but soil surveys were considered ‘not feasible’ at that stage (Martin, 1998). 

The impetus for soil survey was lost until the 1920’s when governments of the Pacific 

were encouraged to push ahead with soil surveys to support growing of pasture and crops 

(The Argus, 22/08/1923). During the late 1920’s and early 1930’s, expansion of irrigation 

schemes resulted in production issues including salinity and waterlogging that saw 

significant loss of vines and trees. Thus a requirement for large-scale specific surveys to 

guide and remedy these issues for settlements along the Murray River was established 

with soil surveys. At this time, Leeper et al. (1936) undertook a detailed survey at Mt 
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Gellibrand to identify soil types and their agronomic limitations as the first of the modern 

field surveys (Gibbons, 1981). 

 

Figure 3.6. Primary reasons for soil survey in Victoria as relative proportions (1890-

2015). 

 

A growing concern was the siltation of reservoirs that coincided with the droughts and 

wind erosion events of this period. In the late 1930’s, soil conservation and the 

importance of soil erosion to the national economy was recognised (Scott and Olley, 

2003). Low wheat prices combined with record global wheat production and severe 

droughts resulted in significant depopulation trends of the Mallee region. Establishment 

of the Sand-Drift Committee in 1933 and the Mallee Research Station in 1935 had an 

emphasis on the provision and education of improved farming methods to reduce soil drift 

(Ballinger, 2012). This conservation movement was enhanced with the establishment of 
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government organisations responsible for conservation practices including the Soil 

Conservation Board in Victoria (later known as the Soil Conservation Authority) in 1940 

from passing of the Soil Conservation Act. 

Surveys for conservation purposes also began with the first recognised study mapping soil 

in the Dookie district (NE Victoria) by R.G. Downes (Thompson, 1979). Downes defined 

‘units of land husbandry’ to raise and determine the optimum level of production while 

maintaining the ecological equilibrium. Soil erosion was also mapped and 

recommendations on land use provided (Downes, 1949). This initiated a sequence of 

surveys across Victoria with an emphasis on ecology, land use and primary production. 

These land-system surveys continued until the early 1990’s with two-thirds of Victoria 

mapped as part of this program.  

The period from 1940 to 1955 produced many large-scale soil surveys that were used for 

farm planning, irrigation and water allocation, and identification of district problems 

(Martin, 1998). Labelled the ‘Golden Age of Soil Mapping in Australia’ (Taylor, 1970), 

this period was responsible for high resolution soil maps as pre-requisites in rural 

reconstruction schemes nationally (Gibbons, 1981). Significant advances in soil science 

disciplines saw a wave of newly adapted and implemented analytical chemistry 

techniques to support these specific purpose surveys. Examples include: relations between 

particle size and field texture (Marshall, 1947), field pH determination (Raupach and 

Tucker, 1959) and soil classification (Prescott, 1944; Stephens, 1953).  

The post Second World War period saw a rapid expansion in the Australian economy, 

significant foreign capital investment and enhanced export opportunities for Australian 

produce (Edgar, 1966). Increased world demand for agricultural produce drove 

substantial increases in primary production from irrigation and dryland regions including 
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wheat, wool and beef. The rapid production gains were largely due to provision of 

agricultural extension services to support farmers and the enhanced agricultural research 

that was supported through statutory levies and industry supported augmentation of 

research between universities, state departments of agriculture and the CSIRO (Edgar, 

1966). 

From 1955 to 1970, a diverse range of general and special purpose surveys were 

undertaken with priorities including farm planning and layout of research stations, land 

suitability for various irrigated crops and parallel investigations, and small-scale 

ecosystem surveys with a conservation emphasis, e.g. reducing erosion and distinguishing 

edaphic (crop response) needs. However, the merits of soil mapping and its usefulness to 

meet these requirements were being questioned (Butler, 1958; Leeper, 1956). The major 

concerns shared by Leeper and Bulter were that the prioritization of soil classification and 

genetic origins had negated the mapping of properties and soil attributes that were 

relevant to production, as it is today. Gibbons (1981) identifies this phase as ‘the 

rationalisation of soil-land mapping’. Within this phase there are five proclaimed areas of 

rationalisation including: 

 Formulation and implementation of regional models of soil distribution (e.g. soil 

association, land system, ecosystem), 

 Knowledge of what users want soil maps for and how to provide it, 

 Special-purpose surveys where the use of the soil and land is considered in the 

design and implementation of the survey, 

 The development of the land system approach, 

 Cost and worthiness of the survey. 
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The philosophy on the ‘usefulness and predictive ability’ of soil mapping, changed in the 

late 1960’s and 1970’s (Gibbons, 1983). At this time there was a decline in general 

purpose surveys due to limited application of these surveys for large areas with 

nonspecific location recommendations (Olson, 1976). While these general purpose maps 

had proved an effective approach at introducing soil information to users ‘quickly and 

efficiently’, there was a greater demand for detailed information that addressed specific 

land use recommendations. Reviews of this time (Hallsworth, 1978; Olson, 1976; Beckett 

and Bie, 1978) suggest this change in soil mapping was part of a significant national shift 

from productivity to conservation focus. This transition included the delivery of specific 

purpose soil maps with requirements for soil/land properties used in classification 

systems, e.g. land capability assessment. 

Research in the dryland of the Wimmera investigated the edaphic links to surface soil 

physical properties following specific seasonal conditions as part of a broader survey 

project (Martin, 1974). This was followed over the next decade by soil-landform mapping 

in cereal production regions of Victoria and was complemented by high resolution 

surveys to support production trials on research farms and cereal breeding programs. 

Conservation surveys were also changing to meet evolving user preferences in a shift 

from general purpose surveys to detailed surveys for urban development (e.g. land 

capability assessment). This need for resource inventory to support expanding urban and 

suburban areas was recommended by Olson (1976) in a raft of recommendations 

including the need for government agencies to support the knowledge on soil productivity 

and future research to complement this direction. Olson (1976) highlighted this changing 

role of users and stakeholders in soil information and the failure of past surveys and 

research as this was often not provided in a format easily used. The emphasis of soil 
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surveys had shifted to address problems of environmental management (Cook et al., 

2008). 

Rowe et al. (1988) and Lindsay and Rowe (1990) developed land evaluation techniques 

including land capability guidelines that were refined and enhanced to support the 

implementation of surveys with assessments that could be readily interpreted and 

understood by planners and managers. The guidelines provide information on soil and 

land in a simple and systematic format which could be easily integrated with other 

information tied to a municipal planning process. The objective of these guidelines was to 

‘prevent ecological degradation and retain productive capacity’ where implemented 

(Lindsay and Rowe, 1990). In recognition of this growing emphasis to service local 

government, a survey was undertaken by Lorimer (1990) to establish attitudes towards 

and understandings of land inventory and capability information to support municipal 

planning, and to identify where there was a need or ‘willingness’ to use land information. 

A survey of 128 rural shires in Victoria (with a 93% response) identified a good general 

awareness of land capability assessment (78% of respondents) with 70% of all shires 

possessing a planning or development strategy and 89% believing that land capability 

information was important. The survey identified that 22% of shires were in the midst of 

developing a new strategy that would benefit significantly from access to land capability 

information. Understanding the needs of this specific user group in local government 

provided the justification for a program of land capability studies over the succeeding 15-

years. 

The uniformity and variance of soils was gaining recognition at this time and the 

associated costs of soil survey (Bie and Beckett, 1970; Beckett and Burrough, 1971). 

Spatial variability as an issue resulted in the conventional thematic choropleth model 

being described as ‘too simple to describe the reality of soil variation adequately’ 
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(Webster, 1985). Beckett and Webster (1971) emphasized the importance of lateral 

variability and associated variances for soil classes and properties. The prediction of soil 

properties and the high variability of soils over short distances have resulted in a poor 

overall predictive ability of soil mapping based upon soil classes due to the weakness of 

the soil classification scheme used for mapping (Gibbons, 1983). 

Changes in the type of soils data collected and how information was delivered to users 

was occurring also. Maps were produced to provide general information on the capacity 

of land to support major agricultural uses in dryland landscapes. Large-scale specific-

purpose surveys were centred on land capability for pasture, annual crops and deep-rooted 

perennials, and investigations of grapevine vigour decline (Martin, 1998). New 

techniques in sampling, spatial interpolation and stochastic modelling of soil variation 

such as geostatistics were pioneered during this period.  

The trend of surveys favouring conservation purposes and urban development continued 

for the next three decades. This represented a significant decline in soil survey requests 

and changing client demands (Martin, 2006). The National Soil Conservation Program 

(NSCP) that began in 1983 and ran until 1992 with a modest budget to support soil 

conservation, supported states and territories to undertake regional surveys to advise users 

on the constraints (e.g. soil pH and acidification), limitations and potential of agriculture. 

The South Western Victoria Soils and Landform survey (Maher and Martin, 1987) is an 

example of this work where the priority was the expansion of grains production in the 

high rainfall zone of southern Victoria. 

The pioneering of new survey techniques and application in different regions at various 

scales in the late 1980’s and 1990’s was driven by the widespread adoption of computer 

technology and Geographic Information Systems (GIS) with remote sensing (Bui, 2006). 
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Surveys of this period echo a transition from conventional soil survey into a new age 

where soil mapping is supported by rapid advances in information technology. As a 

consequence, numerous specific purpose surveys were undertaken with detailed 

assessments of land capability and land suitability that were a hybrid of legacy and 

evolving mapping methods. Few general purpose surveys were undertaken at this time 

with the continued rationalisation and reduction in resources available for conventional 

soil survey programs. 

The current emphasis of the state and federal government priorities in Australia is 

productivity (https://federation.dpmc.gov.au/) and security of supply. The expansion of 

agriculture to meet global food requirements into the future (Alexandratos and Bruinsma, 

2012) with the promotion of sustainable agriculture is a central issue of global initiatives 

such as the United Nations Sustainable Development Goals (SDG) 

(https://sustainabledevelopment.un.org/focussdgs.html). Expansion of agriculture and 

increased production is anticipated from the competing demand for land to support the 

expanding energy and water sectors (Godfray et al., 2010). Closing the yield gap and 

identifying dryland farmland that is not realising its potential productivity (Alexandratos 

and Bruinsma, 2012) is a priority to support the future demand for food in a sustainable 

manner.  

Investment priorities such as the Food to Asia Action Plan (2013) for Victoria 

(http://agriculture.vic.gov.au/agriculture/food-and-fibre-industries/exports-to-asia) aim to 

build markets with Asia on premium food and beverage products. A key action of this 

plan is the targeting of research and development, extension and innovation to grow 

primary production. This represents a re-direction away from the conservation and 

sustainability paradigm which has been the key driver for delivery of spatial soil 

information over the last three decades. 
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Today there are over 350 documented soil and land surveys (and studies) undertaken by 

various state and federal government organisations in Victoria. Of these, 106 surveys 

were considered in the production of a state coverage of soil and land surveys for future 

landscape modelling and monitoring programs (Robinson et al., 2010). These surveys 

have been grouped according to evolutionary phases of soil mapping (Table 3.2), and 

generally, there is agreement with the survey purpose of these periods. This includes: 

 51 surveys at a scale finer than 1:35,000; 

 37 surveys at a scale between 1:35,000 and 1:100,000; 

 18 surveys at a scale coarser than 100,000. 

The surveys range in scale from 1:10,000 (fine scale soil survey) to 1:512,000 (broad 

scale soil-landform and land systems). Within surveys the range of soils, soil site density, 

and scale of map production all strongly influence the quality of the delivered map. For 

each survey, the lead organisation has a major bearing on the purpose, style and 

methodologies used. For example, the Department of Agriculture (1874-1996) was 

responsible for most surveys concerning irrigation development and food production, 

whereas the Soil Conservation Authority (SCA) were focussed on land protection and 

undertook small scale land system studies with an ecological focus. Scale was also a 

factor in the selection of surveys as those that were finer than 1:35,000 had land 

components mapped and described whereas broad scale surveys may or may not have 

land components defined, let alone spatially delineated.  

Justification for the implementation of these surveys range from underlying 

environmental phenomena impacting upon agriculture (e.g. salinity, water erosion), 

population growth and the need to support urban expansion, nature and water 

conservation and aspirational research questions to understand soil distribution and 
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function, performance and origins. Survey mapping approaches include land capability 

(detailed, erosion risk, broad assessment), soil-landform and land systems (mostly general 

purpose), soil series and associations, land suitability including irrigation development 

and investigation of district problems, e.g. salinity.  

Of the 106 surveys, only 6 have been undertaken in the last 35-years with links to process 

and land use questions, coinciding with the perceived gradual decline of pedology as a 

science discipline (Basher, 1997). 

3.3.2 Supporting government and policy making 

To support claims for spatial soil information, the policies for soil survey and soil science 

need a clear mandate supported by the citizens rather than purely scientific considerations 

(Bouma and Drooge, 2007). A connection of research (including soil survey) with real-

world solutions is required. Bouma (2009) states that there is ‘usually little information 

about the context within which research studies have been made let alone about their 

relevance in that particular context. In contrast, a positive approach can be followed by 

prioritising soil functions that are universal in character and can be studied more 

exclusively by soil scientists.’ This presents an opportunity for spatial soils information to 

act as a medium for effective communication of environmental threats and land use 

possibilities. 
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Table 3.2. Selected surveys from Victoria against the phases of soil mapping in Australia. 

Period Distinguishing features including focus of delivering 
products 

Soil Survey 
(General or 

Specific) 

No. of 
published 
surveys 

Soil 
Classification 

Scheme# 

Survey purposes Survey type 

Pre 
1890 

Soil map sketches by surveyors for land settlement 
purposes 

General  Local   

1890 to 
1927 

Reconnaissance soil data collection with an emphasis on 
topsoil and rock. 

General  Local   

1927 to 
1940 

 

“The Science of Soils” phase – large-scale soil surveys 
that initially targeted irrigation areas and associated 
problems, e.g. salinity, and later in dryland. 

Specific 7 Prescott Agriculture (irrigation) – salinity, rising 
groundwater, suitable soil types 

Soil series 

1940 to 
1955 

 

“The golden age of Soils Mapping in Australia” - flexible 
soil survey techniques that recognised landscape patterns 
and soil associations. Mapping was at variable scales 
supporting re-settlement post the 2nd world war. 

Specific 11 Prescott, 
Stephens 

Agriculture (irrigation) – salinity, rising 
groundwater; Conservation – erosion, land 
use 

Soil series 

1955 to 
1970 

 

Beginning of the “Rationalisation of soil-land mapping” - 
Broad-scale mapping on ecosystem concepts and inter-
relationships with the environment and conservation 
outcomes, e.g. soil erosion and edaphic studies 

General and 
Specific 

17 Stephens, Stace Agriculture (irrigation) – suitable soils; 
Agriculture (dryland); Conservation - 
erosion, land use, resource condition; 
Urban development 

Soil series 

Soil associations 

Land systems 

1970 to 
1985 

Pedomorpholith and pedogenetic models as the basis of 
soil association and land systems 

General 33 Northcote, 
Stace 

Agriculture (irrigation) – suitable soils; 
Agriculture (dryland); Conservation - 
erosion, land use, resource condition; 
Urban development 

Soil associations 

Land systems 

Land capability 

1985 to 
2000 

Pioneering of Digital Soil Mapping techniques and 
application in different regions at various scales  

General and 
Specific 

24 Isbell and 
Northcote 

Agriculture (irrigation) – suitable soils; 
Agriculture (dryland); Conservation - 
erosion, land use, resource condition; 
Urban development 

Land systems 

Land capability 

Soil-landforms 

2000 to 
2010 

Global adaptation of Digital Soil Mapping – further 
refinement and enhancement of techniques with enhanced 
availability of covariates and legacy site data for 
implementation at various scales  

General and 
Specific 

14 Isbell Conservation - erosion, land use, resource 
condition 

Urban development 

Land capability 

Soil-landforms 

2010 to 
2015 

Digital Soil Assessment and Global provision of fine-
resolution digital soil information products 

General 2 Isbell Urban development; coastal development Land capability 

Soil-landforms 

# Prescott (1944); Shephens (1953); Stace (1968); Northcote (1979); Isbell (2002)
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Fisher and Crawford (2015) present a seven step process to answer policy problems. The 

role that soil survey plays in soil science and policy making is linked to the ‘what’, 

‘when’, ‘where’ and contribute to the ‘why’ for questions that are posed. Within this 

process framework, two important questions that require the contribution of spatial soil 

information are: 

 Establish the nature and significance of the problem or opportunity (the ‘what’), 

and 

 Design and conduct annual reporting and tailored evaluations of the research, 

development and extension being undertaken to address the problem. 

Given technological advances in soil mapping and development of risk assessment 

concepts, opportunities exist for the delivery of spatial soil information that can be readily 

and flexibly linked to ‘spatial scenarios’. For example, spatial soil information can be 

used to support: 

 a spatial representation of problems by region and industry, and 

 how is the problem changing over time and has it responded to past interventions? 

3.3.3 Benefit vs costs and the investment logic for soil mapping 

For a soil map to achieve specified outcomes in response to an issue or question there 

must be well-founded investment logic for this to occur. ACIL (1996) implemented an 

economic framework to assess the cost-benefit of land assessment projects and identified 

18 general categories for use of soil information to support outcomes including increased 

economic production, avoided environmental damage and industry development. Clearly 

the value proposition for soil survey should consider both current and future uses and that 

overall responsibility for control and financing of soil survey lies with state and national 

authorities (Martin, 1980). This has proven difficult to articulate to investors and potential 
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users given the decline in soil survey and advent of neoliberalist user-pays philosophies 

(Basher, 1997). 

The existing rationale for investment in soil survey tends to reflect the magnitude of the 

issue and benefits, costs, needs of users and their proposed actions as a result of the 

survey. An example of this is the contrast that exists between a farmer with needs for 

contemporary soil information to make real-time management decisions linked to 

production (e.g. fertilizer application, liming rates, ground-cover/erosion potential) 

against those needs of government to implement good governance through scientifically 

rigorous policy on resource use and environmental degradation. History tells us that there 

is always a need for spatial soils information to support analysis of an issue and 

formulation of a decision, irrespective of scale, cost or current political persuasion. 

Spatial soil information due to its long-term value and diversity of users requires enduring 

financial support to deliver collective benefits to all users. 

Where the investment in spatial soil information has been successful is when delivered 

information contributed to sound decisions on soil and land management. The benefits of 

soil survey (a primary spatial soil information source) are complex to evaluate but far out-

weigh the investment cost as determined from benefit-cost analyses (ACIL, 1996). Initial 

studies by Klingebiel (1966) and Bie and Beckett (1970) identified the dis-benefits and 

negative scenarios (e.g. avoided costs by informed and changed land use or management) 

for the economic justification of soil survey. Hallsworth (1978) identified that it was 

difficult to quantify benefits due to intangible social and community accruals that relate to 

the avoided adversity experienced by collective users rather than an individual. Beckett 

and Burrough (1971) prescribe that the ability of the survey and resultant map to answer 

questions posed by the user was fundamental to the map utility and the benefits derived. 
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Investigations by ACIL (1996) and Odeh and McBratney (1996) expanded the economic 

reasoning for soil survey by not only emphasizing the benefits due to avoided costs, but 

also the benefits due to adoption of new technologies and information. Both studies 

accommodate uncertainties in the application of data and the incremental flow of benefits 

that stem from the survey investment. Other economic considerations include the 

quantification of ‘intangible’ benefits and costs, value due to risk reduction (decreased 

likelihood) and structured linking of quantified ‘likely’ or ‘actual’ benefits. 

Between 1964 and 1978 less than 2% of survey related publications in Australia mention 

benefits to users (Hallsworth, 1978). Review studies (Table 3.3) have identified 

significant benefit-cost ratios (BCR) that support the conclusion that soil survey is cost-

effective (Manderson and Palmer, 2006). Where historical surveys are used in new 

synthesis studies or soil maps, establishing the BCR is difficult due to the absence (or 

poor documentation) of financial details for the legacy survey and that benefits to original 

beneficiaries may be unclear. Building upon the base soil information for synthesis 

studies (Bui et al., 2008) or new soil mapping, will incrementally add value through a 

value change proposition (Craemer and Barber, 2007). The value of these surveys are 

only realised once used in a decision-making context, and therefore it is desirable to 

understand user needs, monitor their use and tailor products to support high frequency 

and widespread application for their purposes. 

User-pays and knowledge services 

Existing investment paradigms have used the concept of user-pays, and willingness to pay 

(WTP) for soil survey (Diafus et al., 2013). The value of soil survey programs remains a 

contentious issue for all nations including those with existing programs (Giasson et al., 

2000). Given the benefits of existing and new soil survey (from empirical evidence) that 

leads to higher returns to farmers (Diafus et al., 2013), it appears counter-intuitive that 
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government is reluctant to invest in new soil survey given the benefits derived (Martin, 

1980). Manderson and Palmer (2006) counter the private funding (user-pays) argument 

by stating that ‘targeting farmers is simply not a sound business decision’, and that the 

priority should be well-resourced organisations, e.g. government, agribusiness. Basher 

(1997) identified the competitive science funding model and the change in institutional 

roles towards problem-orientated pedological research in the ‘Rationalisation of soil-land 

mapping’ period. Other confounding perceptions on the value proposition for soil survey 

include (i) why private funding would not be forthcoming, (ii) BCR’s are relatively low in 

comparison to those achieved in other sciences, e.g. > 100 in health sciences are common, 

and (iii) BCR overestimate benefits (Craemer and Barber 2007).  

Table 3.3. Benefit-cost ratios for spatial soil data (survey). 

Study BCR Details 

Klingebiel (1966) 46:1 to 123:1  Low, medium and high survey intensity (USA) 

ACIL (1996) 3:1 to 115:1 3 case studies (AUS) 

Odeh and McBratney (1996) 17:1 1 case study in northern NSW (AUS) 

Carrick et al., (2010) 6:1 to 13:1 1 case study in Southland New Zealand 

 

The concepts of WTP, BCR and market failure, demonstrate an existing paradigm that 

values information services. The emergence of information and knowledge management 

as wealth creation processes are not adequately factored into the intrinsic value delivered 

by soil survey. The current demand for open access to spatial soil information will 

increase the value of these existing surveys as they are transformed using knowledge into 

new products (Benkler, 2006). Online knowledge and information management systems 

such as Victorian Resources Online (Imhof et al., 2011) are key services that capture 
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legacy knowledge, make it freely accessible to a diverse network of next users and 

support spatial soil information products. 

3.3.4 Utility of soil survey, including legacy maps for new applications 

A significant argument for the investment in soil survey is that the information delivered 

improves user’s ability to answer questions on production and the environment. Beckett 

and Burrough (1971) using soil class mapping, grouped these questions into categories: 

what are they – proportions and area with related soils and properties; what is the soil 

class at a particular location and the properties of that soil; and where can soil classes 

with diagnostic properties be found. It is the joint expression of ‘where and what’ that 

define the need of a soil map. Beckett and Burrough (1971) summarise that the utility of 

the map is dependent upon the completeness of the profile classes, correct prediction of 

profile classes and definition of the soil property sampling distribution, and the presence 

of an accuracy assessment of the mean/model predictions for the profile classes.  

Clearly there are contemporary uses that drive the initial investment in soil survey 

(Beckett and Burrough 1971). However there may be multidisciplinary or future benefits 

that are extremely difficult to foresee and assess. For some time, there has been a tenuous 

dependence on legacy site information to produce maps due to a paucity of reliable and 

contemporary data (McKenzie 1991). The philosophy of collect once, use twice (or more) 

adheres to soil data and information as it can be used numerous times for many different 

purposes (Craemer and Barber, 2007). In most surveys there is a trade-off between 

resolution (scale) and necessary detail to mirror the purpose, intended use and perceived 

cost-benefits (Bouma 1989). Surveys may need to be augmented with predictions and/or 

observations of dynamic soil processes that are linked to production and conservation. 
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A compounding issue is the belief that soil surveys can be used indefinitely and with 

unsound principles due to misunderstandings of the context, scale, utility and purpose of 

the map (Gibbons, 1961). The advent of GIS and the increasing application of remote 

sensing in soil mapping potentially increase the inappropriate use of maps as users are 

generally not trained or informed on the implicit quality criteria used in map creation 

(McKenzie, 1991).  

Map makers are often forced to use existing legacy data and translate this into 

information products that will support ‘sound decisions’ by users (Dent and Young, 1993; 

McKenzie et al., 2008). The incomplete coverage of spatial soil information with 

contemporary assessments of dynamic soil properties (Tugel et al., 2005) was identified 

as an issue in Australia (McKenzie, 1991). Today, soil mapping efforts are plagued by 

incomplete data curation from past and current soil survey programs. As a consequence, 

this high dependency on the application of legacy surveys for general or specific purpose 

synthesis studies persist.  

Changes in land use, management systems and climate since the time of data collection 

represent further sources of uncertainty in mapping (Lagacherie, 2008). Resourcing of 

mapping and monitoring programs to support environmental monitoring and modelling is 

recognised as a global issue (Global Soil Partnership, 2014). 

Pertinent questions to consider are: will increased access to spatial soils information lead 

to improved knowledge and decision-making or, are we constrained by the limitations 

that exist in our legacy data and inadequate contemporary data curation? An article by 

Angela Hsu from the Yale Centre for Environmental Law and Policy 

(www.huffingtonpost.com/angel-hsu/does-the-environment-need_b_3568529.html) asked 

the question ‘Does the environment need big data? Hsu stated “Despite the data 
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available, we are still woefully plagued with gaps in knowledge, imperfect data, and 

uncertainty. We lack, for example, global datasets for national recycling rates, waste 

management, and toxic chemicals. That leaves us frequently creating indicators based on 

incomplete or imperfect data. These indicators are meant to provoke policymakers to act 

on an environmental issue. One danger in creating these proxy measures is that issues 

with data gaps are often ignored because the underlying problems are masked.” Bouma 

and McBratney (2013) ask a question along similar lines, “Why not focus on the indicator 

itself, rather than on a proxy value?” 

 

3.4 Digital Soil Mapping (DSM) 

Soil maps have traditionally been presented as a 2-D object, however supporting 

technologies such as GIS have enabled 3-D representation of soil-landscapes (Grunwald 

et al., 2001; Grunwald and Barak, 2003) and in the future the fourth dimension for 

applications such as change detection (McBratney et al., 2003). Already applications and 

tools such as virtual reality have been used in soil sciences to understand and convey 

processes and models of soils and landscapes to a new generation of users (Grunwald et 

al., 2000). Benefits due to accessible, available, cheap and temporally current data have 

been considerable in the advancement of new soil mapping programs. The advent of new 

technologies and desktop efficiencies represent a new age in soil mapping that were 

identified as aspirational goals by Gibbons (1961) and Butler (1963). Burrough (1987) 

discussed these new tools and technologies for land evaluation and described them as the 

‘state-of-the-art’ GIS. This age could be encapsulated and described as the pedometric 

period (Table 3.3). 
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As a discipline, Digital Soil Mapping (DSM) is many things, but at its core is the 

prediction of soil in space and time. Conceptually, DSM is still wedded to the cause of 

soil survey in the delivery of spatial soil information to support better decision making on 

land use. The principles identified by McBratney et al. (2003) still hold true and have 

been supplemented by a plethora of recent publications.  

3.4.1 What is DSM? 

DSM aims to “create and populate geographically referenced soil databases generated at a 

given resolution by using field and laboratory observation methods coupled with 

environmental data through quantitative relationships" (definition as used by the 

International Union of Soil Scientists Digital Soil Mapping Working Group). The major 

advantage of DSM (otherwise known as predictive soil mapping; Scull et al., 2003) over 

conventional soil mapping is that it provides a continuous prediction of a soil property 

and is capable of deriving uncertainties and error propagation can be tracked in the 

mapping process. Harmonisation of methods and observations across space and time is 

also an advantage of these quantitative approaches. DSM supports flexible yet 

quantifiable approaches to predict soil properties (e.g. pH, EC, organic carbon, clay 

content) at various scales (e.g. paddock to catchment) with remotely and proximally 

sensed data (e.g. geophysics, terrain derivatives) using spatial inference techniques. 

Scull et al. (2003) and Behrens and Scholten (2006) describe the primary goals of 

predictive soil mapping as: 

1. To produce models for predicting soil properties from spatial covariates to 

efficiently and effectively collect soil data, e.g. state-factor CLORPT 

approaches and pedotransfer functions. 

2. To present soil continuity maps, e.g. geostatistics. 
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3. To incorporate expert knowledge in predictive mapping and to understand 

soil variance. 

McBratney et al. (2003) reviewed approaches used to creating digital soil maps, the 

methods and data used to populate information systems. Based on the review, a 

framework for predicting soil properties (evolution of Hans Jenny’s Soil Forming Factors 

function published in 1941) across regions of interest with seven factors was presented:  

	 , , , , ~ , , , ~ , , , ~ , , , ~ , , , ~ , , , ~ , 	  

where Sp is the predicted soil attribute, s is soil information from a prior map, remote or 

proximal sensing, or from expert knowledge, c represents the climate at a point, o is the 

organisms, r is the topography/landscape attributes, p is parent material, a equals time 

(age) and n is the spatial position and ε is the residuals (unexplained error). x,y are the 

precise spatial coordinates and t is at an approximate time. 

3.4.2 DSM and conventional mapping 

A transition from qualitative to quantitative mapping procedures has enabled soil survey 

to be more adaptable and responsive to modern-land use questions than in past surveys. 

DSM as an approach, or tool (Behrens and Scholten, 2006), is recognised for its 

quantitative underpinnings in contrast to conventional soil survey processes that are based 

on qualitative theories and models (McBratney et al., 2003). This transformation from 

conventional mapping to DSM across the globe is due to the accepted advantages of 

digital soil mapping over traditional survey practices including cost-benefits, uncertainty 

assessment, consistency, explicit mapping methodologies and the ability to readily 

produce a soil map with the advent of newly available soil or covariate data (Carré et al., 

2007). Here lie distinct advantages of DSM over traditional approaches (McBratney et al., 

2003). 
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Possibly the greatest asset of a map derived using DSM in comparison to a conventional 

soil map is the ability to recreate and manipulate the map of soil properties or classes in 

digital form using a GIS. This provides an opportunity for the map to be ‘self-updating’ 

where, as new observations or insights into processes are collated and accessible in a 

digital system, the production process of map making can begin again. This is essentially 

the philosophy behind the soil-landscape inference system (Robinson et al., 2010) and the 

ability to store and manage the model (Heuvelink et al., 2010) used to create the map. As 

Heuvelink et al. (2010) suggest, using a model management approach will enable 

flexibility in the various DSM iterations (e.g. spatial and temporal bounds, support and 

resolution), can save on storage and supports data sharing, enables maps to be easily 

updated (and archived) and supports multiple realizations using uncertainty propagation 

methods. Fundamentally it is about storing models rather than maps. 

Like many current areas of soil science, DSM is transitioning from a research phase 

where methods are being developed and tested to an operational phase where it is used 

consistently by soil surveyors to improve and efficiently produce soil maps (Boettinger et 

al., 2010; Grunwald et al., 2011; Wilson and Thomas, 2012; Minasny and McBratney, 

2015). Published DSM examples at various scales include: global – SoilGrids (Hengl et 

al., 2014); national – Soil and Landscape Grid of Australia (Viscarra Rossel et al., 2015); 

state/territory – (Gray et al., 2016) and region – South Australia’s agricultural zone 

(Liddicoat et al., 2015). 

However, there are imperfections that exist in DSM. Perceived deficiencies in data, 

methods, connection with user requirements and the lack of standard DSM methodologies 

for widespread operationalization do limit the wider adoption of DSM (Hempel et al., 

2008). The contemporary value of a digital soil map should not differ from that of a 

conventional soil map in principle. However, it is very difficult to foresee what the 
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advances in technology will be and how users will want spatial soil information delivered 

as a result of these advances.  

Map ‘representation’ and ‘presentation’ should be considered in delivery of spatial soil 

information to avoid disappointment and disharmony from user groups. Accompanying 

metadata will enable users to know exactly what the map is, how it was produced, and 

guiding principles on its application (e.g. fit-for-purpose statement) that will benefit 

adoption of digital soil maps. It remains to be seen if users will want tailored purpose 

maps (e.g. land capability assessments, erosion hazard risk assessments) in contrast to 

numerous general purpose maps that can be derived using DSM. A further implication is 

that maps produced today using DSM may only have a relatively short life expectancy 

given the expedient and flexible approaches available to producing these maps today. 

Perhaps it will be the process of map creation and the learnings from this with qualitative 

guidance that are the truly valuable aspects of DSM to capture for future map production 

purposes. 

3.4.3 Digital Soil Assessment and Digital Soil Risk Assessment 

The evolution of DSM as a field of soil science has been propelled by the need for 

specific quantification of threats to soil and soil functions (Carré et al., 2007). Known as 

Digital Soil Assessment (DSA), the outputs of DSM (soil property/class spatial 

prediction) are used as inputs to answer problems raised by users to protect soil functions 

and supress threats to soil. DSA as a natural progression of DSM is analogous to specific 

purpose survey. The maturation of DSM to a DSA is viewed as essential otherwise we 

run the risk ‘of expiring on a mountain of unused digital maps’ (McBratney et al., 2012).  

A progression of DSA is Digital Soil Risk Assessment (DSRA). The primary objective in 

DSRA is the implementation of management scenarios and interventions to guide policy 
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development or management interventions. This is achieved through the integration of 

various data and information sources on socio-economics and the environment where 

scenarios can be tested and threats impacting the soil resource analysed. The inclusion of 

accuracy and prediction risk with uncertainty estimates aims to support users in their 

decision making processes (Carré et al., 2007). 

For DSRA and DSA to succeed, both rely upon quality DSM outputs. As McBratney et 

al. (2012) asked “To what degree can we continue to produce DSM information without 

first considering its end use?” Collection and production of soil information supporting 

multidisciplinary approaches to sustainable land use will need to be guided by which 

disciplinary information (e.g. hydrological, ecological, social, soil) is most critical to 

address the question posed. The value proposition of DSRA and DSA will become 

evident to users when the underlying soil information from DSM is geared towards soil 

functions and the threats that are posed (Bouma, 2001). Attention on soil functions 

provides direct links to ecosystem services and concepts such as natural capital (Bouma, 

2009). A further question posed by McBratney et al. (2012) was “to what extent do we 

soil scientists need to step up and help development of assessment methods?” This is a 

relevant extension of an earlier suggestion by Bouma et al. (1986) that called for soil 

scientists with their survey interpretations to become intermediates offering insight into 

the soil process and issues as part of multidisciplinary teams. 

The integration DSA and DSRA has tremendous benefits from the reduced costs, 

formalised and consistent application of standard methods, and models that can be easily 

updated including assessment of error propagation as uncertainty estimation. This can be 

undertaken at all stages of the assessment process (Carré et al., 2007; Grunwald et al., 

2011). Questions remain on how to address, or, accommodate large uncertainties if they 

occur in the assessment process. Potential sources of error in risk assessment are difficult 
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to nullify, however uncertainty approaches to identify, assess and quantify error sources 

in DSRA can be constructed. Published examples of DSA and DSRA for different uses 

include: irrigation development (land capability assessment) in Tasmania (Kidd et al., 

2012, 2014), soil contamination risk assessment in the Nor-Pas-de-Calais region of 

France (Caudeville et al., 2012), soil natural capital in New Zealand (Hewitt et al., 2012), 

soil quality assessment for Hong Kong (Sun et al., 2012) and delineation of food 

production zones such as terrons in New South Wales (Hughes et al., 2012).  

3.4.4 Data and knowledge deficiencies 

McBratney et al. (2003) identified the inadequacies in available and quality soil site data 

to fit spatial inference models. Opportunities to develop and implement new sampling 

methods, refine and apply new sensors for rapid and cheap soil data acquisition and use of 

legacy soil data should be at the forefront of supporting DSM (Lagacherie, 2008). Legacy 

data is hampered by issues including format, lack of harmonisation, imprecision and 

inadequate georeferencing (Krol et al., 2008) and it may be unsuitable as it was collected 

for a specific purpose with no further use in mind. 

All DSM methods (as has been the practice in existing survey) are dependent upon data 

from field and laboratory analysis to develop conceptual models (Lagacherie, 2008). A 

paucity of soil site data to undertake independent validation as a quality assessment and 

adequately fit such models using stochastic methods (McBratney et al., 2003) remain 

issues for the DSM community. 

DSM has a high reliance on environmental data (covariates) to populate the spatial 

inference systems. To date proximal sensing has achieved better results than remotely 

sensed primary or secondary derivatives in digital soil mapping applications (Mulder et 

al., 2011). This is attributed to the coarser resolution of remote sensing leading to reduced 
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pixel purity. Vegetation indices have been used with mixed success (Mulder et al., 2011) 

but new passive and active satellite sensors such as Sentinel 1 and 2 

(https://earth.esa.int/web/guest/missions/esa-operational-eo-missions), combined with 

existing platforms such as MODIS and Landsat offer better signal-to-noise ratios, high 

temporal frequency of image collection and band settings that favour improved 

correlation with soil property measurement.  

Remote sensing of soil properties at depth is still a knowledge gap for DSM (Minasny et 

al., 2008a). Issues such as how to predict buried horizons may be possible in the future 

through synergies of geochronological data with models of soil-landscape evolution 

(Minasny and McBratney, 1999; Vanwalleghem et al., 2013) and newly available active 

and passive sensor data. 

3.4.5 Method performance/robustness and user perceptions 

There is an ongoing need for a meta-analysis to establish why some DSM methods 

perform better than others and their overall robustness (Scull et al., 2003; Grunwald, 

2009). This analysis should contrast performance of global and local assessments and the 

requirement for successful local implementation to ensure global studies are credible. 

Further investigations are necessary to define if ‘performance’ or ‘predictive power’ 

should be attributed to the mapping technique, available soil site data, available covariates 

and qualities of these relative to the soil properties of interest, calibration and validation 

techniques, uncertainty or landscape complexity. Operational complexity, data handling 

capabilities, model simplicity and purity also should be considered when choosing which 

DSM method is a ‘best fit’ for implementation. 

Grunwald (2009) in a review identified a deficiency of ‘intrinsic’ soil properties such as 

biological, morphological and mineralogical used in DSM studies. Although these 
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properties are recognised as important to understanding soil functions and processes, 

there has been a marked decline in soil mineralogy, soil morphology and soil genesis 

research in comparison to pedometrics (Hartemink et al., 2001). The production and use 

of DSM products in some branches of soil and environmental science (e.g. watershed and 

hydrological modelling) has been sparse (Terribile et al., 2011; Thompson et al., 2012). 

This may be due to global efforts to deliver general use soil maps to understand the 

inventory and stocks of terrestrial organic carbon in soil (Grunwald et al., 2009; Robinson 

et al., 2012). Opportunities exist to exploit the new spatial soil information systems 

around the globe at various scales and for mapping many different properties linked to 

production and the environment.  

With a global pre-occupation on the development, evaluation and the application of 

digital soil mapping methods and approaches, a potential over sight has been the scant 

detail on the commissioning of, implicit value and usefulness of information contained in 

digital soil maps (Lark and Knights, 2015). How users will interpret and understand the 

implications of uncertainty attached to a map product are not clear. Lark et al. (2014) 

discusses the importance of using probabilities as determined from a geostatistical model 

with clear messages on the root causes of uncertainty (e.g. spatial variability) and 

outcomes from management scenarios. They note that this approach will ‘indicate where 

particular interventions are likely to be required by the land manager, and also where 

further soil sampling is required in order to resolve uncertainty about local conditions 

and make a more robust decision’. This example has real-world relevance with inferred 

risk linked to mapping and implications of management interventions. 

Users including soil scientists must also be aware of the potential uses and limitations of 

DSM. This includes the time-soil variation relations that may be obscure, or not defined 

in DSM products. Users must be educated in the use and limitation of these maps in lieu 



75 
 

of classical soil maps (Hempel et al., 2008). Likewise, as DSM practitioners, we need to 

be responsive and paying close attention to the evolving needs of user groups. 

3.4.6 New environmental covariates 

Traditionally maps have provided a snapshot of historic soil conditions as information 

used in the map creation process are often constrained to legacy data of historic 

conditions (Grunwald et al., 2011). The growing demand for contemporary information 

on soil condition and how, where and when changes occur to the soil resource are of 

primary interest.  

The current data deluge in science (Roudier et al., 2015) heralds new opportunities to 

undertake DSM with a plethora of available environmental covariates at fine and coarse 

resolution over different time and spatial scales. New satellite platforms that will deliver 

new covariates include the Sentinel (1 and 2) sensors. Sentinel-1 is a synthetic aperture 

radar satellite that operates in C-band and provides continuous imagery regardless of 

environmental conditions.  

Advances in space-time modelling will be necessary to understand Anthropocene changes 

to the soil resource (Adewopo et al., 2014) and for future projections (Grunwald et al., 

2011). Current baseline soil condition may benefit from historical interactions between 

land cover and management using remote sensing (Sheffield and Morse-McNabb, 2015). 

Understanding the resilience, capacity (and where this has been compromised), and 

performance of agro-ecosystems will be important to guide policy decisions on land use 

and management to improve processes and functions delivered by soil (Crawford and 

Fisher, 2014). 

There has been considerable effort by research groups to improve the quality of spatial 

information on land use history (Sinclair et al., 2012), current land use and land cover 
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(Morse-McNabb et al., 2015), and ground cover (Sheffield et al., 2015). This new data 

may prove useful to interpret production constraints caused by soil and interactions 

between soil and plant where a yield gap is occurring (van Ittersum et al., 2013). Further 

development of spatial datasets on land management would be beneficial as management 

appears to be a primary factor to explain significant changes in soil where long term use 

of multiple practices has occurred (Robertson et al., 2015). 

3.4.7 New soil sites 

New soil site data is necessary to support time-series analysis for properties that are 

dynamic and respond to management practices. A surge in the collection of sensor data 

and availability of this data has occurred (Kshetri, 2014), but gaps remain in the current 

patchwork of currently available data to enable broad assessment of soil and land 

condition and impacts due to agriculture (Zaks and Kucharik, 2011). New methods of 

collecting soil information from the private sector including precision agriculture are also 

encouraged through crowd sourcing and citizen science (Rossiter et al., 2015). Ongoing 

maintenance, governance, and resourcing of reliable infrastructure to support this sharing 

of soil data and information remain troublesome in Australia. Access to data using 

creative commons (http://creativecommons.org.au/) and interoperable solutions are 

advocated including the roles and responsibilities for custodianship (Wilson, 2012). 

Wireless sensor networks that are connected through the internet can deliver real-time soil 

data in a format to support calibration and validation of biophysical models for 

agricultural decision making (Zaks and Kucharik, 2011). The advances in information 

technology and rapid expansion of sensors have seen an exponential increase in data 

being generated on soil (Roudier et al., 2015). Data mining techniques and the advent of 

high performance computing can support the integration of these various data sources into 

spatial soil information systems. 
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While new soil sites should be a priority to improve DSM outputs for users, the 

importance and intrinsic value of legacy soil site data should not be forgotten as it is 

impossible to go back in time and sample soil to benchmark its condition. Many sites with 

associated data remain in notebooks and as sites sheets in archives and filing cabinets. 

This data often fills spatial gaps in the soil inventory but also provides snap shots in time 

to make assessments on changes in ecosystems, soil and the functions and processes they 

deliver. Prior to 1980 in Victoria, there was considerable resourcing for field survey 

which appears unlikely to be repeated in the near future. In Victoria between 80,000 and 

90,000 sites were surveyed (MacEwan et al., 2014). Development of methods to 

expediently capture, collate and harmonise this legacy data with analytical methods and 

procedures of today (e.g. infrared spectroscopy) will support assessments to understand 

soil change and impacts to soil caused by agriculture. 

 

3.5 Uncertainty 

For a map to be useful for a specific purpose, errors and uncertainties should be 

quantified to communicate if the map is appropriate (Heuvelink, 2014). In this section, a 

brief overview of the elements of uncertainty analysis is provided and links to risk 

described. User perceptions on uncertainty and conveying uncertainty on a map is 

presented and potential options to reduce uncertainty in maps are discussed. 

3.5.1 What is uncertainty? 

Uncertainty is used interchangeably with reliability, accuracy, precision, error and 

confidence (Minasny and Bishop, 2008). It is described as a lack of assurance or 

conviction (knowledge) in an observation or model (Goovaerts, 1997). Uncertainty is 

based on a dichotomy of aleatory uncertainty (statistical variability or error) and 
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epistemic uncertainty (lack of information). In DSM these sources of uncertainty can be 

documented, quantified and their overall contribution to error propagation determined. 

Sources of stochastic and epistemic uncertainty have been enumerated by Refsgaard et al. 

(2007) and Benke et al. (2011), enabling assessment of uncertainty in analytical processes 

(Mowrer, 1999).  

In DSM, uncertainty is often represented as statistical (aleatory) uncertainty (Heuvelink 

2014). This is the lack of confidence in an estimated value equalling a true value. A 

simple calculation of the 95% prediction interval (PI) is by subtracting and adding 1.96 

times the kriging standard deviation to the kriging prediction. However, the 95% 

confidence required for scientific proof can be beyond the practical and financial 

capabilities of many science domains (Lemons, 1996). Heuvelink (1996) identified a 

mixed model of spatial variation for uncertainty estimation as this technique combines 

discrete and continuous components in the one approach. In contrast, data input errors to 

models are considered more significant in model studies than in mapping as errors don’t 

just affect the initial model state and some of its processes, but may impact its boundary 

conditions including timelines (Finke, 2012). Another confounding issue is the 

‘completeness’ of data to meet requirements of the model. Where deficiencies exist in 

input data and predictive functions are used to increase available data for models, there is 

likely to be an overall increase in error (Finke, 2012).  

3.5.2 Uncertainty and risk 

Uncertainty is considered an inherent part of risk (Mowrer, 1999), however, estimating 

risk by integrating ‘risk in the decision’ and the ‘risk acceptable to the decision-maker’ is 

challenging (Agumya and Hunter, 1999). Methods to define acceptable risk thresholds 

can be determined via expert judgement, boot-strapping procedures or formal cost-benefit 

analysis. In cost-benefit examples, benefit is the reduction in risk with cost representing 
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the financial expense required to achieve that benefit (Agumya and Hunter, 1999). Cost-

benefit and economic decisions is valuable as it establishes a critical baseline that defines 

what level of information is required to meet an acceptable risk (Lowrance, 1976; Griffith 

et al., 1999).  

For a risk based approach, error propagation and uncertainty should be accommodated to 

define acceptable risk thresholds (Agumya and Hunter, 1999). Attitudes of users and user 

groups to risk can vary depending upon the risk attitude of the user. Information 

uncertainty represents the amount of risk a user is prepared to accept, although risk is 

rarely considered in the assessment of fitness-for-use. Assessment of fitness-for-use 

compares risk-in-a-decision with the risk acceptable to the decision maker. This approach 

is desirable as it is simple and cheap to implement, benefits from available information 

contained in metadata and can be easily understood by users for their particular 

application (Agumya and Hunter, 1999). It is essential for users to assess the ‘fitness-for-

use’ principle for a map (Agumya and Hunter, 1999), but how to establish a ‘fitness’ 

statement on a DSM product is still to be conceived. 

3.5.3 Support, scale and reducing uncertainty 

In DSM, there are usually many different types of spatial data used with different scales 

resulting in different spatial autocorrelation models. Scale issues have led to unbalanced 

models being derived. The models can be applied at different scales (supports) leading to 

errors in input parameters for DSA and DSRA purposes (Finke, 2012). The concept of 

support is important to convey to map users (Heuvelink, 1999) as this can significantly 

influence the outputs of error propagation assessments. Support can be temporal and/or 

spatial in nature. Point based methods, e.g. kriging at point support, assume point 

observations are 100% correct. Here the measurement errors aren’t interpolated or 

accommodated in these approaches (Fisher, 1999). Uncertainty can be calculated at the 
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point support and associated block (defined area). Within block uncertainty is averaged 

while the aggregation of larger blocks will reduce uncertainty at the expense of resolution 

(Heuvelink, 1999). Validation of these soil maps should adhere to the spatial support of 

the covariate data, and ultimately, the maps are better if this is the case (Bishop et al., 

2015). 

To reduce uncertainty in a map, an immediate solution is to collect further information 

(e.g. additional soil sites) to obtain improved estimates. Other suggestions include the 

implementation of model (map) ensembles where maps from separate operations can be 

combined to derive a mixture map. This mixture map ideally should integrate the 

strengths of all maps and address weaknesses (high uncertainty), enabling better spatial 

predictions (Griffith et al., 1999; Finke, 2012; Malone et al., 2014). Non-discriminatory 

approaches to apply model ensembles are recommended where inputs are weighted by 

error/uncertainty contribution using Bayesian Model Averaging (Finke, 2012). 

3.5.4 User perception 

Uncertainty has a negative connotation, and as McBratney et al. (2003) suggest a 

preference is to use the phrase ‘certainty’ instead. There remains scepticism on the value 

and importance of uncertainty assessment (Mowrer, 1999), however, the DSM 

community has recognised the importance of quantifying uncertainty and is leading 

numerous other environmental mapping programs across the globe (Heuevelink, 2014). 

Unfortunately, unfounded uncertainty often outweighs the scientific or technical aspects 

of uncertainty. Conveying the importance of uncertainty analysis to those in the policy 

sphere is valuable but there has been little understanding to date on how uncertainty 

effects the decision making process (Mowrer, 1999). Convincing policy makers of the 

relative importance of technical uncertainty to decision making is a priority for the DSM 

community (Carré et al., 2007). 
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Clearly there are considerable investigations to be undertaken to understand what level of 

knowledge users require to deploy such maps (Hengl and Toomanian, 2004). Simplicity 

of interpretation and use is the key reason for adoption of uncertainty representation 

(Agumya and Hunter, 1999). Users require education on the information qualities 

contained in a digital soil map and how the associated uncertainty will impact their use 

(Carré et al., 2007). There are few tools and techniques available to make users (such as 

policy makers) aware of the uncertainties in a model (Finke 2012). Producers of DSM 

need to be more aware of end-user requirements to tailor products including uncertainty 

estimates to suit and support user needs (Gascoigne and Wadsworth, 1999; Carré et al., 

2007). The uncertainty measures provided to users should be independent and represent 

uncertainty by a method understood and agreed to by the target data users. Ideally 

uncertainty estimation should include the decision making process that may result in a 

loss of information for the particular problem (Gottsegen et al., 1999). 

3.5.5 Inclusion and representation of uncertainty with DSM products 

For users who base decisions on DSM outputs, consequences (e.g. financial, social, risk 

to human life) could arise from incorrect conclusions based upon information that was 

imprecise, inaccurate, unreliable and uncertain. Consequences can be expressed as risk 

(Agumya and Hunter, 1999). Maps need to expose the magnitude of the errors, their 

spatial distribution (Griffith et al., 1999) and how error is propagated as a result. The 

uncertainty should be quantified or estimated with the map representing the errors and 

uncertainties and easily communicated to users (Heuvelink, 2014). 

Users of maps need confidence in the map from a DSA or DSRA to enable reliable 

decisions to be made (Carré et al., 2007). An estimate of uncertainty, regardless of its 

magnitude, is considered better than no estimate at all (Gascoigne and Wadsworth, 1999). 

Finke (2012) suggests that if the uncertainty was high in a DSA, application of evidence 
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filters (Finke et al., 2008) for different evidence levels to clarify responsibility for a 

decision should be considered. The linking of DSM, DSA and DSRA enable the 

estimation of uncertainty at all stages and has benefits for producers and users in their 

efforts to minimise error and uncertainty (Carré et al., 2007). 

Over the last decade, there has been useful research on representations of map 

uncertainty. Hengl and Toomanian (2004) incorporated uncertainty into the map through 

a hybrid static visualization technique that used whitening and pixel mixing to represent 

uncertainty. They advocated that it is crucial to define what end users perceive by looking 

at maps (with included uncertainty) and what visualizations mean to their decision 

making process. 

Previous studies have emphasized where probability values fell below a threshold 

(Webster 1994). The study by Lark et al. (2014) is a valuable example of a DSRA with 

users in mind and support for their management decisions. The authors use of a standard 

‘verbal scale for probabilistic information’ developed for the IPCC (Mastrandrea et al., 

2010) with ‘language intensifiers’ as well as the corresponding probabilities (as 

percentages) describe the certainty associated with the map (Figure 3.7). For policy 

makers and government, this information is useful as it enables government to 

strategically invest (should it choose to do so) to address production or environmental 

issues in a risk approach. The approach developed by Lark et al. (2014) can also be used 

for decision making where users can make judgements on the financial imperatives of 

management interventions. 



83 
 

 

Figure 3.7. Verbal uncertainties using probabilistic data: from Lark et al. (2014). 

 

3.6 Research directions 

The core themes touched on in this review include understanding user needs for spatial 

soil information with connection to past and current soil mapping priorities. The priorities 

and investment logic for soil mapping have been steered by the economic and 

environmental issues at that time, e.g. regional reconstruction efforts from 1940-1955 to 

coincide with the end of the Second World War and returning servicemen. While the 

focus has ebbed and flowed between production and environmental for soil mapping 

(Section 3.3.1), understanding the current needs for users of spatial soil information (with 

reflection on past survey purposes) has been identified in this review as a research and 

knowledge gap. A case study focussing on spatial soil information needs of biophysical 

modellers as a key next user group is presented as Chapter 4. 

To support these needs, there is a clear desire to have high resolution and contemporary 

soil information for decision making purposes. The costs and benefits of soil mapping are 
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clear from examples presented for Victoria, and from published benefit-cost studies 

(Section 3.3.3). Government is reluctant to invest in soil mapping programs even with the 

ability to leverage legacy survey information for new purposes and reducing the overall 

cost. This can be supplemented by the advances in information technology and 

methodologies pioneered in DSM towards providing soil information linked to decisions 

and soil management issues (e.g. pasture and crop health). 

A complication to this synergy of legacy spatial soil information with DSM is the 

dependency on legacy data that is plagued by incomplete or incongruent data. Soil pH is 

one such property where extensive collections of pH measurements exist for field and 

laboratory based assessments. The ability to leverage this legacy data for mapping and 

modelling, supported by knowledge on the error sources that can be linked should enable 

more widespread use of this spatial data for mapping and monitoring purposes. This 

forms the basis for research investigations of Chapter 7. 

Important to supporting this provision of spatial soil information is the implementation of 

uncertainty approaches that guide and inform users on the errors, assumptions and 

completeness of the information for use in decisions. The review of uncertainty analysis 

has identified that the DSM community has been proactive in the communication of 

uncertainty and leads many environmental mapping programs across the globe. 

Opportunities exist though to advance knowledge on error sources not commonly factored 

into error propagation approaches (e.g. epistemic uncertainty). This is the focus of 

Chapter 5 with an emphasis on soil change.  

The advancement in uncertainty approaches accommodating epistemic uncertainties can 

be used in DSA or DSRA to provide greater certainty to users enabling more reliable 

management decisions. Changes in land use and management systems are one such 
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example. The approach presented by Lark et al. (2014) provides a useful template on 

which to base the communication of uncertainty in spatial soil information. A case study 

that integrates a more wholesome uncertainty analysis supported with communication of 

this to users is presented in Chapter 6. 

The final research topic of this thesis combines legacy soil data and samples, scanned 

using infrared spectroscopy for predicting expensive and time consuming properties such 

as clay mineralogy (Chapter 8). While this review and the following chapter fail to 

identify these as priority or ‘highly sensitive’ properties to landscape models, their use in 

land evaluation assessment and other soil research is acknowledged. An opportunity to 

exploit the plethora of available data for mapping these difficult to measure properties by 

combining legacy data with spectral models is considered a research gap. 
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Chapter 4 Soil data for biophysical models in Victorian 

landscapes: current needs and challenges 

The literature review (Chapter 3) emphasized the inadequacy of detailed information on 

the needs of users for spatial soil information. Recent attention paid to the topic of user 

needs has touched on the diversity within and among user groups of spatial soil 

information. A critical prerequisite of future soil mapping efforts is to engage and 

understand the specific requirements of users to support their application of this 

information. The aim of this research was to identify what are users’ needs for spatial soil 

information and how this has changed by focussing on the requirements of biophysical 

modellers as a key user group. Therefore the objective of this chapter was to: 

Define what spatial soil information is sought by users to support biophysical models for 

agricultural landscapes. 

This chapter reviews the demand for, and trends in, soil property data for various models 

being used to support government policies and programs in the State of Victoria, 

Australia, over the 2009-2014 period. The use of biophysical models to support 

agricultural industries management for increased food production and environmental 

protection is on the rise. 

I examined perceptions of the parameters that affect model sensitivity and error through 

surveys, workshops and interviews of public sector biophysical modellers. Although the 

data requirements to support the models and their sensitivities have remained similar over 

the 5-year period, there has been a decrease in the diversity of models used. There is 

evidence of increased application of models at point/site scale to support grains, dairy and 

livestock production industries in Victoria. This narrowing of model selection and soil 
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data requirements has occurred at a time when input data for models has never been more 

prolific. The vast array of available data sources will require evaluation and 

harmonization as part of solutions that integrate error sources through uncertainty 

approaches (Chapter 5). Opportunities are identified to deliver finer scale soil data from 

digital soil mapping to better meet modelling requirements across different scales for 

agricultural industries in Victorian landscapes. 
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4.1 Introduction 

Since the seminal modelling of global population and resources by the Club of Rome 

(Meadows et al., 1972), increased computing power has led to more sophisticated 

biophysical models that are used to support agricultural industries' management for 

increased food production and environmental protection. Such biophysical models 

simulate the biological, chemical and physical processes of agricultural systems (Keating 

and Grace, 1999; Boote et al., 2010) and are increasingly implemented as tools to model 

agricultural landscapes and support decision making processes by farmers and their 

advisers (Bergez et al., 2010). These biophysical models enable users to test and answer 

important questions on land use and condition as well as management and production 

scenarios. 

4.1.1 Model limitations 

Models must become more robust to represent scenarios that can include critical changes 

in climate, management practices and farming systems in the future (Sinclair and 

Seligman, 1996; Asseng et al., 2013). Successful modelling relies on available and 

accurate topographic, climatic, land use and soil data (Bouma et al., 1986). Soil data may 

represent steady state and/or dynamic processes depending on the complexity of the 

model. Data from soil survey and mapping has focused on static properties rather than 

those that change (Bouma et al., 1986). While static properties have an important role in 

modelling, dynamic properties must also be modelled for many soil processes and 

interactions between biosphere, hydrosphere and pedosphere (Wagenet et al., 1991). 

There are likely consequences as estimation of soil properties may introduce considerable 

error into models. 

Soil scientists need to understand the role and importance of soil data in the modelling 

process to enable the delivery of available, current, reliable and plausible soil data for 
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these models. Model developers understand the soil data required to support their model, 

including error and uncertainty from parameter estimation, systematic bias and 

sensitivity. Baker (1996) suggests that model developers need to be honest about the 

limitations of models and the research required to address these. Making end-users (e.g. 

land managers) aware of these limitations in soil data or the model itself is central to the 

ongoing success and utility of farming systems models for decision making and 

management (Keating and McCown, 2001). 

4.1.2 Soil data availability 

Due to the rapid expansion and use of soil data in digital form provided by sensors, 

conventional soil maps have become largely unsuitable for many users who wish to view 

soil data at finer scales (Bouma, 1989). Advances in technology and development have 

seen a global surge in sensing and acquisition of data, its collection, management and 

availability. 

Referred to as the ‘New Digital Age’ (Schmidt and Cohen, 2013), or ‘Era of Big Data’ 

(Boyd and Crawford, 2012; Mayer-Schonberger and Cukier, 2013), the current period 

provides unprecedented opportunities for an improved understanding of our global 

environments including agroecosystems. The use of volunteered geographic information 

and citizen science is also contributing substantially to the volume of soil (Rossiter et al., 

2015) and environmental data (Fienen and Lowry, 2012; Werts et al., 2012; Sui et al., 

2013). As governments adopt open data policies (Zuiderwijk and Janssen, 2014) this 

emerging collaboration of large data arrays and analytical procedures with progressive 

and complex modelling will potentially enhance management philosophies of agricultural 

industries globally. 
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4.1.3 Understanding soil data needs of biophysical models 

Research into users' soils data needs is scarce (Omuto et al., 2013). Wagenet et al. (1991) 

discuss the data requirements of simulation models and how existing soil survey plus 

predictive functions (pedotransfer functions) can supply a minimum dataset that includes 

dynamic soil properties that respond to land management change or climatic impacts such 

as flooding. Nichol et al. (2006) in a review of models and methods for landscape analysis 

defined the key model sub-domains that require soil and land attributes such as: 

hydrological, plant growth (crop, pasture or forestry), carbon and climate change, 

ecology, and biodiversity. This review of qualitative and quantitative biophysical models 

identified their soil data requirements and examples of where they have been 

implemented. 

A complementary study by Robinson et al. (2010b) collated modellers' opinions regarding 

the key soil properties affecting sensitivity for these same biophysical models. Wood and 

Auricht (2011) defined current and future soil information requirements for the Australian 

Soil Resource Information System (ASRIS) based on interviews with selected modellers 

and the responses given to requests for data and information from ASRIS. This review 

identified a suite of physical, chemical, hydrological, biological and site characteristics at 

various scales that were sought by ASRIS users. 

4.1.4 Collection of soil data for modelling 

The synthesis and delivery of soil data to support modelling is subject to government 

priorities (MacEwan et al., 2014), advances in research, and changes in user needs for soil 

data to address questions posed. There is a constant need to adapt and enhance soil survey 

information as new questions arise (Bouma, 1989). Questions relate to systems that 

operate at different scales, requiring soil data at different levels of detail (Bouma, 2001). 
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Given the multiple challenges of scale, evolving needs of users and the availability of soil 

data in various formats, it is timely to ask if the right soil data to support sustainable 

agricultural development is being provided. This should then focus delivery of soil data 

on properties of direct relevance to improve model predictions and consequent decisions. 

In this paper, we present an example for the state of Victoria, Australia, that identifies (i) 

the simulation models used in agricultural industries, and the application scale at which 

these models are implemented, to support government policies and programmes, (ii) the 

soil data that modellers perceive as affecting model sensitivity and uncertainty, and (iii) 

any changes and trends in the demand for soil property data in the last 5 years. Future 

challenges in soil data and information provision to support modelling are discussed, 

including the context of demand, availability of soil data in various formats and how this 

will assist in the parametrization process of biophysical models for optimising agriculture 

management. 

 

4.2 Methods 

The study uses qualitative and quantitative data from surveys, focus groups and 

unstructured interviews summarised from an expert workshop in 2009 (Robinson et al., 

2010) and follow up survey in 2014. The workshop was conducted in March 2009 to 

establish what biophysical models were applied and used soil data, what were the sources 

of the data, how sensitive were these models to the data, and what the future requirements 

for data in modelling applications were. The 2014 survey was undertaken to investigate 

changes in demand for soils data in models and included modellers that attended the 2009 

workshop. Responses from 2009 and 2014 were collected using different evaluation 

techniques and it is recognised that participants respond differently between questionnaire 
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and interview prompts (Oei and Zwart, 1986). While focus groups enable thorough and 

engaging dialogue on complex topics, and surveys enable objective assessment of 

responses, a desirable approach is to combine the two approaches that enable qualitative 

and quantitative responses to be collated. Sound quantitative data analysis and 

interpretations can be explained and reinforced by qualitative responses. This supports the 

utilisation of these two evaluation techniques in the workshop in 2009 and justified a 

comparison with those of the 2014 survey. 

4.2.1 Study design and data collection 

Researchers from the former Victorian state government agencies (Department of 

Primary Industries and Department of Sustainability and Environment) and the University 

of Melbourne participated in the study. Participants include 23 model developers and 

practitioners in 2009 and 31 in 2014, operating in a diversity of model domains and sub-

domains including agricultural production, ecological sciences, catchment hydrology, 

environmental pollution and nutrient flow. 

These modellers were chosen as they are recognised as specialists in operating these 

models for landscape modelling and assessment (Nichol et al., 2006). 

Modellers that participated in the workshop were assigned to four modelling sub-domains 

that use soil data, including: 

 Forestry and biodiversity (FB) 

 Carbon and greenhouse (CG) 

 Crops, pastures and nutrients (CPN) 

 Hydrological processes (HP). 

Responses from participants were recorded using a survey questionnaire and focus groups 

as part of the workshop representing these modelling sub-domains. This approach enabled 

exploration of questions and associated issues further with all workshop participants. 
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The knowledge gained from responses at this workshop was used to refine questions for 

the online survey in 2014. This online web-survey was conducted using Survey Monkey® 

(www.surveymonkey.com). The questions that were developed for this study include: 

1. What models are being used, at what spatial modelling scale are they applied 

and what soil data are being used to run these? 

2. To what industry/land use are the models applied? 

3. What are the key soil data for the models applied including the spatial scale of 

the input soil data? 

4. Are the applied models sensitive to the soil property data? 

This study synthesizes results from both the 2009 and 2014 surveys. After the completion 

of the 2014 survey, additional follow-up interviews were conducted with selected 

modellers to test initial conclusions and to identify logic for changes observed between 

the surveys. 

Responses recorded from the online survey and workshop included whether a modeller 

applied a model at a particular scale (not how frequently). Model implementation has 

been reported as an ‘application’ and no specific time-constraints were stipulated to 

respondents on this application of the model. 

4.2.2 Biophysical models 

Many different types of models exist, including computer, conceptual, descriptive, 

deterministic, empirical, mathematical, mechanistic and stochastic. Although these have 

different operational architectures, nearly all are used in landscape analysis. Biophysical 

sciences and systems including ecology; soil and water/hydrology; solid earth processes; 

hydrogeology; agricultural production; environmental pollution and nutrient flow; and 
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land-use change interact, are modelled and used in ensemble biophysical simulation 

modelling approaches. 

For this study, the models were selected from the review by Nichol et al. (2006) and listed 

as being used by participants at the 2009 workshop. This suite of models used, either 

individually or as part of a model ensemble, is assigned against the modelling sub-domain 

groups of the 2009 workshop and are briefly described in Table 4.1. 

4.2.3 Modelling scale 

For modelling, there is a scale that is distinct from both time and spatial scale, known as 

the ‘modelling’ (or working) scale (Blöschl and Sivapalan, 1995). The modelling scale 

generally reflects the process of interest and the design of the model being applied. For 

this study, the spatial modelling scales described by Dooge (1982; 1986) have been used 

with slight modifications to reflect the application of these models to agriculture: 

 Local scale (point or site) – 1 to 30 m, 

 Paddock scale – generally 100 to 1000 m, 

 Catchment scale – 10 km, 

 Regional scale – 1000 km 
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Table 4.1. Identified models that have been applied in Victoria. 

Modelling domain Model Description 

Hydrological 
processes 

SWAT The Soil Water and Assessment Tool (Neitsch et al., 2001) is a continuous time model that can be used to assess impacts of 
management and climate on water supplies and watersheds. The model is often applied in large river basins. 

 CAT 

 

Catchment Analysis Tool (CAT) is a multilayer hydrological model that links biophysical data and models at a range of 
spatial and temporal scales (Beverly 2007). This model ensemble uses existing models for crop growth, forest growth, 
grazing systems, water balance and groundwater. 

 WaterCAST The Water and Contaminant Analysis and Simulation Tool for catchment modelling (Argent et al., 2008) is a hydrological 
tool that selects and links component models to predict flow and constituent loads (e.g. sediment, nutrients, salt) at defined 
points in a river network over different time steps and scales. Core processes operating include runoff generation, 
constituent generation and filtering. 

 HYDRUS  

 

The model can simulate water movement in multiple dimensions (1, 2 or 3) with heat and solutes in variably saturated 
media (Šimůnek et al., 2011). The Richards equation is used to simulate the transport mechanisms from hydraulic properties 
estimated by van Genuchten (1980) functions for soil textural classes. 

 Howleaky? This model is a decision support system that assesses the impacts of land uses, soil conditions, management and climate on 
water balance and quality (McClymont et al., 2011). Largely based on PERFECT (Littleboy et al., 1992), the model operates 
in 1 dimension at various scales on a daily time step. 

 PERFECT  

 

The Productivity Erosion Runoff Functions to Evaluate Conservation Techniques (Littleboy et al., 1992) model is used for 
cropping and pasture systems to predict water balance for management sequences. Operating on a daily time step, soil water 
is updated daily in this one dimensional model from crop/pasture sequence criteria and management parameters. 

 CatchMODS The Catchment Scale Management of Diffuse Sources (CatchMODS) framework simulates the effects of different 
management actions on nutrients into surface water systems. CatchMODS (Newham et al., 2004) applies biophysical 
datasets including stream networks, soil properties, rainfall distribution, land use and climate in a decision support 
framework with additional models able to be linked. 

 RUSLE  

 

The Revised Universal Soil Loss Equation is a modification of the USLE to account for effect of slope steepness and 
length on erosion. This soil erosion model uses a combination of terrain, soil and vegetation inputs to predict hillslope 
erosion (sheet and rill) potential. 
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Table 4.1 (continued) 

Modelling domain Model Description 

 DRAINMOD DRAINMOD (Skaggs 1980) simulates the hydrology of poorly drained, high water table soils at high temporal frequency. 
Input variables including rainfall and evapotranspiration, rooting depth of crops and pastures and soil properties are used to 
predict impacts of management on soil water and crop yield. The model is applied at paddock or watershed scales. 

Crops, pastures and 
nutrients (Growth) 

APSIM (and 
Yield Prophet) 

 

Agricultural Production Systems Simulator is a modelling systems framework (Keating et al., 2003) to integrate biophysical 
modules that simulate processes in farming systems with management scenarios. Primarily concerned with plant production, 
the model also has economic and environmental models linked to support users with decisions at point and paddock scale. 

 FNLI Farm Nutrient Loss Index is a decision support tool concerned with nutrient loss through hydrological and atmospheric 
pathways. The model is applied generally at paddock or ‘group of paddocks’ scale to identify key factors in availability and 
transport on nutrients (Melland et al., 2004). 

 CROPSYST 

 

Cropping Systems Simulation Model uses biophysical data inputs including climate, soil properties, crop details and 
management operation data to understand effects of these factors on production and environment. Modules can be included 
or excluded for various scenarios. The model is a multi-year, multi-crop, daily time step crop growth simulation model 
(Stockle and Nelson 1996). 

 DAIRYMOD / 
SGS 

This model operates on a daily time-step for pasture growth scenarios in dairy farming systems (Johnson, 2013). Several 
modules including pasture growth, water (rainfall and irrigation), soil organic matter and nitrogen dynamics, animal 
attributes including growth and lactation, stock movement and management. 

 GrassGro 

 

This decision support tool is used in sheep and beef industries to quantify the variability in pasture and animal production, 
and associated risks. Climate, soil properties, management, pasture composition are all inputs. Operating on a daily time 
step, daily weather data is used to model processes of pasture growth and animal production (Simpson et al., 2002). 

 FAO-56 This soil water evaporation model is able to identify evaporation and transpiration components in irrigated and rainfed crop 
settings. A crop coefficient is derived from crop details and averaged soil evaporation data. The model can be run on a daily 
time step (Allen et al., 1998). 
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Table 4.1 (continued) 

Modelling domain Model Description 

Carbon and 
greenhouse 

RothC This model operates on a monthly time step to simulate the turnover of organic carbon in non-waterlogged surface soil. 
Outputs from the model include an estimate of total organic carbon, microbial biomass and ∆14C calculated on a years to 
centuries timescale. Climate, soil properties and management inputs are the primary data used to model the breakdown of 
organic carbon inputs into active components (www.rothamsted.ac.uk/sustainable-soils-and-grassland-
systems/rothamstedcarbon-model-rothc). 

 FullCAM A carbon accounting system, FullCAM supports the estimation of carbon stock change on forest and agricultural systems. 
The model is comprised of two sub-modules that simulate C in live vegetation, soil, debris and products, and can account 
for management practices and interventions. The system integrates various models including 3-PG and RothC and can 
accommodate sensitivity and uncertainty analysis to provide prediction error estimates 
(http://www.environment.gov.au/climate-change/greenhouse-gas-measurement/land-sector). 

 CENTURY The CENTURY model attempts to simulate the plant-soil environment including carbon and nutrient dynamics for different 
types of ecosystems (grasslands, forest, crops, and savannahs). Crop and grassland modules are used with a soil organic 
matter submodel to simulate flow and pools (organic and inorganic) of carbon, nitrogen, phosphorus and sulphur (Metherell 
et al., 1993). 

Forestry and 
biodiversity 

3PG+ The 3PG+ forest growth model (based on 3PG) calculates dry mass production from the photosynthetically active radiation 
(PAR). Biophysical input factors including temperature, soil properties including soil water availability and salinity are used 
in empirical relationships to predict yield (Landsberg and Waring, 1997). The model has a multilayer soil water balance 
calculated on a daily time step (Morris and Baker, 2002) and has been integrated into the CAT model. 
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4.2.4 Industry/land use 

The dominant agricultural land uses where simulation models have been implemented in 

Victoria (Figure 4.1; Morse-McNabb et al., 2015) are listed (Table 4.2), together with 

statistics for estimated area and value of agricultural commodities (Australian Bureau of 

Statistics for 2012– 13 — www.abs.gov.au). 

 

Figure 4.1. Agricultural industries and land uses in Victoria (2014) – from 

https://www.data.vic.gov.au/data/dataset/victorian-land-use-information-system-2014. 

 

4.2.5 Soil data requirements of models 

The reviews of Wagenet et al., (1991), Nichol et al., (2006), Robinson et al., (2010) and 

Wood and Auricht (2011) with the GlobalSoilMap (GSM) twelve priority properties 

(www.GlobalSoilMap.net) were used to establish a preliminary set of soil hydrological, 

physical, chemical, biological and ancillary properties required for models (Table 4.3). 

This was used to develop targeted questions for participants in the 2014 web-survey. 
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Table 4.2. Land use, estimated area and value of agricultural commodities in Victoria. 

Land use Area (hectares) Commodity value ($ bn) 

Dairy 602 764 $3.7 

Cropping 4 256 006 $3.24 

Horticulture 197 069 $2.07 

Other pastoral 6 251 002 $3.57 

Forestry 517 744  

Conservation 3 638 186  

 

4.2.6 Model sensitivity 

The term 'sensitivity' is sometimes used interchangeably with ‘important’, ‘correlated’, 

‘effective’ or ‘influential’. Crick et al., (1987) defined ‘important’ parameters to models 

as those whose uncertainty contributes greatly to the uncertainty in assessment results, 

while sensitive parameters are those that have a significant influence on model results. 

The 2009 workshop used simple descriptive classes for model sensitivity to soil data 

including: (1) Highly sensitive (requires high precision and error terms), (2) Class or 

category (e.g. loam, in-lieu of particle size distribution), or (3) Qualitative estimate. Here 

the term ‘sensitivity’ was used; firstly, to identify if a parameter was viewed as ‘critical’, 

or necessary in the implementation of the model, and secondly, if the particular attribute 

required precision and accuracy to achieve reliable model results. The 2014 online survey 

adopted the same definition for sensitivity but respondents were asked only to identify 

whether or not the model was sensitive to a soil property. 
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Table 4.3. Hydrological, physical, chemical, biological and ancillary properties required for models. 

  

Wagenet et al.  
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P
ri

m
ar

y 
In

du
st

ri
es

 

M
in

in
g 

&
 E

xp
lo

ra
ti

on
 

E
ng

in
ee

ri
ng

 

G
ov

er
nm

en
t 

H
ea

vy
 / 

li
gh

t i
nd

us
tr

ie
s 

U
rb

an
 / 

pe
ri

-u
rb

an
 

S
oi

l e
xp

er
ts

 

C
li

m
at

e 
ch

an
ge

 / 
hy

d 
m

od
el

li
ng

 

cr
op

/y
ie

ld
 m

on
it

or
in

g 

bi
od

iv
er

si
ty

 m
od

el
li

ng
 

F
or

es
tr

y 

R
an

ge
la

nd
s 

/ t
ro

pi
ca

l 
sa

va
nn

as
 

D
eg

ra
da

ti
on

 m
od

el
li

ng
 

P
ol

ic
y/

S
O

E
 r

ep
or

ti
ng

 

S
oi

l w
at

er
 / 

hy
dr

ol
og

y 

A
g 

pr
od

uc
ti

on
: 

P
as

tu
re

/l
iv

es
to

ck
 

E
nv

ir
on

m
en

t /
 P

ol
lu

ti
on

 
/ N

ut
ri

en
ts

 

H
yd

ro
lo

gi
ca

l 

G
ro

w
th

 

C
ar

bo
n 

O
th

er
 

 

Hydrological  Air-dry moisture content                                           
  Water content                        
  Ksat                        
  0-1500 kPa (moisture retention)                        
  water infiltration                        
  FC, PWP & AWC/PAWC (DLL/CUL)                       
  Solute content                        
  Solute and water flux                        
  Gas diffusivity flux                        
  Profile water holding capacity                        
  Soil water balance                        
  Substrate permeability                        
  Soil structure                        
Physical  Soil strength (compressibility)                        
  Pore size distribution (porosity)                        
  Particle size distribution                        
  Bulk density (<2 mm, whole)                       
  Aggregate stability                        
  Shrink-swell potential                        
  Texture class                        
  Coarse fragments                       
  Clay%                       
  Sand%                       
  Silt%                       
  Soil temperature                        
Chemical  Cations/exch bases (Ca, Mg, K, Na)                        
  CEC / ECEC                       
  Anions                        
  Redox                        
  Kinetic methods                        
  Equilibrium modelling                        
  OC & OM                       
  N (kjeldahl)                        
  Total P                        
  Extractable P                        
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  Extractable A, Al, Mn                        
  Micronutrients (B, Mn, Fe)                        
  pH(H2O, CaCl2)                       
  EC                       
  EC (saturated extract)                        
  Extractable Fe, Al, Mn                        
  % P retention                        
  Clay mineralogy                        
  Cl                        
  NO3                        
  Carbonate                        
  ESP                        
  C fractions                        
  Soil nutrient balances (NPK)                        
  C/N ratios                        
  NH4                        
Biological  Viruses                        
  Bacteria                        
  Archaea                        
  Eucarya                        
Ancillary  Rainfall                        
  Daily evaporation                        
  Root distribution                        
  Air temperature                        
  Parent material/substrate                        
  Landform                        
  Native vegetation                        
  Distribution (spatial-map)                        
  Rooting depth (plant exploitable)                       
  Horizon/sample depths                        
  Depth to impeding layer (eg. rock)                       
  Depth of regolith                        
  DEM attributes (slope, aspect, TWI)                        
  Soil surface boundary conditions                        
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4.3 Results 

The online survey achieved an 83% response rate with 31 modellers that were distributed 

among the modelling sub-domains (FB=5, CG=6, CPN=10, HP=10) completing the 

survey. Of the 23 modellers that participated in the 2009 workshop, 18 completed the 

2014 online web survey thus enabling changes in soil data priorities to be analysed (Table 

4.4). Those that didn't complete the survey were either no longer working in government 

or had moved to another position that didn't include modelling. 

Table 4.4. Survey summaries. 

Survey Year Evaluation technique No. of modeller 
respondents 

Overall response rate 
(%) 

Workshop 2009 Focus group and survey 23 88* 

Online survey 2014 Questionnaire 31 83 

* at least three recognised modellers that were unable to attend the workshop 

 

4.3.1 Model users 

Some change has been observed in the application of models at various scales by 

modellers between 2009 and 2014 (Table 4.5). For the dairy industry, DAIRYMOD and 

CAT achieved the highest number of users in 2014 (three each). Other models applied 

include plant production focused models, including APSIM and GrassGro, and models 

linked to nutrients and hydrology, including SWAT, PERFECT and Howleaky?. The 

cropping industry also has a diversity of models (12 in 2009 and 9 in 2014) applied at the 

four modelling scales. APSIM (13 users) and CAT (six users) registered the most users in 

2014 while CROPSYST was also used with a production focus and RothC implemented 

for carbon accounting and quantification purposes. 



119 
 

In the other pastoral industries (primarily lamb, wool and beef), up to 13 models have 

been applied, reflecting a diversity of production issues including nutrient loss and 

catchment hydrology impacts. RothC has been used for carbon modelling in Victorian 

pastoral systems. In horticulture, modellers have applied up to six models in 2009 and 

2014 including CAT, CROPSYST and FAO-56. The forestry industry has seven different 

models applied with 3PG+ and CAT the most common. The forestry industry models 

have focused on catchment hydrology responses including water yield and harvest in 

response to plantations of native and introduced species. The carbon accounting model 

FullCAM has also been used for estimation of terrestrial ecosystem carbon stocks on 

forested land. 

Table 4.5. Responses from modellers to application of a model at a particular spatial 

modelling scale for agricultural industries for the 2009 workshop and 2014 survey. 

 Agricultural industry*modelling scale 

Survey Dairy Cropping Other 
pastoral 

Horticulture Forestry 

2009 13 20 18 7 9 

2014 17 30 22 7 12 

 

4.3.2 What models, scales and industries? 

Simulation models most widely applied at any scale for the primary agricultural industries 

in 2009 include SWAT, CAT and HYDRUS and in 2014 CAT, APSIM and PERFECT 

(Table 4.6). In 2009, a modeller averaged 3.6 model applications (model x modelling 

scale) while in 2014 this had increased to 5.1 (n=153).  
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Table 4.6. Number of modellers to apply a simulation model for the primary agricultural 

industries from the 2009 workshop and 2014 survey. 

Model Dairy Cropping 
Other 

pastoral 
Horticulture 

Forestry and 
biodiversity 

 2009 2014 2009 2014 2009 2014 2009 2014 2009 2014 

SWAT 1 2 2 1 2 1 2  3 2 

HYDRUS 1  1 2 1 1 1 1 2  

PERFECT 1 2 2 3 2 2    4 

GrassGro 1 1   1 2    1 

3PG+         2 6 

APSIM  2 4 13 1 3    1 

RothC  1 2 2 1 2 1  2 1 

CAT 2 3 2 5 3 5  2 1 8 

Howleaky? 1 2 1 1 1 2     

CROPSYST   2 2    2   

DAIRYMOD 1 3    2     

FAO-56 1 1 1 1 1 2 1 2 1 1 

WaterCAST          1 

FullCAM   1  1  1  2 4 

RUSLE 1  1  1      

FNLI 1          

CENTURY         1  

DRAINMOD 1    1      

CatchMODS 1  1  1      

 

In 2009 there were 19 different models used, but only 14 in the 2014 survey. An increase 

was observed for the plant growth modelling sub-domain from 17 applications in 2009 to 

47 in 2014 and for forestry and biodiversity from 7 in 2009 to 13 in 2014. The 

hydrological processes modelling sub-domain accounted for the most model applications 
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(44 in 2009 and 76 in 2014) while a decrease was observed in carbon modelling from 12 

applications in 2009 to eight in 2014. 

At the local modelling scale (point/site), there has been an increase from 22 applications 

in 2009 to 52 in 2014 (Table 4.7). This can be partly attributed to modellers using 

multiple models for comparison purposes or in ensembles. The most widely used 

point/site models from responses in 2014 are the APSIM and CAT models. 

Table 4.7. Model applications at the four spatial modelling scales for the 2009 workshop 

and 2014 survey. 

 Spatial modelling scale 

Survey Point/site Paddock Catchment Region 

2009 22 31 20 10 

2014 52 45 38 23 

 

More models were applied at the paddock scale than at a site/point scale in 2009, 

although this did reverse in the 2014 survey. For catchment modelling, nearly twice as 

many model applications were identified in 2014 as in 2009. In 2009, over 75% of 

responses for catchment scale modelling were from the hydrological processes model 

subdomain where 10 different models were used. The least frequent combination of 

model application by modelling scale is at the regional scale. The number of model 

applications has increased from 10 in 2009 to 23 in 2014 where 11 models were used. 

4.3.3 Model sensitivity to soil properties 

The 2009 workshop identified 23 soil properties that were considered to impact upon 

model sensitivity (Robinson et al., 2010b). Across all the model sub-domains, soil 

properties that contributed to model sensitivity include: air-dry moisture content (%), 

critical lower limit (CLL)/permanent wilting point (PWP) (m3/m3), clay content (%), bulk 
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density (Mg/m3), ammonium (NH4+), nitrate (NO3−), organic carbon (%), total 

phosphorus (Total P) and total nitrogen (Total N). 

Responses from the 2014 online survey indicate no further additions to the key soil 

properties identified in 2009 (Figure 4.2). Soil depth and carbon fractions achieved the 

highest response for contribution to model sensitivity in 2009 with 87% of survey 

respondents in 2014 identifying soil depth as being important. Other properties that were 

considered important in their contribution to model sensitivity for 2009 and 2014 include 

organic carbon, rooting depth, bulk density, clay content, CLL/PWP and drained upper 

limit (DUL)/field capacity (FC). Soil properties that recorded a decrease in contribution to 

model sensitivity include cation exchange capacity (CEC), Total P and carbon fractions. 

Ammonium, nitrate and carbon to nitrogen ratio (C/N) did not achieve the same level of 

recognition in 2014, on impacts to model sensitivity, as compared with those of the 2009 

workshop. No significant change was identified for soil properties considered to affect 

model sensitivity between 2009 and 2014 except for soil depth which was overlooked by 

participants in 2009 (in 2014 this achieved the highest response of any soil property). A 

decrease in response to model sensitivity by Total P and coarse fragments (>2 mm 

fraction) was recorded for the carbon and greenhouse, and forestry/biodiversity model 

subdomains. 

 

4.4 Discussion 

Consistent with previous research by Heemskerk and MacEwan (2007), this study 

confirms that a diversity of models with soil data requirements are used to understand 

landscape processes linked to management, production and the environment. However, 

there has been a reduction in the number of models used for landscape analysis in 
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Victoria between the two surveys of this study. This may reflect priorities of government 

investment for agricultural industries, a loss of personnel within modelling based 

programmes, and perceived issues in developing skills with models. 

While a decrease in the range of models used was observed, there was a substantial 

increase in the number of users and applications of models. This is attributed to the 

increasing need for modellers to apply multiple models at various scales and coupling of 

models in ensembles (e.g. CAT) that link models within a landscape framework (Beverly 

et al., 2005). 

 

Figure 4.2. Comparison of soil properties that were considered sensitive in models for the 

2009 and 2014 surveys. 
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The increase in model users also corresponds with an increase in the application of point-

based models such as APSIM and its online commercially available interface Yield 

Prophet. Increased use and diversity of models to support the certain industries can be 

attributed to the changed government focus for research and development investment in 

key agricultural industries, such as grains, dairy and red meat production. Such point-

based models are likely to be more focused on productivity outcomes directly linked to a 

site rather than catchment or regional scale model applications that are often directed 

towards understanding impacts of land use management and impacts on hydrology and 

biodiversity. 

Due to growing local, national and international focus on food and fibre production 

(Tilman et al., 2002) and a change in agro-ecological conditions in Victoria with the end 

of the Millennium Drought (van Dijk et al., 2013), there appears to be less emphasis on 

climate change and use of carbon models and assessment (including RothC, FullCAM 

and CENTURY). This also corresponds with the completion of significant national and 

state research programs such as the Soil Carbon Research Program (SCaRP) to quantify, 

assess and understand composition of soil carbon stocks for Australia (Baldock et al., 

2013). 

A correlation between the area of agricultural industry and the frequency of model uses is 

evident. Industries that use the largest portion of agricultural land in Victoria such as 

cropping and other pastoral - beef, lamb and wool (10.3 Mha) also have the greatest 

model utilization. Other industries including horticulture and dairy appear to be focused 

largely on technology developments to increase production and therefore have a reduced 

emphasis on modelling.  
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Across agricultural industries, there are many different organisations and individuals that 

deliver modelling services. This study has centred on the needs of a specific group of 

public sector biophysical modellers. While the sample size in this study was small, the 

participants are specialised and representative of professionals in model development and 

use worldwide. 

With regards to the satisfaction or ‘fit for purpose’ requirement for soil data, some 

modellers suggest that high spatial resolution soils data is not required for modelling 

(Heemskerk and MacEwan, 2007). A response from the 2014 survey supports this view 

and illustrates further issues between models and the provision of soil data: “even though 

we would always prefer finer resolution and more detail, it often isn’t really necessary”. 

This is consistent with responses to cost and accuracy issues on data access of the Global 

Soil Partnership survey (Omuto et al., 2013) where modellers prefer data accessible 

online and can make do with less accurate data.  

These responses are symptomatic of a mismatch that currently exists between the models, 

agro-ecological process understandings and the current ability to deliver fine scale soil 

data. It is unclear if this mismatch is due to models being systematically reduced through 

trial and error where ‘tuning’ and ‘matching’ models to one set of conditions results in a 

low dependency on soil data, or a minimum soil data requirement due to an absence of 

suitable data (Bouma, 1989). For agro-ecosystems with water and nitrogen limits, as is 

often the case for many regions of Australia and Sub-Saharan Africa (Sinclair and Rufty, 

2012; Zhang et al., 2016), deterministic biophysical growth models often have a large 

bias and uncertainties for soil characteristics (Aggarwal, 1995). There has been a 

tendency to refine and make plant growth models more sophisticated, although the 

parameters linked to soil and climate are static and therefore potentially cause the model 

capability and data requirement to be unbalanced (Bouma, 2001). The exclusion of soil 
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data may reveal if the model is unbalanced in terms of sensitivity, uncertainty and relative 

contribution of different biophysical factors to the design (Aggarwal, 1995; Bouma and 

McBratney, 2013). 

4.4.1 Soil properties in models 

A simple view of model sensitivity to soil data and the importance of soil attributes to the 

model performance were applied in this study. Results from the 2009 workshop identified 

23 hydrological, physical and chemical properties that were highly sensitive in respect to 

one model or another. Properties relating to plant growth, including effective rooting 

depth and soil depth (depth to rock), were also included. 

Between 2009 and 2014 there was some change in the proportion of respondents that 

rated a soil property as highly sensitive to their model application. For example, in the 

2009 survey 13 % of respondents identified that soil depth impacted model sensitivity, 

and this increased 87% of respondents in the 2014 survey. This increased recognition of 

the model sensitivity to soil depth may be due to participants simply overlooking this as 

an ‘assumed’ requirement in biophysical models. Another theory is that due to further 

model refinement and research since 2009 confirming the importance of soil depth to 

understand soil water dynamics with links to catchment yield and plant production (X 

Cheng, Personal communication). 

Respondents in the 2014 survey did not include pH and EC as sensitive properties in their 

models (there was also a low recognition of model sensitivity to these properties in 2009). 

This may be due to other functions such as ‘root growth exploration’ accounting for these 

properties in the model. This finding conflict with the use of these two soil properties 

extensively for on-ground decision making linked to land use, land classification and 

management, in particular understanding potential limitations to crop and pasture 
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production. Alkalinity and acidity affect micro and macronutrient availability and toxicity 

to plants, and salinity, which increases the osmotic potential around plant roots, restricts 

water uptake and reduces plant health (Rowell, 1994). This indicates that current process 

models are either incomplete in consideration of soil and landscape processes (e.g. 

drainage) as compared to land evaluation models, or that these properties are relatively 

unimportant in the tuning of biophysical models compared to other properties such as 

availability of water and nitrogen. 

4.4.2 Changes in demand for soil property data 

Little has changed since McKenzie (1991) identified that there will always be a 

requirement to collect new data and information to support research in agricultural 

production. A priority is to determine what soil properties to focus on immediately, as 

resource constraints often preclude collection and provision of soil data for all properties. 

The workshop and survey indicate six to eight key properties that should be of immediate 

focus to support modelling efforts using the current models. Using different thresholds to 

represent response rates to the 2009 and 2014 results (Figure 4.3), these properties are: 

critical lower limit/permanent wilting point (CLL/PWP); drained upper limit/field 

capacity (DUL/FC); hydraulic conductivity (Ksat); clay proportion (clay%); bulk density; 

organic carbon; soil depth; and effective rooting depth. Of these, organic carbon and 

effective rooting depth are potentially the most dynamic properties due to climate-land 

use-management-plant variety interactions. All properties are ranked in the top 12 

property requests from the USDA-NRCS Web Soil Survey for 2011 (Thompson et al., 

2012) with only hydraulic conductivity not currently sought for the GlobalSoilMap 

project. Physical (and hydrological) properties including bulk density are relatively sparse 

in soil information systems as measurements are time-consuming to acquire but may be 

predicted within practical limits via pedotransfer functions (Sequeira et al., 2014). 
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Chemical properties, however, are dynamic and require direct measurement to account for 

their temporal and spatial variability (Wagenet et al., 1991). These properties, including 

Total N, Total P, nitrate and ammonium, are essential inputs to plant growth models and 

are flagged as required for soil information systems such as the ASRIS. 

 

Figure 4.3. Soil attributes that models were sensitive to and thresholds to identify soil 

attributes to focus data provision in support of future model applications. 

 

Future soils data needs to support models will depend on political cycles and the policy 

questions posed (Fisher and Crawford 2014). This includes response to environmental 

triggers such as drought, floods, disease outbreak and land contamination and 

degradation. Currently there is a trend for crop growth models to focus on plant 
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phenology and evaporation without the balance from soil data and research to improve 

models and eliminate assumptions (Bouma, 2010). 

 

4.5 Looking forwards 

Over the last century there has been considerable collection of soil data for physical, 

chemical and biological properties, processes and functions. Over that timeframe there 

have been many changes in technology and methods. There is significant growth in new 

data collection on plant and soil, where static and dynamic properties are inferred from 

latest sensing technologies (Zaks and Kucharik, 2011). Harmonisation of legacy data with 

that generated by contemporary methods as well as incorporation of new soil properties is 

therefore a critical area of work that will affect the reliability of modelled outputs.  

New soil sensing techniques such as diffuse reflectance spectroscopy in the visible, near-

infrared and mid-infrared spectral ranges can provide rapid and cost-effective predictions 

of soil properties to support data harmonisation. The integration of these sensor data with 

legacy data will require methods to harmonise results from different methods for soil 

measurements, e.g. plant available water characteristics used in crop models from 

geophysical sensors (see Robinson et al., 2010a). Reference soil data that is contemporary 

and precise for local and global calibration purposes will be critical to harmonization 

approaches. 

Proximal and remote sensing technologies in agriculture are generating large volumes of 

spatially dense data (Gebbers and Adamchuk, 2010; Schimmelpfenning and Ebel, 2011). 

A proposed approach to deal with the plethora of high spatial and temporal resolution 

data is multisensor data fusion (Adamchuk and Rossel, 2010). The authors identify that 

complementary data from multisensor platforms will provide users with: greater 



130 
 

confidence in comparison to a single data source; timeliness of data acquisition for use in 

models and management decisions; and increased certainty. 

Given the development of new sensors and vast data arrays that result in high volume and 

variety data being generated continuously (Kitchin, 2013), opportunities exist for the 

integration of ‘big data’ (gartner.com) with biophysical models where sensor data are 

direct inputs into these systems (Roudier et al., 2015). This will support modelling of 

environmental flux and space–time relationships between these biophysical systems. The 

linking of real-time data sources with biophysical models should enable recalibration and 

tuning of models to environmental conditions.  

The inclusion of harmonized data into biophysical models can be supplemented with 

uncertainty frameworks to provide greater transparency and certainty in modelling. Such 

frameworks enable the identification of error sources and assumptions in models that can 

be refined (Robinson et al., 2015). Informing users of model assumptions and 

uncertainties is important to retain confidence in model outputs for decision making 

purposes. 

Models have continued to evolve to reflect improvements based on progressive discovery 

and over simplification (Keating and McCown, 2001). A possible scenario as suggested 

by Siegel (2013) is that hundreds of different algorithms (as model ensembles) can be 

applied with data from various sources to determine a single, or ensemble, product that 

best explains the system of interest and supports new theories and understandings 

(Kitchin 2014) . 

There is a need for model developers and soil data providers to work more closely in 

interdisciplinary teams aimed at identifying approaches where data solutions can be 

implemented in order to resolve the problems identified (Bouma, 2001; Bouma and 
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McBratney, 2013). The Agricultural Model Intercomparison and Improvement Project 

(AGMIP; www.agmip.org) is attempting to improve the interoperability of models and 

data for large scale assessment of climate change and impacts to agriculture in regions 

including Sub-Saharan Africa (AGMIP, 2014). Global challenges including the 

availability of skilled and trained personnel and appropriate operating environments to 

support these new advances for less economically favoured nations remain.  

 

4.6 Conclusion 

Biophysical models use soil data at various spatial modelling scales for agricultural 

production purposes. This study has established that the soil data requirements of public-

sector modellers operating in agricultural and environmental sciences have remained 

similar over the last 5-years. A decrease in the diversity of biophysical models used 

reflects a changing focus of government research and development towards agricultural 

industries using more established and recognised models. New data are also currently 

being collected and stored. In the last 5 years there has been increased application of 

models at point/site scale for the grains, dairy and livestock production industries in 

Victoria. 

Six to eight soil properties are priority items due to their contribution to model sensitivity 

and uncertainty. These are CLL/PWP, DUL/FC, Ksat, clay%, bulk density, organic 

carbon, soil depth and effective rooting depth. Fine scale Digital Soil Mapping and 

validation, supported by contemporary soil data and uncertainty frameworks, provides 

opportunities to evaluate the relative importance of these properties. This may involve 

new techniques such as combination of community sourced data and accessing tacit 
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knowledge; to precision agriculture systems and physical collection of new soil samples 

to calibrate the products (Rossiter et al., 2015).  

With the significant growth anticipated in new data on soil and plant dynamics, there will 

be a need for biophysical models to accommodate these new sources of data in their 

architecture. The influx of new data provides opportunities for improved scenario 

modelling for better understandings of interactions in the environment and how these can 

be best managed to optimise delivery of ecosystem services. Data harmonisation and 

uncertainty assessments will be important to ensure future relevance and accuracy of 

models. Close interactions between model developers, soil scientists and end-users is 

needed to direct the refinement of agricultural production and landscape process models 

to support global issues such as food, water and energy security. 
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Chapter 5 Identification and interpretation of sources of 

uncertainty in soils change in a global systems-based modelling 

process 

In soil mapping and modelling there are many sources of potential uncertainty that can 

affect the precision and accuracy of the delivered information. It is recognised that 

uncertainties should be quantified and communicated to enable appropriate use of the 

delivered map or model information (Heuvelink, 2014). Concepts of uncertainty are 

largely defined as either stochastic or epistemic in nature and are identified in the 

literature review (Chapter 3) and are discussed in the previous chapter (Chapter 4). A 

large emphasis has been placed on the stochastic aspects of uncertainty, yet epistemic 

uncertainty due to imperfect knowledge can be considerable and detrimental to the 

delivery of useful information. The aim of the following research is to develop a holistic 

approach to accommodate and illustrate to users of spatial soil information, the various 

error sources in modelling and mapping. The primary objectives here were to: 

Summarise, characterise and interpret sources of uncertainty in the assessment of 

soil change; 

Describe applications of uncertainty analysis in soil-change research; 

Represent uncertainty analysis in soil change in the form of a systems-based 

process model that captures the major sources of uncertainty in the modelling 

process. 

In the past, uncertainty analysis in soil research was often reduced to consideration of 

statistical variation in numerical data relating to model parameters, model inputs or field 

measurements. The simplified conceptual approach used by modellers in calibration 

studies can be misleading, because it relates mainly to error minimisation in regression 
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analysis and is reductionist in nature. In this study, a large number of added uncertainties 

are identified in a more comprehensive attention to the problem. Uncertainties in soil 

analysis include errors in geometry, position and polygon attributes. The impacts of 

multiple error sources are described, including covariate error, model error and laboratory 

analytical error. In particular, the distinction is made between statistical variability 

(aleatory uncertainty) and lack of information (epistemic uncertainty). Examples of 

experimental uncertainty analysis are provided and discussed, including reference to error 

disaggregation and geostatistics, and a systems-based analytic framework is proposed. 

These concepts are applied in implementations of uncertainty analysis and Digital Soil 

Mapping in the following chapters (6 and 7). It is concluded that a more comprehensive 

and global approach to uncertainty analysis is needed, especially in the context of 

developing a future soils modelling process for incorporation of all known sources of 

uncertainty. 
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5.1 Introduction 

Changes in soil with respect to behaviour, function and condition occur in response to 

land use and farming systems. These changes can seriously compromise future capacity 

for primary production and the provision of ecosystem services, such as vegetation and 

water supply. Farming systems have contributed to soil degradation from chemical and 

physical processes, including acidification, erosion, salinization, structure decline, carbon 

decline and loss of fertility to varying degrees. Understanding the nature and rate of such 

changes is critical to designing appropriate farming systems that maintain, regulate and 

enhance the services delivered by soil. 

Soil changes are driven by complex interactions involving physics, chemistry and biology 

that may be natural or anthropogenic in origin and occur on overlapping temporal scales, 

varying between millennia and contemporary human influence (Young and Crawford, 

2004; Richer and Yaalon, 2011). Often change is not readily predictable, or measureable, 

as the change can occur over a significant timeframe, or strategic questions are not 

adequately considered and addressed in establishment of long-term soil experiments 

(Richter et al., 2007). To address this, the development of frameworks that support 

theoretical development on soil change processes and functions is critical (MacEwan 

1997).  

Such frameworks may include functions (soil formation and genesis) as embodied in The 

Factors of Soil Formation by Jenny (1941), and the processes (additions, removals, 

transfers and transformation) and their interactions that leave an ‘imprint on soil 

character’ (Simonon, 1959). These interactions between functions and processes are 

summarised in the expression of the ‘pedon’ with attributes (properties) and qualities that 
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can be defined (MacEwan, 1997). These properties are also interrelated in this dynamic 

system and should one property change, another may also change. 

The present interest in soil change studies relates to the quantification of dynamic soil 

properties through measurement and observation of soil attributes in response to human 

induced impacts (Tugel et al., 2005). To quantify and understand changes in soil requires 

various techniques, including repeated soil surveys, long-term soil experiments and 

space-for-time substitutions, which are necessary to reduce error and uncertainty in 

scientific conclusions. 

Monitoring of change in dynamic soil properties needs to incorporate uncertainty in 

estimates due to the large number of potential error sources (Saby et al., 2008). Sources of 

uncertainty in the analysis of soil change include the following: 

 context (environmental constraints) 

 measurement error (see Box 1) 

 error propagation in models (see Box 2) 

 expert opinion (judgements, estimation, interpretation)  

 decision making under uncertainty (see Box 3) 

 framing (problem boundaries) 

 implementation error (numerical approximations) 

 model inputs (soil, hydrology, climate) 

 model structure  

 model parameter uncertainty 

 resolution (spatial and temporal) 

 software problems (verification, validation, bugs) 

 

Further limited discussion of some of these categories is provided in the literature 

associated with uncertainty in pedology and hydrology (e.g. Refsgaard et al., 2007; Benke 
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et al., 2007; Hopley et al., 2014; Robinson et al., 2014). In the context of modelling and 

simulation, there is a two-step process of model selection uncertainty (epistemic 

uncertainty) followed by statistical variability in prediction, which is addressed by 

estimates of error propagation and other numerical approaches (aleatory uncertainty). 
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Uncertainty analysis is traditionally undertaken towards the end of the analytical process, 

with the focus on experimental replications, or model calibration. Ideally, uncertainty 

should be considered in entirety through-out the analytical process from problem 

definition and assumptions, to prediction accuracy and error. This is the traditional view 

of uncertainty, however, decision-maker views of uncertainty include balancing outcomes 

with objectives and priorities in the context of policy response to soil change analysis 

(Walker et al., 2003). 

The objectives of this paper are (a) to summarise, characterise and interpret sources of 

uncertainty in the assessment of soil change, (b) describe applications of uncertainty 

analysis in soil change research, (c) represent uncertainty analysis in soil change in the 

form of a systems-based process model that captures the major sources of uncertainty in 

the modelling process, and (d) provide illustrative examples in the context of error 

disaggregation and geostatistics. 
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5.2 Types of Uncertainty 

Uncertainty in the past was sometimes regarded in a negative sense and associated with a 

lack of assurance or conviction in an observation or outcome. The analysis of uncertainty, 

however, is now deemed very important because a purely deterministic approach provides 

a prediction without indication of error or uncertainty, i.e. there is no indication of 

confidence in the answer provided. In fact, Hastings and McManus (2004) highlight the 

fact that uncertainty ‘is not always a negative to be mitigated’ and that robust and flexible 

systems can be derived to mitigate these uncertainties while providing additional value to 

users. The reality is that all experimental science and modelling processes are associated 

with errors due to range of uncertainties existing in the real-world (Refsgaard et al., 

2007). 

In soil science, there is a widespread culture of thinking about uncertainty as merely being 

statistical variability, relating to model parameters and inputs, or the scatter plot 

associated with a variogram. There are other types of uncertainty, many of which are 

identified and discussed in the following sections. In different contexts, many of these 

other uncertainties may be more important in impact than statistical variability in model 

calibration or experimental replications. 

Three dimensions to uncertainty have been defined (see Walker et al., 2003). These 

dimensions are the location of the uncertainty (where the uncertainty occurs in a model), 

the level of uncertainty (how the magnitude of the uncertainty contributes to the overall) 

and the nature (taxonomy) of uncertainty (if the uncertainty is due to incomplete 

knowledge, variability or ambiguity). Isolating where and the level of the uncertainty in 

an analytical model process are considered in the various sources of uncertainty discussed 

later. 
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5.2.1 Taxonomy of uncertainty 

The primary dichotomy that characterises the taxonomy of uncertainty is readily apparent 

from published studies (e.g. Walker et al., 2003; Wagner and Gupta, 2005; Benke et al., 

2007): 

 (i) Aleatory Uncertainty (statistical variability) 

 (ii) Epistemic Uncertainty (lack of knowledge) 

The process of decision-making under uncertainty, including human inability to 

understand decision objectives, and observer vagueness and linguistic ambiguity, have all 

been regarded as sources of epistemic uncertainty (Baecher and Christian, 2000; 

Refsgaard et al., 2007).  

Decision-making under uncertainty may also be viewed in the context of comparison of 

two soil property measurements (see Box 3). The original source of uncertainty is 

particularly relevant to soil change as the decision-making process is critical in 

interpretation and implementation of a management response. The decision-making 

framework devised by Steinitz (1990, 2012) is one scheme that could provide a 

systematic process for analysis of decision-model uncertainty. 

Aleatory Uncertainty (statistical variability) 

Aleatory uncertainty is not reducible, as it relates to innate or natural variability in 

environmental modelling (and is sometimes referred to as stochastic uncertainty). It can 

be characterised by probability distributions (e.g. the normal distribution) and can be 

quantified in Monte Carlo simulation. Increasing sample size will not decrease the 

standard deviation of the variable, but will decrease the standard error relating to the 

sampling distribution of the means. Note that, in contrast, measurement error includes 

additional contributions from other sources of error that are reducible, see Box 1 (Iman 
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and Helton, 1988; McBratney 1992; Refsgaard et al., 2007; Benke et al., 2008; Robinson 

et al., 2014). The computation of error propagation from inputs and parameters in a model 

reveals whether the input error distribution is affected by the structure of the model, and 

can also quantify the uncertainty in the output distribution, which is the information 

delivered to users. 

Epistemic Uncertainty (lack of information) 

This category of uncertainty is due to imperfect knowledge that is generally reducible 

through the collection of more data and additional studies (but not always). This relates to 

lack of information (ignorance, or incomplete knowledge of systems and processes) as 

opposed to statistical variability, which is the dominant approach in soil science. An 

example of epistemic uncertainty is linguistic (or semantic) uncertainty that can be 

reduced by resolving ambiguities. 

Epistemic	Uncertainty	‐	Type	1	

This category of uncertainty refers to known unknowns and includes linguistic ambiguity, 

data transcription errors and software bugs. Also included are context, framing and expert 

opinion, which involves judgement and also sensory performance confined by 

environmental factors (e.g. colour matching with pH soil test kits in the field). An 

example of Type 1 uncertainty is the so-called millennium bug in legacy software for 

computer calendars limited the date format to two digits only, e.g. ’99’. When the clock 

ticked over for the new millennium in Year ‘2000’, time was initialised to zero for 

accounting software. In accounting spreadsheets, time may be used as a variable, resulting 

in error propagation and uncertainty in results. 

Epistemic	Uncertainty	‐	Type	2	

This category of uncertainty refers to unknown unknowns and is the most serious type of 

uncertainty. Examples include black swan events – which are unforeseen, very rare, and 
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very disruptive. For example, a sudden and extreme flood event in the local landscape, 

such as the soil salinity impacts from the 2010 Victorian floods 

(http://en.wikipedia.org/wiki/2010_Victorian_floods). The main issue is that Type 2 

uncertainty is unexpected and tends to be very rare with potentially major impacts. 

Decision‐making	under	uncertainty	

Understanding soil change and the different types and sources of uncertainty provides the 

basis for better communication and final decision-making by land managers, industry and 

government. It has been noted in the past that uncertainty is pervasive and a fact of life 

and quantification would lead to greater acceptance in results provided by scientists in 

decision support (Walker et al., 2003). The decision-making process, when automated in 

software, ideally should include uncertainty in prediction, as well as prediction accuracy, 

to improve confidence in expert systems for decision support, especially in spatial 

analysis (Sposito et al., 2010). 

Risk is defined as the probability of an adverse event and its consequence, and represents 

one aspect only of the uncertainty framework specific to the question posed (Hastings and 

McManus, 2004). Risk is a point estimate, as distinct from uncertainty which is an 

interval estimate, as described by the confidence interval (Pelizaro et al., 2011). The link 

between risk, the quantitative model, and uncertainty, and how these interact with the 

decision-making process is rarely, if ever, considered in modelling (Walker et al., 2003; 

Wagener and Gupta, 2005). 

To support a decision-making process, a framework provides a useful context to enable 

problem definition, testing of hypotheses and accommodation of uncertainty. MacEwan 

(2014) identified the Steinitz framework (Steinitz, 1990, 2012) as a valuable tool to 
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iteratively pose questions that support decision-making (see Figure 5.1). The six primary 

iterative questions in a soil change context are: 

 What data and information do we have to support a representation of the soil? 

 What processes are linked to soil attributes in question? 

 Do we have the necessary data to answer the questions posed? 

 What are the potential drivers of change, e.g. land use change? 

 What are the likely impacts of change? 

 What needs to be done to achieve the outcomes sought? 

Against these questions there are associated uncertainties that may be considered in 

decision-making. Sources of uncertainty can be aligned to the Steinitz Framework to 

illustrate the direct link between the decision-making process and uncertainty (Table 5.1). 

 

5.3 Sources of uncertainty 

Sources of error and uncertainty can be found in all steps in a modelling process from 

input through to the final output. The sources of uncertainty in environmental modelling 

proposed by Walker et al. (2003), and extended by others (e.g. Gupta and Wagener, 2005; 

Refsgaard et al., 2007; Benke et al., 2007) include model inputs, model structure, model 

implementation error, parameter uncertainty, measurement error, context and framing. In 

this paper we have expanded the discussion of error sources to include many other 

aspects, such as expert opinion, legacy data issues and software operations. 

Many sources of uncertainty may be expressed in a process modelling representation. 

Figure 5.2 shows a framework for incorporation of aleatory and epistemic uncertainties, 

the so-called Global Representation of Uncertainty in the Modelling Process (GRUMP). 

Wherever possible, epistemic uncertainties are enumerated through psychophysical 

experiments and codified categorical classifications. This allows both aleatory and 
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epistemic uncertainties to be considered in error propagation through the model. Note also 

that in Figure 5.2, some uncertainties are difficult to classify and have elements of both 

aleatory uncertainty and epistemic uncertainty, e.g. legacy data and some categories of 

expert opinion relating to linguistic ambiguity and cognitive performance. 

 

Figure 5.1. Hierarchy of the Steinitz Framework identifies the six primary iterative 

questions posed in the modelling process (Steinitz, 1990). 

 

Attribute uncertainty 

Examples of attribute uncertainty relate to soil types and chemical concentrations, such as 

soil organic carbon (SOC) content. Attribute uncertainty may also be subject to a 

description by a probability density function (PDF) and covers (a) the nature of the 

measurement scale used, and (b) time-space variation. Heuvelink et al., (2007) suggested 

four classes for the measurement scale, i.e. 
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 continuous numerical scale (e.g. chemical concentration in soil) 

 discrete numerical scale (number of plant species) 

 categorical scale (e.g. soil type) 

 descriptive text (e.g. history of soil type) 

In a similar manner, space-time variability is divided into four classes, with attributes that 

are: 

 constant in space and time (e.g. universal gas constant) 

 constant in space but vary in time (e.g. national interest rate) 

 constant in time but vary in space (e.g. some geographic/geological features) 

 vary in both time and space (e.g. temperature) 

 

Table 5.1. Links between decision-making and uncertainty in the Steinitz Framework. 

Question Example uncertainty source 

Representation Lack of knowledge, e.g. high error in existing spatial prediction of soil pH 

Process Measurement error, e.g. SOC bias and precision in laboratory analysis 

Evaluation Parameter error, e.g. bulk density pedotransfer function parameters 

Change Model structure adequacy, e.g. Linear Mixed Model space-time prediction of SOC 
stock change 

Impact Scenario analysis and expert opinion, e.g. future land use change propositions 

Decision Inability to understand decision objectives that may be due to data and information 
deficiencies derived from previous questions 

 

Spatial uncertainty can be quantified by PDFs – including soil type boundaries and 

polygon representations. Uncertainty in maps of regions and polygons can be modelled in 

a probabilistic framework using Monte Carlo simulation. For example, multiple 

enumerations of each object or polygon (by simulation), can be overlaid to produce fuzzy 

edges or boundaries that visually reflect the degree of uncertainty in these boundaries and 

can be linked to an uncertainty metric, such as standard deviation (Heuvelink et al., 2007, 
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Benke et al., 2010). Uncertainty across a boundary of an area or polygon with a specific 

soil attribute, such as pH, can be represented visually by the cumulative distribution 

function (CDF) across a fuzzy edge as depicted in Figure 5.3(a). The standard deviation 

may be used as a metric of uncertainty in properties, including mean value, position and 

rotation, as shown in Figure 5.3(b). 

 

Figure 5.2. Sources of uncertainty expressed in a conceptual process modelling 

representation. The framework incorporates aleatory and epistemic uncertainties in the so-

called Global Representation of Uncertainty in the Modelling Process (GRUMP). 

Epistemic uncertainties may be enumerated through psychophysical experiments and 

codified categorical representations. This allows both aleatory and epistemic uncertainties 

to be considered in error propagation through the model. In the special case of Monte 

Carlo simulation, the output probability distribution represents uncertainty and its median 

represents the prediction. 
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If there is statistical independence in space and time, the joint PDF from the model output 

is the product of the marginal PDFs -- and can be produced by estimating the separate 

marginal PDFs (Aerts et al., 2003; Heuvelink et al., 2007). If dependencies exist between 

variables, these must be determined together with the marginal PDFs. Heuvelink et al. 

(2007) noted that if dependency exists, the joint PDF is often assumed to be the 

multivariate normal distribution where the covariance matrix is used for correlated 

variables. For positional and attribute uncertainty, under some conditions, the covariance 

depends on the distance between locations and is computed from the variogram 

(Heuvelink et al., 2007). 

Context (environment) 

Identification of the correct context, i.e. environment, conditions and circumstances, 

reduces uncertainty in derived models and predictions. External considerations (e.g. 

economic, social and political) should be considered in the identification of the 

hypothesis, which represents the model or question posed for testing. Working in the 

wrong context may introduce significant uncertainties, leading to incorrect conclusions 

and significant cost. 

An example to demonstrate tightly defining the context, to reduce uncertainty, is the 

monitoring of soil pH changes under dryland pasture in Victoria. The context of this study 

was to improve process knowledge on soil acidification occurring in ‘pastoral agricultural 

land in Victoria’. The aim of the investigation was to report changes in surface soil pH 

and how these changes relate to soil site characteristics (Crawford et al., 1994). The 

conclusion was that acidification was pronounced where (a) reference site pH was 

moderately to slightly acidic, (b) no change where strongly acid reference sites were 

observed, and (c) there were pH increases where the reference site was strongly acid 
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where perennial pastures were improved. However, a shortcoming of this study was that 

these environmental conditions were confounded with other environmental conditions, 

e.g. condition (a) occurs in landscapes where there is less rainfall than (b), and 

management factors, i.e. subterranean clover based pastures are sown in the lower rainfall 

conditions associated with (a) while perennial pastures based on white clover are sown in 

the high rainfall landscapes of (b). 

Expert opinion- cognitive constraints 

Often, in soil classification, expert ratings of soil types are required for categorical data 

types, but this process can be subject to uncertainty due to observer age, origin, training 

or culture bias. Examples include: subjective classification of a soil type between 

Dermosol or Kandosol (Isbell, 2002), or, description and definition of very fine soil 

structure that can be interpreted as apedal. In addition, there is uncertainty due to data 

interpretation and linguistic ambiguity. The latter issue relates to communication and the 

uncertainty is reducible with further verbal or written elaboration. 

Expert opinion – physiological constraints 

Many field tests are undertaken by experts, but are limited due to sensory limitations in 

the observer arising from (a) the ambient illumination and (b) the visual response of the 

observer. For example, pH matching in the field using soil test kits and cards is limited by 

spectral illumination. Light scattering in the atmosphere is responsible for the blue colour 

of the sky during the day (and strong red hue in the evening due to increased path length 

of travel). The spectral content of daylight is also measurably different in the northern 

hemisphere than the southern hemisphere (Dixon, 1978). 
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The pH matching process is also affected by the fact that up to 10% of males are 

classified as colour blind, so that there is approximately 1:10 chance of an anomalous 

result (e.g. Pettijohn, 1998). Strictly speaking, colour deficiency occurs in the red-green 

range due to defects on the X chromosome and this can be checked by the Ishihara Colour 

test chart (as used for car licence testing). 

 
 

Figure 5.3. (a) Original area of an exemplar soil attribute, A (adapted from Benke et al., 

2011), and (b) uncertainty in geometric properties represented by standard deviations of 

soil attribute, A, its boundary, B, its position (centre-of-mass), C, and rotation, D. 

 

Framing (problem boundaries) 

Framing the problem determines the trade-off between a systems-based approach with 

externalities or, alternatively, a reduced simple and confined case study that is limited by 

its reductionist nature. Framing issues are extremely common in ecosystems research and 

environmental modelling where insufficient funding often leads to reductionist 

approaches, ultimately a poor sample design, and therefore inconclusive results. 

The re-sampling study of the National Soil Fertility Project (Colwell, 1977), by Crawford 

and Robinson (2014), focussed on assessing the change in SOC for defined agricultural 

regions in Australia Victoria (see Colwell, 1977). The emphasis of the original 

σ A

σ B

σ C
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σ D
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investigation was on the examination of the relationships between yield response to 

fertiliser, soil fertility and environmental factors, such as soil types, while the most recent 

investigation focussed on the magnitude of changes that had occurred in SOC at these 

sites. 

The limitations of this study are that the observations are from a reduced set of original 

sites. This weakens the potential to find statistically significant differences in relation to 

factors such as soil type. Furthermore, the study was confined to soil types originally 

sampled and failed to consider how SOC may have changed over time for other soil 

types. Also, only three phases of sampling were undertaken during this time period, and 

there may be considerable temporal fluctuations in SOC that were not captured in the 

study, within those sampling times. This could however be mitigated by comparison with 

suitably designed long-term soil experiments where sample timeframes are considerably 

less. 

Geometrical uncertainty 

For an extended region or a polygon in a map, spatial uncertainty in the boundary can be 

represented as a fuzzy edge (Figure 5.3(a)). The uncertainty metric at the edge is standard 

deviation, and the edge profile may be represented visually by the CDF. A visualisation 

scheme may be a useful addition to future digital soil maps. Uncertainty in the attribute, 

A, with mean,  (from measurements or model predictions) is represented by the metric 

 for the region, or a polygon, as shown in Figure 5.3 (see also Benke et al., 2011). For 

the purpose of visualisation, the uncertainty metric for A may also be represented by a 

pseudo-colour encoding scheme in addition to an assigned numerical value for  (e.g. a 

spectrum from blue to red, representing low to high uncertainty, respectively). 

A

A

A
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Uncertainty at the fuzzy edge (boundary) enclosing attribute A is represented by , 

which can also be derived from sampling measurements or multiple model realisations 

using Monte Carlo simulation. Positional uncertainty in the homogeneous region or 

polygon would be represented by , representing the variability in the centre-of-mass 

(C.M.), assuming no shape deformation, which again would be elicited from multiple 

realisations from Monte Carlo simulation. Finally, rotational uncertainty about an angle θ 

would be represented by . 

Implementation error (numerical approximation) 

Application of algorithms often involves approximations to analytic models, which may 

be based on differential equations. In the case of interpolation and prediction, non-linear 

models in particular may have rapid changes in some regions, or local discontinuities that 

may produce spurious results. Sampling interval size in time-series analysis is a well-

known source of error in calibration accuracy. Similarly, assumption of stationarity in 

statistical properties may be incorrect over time. 

Legacy data (e.g. digitisation errors) 

Old records of soil properties are often in the form of notebook data and need to be 

digitised as computer records. Errors are introduced by manual key entry mistakes, 

numerical precision errors, and changes in measurement methodology over time. Legacy 

land resource assessment maps often failed to include an indication of accuracy (extent to 

which an estimated value approaches a true value) and the precision (i.e. dispersion of 

observed values around the mean – measure of the standard deviation). 

Traditionally, soil surveys were undertaken for ‘general-purpose’ or ‘special-purpose’ 

interpretation regarding soil and land resources. This was further complicated by scale 

B

C

D
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and recommended use of the survey. Soil sampling sites were often chosen on the best 

judgement of the surveyor who balanced importance, representativeness and ease of 

access against the financial and time resources constraining the survey. In many instances 

sites and samples are opportunistic, e.g. road cuttings and other soil exposures. Today, it 

is viewed as a requirement that a map should have a quantitative estimate of the 

uncertainty as this is a fundamental input to biophysical simulation modelling. 

 

Figure 5.4. Example of spatial inaccuracy in georeferencing soil sites (see overlaid red 

lines). Note that it may be difficult to ascertain precision level in site locations on air-

photos or maps. 

 

Mapping uncertainty 

Uncertainties in polygons of soil maps are derived from (i) the measurement process, (ii) 

spatial variability (positional and attribute uncertainties) of soil and covariates, and 

assigned membership to a soil body, (iii) method used for spatial 
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aggregation/generalization, and (iv) uncertainties in the control parameters that these 

methods use (Burrough, 1993). McBratney (1992) suggested uncertainty with soil 

information has dimensions that are stochastic (statistical and probability theory), 

deterministic (chaos theory) and semantic (fuzzy theory). It does not, however, cover 

adequately the uncertainty defined as ‘epistemic’ in nature, which is a subject of this 

paper. Accounting for prediction uncertainty through error propagation in models has not 

been realised in conventional soil mapping to date (although some progress has been 

made in related land use studies - see, for example, Pelizaro et al., 2011). 

 

Figure 5.5. Random error possibilities of the true pixel location for a point in a legacy soil 

site relative to surrounding pixels. Note that a vertical displacement of one pixel results in 

a 30 m error in this case. 
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Uncertainty in site location arises where imprecise site descriptions are associated with 

the point-source data; a general reference to a landowner’s paddock, or native vegetation, 

may be all that exist. In these instances uncertainty may be greater than several hundred 

metres. For broad-scale survey purposes such imprecision is not as critical but may 

become important when soil-landscape modelling is carried out at fine spatial resolution, 

e.g. 10 to 30 metres. This is illustrated in Figure 5.4 and Figure 5.5, where the spatial 

uncertainty can have significant impact on the spatial covariates assigned to that site. 

Here the site potentially can be assigned to 1 of 20 possible pixels and the covariates that 

underlie that pixel.  

Where marks have been made on maps or pinholes made in aerial photographs to indicate 

locations, uncertainties may still be in the order of 20 - 500 metres (1 mm is equal to 100 

m on a 1:100,000 scale map, and 40 m on an average air photograph). In the 1990s GPS 

locations had low precision with errors of at least 100 m. From May 2000 civilian GPS 

accuracy improved to better than 20 m when the US government stopped degrading the 

satellite data for civilian use. More recently GPS have become more reliable and they 

consistently provide accuracies of a few metres or even centimetres when differential 

systems are used. Location coordinates from sites using a GPS prior to May 1st 2000 

should be regarded as less accurate than subsequent data unless a DGPS was used. 

Measurement error 

Measurement of soil properties are often replicated to provide an improved estimate of 

mean value. Measurement error is classified as epistemic uncertainty because it is 

reducible (see Box 1). Repeated measurements also provide information for the error 

distribution of the model output, providing information for a box-and-whisker plot, and 

uncertainty metrics, such as variance and the confidence interval. Examples in the 
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literature include Goidts et al. (2009) and the critical inclusion of measurement error 

sources in the detection of SOC changes; Cayley et al. (2002) and the application of 

functions to predict soil pH in 0.01 M CaCl2 from analytes including SOC and EC; 

Holmes et al. (2011) identified the minor influence of bulk density in determination of 

SOC stock; Tirez et al. (2014) identified that laboratory measurement was the principle 

source of error in SOC monitoring; Damasceno et al. (2006) implemented Monte Carlo 

simulation to derive uncertainty estimates for laboratory observation of pH; Leito et al. 

(2002) define a deterministic approach to identify separate sources of error in 

measurement; and Slattery and Burnett (1992) identified potential issues with storage and 

measurement of pH due to changes with time.  

Model input uncertainty 

Inputs to models are all subject to errors which can be represented by probability 

distributions. These errors propagate through the model and contribute to output error. 

The model inputs include numerical data and information that represent the system or 

process under investigation. 

Model parameter uncertainty 

Calibration of a model involves iterative error minimization between model predictions 

and measurements. The residual error on completion of the parameter estimation process 

indicates less than perfect fitting. Parameters used in models include exact parameters 

(universal constants), fixed parameters that have been determined by previous 

investigations, or calibrated parameters that are determined from calibration attempts to 

minimize prediction error. These parameters will be point estimates with an associated 

uncertainty in the estimation. The Bayesian paradigm actually treats the parameters as 



164 
 

probability distributions from which population statistics, such as variance, may be 

derived as metrics of uncertainty. 

Model structure adequacy 

Most statisticians and soil scientists are interested in model prediction accuracy, often 

using a linear or polynomial regression for prediction (as distinct from using the 

theoretically correct relationship between covariates). Unfortunately this approach often 

results in curve fitting only. For example, a simple linear regression equation is limited by 

the linear approximation. A robust model requires the correct relationship between the 

covariates. Only then can theoretical behaviour be understood and be part of the system 

analysis. This approach, which replaces the statistical model by a physical model, is 

referred to as ensuring model structural adequacy. In practice, introducing the research 

hypothesis, and combining it with inductive reasoning, will lead to improvements in an 

iterative sense although the absolutely correct model may not be achieved. Calibration 

may adjust parameters in an effort to compensate for structural inadequacy. 

As mentioned in the previous section, a physical model is preferred over a statistical 

model, if possible. This means that the soil scientist should work in concert with the 

statistician, otherwise problems can occur. An illustrative example is the simple case of a 

scatterplot for Newton’s law of motion, F=ma, where acceleration is proportional to force 

applied to a mass. A statistician, on observing the scatter plot, fits a straight line with 

slope, m, referring to m as the gradient. The physical scientist disagrees by saying ‘no, m 

is the mass and is a physical quantity – it has volume, density and gravity and affects the 

surrounding environment by its presence’. A purely statistical model would miss the 

physical consequences revealed by the physical model. 
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Using a multiple linear regression model for prediction introduces uncertainty simply by 

the fact that nature is not linear, as illustrated by chaos theory, nonlinear dynamics, 

quantum theory, etc. The fact is that there are no straight lines in nature. The linear 

approximation used by statisticians is simply to make the arithmetic analysis simple and 

tractable. The linear approximation adds further uncertainty to analysis. 

Positional uncertainty 

Positional uncertainty occurs with soil sampling points, polygon map a boundary, linear 

transects and raster transformations. Positional uncertainty is described by a probability 

density function (PDF) and relates to objects comprising multiple points with structure 

that may or may not change under uncertainty (e.g. rigid objects and deformable objects). 

Positional uncertainty of a point object leads to a shift in its 4-D status P(x,y,z,t) subject to 

enumeration by the PDF. A rigid body is subject to geometric transformations, such as 

translation and rotation about an axis, with specific enumerations also subject to a PDF. 

Deformable objects may be altered by positional uncertainty due to independence of the 

primitive points. 

Resolution (spatial and temporal) 

Spatial error is always present in maps due to the effect of sampling errors in scatterplots 

and interpolation procedures using kriging methods. Time stepping resolution may also 

introduce calibration errors due to the trade-off between cost and high sampling rates, and 

autocorrelation. Also, stationarity in statistical properties, such as mean and standard 

deviation, is often assumed but may change in time and affect calibration studies. The 

process of analog-to-digital conversion introduces quantisation errors in digitised data. 

Software problems (verification, validation, bugs) 
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Software must be verified to check it implements the model correctly. Subsequently, the 

model must be validated against test data. In both cases, insufficient testing over range 

and sample size may introduce uncertainty. Lack of exhaustive testing of software may 

fail to identify bugs that may invalidate future results for specific combinations of inputs. 

 

5.4 Example 1: Disaggregation of error sources 

Using the SCORPAN model as an example (McBratney et al., 2003), there are four main 

steps involved in digital soil mapping with uncertainty (Minasny et al., 2010). First, data 

input for the region of interest requires production of the digital map, using covariates of 

interest in the study, which may include terrain attributes, multispectral satellite imagery, 

land use data, geological information and possibly legacy soil maps. Second, estimates of 

soil properties, including uncertainties, are produced from relationships between point 

soil measurements and spatially covered covariates, i.e. 

(1) 

where S is the soil property, attribute or class of interest, f is the model incorporating 

covariates s(other soil properties), c(climate properties), o(organisms), r(topography), 

p(parent material), a(age or time factor), n(spatial position absolute and relative), and ε is 

the error. Third, spatially inferred soil properties are used to predict other soil functions, 

such as soil water content, carbon density, and phosphorus (see Minasny et al., 2010). 

Thus, the prediction uncertainty of the SCORPAN model combines uncertainties in input 

data, spatial inferences and soil properties and functions. The fourth step includes 

completion of a digital soil assessment for use by policy makers and land use managers, 

including evaluation of soil functions such as biomass production and buffering 

capabilities (Carré et al., 2007). Note that the SCORPAN approach is specialised to soil, 

 ),,,,,,( naprocsfS
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but is a subset of the GRUMP conceptual model that also incorporates many epistemic 

uncertainties. The GRUMP framework is suitable for application to any predictive model 

(Figure 5.2). 

A strategy for disaggregation of error sources in digital soil mapping using the 

SCORPAN approach has been suggested recently by Nelson et al. (2011). The approach 

combines a geostatistical model and Monte Carlo simulation to estimate underlying 

errors. A Linear Mixed Model (LMM) was used to produce a digital soil map of clay 

content and prediction error.  

Nelson et al. (2011) considered four major sources of error including, 

 covariate error 

 model error 

 analytical error (of soil properties) 

 positional error 

In the first category of covariate error, environmental covariates, such as mean annual 

rainfall, are aggregated into a common grid in the model. The principal source of error 

related to measurement error, except where sensor data is introduced, or low sample rates 

are involved, or both, leading to the further inclusion of interpolation error. In the second 

category of model error, sources of error included incorrect model, parameter error, 

redundant covariates, and interpolation error. Note that all of these sources can inflate the 

error variance in model prediction, especially given incorrect assumptions on statistical 

parameters, such as stationarity in first and second order moments.  

For example, in the LMM, errors in fixed effects coefficients are assumed subject to the 

normal distribution. Variation not explained by the model is quantified by the nugget and 

sill variance in geostatistics. Effectively, digital soil mapping is a process distinguished 
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by interpolation of low density soil observations into a dense grid of prediction locations. 

Model error is subsequently quantified by the error variance for these predictions. This is 

often executed by the process of bootstrapping, i.e. a model fitting exercise involving 

multiple realisations of the dataset, which may be obtained from probabilistic simulations 

of the original whilst retaining its statistical properties (such as first and second order 

moments). 

In the third category of analytic error, the primary consideration is the quantitative error 

in measurement of soil properties. In the case of soil properties, such as organic carbon 

content, laboratory methods are expensive but more accurate with lower dispersion than 

remote sensing methods. In the fourth category of positional error, samples taken near 

class boundaries produced greater errors than samples from class interiors (Figures 5.5). 

Historical samples, referred to as legacy data, are associated with larger errors than 

current data from accurate GPS technology (Grimm and Behrens, 2009; Carré et al., 

2007).  

In the case of model-based geostatistics, LMM can be used with parameters estimated 

using the residual maximum likelihood (REML), which was recommended over the 

standard regression-kriging approach (Lark and Cullis, 2004), coupled with interpolation 

by the empirical best linear unbiased prediction (E-BLUP). Regression-kriging produces 

estimates of parameters and spatial correlation separately, which may lead to bias and 

errors in variable selection (Nelson et al., 2011).  

In the case study conducted by Nelson et al. (2011), the general form of the LMM was 

fitted to clay data using REML for estimation. Error sources were ranked by variance, i.e. 

contribution to mean square error (MSE) for four data quality scenarios (Table 5.2). 

Model error (parameter error, interpolation error, etc.) accounted for two thirds of the 
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total variance in prediction for all four scenarios. Position error accounted for less than 

1% of variance and was related to the grid size of interpolation relative to the covariates. 

It appears that sources of error are often analytic and covariate in nature, whilst the least 

error occurs with positional uncertainty and measurement error (Heuvelink and Brown 

2007; Nelson et al., 2011). The advantages of the so-called error budget approach is that it 

resolves the total error in the digital map of clay content into separate proportional 

contributions from different error sources. Further elaboration on various error categories 

is provided in the literature (e.g. Refsgaard et al., 2007; Benke et al., 2007; Robinson et 

al., 2014).  

Table 5.2. Comparison of error sources for error-budget model for data quality of clay 

(indicative data from Nelson et al., 2011). Table shows proportion of variance 

contribution to MSE of predictions. 

 

Error Source 

 

Good 

SCENARIO 

Spectroscopic 

 

Legacy 

 

Poor 

 

Model 

 

69% 

 

72% 

 

69% 

 

72% 

Analytic < 0.5% 3.5% < 0.5% 3.55% 

Positional <-0.5% <-0.5% <-.5% < -0.5% 

Covariate 1.7% 3.0% 1.4% 2.7% 

 

The SCORPAN error budget approach is essentially a static model that can be 

implemented at different time periods discreetly. A framework incorporating time 

dependence explicitly is the STEP-AWBH conceptual model for soil evolution, as 

proposed by Grunwald et al. (2011). The framework includes anthropogenic and natural 

forcing’s which determine and modulate soils and space-time interactions. The model 

addresses temporal factors correlating with soil change, including land use change and 
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climate change in temperature and precipitation, and can be implemented by stochastic 

simulation methods or deterministic approaches, such as regression trees. At present the 

model is conceptual in nature and there is not yet sufficient research published on 

possible practical implementations. 

 

5.5 Example 2: Spatial uncertainty and geostatistics 

Geostatistical methods for analysis of spatial data, requiring spatial interpolation by 

kriging, are widely used in mapping, and more recently for prediction of spatio-temporal 

change in soil properties. Users of spatial data need to be mindful that models 

representing dynamic phenomena are subject to uncertainty in inputs and outputs (Cressie 

and Wikle, 2011). The process of spatial data discovery, treatment and transformation, 

together with analysis and derived predictions using geostatistics is described in the 

literature (e.g. Webster and Oliver 2007; Oliver and Webster, 2014). Techniques that use 

likelihood-based methods are now preferred over method-of-moments due to more 

efficient estimation of unknown parameters and assessment of uncertainty in the spatial 

predictions (Diggle and Ribeiro, 2007; Stein, 1999). 

Sources of uncertainty in assessments of soil change were investigated based on soil 

fertility test data for the period 1989 to 1994 from the Hopkins River and Curdies River 

catchments in south-western Victoria. The specific objective was spatio-temporal 

assessment of change in soil pH for 0 to 10 cm (refer to method 4A1 in Rayment and 

Lyons, 2011). Soil acidification in this region is recognised as a significant land 

degradation issue and has been reported in numerous studies, including Crawford et al. 

(1994). Further details on the sample collection method and processing are provided in 

Marchant et al. (2014).  
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For the region shown in Figure 5.6, pH measurements were taken for the period 1989-91 

and compared with the period 1992-4 to check for evidence of acidification (Figure 5.7). 

A crude non-spatial comparison of field measurements of pH between the two time 

periods produced a difference between mean values of 0.265 (95% CI = 0.007, 0.522) for 

the raw data in the region, according to the t-test between means. The pH data from both 

time periods were then interpolated using ordinary kriging using the VESPER software 

package (Minasny et al., 2005). The paired predicted values were then compared (without 

their associated errors) using the paired difference t-test. The test produced a value for the 

mean difference of 0.222 between the kriged data sets (95% CI = 0.221, 0.223), which 

was highly significant (α = 0.001). This suggested that there was a significant change in 

pH between the two time periods. However, when the kriged means were compared with 

the inclusion of their associated errors, there was no significant difference between the 

two predicted surfaces for any of the grid points. These results illustrate that a simple 

statistical analysis may give a misleading conclusion because it may not account for all 

the possible epistemic uncertainties. 

Sources of epistemic uncertainty include measurement error, spatial uncertainty of point 

locations used in the formation of the variogram and its parameters, temporal uncertainty 

of pH observations, and the exponential variogram model used (other possibilities 

included spherical, normal, matern or power distributions). In addition, sampling size may 

have been small, sparse and not representative, and some sites were not resampled in the 

second time period, or the timescale may not have been appropriate, or relevant, or both. 

Analytical test results were georeferenced according to descriptions accompanying the 

data and also represent a potential source of uncertainty. Other potential issues include 

bias, where farmers focused their analysis on regions where poor growth and production 
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were expected. It is clear that statistical variability in data analysis must be viewed in the 

context of possible constraints due to epistemic uncertainties and their effects.  

 

Figure 5.6. Data for pH measurements from the Hopkins River and Curdies River 

catchments in south-western Victoria for the time period 1989-91. 
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Figure 5.7. Data for pH measurements from the Hopkins River and Curdies River 

catchments in south-western Victoria for the time period 1992-94. 

 

The GRUMP framework may be used to explore and identify the uncertainties in the 

modelling process. A new and detailed experiment is currently being designed to address 

the issues raised above and will use GRUMP to apply an approach proposed by Benke et 

al. (2008). They applied a biophysical model in multiple Monte Carlo simulation 
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experiments as the special case of a GRUMP implementation. All inputs were replaced by 

probability distributions and then each distribution was progressively replaced with the 

mean value, and a corresponding new Monte Carlo simulation was executed in a manner 

analogous to step-wise multivariate regression involving forward selection and backward 

elimination (see Figs 10 and 11 in Benke et al., 2008). The output distribution for each 

separate simulation experiment was represented by an uncertainty metric, such as the 

variance or confidence interval, and then compared with the corresponding input 

distributions in the form of a stochastic sensitivity plot. The inputs responsible for the 

greatest output uncertainty were consequently identified and ranked.  

The approach described above applied the PERT probability distribution, which is used 

for modelling statistical variables and expert opinion in risk analysis (Vose, 2000). The 

importance of the PERT distribution is that it can be used to codify data from epistemic 

uncertainties for use alongside statistical variables in the same simulation experiment. For 

a proposed error budget, the GRUMP framework with a biophysical nonlinear model 

represents an alternative approach to a linear statistical model for prediction uncertainty. 

Its potential advantage is that it adds the benefits of model structural adequacy, best fit, 

and identification of nonlinear relationships between the covariates. 

 

5.6 Conclusion 

In soils analysis, uncertainties include many errors that are statistical, geometrical and 

epistemic in nature. In this paper, a large number of uncertainties are highlighted in a 

more comprehensive attention to the problem than traditional consideration of statistical 

variability only. The effect of multiple error sources of uncertainty is reviewed, including 

covariate error, model error, laboratory analytical error, and positional error. In particular, 
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the distinction is made between statistical variability (aleatory uncertainty) and lack of 

information (epistemic uncertainty).  

A global analytic framework for uncertainty was proposed and used to organise 

contributions from error sources into a process modelling approach. Examples of 

uncertainty analysis were provided in the case of error disaggregation and geostatistics. It 

was concluded that a more comprehensive and multi-factor approach to uncertainty 

analysis is necessary in future, especially in the context of developing a soils modelling 

process for incorporation of known sources of uncertainty. 

Future research 

There are a number of issues that require further research in soil science modelling and 

uncertainty analysis. Prominent topics for further research include the following: 

 Strategies are required for managing epistemic uncertainties, including errors in 

expert opinion, transcription errors from legacy data, and resolution of 

digitisation.  

 Model calibration uncertainty is affected by time stepping resolution. Time 

stepping issues need more research, such as comparison of time stepping 

resolution vs prediction accuracy vs computational expense.  

 Representation of uncertainty on digital maps requires more research. 

 Research is required on visualisation of multi-dimensional data. 

 Systems-thinking is needed and not more reductionist-thinking, i.e. error 

propagation through complete systems, not isolated models, and including also 

information loss as well estimates of statistical variability. A soil does not exist in 

isolation - it is part of an ecosystem that includes the atmosphere, climate and 

hydrology. 

 Implementation of the GRUMP framework to practical examples and new cases. 
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Chapter 6  Improving information content in soil pH maps: a 

case study in south-western Victoria 

The conceptual model of the Global Representation of Uncertainty in the Modelling 

Process (GRUMP) was presented in Chapter 5 as a systematic framework to integrate the 

various error sources that contribute to uncertainty. Quantification and enumeration of 

these error sources in mapping and modelling enable creators of this spatial soil 

information to convey to users where and what led to uncertainty in the delivered 

information. The aim of this research was to extend the conceptual logic developed in 

Chapter 5 as a more wholesome implementation of the GRUMP framework to a soil 

mapping application. This supports a primary research aim of this thesis to develop an 

approach to accommodate, and illustrate to users of spatial soil information, the various 

error sources in modelling and mapping. 

The objectives of this chapter were to: 

Define potential error sources that contribute to uncertainty in mapping of soil 

pH; 

Implement the GRUMP framework to illustrate how the range of error sources 

contributes to uncertainty in the production of spatial soil information. 

There is increasing attention directed to the identification and treatment of epistemic 

uncertainty (that is, lack of knowledge, context or information). A problem with epistemic 

uncertainty is that once a source is identified, how may it be incorporated into the total 

picture on uncertainty? The GRUMP framework has been proposed recently as one path 

to integrated uncertainty assessment. In order to combine epistemic uncertainty with 

statistical variability it is necessary to quantify epistemic uncertainty. In this chapter I 

provide examples of several important epistemic uncertainties and their quantitative 
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evaluation in the mapping of soil pH. Further progress towards integration of uncertainty 

from all sources will require development of global metrics, e.g. system total variance or 

system prediction interval. 
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6.1 Introduction 

A primary threat to the quantity and quality of food production worldwide is soil 

acidification (FAO and ITPS, 2015). Globally, acid soils are estimated to affect 30% of 

the ice-free land mass (Uexküll and Mutert, 1995) with accelerated acidification due to 

the drainage of land, land use change and intensification (e.g. from native systems to 

productive agriculture), acid rain, and the application of acidifying nitrogen fertilizers. In 

Australia, 50 million hectares of agricultural land are estimated to have acid surface soils 

causing annual production losses of $AUD 1585 million (NLWRA, 2002). 

Realistic statements about soil properties, such as pH and its decrease over time (soil 

acidification), are a current priority for many countries including Australia (Department 

of Agriculture, 2014). To establish soil pH baselines and better target interventions to 

manage soil acidity, reliable spatial estimates are necessary. While some countries have 

invested in purpose built soil monitoring networks (Arrouays et al., 2012), many countries 

are using available soil information (often referred to as legacy data) to formulate a 

current picture of soil degradation and changes in soil condition (Marchant et al., 2015). 

Legacy data used for such purposes can be convenient but also present many potential 

issues that must be resolved. Inaccuracy in site location, bias in sample design, sparseness 

and clustering of sample sites (Marchant et al., 2013), imprecise and inaccurate field and 

laboratory measurements (Raupach, 1954; Raupach and Tucker, 1959; White, 1969; 

Laslett and McBratney, 1990), and out-dated analytical methodologies incongruent with 

current methods, all contribute errors to modelling and mapping.  

So how do we make better maps to represent soil properties of interest? Ultimately, a 

better map should be new knowledge that can inform a user to make better decisions. The 

lack of a clear and concise representation of the soil property of interest and a reliance on 
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tacit knowledge can lead to incorrect assumptions on impacts of land use and 

management to soil pH. To best support land managers in their management of land, we 

need to identify the tacit understandings of land managers and present them with tailored 

spatial soil information that is congruent and timely for their decision making, easily 

interpreted and applied, and with certainty defined.  

To make a map more ‘certain’ for users and thus reduce risk, approaches that can 

integrate data with associated errors, and reduce the effects of these errors, are required. 

Here systematic approaches can prove useful to accommodate and illustrate uncertainty in 

the development and delivery of a soil map. The error budget procedure of Nelson et al. 

(2011), as an example, combines the relative contribution from stochastic error sources in 

Digital Soil Mapping (DSM: McBratney et al., 2003) and has been adapted for soil 

salinity mapping purposes (Huang et al., 2015). Potential error sources considered in the 

error budget include environmental covariates (e.g. error in digital elevation models), soil 

property measurement error (e.g. accuracy and precision), model error and positional 

error with location of sites - all known as aleatory uncertainty (Walker et al., 2005; Benke 

et al., 2007). In DSM, a conventional focus of uncertainty assessment has been on 

statistical variability using error propagation or other stochastic methods. Epistemic 

uncertainty due to imperfect knowledge or assumptions can be significant in their 

contribution to uncertainty assessment. While error sources contributing to epistemic 

uncertainty can be significant (e.g. incorrect context or environment), it can generally be 

reduced through the attainment of new knowledge to reduce effects from misdiagnosis, 

misinterpretation or incorrect implementation. In mapping soil pH, epistemic 

uncertainties may include: measurement error for different pH analysis methods; temporal 

cycles in pH; model specification and assumptions; the incorrect environment and 

conditions in framing of models, assessments and legacy data used. Robinson et al. 
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(2015) describe a framework, the Global Representation of Uncertainty in the Modelling 

Process (GRUMP), to integrate epistemic and aleatory uncertainties. The GRUMP 

framework supports explicit definition, organisation and quantification of these error 

sources in a modelling process. The sources of aleatory and epistemic uncertainties can be 

quantified or enumerated through experiments, expert opinion or explicit knowledge. This 

enables comparison between uncertainty assessment techniques and the ability to modify 

these depending from user perceptions of uncertainty (McBratney, 1992; Robinson et al., 

2015). 

In this paper, we combine legacy data with model-based geostatistics to predict soil pH 

and associated error for south-western Victoria (Australia). We attempt to accommodate 

error sources contributing to epistemic uncertainty that have rarely been included in 

previous DSM applications, such as: the time of sampling and seasonal variability, 

differences in analytical methods , effects of land use change and variable soil sample 

depth in legacy data. In this example, these error sources are viewed as contributing to 

epistemic uncertainty. Spatial covariates representing soil forming factors are also used to 

improve our predictions. To transform spatial prediction and error estimates of soil pH 

into informative and usable products, a spatial simulation technique to approximate the 

likelihood (probability) of soil pH being less than critical agronomic thresholds and an 

explanation of how this process has led to improved information (better maps) is 

presented. 
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6.2 Methods 

6.2.1 Study area 

The study area of 14,000 km2 in south-western Victoria comprises the catchments of the 

Hopkins River and Lake Corangamite (Figure 6.1). It is part of the Western Plains and 

Western Uplands geomorphological divisions of Victoria (Rees et al., 2010) with low-

lying undulating plains of volcanic and sedimentary origin and Palaeozoic bedrock 

formations as upland residuals at various elevations. The volcanic plains comprise 

deposits from eruptions over the last 5 million years, including overlapping basalt flows 

with palaeosols and pyroclastic deposits from scoria cones and tuff. Soils of the Western 

Plains are of variable age and pedogenic development, the major soils being Sodosols, 

Chromosols and Vertosols (Isbell 2002, Robinson et al., 2003). Chromosols, Dermosols 

or profiles that can be strongly acidic (Kurosols) are found in the higher rainfall zones of 

the study area. 

6.2.2 Land use 

Historically, livestock production systems in south-western Victoria have dominated 

landscapes since European settlement in the 1830s. This includes sheep production 

systems (wool and meat), beef cattle production, dairy and mixed farming systems 

(Gibbons and Downes, 1964). Animal husbandry practices were supported by improved 

pastures and significant increases in livestock numbers. In 2000, the majority of the study 

area was either under improved pastures or native grassland (Figure 6.2a). This was 

determined from a supervised classification of Landsat scenes, air photo interpretation 

and field validation. When contrasted against the 2014 land use (Figure 6.2b) from the 

Victorian Land Use Information System (VLUIS; Morse-McNabb et al., 2015), over 

300,000 ha of land (22% of the study area) converted from pasture to forestry or grain 

production (Figure 6.2c). The prediction accuracy of land use classes for 2014 (R2=0.66) 
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was lower than the 2000 (R2=0.88) land use map. This is attributed to the use of MODIS 

imagery in the 2014 assessment and a limited field calibration/validation program. The 

spatial trends of increasing cropping and where this expansion is occurring are consistent 

with where existing cropping enterprises were in 2000. 

 

Figure 6.1. Soil sites and their space-time distribution in south-western Victoria. 

 

6.2.3 Soil data 

In the study area, 828 sites were sampled between 1957 and 2015 (Figure 6.1, Table 6.1) 

from 13 soil and land surveys. Sites include surface samples from profile descriptions, 

monitoring sites and soil fertility samples. Of the 828 sites, 174 (21%) are from paddocks 

where land use has changed since 2000 (Figure 6.2c) and 126 of these 174 sites were 

sampled prior to 2000. 
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Soil pH measurements from methods 4A1 (pHw) and a modified 4B5 (pHwmir) 

(Rayment and Lyons, 2011) used in this study are summarised in Table 6.2. 

Measurements since 2010 for Method 4A1 (equivalent to ISO 10390:2005) were obtained 

using a Radiometer Analytical SAS titration system comprising a PHM92 pH meter and 

CDM240 conductivity meter. Between 1992 and 2010 a comparable automated system 

was used with control samples and a test sample (Shelley, Personal communication) to 

account for instrument drift (Laslett and McBratney, 1990). Prior to this period, pH was 

determined using equipment from the same manufacturer with samples left to equilibrate 

to monitored room conditions prior to analysis. Error is reported as ±0.1 pH units. 

Table 6.1. Soil sites (N) for the collection periods. 

Period N Period N 

1950-1960 5 1991-2000 144 

1961-1970 15 2001-2010 74 

1971-1980 22 2011-2015 124 

1981-1990 444   

 

Where pHw was not observed, Mid-Infrared (MIR) predictions (pHwmir) were included. 

The MIR diffuse reflectance spectroscopy samples were finely ground to ensure a 

standardised fine grind particle size distribution (>95% < 100 μm) and scanned using a 

PerkinElmer Spectrum One Fourier Transform MIR spectrometer at 8 cm-1 resolution, 

from 450 to 7800 cm-1 for one minute. Spectra were averaged and background readings 

collected every 10 samples. Predictions and error estimates were determined using Partial 

Least Squares Regression (PLSR) from a calibration model with over 11,000 samples. 
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Model statistics reported include an R2 of 0.88, R2 cross validation (CV) of 0.88, Root 

Mean Squared Error (RMSE) of 0.56 and RMSECV of 0.56. 

 

 

Figure 6.2. (a) Land use in 2000 and (b) 2014 and (c) changes between 2000 and 2014. 

 

Table 6.2. Summary statistics for pH measurements. 

Method N Minimum 1st 

Quantile 

Median Mean 3rd 

Quantile 

Maximum St. Dev Skew 

pHw 625 4.3 5.1 5.4 5.52 5.8 10.2 0.68 0.143 

pHwmir 203 4.0 5.07 5.53 5.71 6.12 8.71 0.86 0.135 
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6.2.4 Digital Soil Mapping 

McBratney et al. (2003) present a framework for predicting soil properties based on soil 

forming factors (Jenny 1941) across regions of interest. For each soil forming factor (soil, 

climate, organisms, relief/topography, parent material, time and spatial position, 

environmental variables were selected (Table 6.3) as potential fixed effects in the model-

based geostatistics. Spatial covariates were projected to GDA94/Vicgrid94 and resampled 

to a 1000 m resolution using nearest neighbourhood for computational efficiency 

purposes in the model-based geostatisics. 

Model-based geostatistics 

To predict pHW from available environmental spatial covariates and account for important 

factors in observed pHW (e.g. time of sampling, sample depth, land use change), model 

estimation and prediction was performed using a Linear Mixed Model (LMM); see Lark 

et al. (2006) for further details. 

The LMM separates the fixed effects (β) as the linear model between pHW and the 

important explanatory variables from the random effects ( 	which are modelled to 

identify spatial dependence as the error. The equation also has an error term ( ): 

	 	 	 	  

where  is the response variable (pHW),	 	is a vector of unknown fixed effects and 	is a 

design matrix relating the response variable to those fixed effects;  is a vector of 

unknown random effects and the design matrix  relates the observations ( ) to the 

random effects. The error term  is a vector of the independent random errors from 

measurement imprecision or inaccuracy and variation from processes over short distances 

that are not represented in the sample set (the nugget variance).  
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Table 6.3. Environmental (spatial) covariates available for model-based geostatistics. 

Factor Variable name Description Agency/Source 

S (soil) Victoria land units Victorian soil type mapping 
from harmonised legacy surveys 
with 3,300 land units 

Department of Economic 
Development, Jobs, 
Transport and Resources 
(DEDJTR) 

 Land use Tertiary dominant land cover 
class for 2014. 

Department of Economic 
Development, Jobs, 
Transport and Resources 
(DEDJTR); Morse-McNabb 
et al. (2015) 

    

C (climate) Mean rainfall 
(1960-1989) 

Average annual rainfall (mm) 
between 1960 and 1989. 

Australian Bureau of 
Meteorology 

 Prescott Index Prescott Index is an estimate of 
the water balance including 
leaching potential from 
evaporation and precipitation 
data 

CSRIO; Gallant and Austin 
(2015) 

    

O 
(organisms) 

NDVI_2009 MODIS NDVI 2009 Timesat 
derivative (maximum 
amplitude) using a Savitzky–
Golay filter. 

DEDJTR; Eklundh and 
Jönsson (2015) 

    

R (relief) Elevation Vicmap elevation DTM 20m is 
at a spatial resolution of 20m 
and is derived from data of 
various resolutions, accuracies 
and ages with increased details 
in local areas. 

Department of Environment, 
Land, Water and Planning 
(DELWP) 

 Slope Slope gradient (%) – derived 
from the DTM 20m 

Department of Environment, 
Land, Water and Planning 
(DELWP) 

 MrVBF Derived from Elevation – Multi-
resolution Valley Bottom 
Flatness index 

Gallant and Dowling (2003) 

    

P (parent 
material) 

Weathering 
intensity index 

Weathering intensity index - 
degree that primary minerals are 
altered to secondary clay 
minerals and oxides. 

Geoscience Australia; 
Wilford (2012) 

 GRS–K Gamma radiometric potassium 
concentration from natural 
gamma rays to a depth of 
approximately 40 cm. 

DEDJTR 
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LMMs for the alternative models were fitted with spatial covariates as fixed effects and 

the spatial coordinates (covariance structure) as the random effects using the “likfit” 

function in the geoR package (Ribeiro and Diggle, 2001) which adopted the Maximum 

Likelihood (ML) procedure/algorithm. The null model was fitted in a similar fashion but 

only had the mean (no fixed effects) but with spatial coordinates as the random effects 

like the alternative models. To determine which spatial covariates (fixed effects) to use in 

the parsimonious model, we fitted each of the fixed term sequentially which was followed 

by a likelihood ratio tests between nested models to determine whether or not a fixed 

effect is included at 5% level of significance. 

To illustrate the benefits of including spatial covariates and fixed effect factors (e.g. land 

use change, sample depth and sampling time – season), we fitted two models. Model 1 

included no covariates/factors and is a spatial dependence model with a constant mean 

(the null model). Model 2 included the significant fixed effects found in previous step 

(parsimonious model) to demonstrate the reduction in prediction error from their 

inclusion in a model-based design. Spatial predictions on to a common grid (predicted 

locations) were performed from both sets of models (see below) and outputs were 

compared spatially. 

Fixed effects used in modelling 

Some of the major fixed effects used in the LMMs included Sample depth which was a 

two-level factor where surface samples either corresponded with the depth interval 0 – 10 

cm, or not (e.g. were greater than this 10 cm interval; Figure 6.3). Sites were assigned to 

the four seasons in Victoria (Winter, Spring, Summer and Autumn) according to their 

sample date (Figure 6.3). Land use was determined from the 2014 land use spatial dataset 

with two classes assigned – pasture or crop. Land use change was spatially assigned as 

per the estimated change in land use between 2000 and 2014 (Figure 6.2c). Variance 
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estimates were also used to compare the two models. As Nelson et al. (2011) determined 

that uncertainty due to positional error was relatively small in the error budget using 

model-based approaches, we did not include this error source into the design of our 

investigation. 

 

Figure 6.3. pH distribution for sample depth for the two levels (0 – 10 or 0 – 10+ cm). 

 

Probability of pHw being below critical agronomic thresholds 

A simulation of 5000 realisations for the conditional spatial distribution of pH was 

generated and stored at each of the predicted locations. These simulated pH data were 

then used to approximate the probability that pHw at a known location is above or below 

a pH value, e.g. 5.3 for perennial pastures and 6.0 for brassicas (see Slattery and 

Coventry, 1993; Slattery et al., 1995). The approach employed by Lark et al. (2014) 

adopted the likelihood scale of the Intergovernmental Panel on Climate Change (IPCC) to 

describe quantified uncertainty using verbal scales (Mastrandrea et al., 2010). These 

probabilities were then converted to verbal scales and mapped to support users with 

potential interventions on land use and management. The scheme used in this example 
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(Table 6.4) has not been translated into unambiguous management outcomes as 

recommended by Lark et al. (2014), rather the purpose is to highlight the use of 

probability methods to convey to users the relative uncertainty associated with the map 

estimates. 

Table 6.4. Verbal scale for likelihood (probability) used for pHw scenarios (≤5.3 and 

≤6.0) 

Verbal descriptor Likelihood (probability, %) 

Exceptionally unlikely 0 - 1 

Very unlikely 1 – 10 

Unlikely 10 – 33 

About as likely as unlikely 33 – 66 

Likely 66 – 90 

Very likely 90 – 99 

Virtually certain 99 – 100 

 

6.3 Results 

6.3.1 Establishing fixed and random effects 

The soil pHw LMM included legacy data factors and environmental covariate factors that 

were determined from the likelihood ratio test (Table 6.5). Legacy data factors included 

Sample depth and Season (Spring, Summer, Autumn and Winter). Factors including pH 

measurement method and Land use change were excluded as they added little 

improvement to the model. Environmental covariates included were Elevation, Land use 

(pasture or crop) and NDVI_2009. The seasonality of pHw differences is apparent in 

Figure 6.4 for the 0-10 cm sample depth where values are highest in winter and decrease 

across the following seasons (spring and summer) before increasing slightly in autumn. 
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This pH trend as a yearly cycle is consistent with findings of Slattery and Ronnfeldt 

(1992) and Conyers et al. (1997). 

 

Figure 6.4. Seasonal differences in pHw. 

 

Table 6.5. Summary statistics for environmental covariates and factors (e.g. Sample 

depth) used in the Likelihood ratio test for the LMM (Model 2). 

Fixed effect p value 

Sample depth 0.015 

Season 0.029 

pH source 0.120 

Land use <0.01 

Land use change 0.328 

Victoria land units 0.096 

Elevation 0.068 

Mean rainfall 0.943 

MrVBF 0.437 

Prescott Index 0.433 

Slope 0.225 

Weathering Intensity Index 0.133 

NDVI_2009 0.007 
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6.3.2 Spatial prediction of pHw 

The prediction of pHw using the constant mean model (Model 1) was compared against 

the LMM with fixed effects (Model 2) to establish whether fixed effect factors were 

significant in their contribution to a reduced error. Figure 6.5 shows the two models for 0-

10 cm and their associated variance estimates (season is Summer in Model 2). Where the 

land use was something other than pasture or grain production, no spatial predictions of 

pH were derived. These maps highlight that the addition of fixed effect factors led to an 

improvement in the AIC from 1595 to 1499, reduction in the pH prediction error and 

seasonal departures from a constant mean (Table 6.6). Associated model parameters and 

highly significant variables are provided as tables in the Appendix (section 6.6). 

 

Table 6.6. Mean soil pH prediction and variance estimates for Model 2; and Model 1 (in 

brackets). 

 Winter  Spring Summer Autumn 

Prediction 5.48 (5.50) 5.63 (5.50) 5.34 (5.50) 5.57 (5.50) 

Variance 0.36 (0.39) 0.36 (0.39) 0.36 (0.39) 0.36 (0.39) 

 

Overall the mean predictions on a seasonal basis for Model 2 varied between -0.02 to 0.28 

from the constant mean model (Model 1). The variance estimates for all seasons of Model 

2 were smaller than Model 1, but only marginally. This is to be the expected as the spatial 

covariates included in Model 2 result in the predictions being more accurate due to the 

additional information contained in these variables. The inclusion of fixed effect factors, 

Season and Sample depth, is significant and represents a departure from conventional 

model-based geostatistical approaches used in DSM.  
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Figure 6.5. Spatial prediction (left) and variance estimates (right) for Model 1 (top) and 

Model 2 (bottom) for summer. 

 

The seasonal differences in the map predictions for pHw and associated variance 

estimates defined in the LMM are evident for 0-10 cm (Figure 6.6 and 6.7). Winter and 

spring both display similar patterns with slight fluctuations in pHw for northern and 

western parts of the study area. There is a sharp contrast with Summer where there is 

considerably larger areas of lower pHw in south-western parts with values approaching 

5.2 or lower. Autumn has similar patterns to Summer, but, it is evident that pHw values 

have increased slightly from a low in the summer months. 
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Figure 6.6. Spatial prediction (left) and variance estimates (right) for Winter (top) and 

Spring (bottom). 

 

6.3.3 Probability of limiting soil pH conditions 

The probability maps (Figures 6.8a and b) using the approach recommended by Lark et 

al. (2014) represent the uncertainty in spatial predictions of soil pHw. Maps have been 

presented using a red-yellow-blue colour scheme as this has been preferred by users of 

volcanic hazard maps (Thompson et al. 2015) to reflect a progression from hazard (red 

hues) to absence of hazard (blue hues). The probabilities have been translated into verbal 

scales (Table 6.4) to illustrate that a large proportion of the Hopkins and Corangamite 
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basins have likely limiting pHw conditions (pHw ≤6.0) across seasons for cropping where 

brassicas and other acid sensitive species (e.g. lucerne) are included in management 

rotations - Figure 6.8a. Areas surrounding, and to the east of, Lake Corangamite as part of 

the Western Plains, are designated likelihood classes unlikely to very unlikely of having a 

topsoil pHw ≤6.0. The map with probabilities of pHw being ≤ 5.3; Figure 6.8b, defines 

areas in the Western Uplands near Ararat where there is likely to be limiting agronomic 

conditions due to acidification and toxicity to plants from aluminium and manganese. 

Likewise, there are areas to the east of Penshurst that are likely to have limiting pHw 

conditions for pastures in livestock production enterprises. Acid tolerant varieties 

including perennial pastures are likely to be impacted at these pH values in these areas. In 

the south-east, it is unlikely that soil pHw will affect tolerant species except for land in 

the Heytesbury region, directly south of Lake Corangamite and Colac that abuts the 

Otway Range (the Southern Uplands). These landscapes have higher rainfall and known 

acid soils including Kurosols (Robinson et al., 2003). 

 

6.4 Discussion 

This study has shown that map users can have information with greater certainty by 

accounting for potential error sources using the GRUMP framework to make maps based 

on consideration of factors such as seasonal variability and land use effects. As legacy 

soil data issues are rarely, if ever addressed in soil maps, the research reported here shows 

that error sources reducing map certainty can be quantified and accounted for using 

systematic approaches.  

Cyclic seasonal variability in soil pH is recognised (Slattery and Ronnfeldt, 1992; 

Conyers et al., 1997); however, to our knowledge, this is the first example where time of 
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year (translated into season) of sampling and temporal variability is accounted for in the 

creation of a soil pH map. The cyclic pattern of pH values rising from a low in summer 

and peaking in late autumn to mid-winter when the soil is at its wettest, and then 

decreasing in late spring to early summer when the soil is drying, is consistent with 

results from previous trials in north-eastern Victoria (Slattery and Ronnfeldt, 1992). For 

gross changes in soil acidification to be quantified, variations in soil pH will need to 

exceed temporal flux and other error sources (e.g. spatial variability) to enable detection. 

 

Figure 6.7. Spatial prediction (left) and variance estimates (right) for Summer (top) and 

Autumn (bottom). 
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Figure 6.8. (a) Mapped probabilities that pHw was less than, or equal to 6.0 (top), and (b) 

5.3 (bottom) for autumn. 
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Land use change, while marginally significant, represents a potential factor relevant to 

changes in soil pH. Changes in pasture composition and a reliance on legume based 

pasture (e.g. subterranean clover) have been recognised as causing more land to become 

acid in Australia (Coventry, 1985). In south-western Victoria, transformations in farming 

systems from those focused on pastures to those of cropping, or forestry, are occurring. 

Soil acidification has been observed in pastures for this region (Crawford et al., 1994) and 

conversion to cropping may further accelerate the Net Acid Addition Rate (NAAR). 

Slattery et al. (1998) collated data from previous research and found that acidification 

rates for cereal-legume rotations (1.0 to 7.5 kmol (H+)/ha per year) were considerably 

higher than pastures (0.16 and 3.6 kmol (H+)/ha per year). 

Changes in pH with depth are well known, and from this study different sample depths 

were found to contribute to differences in soil pH. Variability in soil pH with depth is 

recognised and is strongly aligned to soil type. Variations within 0 to 10 cm can also be 

considerable (Mclaughlin et al., 1990). From this investigation, dealing with samples 

derived from multiple depths, there were significant differences in pH observed. Our 

finding that there was no significant discrepancy between the different pH methods with 

associated uncertainties in the LMM is consistent with Nelson et al. (2011) where 

analytical error was found to be relatively minor in the total uncertainty assessment.  

The inclusion of environmental covariates as fixed effects representing soil forming 

factors has improved predictions of soil pH. This was identified by Nelson et al. (2011) as 

a way of reducing model error. The study area in south-western Victoria is large in 

comparison to error budget and uncertainty studies (e.g. Nelson et al., 2011; Huang et al., 

2015) and includes legacy data with real artefacts and errors that compound to affect 

spatial prediction of soil pH. By harmonising some of these epistemic error sources, under 
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guidance from the GRUMP framework, model-based geostatistics have enabled more 

certain soil pH maps to be created. 

The application of probability based schemes with verbal scales to convey uncertainties 

are recent developments in communication of soil information to users (see Lark et al., 

2014; Marchant et al., 2015). This technique has been implemented in this study to 

convey to land users that areas with limiting soil pH conditions are likely and represent a 

potential limitation to plant production. By accounting for factors that contribute to 

uncertainty in model-based approaches, and use of verbal scales to convey uncertainty, 

we can make maps of greater utility than conventional soil pH maps. 

Our argument for maps presented in this paper being better than previous maps is that: (i) 

conventional maps produced from previous survey programs did not include a measure of 

uncertainty or error (i.e. we do not know how good they truly are); (ii) national attempts 

to predict soil pH have been based on exhaustive soil fertility test datasets (e.g. NLWRA 

2002) with sites georeferenced to localities and samples purposively collected to inform 

management; (iii) no analyses to our knowledge have considered seasonal variability and 

other potential error sources in the cyclic behaviour of soil pH; (iv) the implementation of 

conditional simulations, together with critical agronomic thresholds and use of verbal 

uncertainty scales, provides land users with map information of direct applicability. 

There are further opportunities to improve the approach reported here. Firstly, model 

specification could be refined to integrate further epistemic error sources including expert 

opinion and additional data (e.g. field pH determinations) using probabilistic methods 

such as Monte Carlo simulation. This can be informed by the error budget approach. 

Secondly, the implementation of a model ensemble approach that incorporates pre-

existing maps and new maps from other techniques (e.g. data mining) should be 
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considered. Thirdly, we recognise that there remain large deficiencies in adequate soil site 

representation across temporal and spatial domains for this region. This issue requires 

further attention if we are to refine and improve soil pH maps, especially as legacy data 

that is often used in DSM may represent past soil conditions that have been modified by 

new and different farming systems with different acidification rates. Development of 

future soil maps should consider these factors through repeated analysis of suitable sites 

in a purpose-built soil monitoring network with a spatio-temporal statistical design that 

meets the desired certainty negotiated between the soil scientist, geo-statistician and 

decision maker. 

 

6.5 Conclusion 

There is a continuing need for vigilance in monitoring changes in soil acidification that 

can have harmful impacts on primary production and the environment. Prediction of soil 

properties and their spatial distribution, however, is subject to uncertainties related to the 

accuracy of legacy data. In this paper, a legacy dataset from south western Victoria was 

used with model-based geostatistics to produce maps of soil pH that addressed a variety 

of error sources, such as the time of sampling, seasonal variability, analytical method 

differences, effects of land use change and variability in soil samples. Using a linear 

mixed model (LMM), significant factors contributing to uncertainty in results were 

identified and used to produce more informative maps with improved information content 

for prediction of soil pH. The resulting soil maps displayed uncertainty in soil properties 

and the probability of being below agronomic critical production thresholds. Using 

probabilities from conditional simulations in combination with critical thresholds for 
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production of acid sensitive species, it was possible to define different areas in south-

western Victoria that are likely to be below these thresholds. 

 

6.6 Appendix 

Parameter estimates and model statistics for the constant mean (Model 1) and LMM 

(Model 2). 

 Model 1 Model 2 

Variogram function Matérn Matérn 

κ (shape parameter) 0.5 0.1 

̂2 (constant mean) 5.452 7.364 

2 (partial sill) 0.220 0.208 

̂2 (nugget variance) 0.325 0.210 

 (range) 0.158 0.391 

asymp range 0.474 0.545 

AIC 1595 1499 

logL -794 739 

 

Highly significant terms (variables) added sequentially for the LMM. 

 df SS Wald statistic Pr (Chi sq) 

Intercept 1 1134.24 16110.8 < 2.2e-16 

Sample depth 1 1.30 18.4 1.744e-05 

Season 3 1.83 26.0 9.410e-06 

Land use 1 2.51 35.7 2.315e-09 

Elevation 1 3.16 45.0 2.016e-11 

NDVI_2009 1 1.03 14.6 0.0001299 

residual  0.07   
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Chapter 7 Assessment of error sources in measurements of 

field pH: effect of operator experience, test kit differences and 

time-of-day 

As highlighted in the literature review (Chapter 3) and Chapter 6, there are significant 

deficiencies in the spatial and temporal coverage of soil sites to adequately fit spatial 

inference models (McBratney et al., 2003). However there are large collections of legacy 

measurements of soil properties from quantitative and qualitative methods that may hold 

practical value in supplementing disparate soil site datasets. For example field pH as a 

measurement is open to many uncertainties identified in Chapters 3 and 5, but there are 

thousands of records available in state, territory and national databases that may hold 

value in assessments of soil pH for calibration or validation purposes. Research presented 

in this chapter aims to establish a model for field pH against laboratory pH and how 

operator experience and field pH test kit influence the quality of predictions. In the 

absence of laboratory measurements for conventional soil mapping there has been a high 

dependence on field pH measurements for screening and soil classification purposes. This 

would suggest little reason to suspect that in the absence of laboratory observations that 

field pH won’t serve as a useful replacement. The research contributes to thesis objectives 

to: 

Understand and account for potential error sources in input soil data to spatial 

inference systems; 

Support the prediction of soil properties linked to soil health, e.g. pH.  
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Various methods exist to measure soil pH, and while there is general agreement between 

existing published laboratory and field based methods, the latter are subject to 

uncertainties including test kit reliability, accuracy, precision and environmental factors. 

The contribution of this study is to quantify three uncertainties that affect the conversion 

between field pH and laboratory pH measurements, namely operator experience, choice 

of test kit and the time-of-day for measurement. Soil samples from western Victoria, 

representing the pH range 4.5 to 10.0, were used in a randomised complete block design 

with ten assessors split into two groups representing experienced and inexperienced users. 

Statistical analysis of laboratory and field pH was based on using the Maximum 

Likelihood Functional Relationship (MLFR) to determine whether or not there was any 

bias between the two methods. Significant differences were found between experienced 

and inexperienced users, and between test kits. The findings of this chapter provide the 

potential to screen samples and reduce error in input data to Digital Soil Mapping 

assessments, and apply the confidence and prediction intervals for uncertain data which 

can inform error propagation analysis in mapping and modelling. 
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7.1 Introduction 

Soil pH is the most frequently measured soil chemical property and provides invaluable 

background context to understanding chemical, physical and biological interactions and 

behaviours of soil and regolith with the biosphere and hydrosphere. Not only does pH 

have a critical role, as the expression of acidity or alkalinity and its impact on the 

availability and solubility of nutrients, it is also used for soil classification purposes, land 

use and land capability assessment and for modelling and understanding of agro-

ecosystems. 

Internationally there are numerous methods used to measure soil pH in field and 

laboratory environments. In the laboratory, different ratios of soil and water or saline 

solutions are used. Historically, in Australia, laboratories have measured pH in 

suspensions of soil and water by shaking one part soil with 5 parts water for one hour 

(ISO 10390:2005; Method 4A1 in Rayment and Lyons, 2011). To better account for 

seasonal variability in insoluble salts due to rainfall or management interventions, such as 

fertilizer addition (White 1969), water was supplemented with a weak salt solution, i.e. 

0.01 M CaCl2 (Method 4B1 in Rayment and Lyons, 2011). Arguably, laboratory pH 

methods are the most reliable in comparison to field pH procedures; however, field based 

pH assessment is rapid, inexpensive and results are instantly available to users, such as 

soil scientists, extension and advisory providers. 

Field measurement of soil pH (hereon referred to as field pH) has been in use for 100 

years, with methods required to be rapid, accurate, cheap and easily ascertained (Wherry, 

1920; Mason and Obenshain, 1939). The sequential development of pH measurement 

includes methods that added salt solution to the soil (e.g. CaCl2 or KCl) and those that 

added water to the soil and observed colour changes of indicators as related to 

concentrations (Wherry, 1920). As field methods evolved, further comparison studies 
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were undertaken to assess the usefulness of indicator methods in comparison with 

standard electrometric laboratory methods (Mason and Obenshain 1939). In Australia, 

enhancements to the makeup of indicator solution and methodology to apply barium 

sulphate onto a soil-indicator paste (Raupach, 1950; Raupach and Tucker, 1959) led to the 

establishment of the colorimetric procedure (Method 4G1 in Rayment and Lyons, (2011) 

that is still widely used today.  

Field pH provides a simple, expedient and reliable approach to measuring pH for soil 

survey and advisory services at various scales (Raupach and Tucker, 1959; National 

Committee on Soil and Terrain, 2009). Measurement of field pH using the colorimetric 

method of Raupach and Tucker (1959) has been undertaken as standard practice in soil 

and land surveys across Australia for over 60 years. Extensive collections of field pH 

measurements exist in state, territory and national databases, such as the Victorian Soil 

Information System (VSIS, Hunter et al., 2010) and Australian Soil Resource Information 

System (ASRIS, www.asris.csiro.au). Also contained within these databases are less 

frequent companion sets of laboratory pH observations for pH in 1:5 soil-to-water 

suspension (hereon referred to as pHW or lab pH), and with 0.01M CaCl2 extract. 

Complementary field and laboratory measurements of soil pH on samples enable 

comparison of these methods and evaluation of method performance. Comparative studies 

of various pH measurement modalities have been carried out in the past (Mason and 

Obenshain, 1939; Steinhardt and Mengel, 1982; Slattery and Ronnfeldt, 1992). It has 

been demonstrated that there is reasonable agreement between lab pH and field pH, 

measured from the same soil sample where a single operator was responsible for field 

measurements (Baker et al., 1983). Steinhardt and Mengel (1982) specifically evaluated 

the performance of a colorimetric indicator field method against the laboratory method 

for determining the accuracy of predicting soil pH. However, while the authors identified 
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some of the potential error sources that result in variation between field and laboratory pH 

methods, the scope of this and early studies failed to investigate factors affecting the 

strength of agreement between different methods of measuring pH for extremely acid to 

alkaline soils. 

Globally, there is a current focus on the delivery of digital soil maps (McBratney et al., 

2003) exploiting available legacy soil data (Carré et al., 2007) for initiatives such as the 

GlobalSoilMap project (www.globalsoilmap.net). For many states, territories and nations, 

significant deficiencies may exist in measured, accessible and available laboratory pH 

data. As a consequence, there is a potential role for legacy pH observations over 

geographically widespread areas to complement available laboratory pH data for digital 

soil mapping purposes (de Caritat et al., 2011; Hopley et al., 2014). The extensive 

collections of field pH observations in state, territory and national government 

organisation databases may also be valuable in establishing a baseline of soil condition 

where design-based monitoring systems are absent. 

At present, the documented pH datasets for field pH and lab pH measurements are large, 

but limited by the numerous confounding error sources that contribute to measurement 

uncertainty. Some of these unaccounted sources of uncertainty in field pH measurement 

include: 

 assessor (experience level); 

 pH test kits (different brands); 

 soil characteristics (pH range and value); 

  time-of-day (light quality), and 

 age of test kit. 
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From practical field experience in conducting field pH measurements, there are many 

effects that could potentially bias the relationship between lab pH and field pH. For 

example, it has been reported that although Australian measurements of the spectral 

content of daylight have been similar to northern hemisphere measurements, there is a 

higher level of irradiance in the ultraviolet spectral region (Dixon, 1978). The effect on 

colour card matching and pH assessment over the course of the day is unknown but there 

may be bias towards a higher pH reading.  

Print quality of colour cards provided by different commercial field pH kits may 

introduce inaccuracy and uncertainty in pH test kits. The performance of indicator test 

kits can deteriorate over time due to solvents with aged dyes or impurities (Mason and 

Obenshain, 1939). Also, batch-to-batch variations in the kit indicators and solvents may 

introduce perceptible shifts in performance. Very little research has been reported on 

these effects or on the potential impact of colour interpretation in the field. 

The aim of this study is to address this gap in knowledge on sources of uncertainty 

affecting soil pH determination by investigating how those factors may affect the 

relationship between field and lab pH and quantifying the potential bias introduced by 

each factor. Two experiments to account for error sources in both field and laboratory pH 

using Linear Models and the Maximum Likelihood Functional Relationship (MLFR) as 

proposed by Ripley and Thomson (1987) were designed to test the following hypotheses: 

1. there is a significant assessor effect on the analytical bias between field and lab 

pH; 

2. there is a significant pH level effect, and 

3. there is a significant test kit effect. 
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The effect of light quality was considered as time-of-day and has been used as a blocking 

factor in this study. The findings from these experiments will provide support for 

recommendation of a more "robust" measurement methodology of field pH in future 

applications such as soil surveys and contribute to the harmonization of existing legacy 

field pH datasets with laboratory pH data used in digital soil mapping and monitoring 

applications. 

 

7.2 Materials and methods 

7.2.1 Materials 

Soil samples and laboratory analyses 

Samples were selected from over 1800 soil monitoring and reference site samples that 

were analysed for pHW between 2011 and 2014. These samples were selected as they 

correspond with various pH levels represented in commercially available field pH test kits 

(4.5, 5.0, 5.5 (x2), 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5 and 10.0). The prepared <2 mm 

samples (Figure 7.1) from sites across western Victoria obtained initial laboratory pH 

values ± 0.02 of the field kit pH levels. Samples were included from various Soil Orders 

of the Australian Soil Classification (Isbell 2002) including Chromosols, Dermosols, 

Sodosols, Calcarosols and Vertosols. Key soil properties, including depth of sample, are 

presented in Table 7.1. 

Laboratory analysis for the experiments was undertaken in triplicate to estimate error in 

laboratory measurement. Measurements were determined using a Radiometer Analytical 

(Lyon, France) titration system comprising PHM92 pH meter, CDM240 conductivity 

meter and SAC950 sample changer. The instrument was calibrated according to the 

manufacturer's specifications with a reported laboratory precision of <±0.1 pH units. 
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Initial pHW results were from numerous batches, and as a consequence there is greater 

batch-to-batch variability in these results in comparison with the second and third 

measurement that were obtained in the single batch. All batches included two control 

samples, as recommended, to account for instrument drift (Laslett and McBratney, 1990). 

Table 7.1. Site, sampled depth, ASC order and soil properties. 

Site ASC 
(Isbell 
2002) 

Depth 
(cm) 

Clay %1 E.C. (dS/m) 2 Org. C %3  

USFS_VP100 CH 10-20 33 0.06 1.65  

USFS_VP11 SO 0-10 21 0.10 2.30  

USFS_VP32 SO 0-10 23 0.15 2.97  

USFS_VP36 CH 80-90 51 0.18 0.55  

USFS_VP38 SO 40-50 49 0.17 0.74  

USFS_VP5 CH 90-100 86 0.13 0.37  

USFS_VP66 CH 0-10 22 0.12 2.78  

USFS_VP71 CH 90-100 34 0.09 0.38  

USFS_VW150 CA 60-70 53 2.43 0.28  

USFS_VW55 CA 80-90 28 0.72 0.53  

CSMP_89_C1 DE 38-75 41 0.26 10.05  

CSMP_100_C1 VE 69-92 34 0.87 3.07  

SW22 DE 5-25 10 0.14 9.60  
1 From laboratory or Mid-Infra-Red (MIR) prediction 
2 Method 3A1 from Rayment and Lyons (2011) 
3 Method 6B3 or 6B4 from Rayment and Lyons (2011) 

 

   

4.5 5.0 5.5 5.5 6.0 6.5 7.0 

 

 

7.5 8.0 8.5 9.0 9.5 10.0  

Figure 7.1. Samples used in experiments with pH level. 
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Psychophysical assessment of field pH 

Experimental assessment of field pH using the pH test kit followed the standard protocol 

for a psychophysical experiment involving human perceptual judgements recorded on a 

psychometric scale (Benke et al., 1988). Psychophysical measures were in the form of 

colour assessments using a colour card with 16-step scale for matching colour against 

treated soil samples for field pH determination. To compare and contrast regular users of 

the field pH kit such as trained pedologists involved in soil and land survey (Experienced 

group) against those that may have used a kit irregularly or not at all (Inexperienced 

group), two groups of assessors (Assessor Type) were selected based on their test results 

from an online colour-blind test called the Farnsworth-Munsell 100 Hue Colour Vision 

Test (Farnsworth, 1943). The ten subjects were male and female technical and scientific 

staff volunteers. All subjects had 20/20 vision wearing their normal correction. Ages of 

subjects ranged from 35 to 60 years. Each subject carried out three colour assessment 

sessions (two on the first day at Early and Late afternoon and one on the second day at 

noon). 

Field pH test kits 

Two commercially available soil pH test kits were used in this study (referred to as Kit 1 

and Kit 2) and were based on the Raupach and Tucker (1959) field pH determination 

procedure. Both kits used the same assessment procedure where a soil sample (<1 

teaspoon) was mixed with the indicator solution until a thick paste was established. The 

paste is then dusted with BaSO4 (barium sulphate) powder (used as an optical enhancing 

agent) and the colour assessed against the colour card after 1 to 2 minutes to find a nearest 

match. 
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Time-of-day (light quality) 

One of the major influencing factors in colour differentiation is light quality (or lack of it) 

which reflects the background environmental lighting, glare from the light source and 

veiling reflection. This is directly influenced by the time-of-day for measurement of field 

pH. Time-of-day, in the remainder of this paper, will be used interchangeably with light 

quality. Since time could not be randomised, it was fixed as a blocking factor with two 

classes: 1PM and 5PM. 

It was decided that early and late afternoon (Period) would be good surrogates for good 

and poor quality light respectively. Both experiments were conducted outside in April 

2015 on sunny days with clear blue skies. 

7.2.2 Experimental design 

Two experiments were conducted to test hypotheses 1 and 2 (Experiment 1) and 

hypothesis 3 (Experiment 2). 

Experiment 1 

At each time period, samples were randomly allocated to the 10 assessors for field pH 

assessment. Each participant was randomly allocated samples of the 13 pH levels to 

detect if any significant difference in colour differentiation between assessors exists and if 

differentiation is consistent across the full spectrum of colours (or pH levels).This was 

phase A of Experiment 1.  

Phase B of this experiment involved each assessor completing pH assessments in 

triplicate on at least 3 pH levels (for example, Assessor 1 might be allocated pH levels 

4.0, 6.5 and 9.5 and Assessor 2 might receive pH levels, 4.5, 6.0 and 10, etc.). One 

assessor in each group (Experienced or Inexperienced) assessed pH levels on four 

samples to complete the set of measurement errors for each of the pH levels*Assessor 
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Type. This data was combined with the triplicate lab pH data to provide measurement 

error estimates on both field pH and lab pH enabling an assessment of potential bias by 

fitting models that accommodate for errors in both field and lab pH. 

The above two phases (A and B) were combined into one single experiment in a full 

factorial of Assessor*pH level in a randomised complete block design (RCBD), where 

time-of-day were used to group pH assessments as the blocking factor. Phase B was 

incorporated using the same design but with an extra randomisation of Assessor to pH 

level for conducting triplicate field pH measurements. The same randomisation was fixed 

for 1PM and 5PM for practical reasons, that is, Assessor and pH level pairing were 

consistent and an extra replication for a better estimate of the Assessor consistency. 

Experiment 2 

In this experiment, Kit Type, Assessor (and Assessor Type) and pH level were included 

in a split-plot design where Assessor was used as a blocking factor, pH level was the 

whole-plot factor and Kit Type was the sub-plot factor respectively. 

7.2.3 Statistical analyses 

Exploratory analyses 

Trellis plots were used to plot data from both experiments in order to explore any 

potential relationship between variables as a basis to inform further formal statistical 

modelling. In Experiment 1 (phase A), field pH was plotted against lab pH in panels 

(Figure 7.2), where each trellis/panel represented each Assessor (A-J). In the same 

experiment, field pH was again plotted against lab pH in panels, but this time each 

trellis/panel represented Assessor Type (Experienced and Inexperienced). 
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In Experiment 2, field pH was again plotted against lab pH in panels, but this time the 

panels were extended to include a double layer of Assessor and Kit Type where each 

panel represented a combination of those two factors. 

All plots were constructed using the lattice 0.20-31 package (Sarkar 2008) in R and 

implementing modified codes to accommodate our data structure and visual display 

requirements. All plots were performed in the R statistical software (R Development Core 

Team 2015). 

Formal analyses 

To compare the performance of Assessors in Experiment 1 (phase A) and Kit Type in 

Experiment 2, a relevant measure was necessary to compare how well an assessor 

managed to measure the field pH of their allocated samples. The closer the field pH 

values are to the lab pH values, the higher the precision of the Assessor or Kit Type in 

determining pH value. An absolute difference between field pH and lab pH was used as 

the variable of interest. 

In Experiment 1 (phase A), the absolute difference was analysed using Analysis of 

Variance (ANOVA). The treatment structure was specified with fully factorial effects for 

Assessor Types in full factorial combination with Level (pH levels). The treatment 

structure was set as Assessor Type* pH level, the blocking structure was specified as 

Samples nested within Assessor and nested within Period (Period/Assessor/Sample). 

To detect potential bias between lab pH and field pH, an estimated measurement error for 

both methods (field method and lab method) was produced in Experiment 1, phase B. 

Given that triplicate samples were allocated to both the Experienced and Inexperienced 

groups on both experimental periods (Early and Late afternoon), it is possible to look at 
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the potential bias for all combinations and of Assessor Type*Period as well as a 

combined data (ignoring the groups). 

Given that data were available for all combinations of time-of-day and Assessor Type, 

four scenarios were tested: 1. Experienced and 1PM; 2. Experienced and 5PM; 3. 

Inexperienced and 1PM; and 4. Inexperienced and 5PM. For each combination and the 

combined data, two models for field pH and lab pH were fitted: Linear Model (LM) and 

the Maximum Likelihood Functional Relationship (MLFR). Both models were adapted to 

test (1) if the intercepts were significantly different from 0, and (2) if the slopes were 

significantly different from 1, both of which formed the basis for our bias detection. 

In Experiment 2, the absolute difference between test kits was analysed using an ANOVA 

appropriate for a split-plot design. The treatment structure was specified with fully 

factorial effects for Kit Type in full factorial combination with pH level. This was coded 

in GenStat as Kit Type*pH level. Assessor was specified as the blocking structure. 

Residual diagnostics performed in the analysis of Experiment 1 (phase A) were similarly 

performed here. 

In all the ANOVA analyses (for Experiment 1 and 2), residual values were examined 

graphically to check for distributional normality and constant variance assumptions. 

Observations with standardised residuals greater than 3.0 were excluded from the 

analyses. The absolute difference data was square root transformed during analysis to 

establish normal distribution and constant variance. Least significant differences (5% 

level) were used to separate the means, subject to significant F-tests. 

ANOVA analyses in Experiment 1 (phase A) and Experiment 2 were performed using the 

GenStat® statistical package (GenStat® Release 16.1, Copyright 2013, VSN International 

Ltd). The LM model was fitted using modified code based on a built-in LM function. The 



225 
 

MLFR function was written based on the methodology described in Ripley and Thomson 

(1987). Both functions were implemented using the R statistical package (R Development 

Core Team 2015). 

 

7.3 Results 

7.3.1 Experiment 1 

A trellis plot of lab pH versus field pH is shown below in Figure 7.2. Each panel from A-J 

represents the information for each Assessor. In each panel, lab pH (x-axis) is plotted 

against field pH (y-axis) with least-squares lines fitted to the data. The fitted model is 

plotted against the 1:1 line (in red) with slope=1 and intercept=0 for comparison. The 

estimates for intercept and slope of the LM are printed in each panel, along with the 

estimated R2. Each Assessor produced a different fit for the least-squares model with 

different intercept and slope estimates. This implies that there were different abilities 

between assessors to determine pH measurements in the field using a specific field pH kit. 

Figure 7.2. Trellis plot of field pH versus lab pH by Assessor.  
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A trellis plot of lab pH versus field pH (Figure 7.3), where the trellis is either Experienced 

(Yes) or Inexperienced (No), suggests that the two groups are different. The slope, 

intercept parameter and estimated R2 were all different. This implies that a significant 

difference exists between the experienced and inexperienced Assessors in their ability to 

conduct soil pH measurements. 

The ANOVA results showed that the main effects of Type (P<0.05) and pH Level 

(P<0.001) were significant but the interaction was not (Table 7.2). This implies that 

experienced Assessors were able to more accurately determine pH than inexperienced 

Assessors. The magnitude of error (getting the pH wrong) varied with pH level. It 

appeared that the degree of difficulties varies from one pH level to the next and this was 

consistent for all Assessors. 

 

Figure 7.3. Trellis plot of field pH versus lab pH by Experience.  
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Table 7.2. ANOVA for the absolute difference between lab pH and field pH with two 

types of assessors and thirteen levels of pH. Mean values (back-transformed mean) are 

presented. 

Factor 
Absolute 
difference 

Type of Assessors  

Experienced 0.75 (0.56) 

Inexperienced 0.90 (0.81) 

LSD(5%) 0.14 

  

pH Levels  

4.5 0.61 

5.0 0.83 

5.5 0.73 

5.5 0.85 

6.0 0.85 

6.5 1.08 

7.0 0.80 

7.5 0.88 

8.0 0.86 

8.5 0.77 

9.0 0.70 

9.5 0.66 

10.0 1.12 

LSD(5%) 0.24 

  
F-test 
probabilities  
Types of Assessor 

(T) 0.03 

pH Levels (L) <0.001 

  

 

In phase B of Experiment 1, mean pH and corresponding measurement errors for all the 

samples using a laboratory pH meter and standard field technique (pH kit) were averaged 

over all four groups then modelled using the MLFR and LM functions in R. Summary 

statistics are provided in Table 7.3. For the LM, the intercept or α (1.214) is significantly 

(P<0.05) different from 0; the slope or β (0.8064) is also significantly (P<0.01) different 

from 1, signifying that there was a bias between lab pH and field pH in both the intercept 
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and the slope. For MLFR, the intercept (α = 0.342) was marginally (P<0.1) different from 

0 and slope (β = 0.9341) was significantly (P<0.05) different from 1. The MLFR result is 

much more conservative than the LM as the standard error of the parameter (α = 0.182 

and standard error for β (0.0269) are tighter (better estimated). However, both methods 

(MLFR and LM) showed that there was a bias between lab pH and field pH. Figure 7.4 

below shows that the LM (red line) and MLFR (green line) deviates from the 1:1 line 

(black). Both reveal bias with the LM biased at both extremes, whereas MLFR is biased 

at the high end only (indicating pH is more alkaline). 

 

Table 7.3. Summary of LM and MLFR model parameters between pH data measured in 

the field (from our experiment) as the response variable (y) and pH data measured in the 

laboratory as the fixed variable (x). 

 LM MLFR 

Intercept (α) 1.2137 0.3424 

Standard error of Intercept (s.e.(α)) 0.5156 0.1820 

Probability α ≠ 0 0.0186 0.0599 

Slope (β) 0.8064 0.9341 

Standard error of Intercept (s.e.(β)) 0.0695 0.0269 

Probability β ≠ 1 0.0053 0.0142 
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Figure 7.4. Field pH versus lab pH with fitted models using LM (black line) and MLFR 

(blue line). The red dashed line is the 1:1 line. 

 

In the following analysis, all samples were split based on the combination of Assessor 

Type by time-of-day. The results of each combination are summarised in Table 7.4 and 

Figure 7.5. In Table 7.4, only statistics for the MLFR fit are presented as they are more 

robust. The MLFR parameter fits for the four scenarios of Assessor Type and Light 

quality showed that the slope and intercept parameters were biased. The LM fits are still 

shown in Figure 7.5 for comparison. Experienced assessors were positively biased at 1PM 

(α = 0.7572) and 5PM (α = 0.3477) with intercepts significantly different from 0 at 

P<0.01. Inexperienced assessors were also biased at 1PM (β = 1.5476) and 5 PM (β = 

1.4273) with slopes also significantly different from 1 at P<0.01. 
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Table 7.4. Summary of MLFR model parameters for field pH (y) and lab pH data (x) for 

four scenarios: (Case 1) Experienced and 1PM, (Case 2) Experienced and 5PM, (3) 

Inexperienced and 1PM and (4) Inexperienced and 5PM. 

 Case 1 Case 2 Case 3 Case 4 

Intercept (α) 0.7572 0.3477 1.5476 1.4273 

Standard error of Intercept (s.e.(α)) 0.3393 0.2381 0.5273 0.4933 

Probability α ≠ 0 0.0257 0.1443 0.0033 0.0038 

Slope (β) 0.8705 0.9178 0.8256 0.8315 

Standard error of Intercept (s.e.(β)) 0.0430 0.0347 0.0604 0.0580 

Probability β ≠ 1 0.0026 0.0177 0.0039 0.0037 

 

7.3.2 Experiment 2 

Two trellis plots are presented including field pH versus lab pH by Kit Type and 

Assessors (Figure 7.6), and field pH versus lab pH by Kit Type and Assessor Type 

(Figure 7.7). Each panel represents the information for each Assessor by Kit. The 

parameter (α and β) estimates for each panel are different, indicating a significant effect 

of Kit and Assessor (experience) for the bias between field pH and lab pH. The Assessor 

is the same as the panels in Figure 7.2. 
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Figure 7.5. Field pH versus lab pH for the four different scenarios - (Case 1) Experienced 

and 1PM (top left-hand corner), (Case 2) Experienced and 5PM (top right-hand corner), 

(3) Inexperienced and 1PM (bottom left-hand corner) and (4) Inexperienced and 5PM 

(bottom right-hand corner). The black line is the 1:1 line. 
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Figure 7.6. Trellis plots of field pH versus lab pH by Kit by Assessor. 

 

Figure 7.6 showed that almost all fitted linear models were below the 1:1 line in the 

panels, indicating that field pH (measured by assessors) were almost always 

underestimating the lab pH (assumed to be the true pH) and this was consistent for all 

assessors regardless of experience. For each Assessor, it is possible to compare between 

Kits using the paired panels. For example, panel 1 (Assessor A using Kit 1) can be 

compared with panel 2 (Assessor A using Kit 2). Similarly, panel 3 and 4 can be used to 

compare Assessor B using Kit 1 and 2 and so on. For each Assessor, a comparison 

between the fitted linear models to the 1:1 lines by Kit 1 and Kit 2 can be used to 

determine any potential difference between Assessors, Kits and their interactions. From 

this, we obtain the following summary: 
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 Assessor A: performed better using Kit 2; 

 Assessor B: no difference; 

 Assessor C: no difference; 

 Assessor D: performed better using Kit 2; 

 Assessor F: performed better using Kit 2; 

 Assessor G: performed better using Kit 2; 

 Assessor H: no difference; 

 Assessor I: no difference, and 

 Assessor J: performed better using Kit 2. 

In Figure 7.7 we can compare Kit 1 versus Kit 2 as well as Experienced (Yes) versus 

Inexperienced (No). Looking at all four panels, there was a difference between Kit 1 and 

Kit 2 where Kit 2 produced results that were closer to the lab results. This was consistent, 

regardless of the assessors’ experience. Both Figures 7.6 and 7.7 indicate that there might 

be a significant difference between Kit and Assessor but no significant interaction 

between Assessor and Kit. 

The ANOVA results (Table 7.5) identified that the main effects of Kit type (P<0.001) and 

pH Level (P<0.01) were significant but the interaction was not. The Kit type effect 

implied that using Kit 2, the assessors were able to obtain more accurate pH 

measurements than using Kit 1. The magnitude of error (getting the pH wrong) varied 

with pH levels as in Experiment 1. The degree of difficulties varied from one pH level to 

the next and this was consistent for both kits (on the whole). 
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Figure 7.7. Trellis plot of field pH versus lab pH for Kit by Assessor Type. 
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Table 7.5. ANOVA for the absolute difference between lab pH and field pH with two kits 

and twelve levels of pH. Mean values are presented. 

Factor 
Absolute 
difference 

Kit Type  

Kit 1 0.603 

Kit 2 0.473 

LSD(5%) 0.0924 

  

pH Levels  

4.5 0.372 

5.0 0.357 

5.5 0.411 

5.5 0.481 

6.0 0.506 

6.5 0.602 

7.0 0.653 

7.5 0.919 

8.0 0.681 

8.5 0.602 

9.0 0.452 

9.5 0.473 

LSD(5%) 0.2532 

  

F-test 
probabilities  

Types of Kits (K) 0.006 

pH Levels (L) <0.001 

  

 

7.4 Discussion 

7.4.1 Assessor experience 

This study confirms that pH measured in the field has many potential sources of error, 

one of which is the experience of the user (Assessor). The experiments highlight that 

inexperienced field pH assessors under-perform against experienced assessors, and 
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therefore a greater uncertainty, bias and error with field pH assessments can be expected 

from inexperienced assessors. This would suggest that for users with limited, or no 

previous experience using a field pH kit, there is likely to be greater error in the pH 

determination and therefore greater caution required when using these measurements for 

decision making, e.g. lime application. This does not account for spatial or temporal 

variability which are additional sources of uncertainty besides measurement error and 

epistemic error sources explored in the experimental design. From Experiment 1 to 

Experiment 2, there is the potential for those with limited to no experience to learn from 

others that participated in earlier assessments. This is akin to on-the-job training where 

junior or ‘inexperienced’ surveyors learn the field determination method under the 

guidance of an experienced operator with field pH determination. These findings suggest 

that introductory training and guidance from experienced users in the application of a 

field pH kit can be extremely beneficial to achieve accuracy and precision in pH 

determinations. Ongoing quality assurance and control should also be considered as part 

of regular testing regimes for persons measuring field pH. 

While differences between the two assessor groups were evident, there was no clear 

relationship between the pH level of assessment and the assessor group across the pH 

range of this study. There were pH levels that were more difficult to assess than others 

such as pH levels 6.5 and 10. The experiment reveals that the differences in performance 

are most likely due to the interpretation of the colour card at these pH values rather than 

the quality or age of the indicator solution or barium sulphate. 

There are difficulties in interpretation of the colour graduation on the cards, especially for 

males which have a deficiency in the red/green region (as evident in results from the 

Ishihara colour chart). In collated soil site information from soil and land surveys in 

Victoria contained in the VSIS, there are 51 reported surveyors that have participated in 
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studies where field pH observations have been collected for 3398 sites. Of the 51 

surveyors, only 20% are female. It is unclear how many of the surveyors were properly 

assessed for vision impairment or were adequately trained for field pH determination, 

although, often in the field surveyors would cross-reference with one another especially if 

uncertain on the pH assignment class. 

7.4.2 Model and bias 

All participants in this study demonstrated different abilities to predict pH using the field 

determination method. This was reflected in the different bias, error and model fit for 

every assessor. As there is bias represented in the LM and MLFR models between field 

pH and lab pH, there is a need for users of such assessments to be prudent as field pH 

results in this study do not agree perfectly with pH data measured in the laboratory. While 

both the LM and MLFR display a bias between lab pH and field pH, the MLFR provides 

a much improved fit than the LM which is biased at both high and low pH values, 

whereas the MLFR is biased only for high pH values. Further improvements of the MLFR 

over the LM are evident where the standard error of the model parameters is considerably 

less than those of the LM. 

Baker et al. (1983) and Steinhardt and Mengel (1981) have established quite different 

results for bias in the relationship between field and laboratory pH measurements. This 

study also achieved systematic differences (bias) for the different assessors and assessor 

groups. Strong agreement between field pH and lab pH has been found where one 

experienced assessor completes all field pH assessments (Baker et al., 1983). From our 

study the samples were specifically chosen to represent the spread of pH levels 

represented in the colour cards, but also variations in soil properties such as colour, depth, 

clay % and organic carbon content that may contribute to error in measurement. This 

provides a degree of confidence in the agreement between methods being maintained for 
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a significantly larger sample size. It is unclear, and beyond the scope of this evaluation, if 

soil colour made a difference to perception of pH level. 

7.4.3 Time-of-day (light quality) 

Another potential source of uncertainty in field determination of pH is the quality of light. 

Although this study did not formally test light quality, as we were unable to randomise 

time in our experimental design, we did assess, using a LM and MLFR, if there were 

differences between two different times of day that were intended to represent good 

quality and poor quality light. The results demonstrated that with measurement errors for 

both the lab pH and field pH, we were able to detect bias in the slopes and intercepts for 

the four scenarios of time-of-day and assessor group. The MLFR model for the 

experienced assessor group was better than the inexperienced for 1PM and 5PM. 

Observation time was not a significant factor for both experienced and inexperienced 

assessor groups. This is not surprising given that light quality (brightness and glare) for 

the two times of day of the experiment (1PM and 5PM) was relatively similar. Glare as a 

light quality factor was noted as an issue in pH assessment by assessors of both groups. 

On the first day (Experiment 1), the light quality at 5PM was considered as good, if not 

better than the light quality at 1PM. In our pre-experiment design, we had expected that 

light quality later in the day would be poorer, but this effect was not observed. It is 

expected that light quality will be a significant factor for both experienced and 

inexperienced assessors in future experiments, if we can replicate and quantify true 

“good” and “poor” light quality in our design. 

7.4.4 Kit type differences 

A final source of uncertainty considered in this study was difference between 

commercially available field colorimetric indicator pH kits. Both kits used in this study 

resulted in underestimated lab pH for all assessors. There were consistently better results 
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achieved for all assessors regardless of experience for Kit 2 in comparison with Kit 1. The 

pH levels differences between the kits were inconsistent although there were some pH 

levels (e.g. 7.5) that had an absolute difference between the two kits close to 1. This could 

potentially be due to a number of error sources including indictor and BaSO4 impurities 

or slight differences that were apparent in the colour cards for the two kits. This requires 

further investigation as users of field pH kits need confidence in the ability to easily 

contrast the treated sample with colours represented on the indicator card. 

The comparison of kits has highlighted that it is prudent to remove kit type error as a 

potential source and use one kit type only. Batch to batch variation in kits is potentially a 

substantial source of error, especially where impurities exist in solvents and reagents, but 

this was not able to be factored into the experimental design for this study. 

7.4.5 General comments 

Field pH measurements have been used for soil survey and agricultural advisory work for 

over 60 years, highlighting the robustness, simplicity and reliability of the procedure. 

Field determination of soil pH using the Raupach and Tucker (1959) procedure can 

produce reliable results in comparison to laboratory pH. In particular, field pH 

determination has provided a role in the screening of samples for potential laboratory 

analysis, should it be required. A benefit of the current field pH method is that there has 

been no change to the methodology and chemical constituents since its conception. In 

contrast, modifications to laboratory techniques over the last 60-years including stirring 

effects and operator differences are likely to represent sources of uncertainty in legacy pH 

data greater than currently reported values, e.g. ±0.1 pH unit. This suggests that as a 

method for determining soil reaction, it has been an adequate servant for many soil 

mapping activities over this period. 
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In the absence of representative laboratory measurements, there is little evidence to 

suspect that field determinations with greater uncertainty cannot serve as useful 

replacements for laboratory measurements in spatial and temporal assessments for 

mapping and monitoring purposes. The findings from this study support the wider use of 

legacy field pH data for soil mapping purposes at regional to national scales. A mapping 

technique that could utilise legacy field pH observations in partnership with lab pH is a 

linear model of coregionalization (LMCR; Webster and Oliver, 2001) using a model-

then-calculate, or, calculate-then-model approach described by Orton et al. (2014).  

The two experiments reported in this study provide an account of error sources that add to 

field pH uncertainty. By understanding the nature and magnitude of these errors, we can 

determine and understand the error bounds represented by the confidence and prediction 

intervals and provide information on error propagation in mapping and modelling 

applications. Further investigation to understand the errors in soil survey should be 

considered to screen legacy soil pH observations prior to use in regional monitoring or 

mapping applications. The differences found between experienced and inexperienced 

operators of field pH kits can also be used to guide cleansing of field pH from various 

sources, such as data from citizen science and crowd sourcing (Rossiter et al., 2015). 

Other factors unaccounted for in explaining differences between field and laboratory pH 

include oxidation effects due to soil storage conditions (Slattery and Burnett, 1992) and 

incorporation of pedogenic segregations (e.g. calcareous) into the <2mm fraction through 

differences in sample preparation procedures. 

While dealing with legacy data can be problematic due to insufficient metadata to isolate 

effects due to operator experience, test kit differences and light quality characteristics at 

time of observation, this should not preclude the capture of new error sources in future. 

Practical suggestions to increase the certainty in field pH data include: a level of training 
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to provide assessor certification across the soil pH range; field kits should be regularly 

tested against known standards, and the test kit should be identified in metadata 

associated with field measurements. Also to be noted are date and time of observation 

recorded, and assessor and other factors that may contribute to potential significant 

differences between field and laboratory measurements (e.g. soil moisture status, 

observed segregations, depth). 

An important consideration when assessing pH in the field or laboratory, or producing 

maps for planning and land use decision-making, is what is the intended use or purpose of 

the data. While high precision and accuracy is generally useful, it is often the critical pH 

ranges relevant to management (e.g. effect plant production, nitrate leaching into 

groundwater and waterways or corrosion of infrastructure) that are sought. Using the 

diagnostic pH ranges described by Slattery et al. (1999) as a guide, the critical range of 

5.3 to 5.8 is where accurate measurements are most valuable due to the sensitivity of 

grain and pasture cultivars from the effects of exchangeable manganese and aluminium at 

these levels. Below this threshold there are implicit and known significant impacts to 

plant production where remediation actions are necessary. But is high accuracy and 

precision required here? Likewise, above a pH of 5.8, there are few limitations except 

where trace elements such as zinc and molybdenum are less available to plants at pH 

values of 8 and above. Unpublished investigations by the authors identify interquartile 

range (IQR) values for field pH values 5, 5.5 and 6 against laboratory measurement as 

4.9-5.5, 5.1-5.6 and 5.4-6.1. These IQRs suggest that field pH determinations around this 

diagnostic range are more than just useful indicators especially given that the amount of 

agricultural land to have pH values in this pH range or below was expected to double to 

43-64 million hectares in the coming decade (Dolling et al., 2001). 
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7.5 Conclusion 

Field pH is a useful indicator of soil condition and has practical value for soil pre-

screening and rapid classification. Field observations may have additional utility in soil 

mapping where there is insufficient data available from laboratory pH determinations. 

While field pH determinations are not as accurate as laboratory measurements, they do 

provide valuable support for laboratory measurements that are spatially and temporally 

sparse or biased. This evaluation study of field pH test kits has demonstrated that user 

experience with a pH test kit will have an impact on the prediction accuracy and 

uncertainty. This study also confirmed that sources of uncertainty in field pH 

assessments, such as choice of kit, will affect the accuracy and bias of pH determination 

in comparison to laboratory measurements. 

Using the field colorimetric method, some pH levels at the extreme range were more 

difficult to determine than others, regardless of assessor experience. There is likely to be 

bias between field and laboratory measurements and there are distinct benefits from using 

a kit free from impurities and with a colour card that is consistent with colours expressed 

in treated samples. Mixing of commercial kits when attempting to harmonise legacy 

measurements because of differences between the kits may introduce additional 

uncertainty. The experimental methodology implemented for this study could be modified 

to accommodate further test subjects and potential error sources, such as within-kit and 

between-kit variability, or to consider spatial and temporal variability as additional 

factors. It is recommended that further investigation is pursued on the possible effects of 

sample size and gender on test kit performance and reliability.  
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Chapter 8 The 3D distribution of phyllosilicate clay minerals in 

western Victoria 

Soil properties can serve multiple functions and contribute towards the delivery of many 

ecological services. Conventional soil survey has focused on properties that are either 

easy to observe, and interpret for an intended use, e.g. agronomic decision, land 

evaluation assessment and hydraulic modelling. Although some properties are important 

to understand the services delivered by soil, they are rarely measured or observed, e.g. 

hydraulic conductivity. General reasons given for not observing these properties include 

their expense, they are often time consuming and difficult to obtain (as specified in the 

Chapter 3). One such property is clay mineralogy which is recognised for its role in 

carbon turnover and storage, buffering of soil pH and ultimately the chemical behaviour 

of soils. 

This chapter presents a novel approach using legacy clay mineral determinations from X-

Ray Diffraction (XRD) in combination with new spectral techniques (Mid Infra-Red 

Spectroscopy, MIR) and spatial inference systems (Digital Soil Mapping) to map soil clay 

minerals. These topics have all been discussed in the literature review (Chapter 3) and 

separately in following chapters (e.g. use of MIR in prediction of pH as a measurement 

method in Chapter 6). The key objective of this chapter was to: 

Produce spatial predictions of soil properties (e.g. clay mineralogy) connected to 

soil functions supporting agriculture. 

The mineralogy of the clay fraction of soils is a major determinant of the behaviour of 

soil. Conventionally these clay minerals have been determined using techniques such as 

X-ray Diffraction (XRD), but new complementary methods such as infrared spectroscopy 

can be used to rapidly and economically predict these minerals. This paper presents a 
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methodology to predict these clay minerals at high-resolution that adhere to 

GlobalSoilMap (GSM) standards. Mid-infrared (MIR) spectroscopic models were 

formulated for clay minerals kaolinite, illite and smectite using partial least squares 

regression (PLSR) and legacy quantitative XRD determinations. Very strong models were 

achieved for kaolinite, illite and smectite and the root mean square error of cross 

validation (RMSECV) were all b12 wt.%. Spectroscopic models were applied to 11,500 

samples from western Victoria and harmonized to the GSM specified depth intervals 

using equal area splines. Clay minerals were then mapped using data mining model trees 

with a 10-fold cross validation to derive a mean prediction estimate and 90% prediction 

interval. Spatial models accounted for 26 to 77% of the total variation with kaolinite 

predictions for all 6 GSM depths ≥ 65%. Kaolinite is the dominant soil clay mineral of 

western Victoria for uplands and weathered volcanic terrains. Illite concentrations are 

higher where associated with weathered granitic plutons and in aeolian deposits of semi-

arid environments. Smectite tends to occur associated with depressions of plains (volcanic 

and sedimentary). Further supplementation of additional sites and samples for landscapes 

with relatively sparse observations should contribute to refined and improved maps of 

these clay minerals. 

The delivery of spatial soil information for clay minerals should support future 

assessments to quantify and understand the role and distribution of soil functions and 

services. In combination with examples presented in Chapters 5 and 6, there is the 

potential to further our knowledge on the resilience and the buffering of soils to changes 

caused by climatic or management factors linked to acidification and primary production. 
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8.1 Introduction 

The mineralogical composition of the clay fraction (<2μm) is a key determinant of soil 

physical and chemical properties and the regulation of biogeochemical processes. Clay is 

a generic term for the fine particle size, less than 2 μm in soil, but the mineralogy of clay 

and the variability of particles less than 2 μm is highly diverse depending on the source 

material of primary minerals, the physical and chemical weathering environment and time 

(Gilkes, 1990). Primary minerals (generally > 2 μm), and more so secondary minerals that 

are reactive with their environment (Churchman and Lowe, 2012) support key functions 

of ecosystem services including the filtering and storage of water, adsorption of soil 

organic carbon and supply of available nutrients to plants (e.g. potassium), retention of 

heavy metals as contaminants and providing a physical medium for infrastructure. The 

clay minerals (phyllosilicates, otherwise known as the layer silicates) comprise a single 

octahedral alumina sheet linked to either; a tetrahedral sheet of silica (1:1 layer silicate), 

or sandwiched between two tetrahedral silica sheets as a 2:1 layer silicate. Due to the 

clay’s dominant specific surface area characteristics for interactions with plants, nutrients, 

metals and organic compounds, the clay fraction is largely responsible for the chemical 

behaviour of soils (Gilkes, 1990). The importance of phyllosilicate group minerals to 

organic matter storage and turnover is recognized (Torn et al., 1997; Fontaine et al., 2007; 

Yuan and Theng, 2012) and emphasized in global efforts to reduce greenhouse gas 

emissions though soil carbon sequestration (Amundson et al., 2015). In contrast, there has 

been a noted decline in mineralogical research (Hartemink et al., 2001) and failure to 

include mineralogy information with spatial modelling and mapping of soil properties 

(Grunwald, 2009). 
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8.1.1 Measurement of clay minerals 

Crystalline clay minerals have conventionally been characterized and quantified from 

monochromatic x-rays using X-ray Diffraction (XRD) techniques. Quantification and 

identification of mineral phases in soils derived from alteration and formation processes 

(e.g. transformation or neoformation) such as kaolinite, illite, halloysite, smectite and 

vermiculite has been the mainstay of clay mineralogy determination for over 80 years 

(Churchman and Lowe, 2012). As a method, XRD determination has improved 

significantly due to increased sensitivity and reliability of equipment (Gilkes, 1990) and 

advances in assessment techniques. Four common XRD analytical methods are described 

by Kahle et al. (2002) including full-pattern methods that trace the entire diffractogram 

with mean or calculated diffraction patterns (Hughes et al., 1994) and quantify phases 

using the Rietveld Method (Rietveld, 1969).  

A complementary method is infrared spectroscopy (IR), that requires relatively little 

sample preparation, in contrast to XRD, uses assessment techniques that are quantitative 

and precise, and analysis is rapid and thus economic (Madejova´ and Komadel, 2001; 

McBratney et al., 2006; Viscarra Rossel 2011; Mulder et al., 2013). An additional benefit 

of IR is that minerals with poorly crystalline structures (e.g. iron and manganese oxides) 

can be easily identified from their prominent absorption features, enabling their quantities 

to be better predicted (Viscarra Rossel et al., 2009). IR spectroscopy is a non-destructive 

technique that interrogates characteristic molecular bond vibrations that occur in the 

infrared region of the electromagnetic spectrum. The implementation of Diffuse 

Reflectance Infrared Fourier Transform (DRIFT) spectroscopy for soils analysis in the 

visible (VIS), near-infrared (NIR) and mid-infrared (MIR), as summarized by Soriano-

Disla et al. (2014), has grown rapidly leading to national (Hicks et al., 2015) and global 

spectral libraries being developed (Viscarra Rossel, 2009). Authors including Bellon-
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Maurel and McBratney (2011), Chang et al. (2001), Janik et al. (1995, 1998, 2007), Janik 

and Skjemstad (1995), McBratney et al. (2006), Reeves III (2010), Viscarra Rossel et al. 

(2006), Viscarra Rossel and McBratney (2008), and have published on the application of 

spectroscopy for soil property determination. 

8.1.2 Prediction of clay minerals using IR (VIS, NIR and MIR) 

Few IR studies have quantitatively predicted the mineral phases of soil. Janik et al. (1995) 

found general correspondence between MIR and qualitative XRD mineral estimates from 

surface samples that were ground to <200 μm. Viscarra Rossel et al. (2009) using VIS-

NIR reflectance spectra processed using continuum removal techniques, and Clark and 

Roush (1984) also achieved good agreement with XRD phase estimates from samples 

ground to less than 50 μm. Yitagesu et al. (2011) using continuum removed spectra for 

the 3–5 and 8–14 μm wavelength region for <2 μm achieved useful results for quantifying 

clay minerals from spectrally distinct bands. Malone et al. (2014a) applied a shape-fitting 

algorithm to estimate clay mineral abundance using mineral reference spectra and 

diagnostic wavelengths prior to digital soil mapping. Both Janik et al. (1995) and Viscarra 

Rossel et al. (2009) used whole soil samples in qualitative XRD analysis; but overall, 

there has been little research on the prediction of mineral composition for whole soil or 

separated fractions (e.g. clay) using DRIFT spectroscopy. Furthermore, there is little 

published information on the application of MIR spectroscopy to quantitatively predict 

major phyllosilicate minerals including kaolinite, illite and smectite. 

8.1.3 Mapping of clay minerals 

Viscarra Rossel (2011) highlights a global absence of soil mineralogy maps that would 

benefit assessments of soil functions supporting ecosystems services. Mineralogical maps 

based upon soil association mapping for England and Wales from samples characterized 

for soil clay mineralogy at Rothamsted (now Rothamsted Research) have been derived for 



251 
 

Great Britain (Loveland, et al., 1999), and recent application of VIS and NIR 

spectroscopy using Digital Soil Mapping (DSM; McBratney et al., 2003) approaches have 

delivered the first digital maps of soil mineral distribution at national scales (Viscarra 

Rossel et al., 2010; Viscarra Rossel 2011) and regional scales (Mulder et al., 2013). 

The occurrence of clay minerals and their relative abundance are attributed to the five 

genetic factors of soil formation defined by Jenny (1941): climate, relief, parent material, 

living organisms and time. These soil forming factors are primary influences on soil and 

the association of clay mineralogy with other properties, e.g. structure, cation exchange 

and water characteristics. For clay mineralogy: climate (current and past) affects 

weathering rate, erosion and deposition of soil; relief often produces localized leaching 

and weathering effect through interaction with hydrological regimes; parent material 

provides the host lithology from which primary minerals are inherited, with the 

weathering sequence acting on it to produce secondary clay minerals; living organisms 

contribute to dissolution of primary and secondary silicates (Jackson, 1957), the 

production of biomass and ground cover that shelters soil from erosional events; and time 

which influenced all the aforementioned soil forming processes. These factors and 

processes form a pedogenic framework that can be applied to prediction of the occurrence 

of clay minerals based on environmental correlation principles (McKenzie and Ryan, 

1999).  

This paper presents an approach to quantify clay mineral abundance using quantitative 

XRD analysis with MIR spectroscopy to formulate predictive models. This was 

implemented using an MIR spectral library linked to georeferenced soil sites to map the 

spatial occurrence and quantity of clay minerals (kaolinite, illite and smectite) in western 

Victoria, Australia. Spatial covariates used to derive maps according to GlobalSoilMap 
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specifications (Arrouays et al., 2014) are appraised for their connections with clay 

mineral distribution and relationship to soil forming factors. 

 

8.2 Methods 

8.2.1 Study area 

The study area of 135,000 km2 (western Victoria, Australia) is characterized by a 

Mediterranean climate with mean annual rainfall varying between <300 mm in the north 

to over 2000 mm in the south. Landscapes are diverse, reflecting their geomorphic 

origins, from marine shoreline deposition, structural faulting and uplift, lacustrine and 

alluvial deposition, widespread aeolian accession of calcareous loess, periodic volcanic 

eruption and drainage displacement. The geomorphology has been mapped using a 

hierarchical classification of landforms and landscapes, known as the Victorian 

Geomorphology Framework (VGF) (Rees et al., 2010) with five tier-one (Figure 8.1) and 

twenty tier-two units. The tier-one divisions (North Western Dunefields and Plains, 

Northern Riverine Plains, Western Uplands, Western Plains and Southern Uplands) serve 

as a spatial system to classify areas with common processes and land types while 

simplifying the immense range of geological, landform, climate, soils and vegetation 

variation encountered (Rees, 2000). Comprising a range of sedimentary, igneous and 

metamorphic source lithologies, soil types are dominated by calcareous uniform to 

gradational profiles (Northcote, 1979) or Calcarosols, (Isbell, 2002) in the north to texture 

contrast (Chromosols, Sodosols and Kurosols) and uniform clays (Vertosols) and sands 

(Podosols and Tenosols) in the south. Primary agricultural industries include wool, red 

meat (lamb and beef) and extensive cereal and pulse production across the northern plains 
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that continue to extend further south into traditional pasture-based farming systems in 

response to drying conditions of the past two decades.  

8.2.2 Soil sites 

Soil samples used for MIR spectroscopy were sourced from the Victorian Soil Archive 

(VSA) (Johnstone et al., 2010) and are georeferenced to sites in the Victorian Soil 

Information System (VSIS). In total, 2795 sites (11,532 samples) from soil and land 

surveys of different scales undertaken during the last 80 years by various state and federal 

government agencies were used (Figure 8.1). Samples with associated clay mineralogy 

predictions from MIR calibration models for kaolinite, illite and smectite (described in 

section 8.2.5) were harmonized to the specified depth intervals (0-5, 5-15, 15-30, 30-60, 

60-100 and 100-200 cm) of the GlobalSoilMap project (Arrouays et al., 2014) using an 

equal area spline (Bishop et al., 1999; Malone et al., 2009). 

8.2.3 MIR spectra acquisition 

All samples had been air dried and sieved to ≤ 2 mm prior to storage in the VSA. A sub-

sample of approximately 20 g was finely ground in a 10 cm steel ring and puck bowl for 

60 seconds using a Rocklabs ring mill (Rocklabs, Auckland, NZ) to provide a 

standardised particle distribution (>95% <100 μm). Grinding of samples using this 

procedure to a homogenised finely ground specimen enables more pronounced spectral 

absorptions of clay minerals to be acquired (Le Guillou et al., 2015) and is in accordance 

with the current practices used in constructing state and national MIR calibration datasets 

(Janik et al., 1998; Janik and Skjemstad, 1995). 

MIR spectra were acquired using a PerkinElmer Spectrum One Fourier Transform MIR 

spectrometer equipped with a diffuse reflectance accessory to collect MIR spectra at 8 

cm-1 resolution, from 450 to 7800 cm-1. Sixty scans were co-added to reduce signal-to-
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noise, with a resulting collection time of one minute. A background reading was collected 

every 10 samples, or every 30 minutes, whichever occurred first. The spectra were 

transformed from reflectance (R) to apparent absorbance (A=log 1/R) with spectra 

converted into the GRAMS .spc format. All spectra were collected in a purpose fitted 

laboratory to minimise effects from temperature, humidity and carbon dioxide. 

8.2.4 XRD calibration samples 

The source samples selected for development of MIR calibrations for kaolinite, illite and 

smectite are from 16 soil and land surveys undertaken between 1970 and 2013. 63 

samples contained in the VSA with quantitative XRD determinations between 1995 and 

2013 were used to formulate preliminary calibration models. An additional 17 samples 

were sourced from the study by Sultan (2006) and 11 from The Clay Minerals Society 

(www.clays.org) with accompanying quantitative XRD determinations (Chipera and Bish, 

2001). These samples were included to improve the spatial coverage of calibration 

samples, and also to provide clay mineral extreme values or endmembers (e.g. N95% or 

b5%) for model development. A further 28 samples were selected from the VSA and 

quantitative XRD undertaken. This significantly improved the MIR calibration models 

described in the following section by accounting for samples with erroneous predictions 

(e.g. high uncertainty or prediction value exceeding 100%) and reducing the overall 

prediction uncertainty. This provided 117 potential samples for calibration purposes 

(Figure 8.2). Summary statistics for soil properties associated with these samples are 

provided in Table 8.1 
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Figure 8.1. Soil sites and quantitative XRD calibration sites against 1st tier 

geomorphological divisions of the VGF for western Victoria, Australia. 
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All quantitative XRD analysis was undertaken on the fine earth fraction (≤2 μm). Initially 

soil samples that were ≤2 mm were pre-treated either with sodium hexametaphosphate 

(NaPO3)6 or sodium chloride (NaCl) and deionized water. Mechanically separated 

samples were made up to a volume (0.5 or 1.0 L) and allowed to settle for 6 to 16 hours 

before a subsample of the suspension was siphoned off and dried at 105°C. Where 

ultrasonic dispersion was used (in preference to mechanical dispersion and sedimentation 

processes), deionized water was added and centrifuged possibly several times until the 

supernatant was clear. The retained ≤2 μm fraction was flocculated with NaCl then 

centrifuged. Iterative treatment using 1M acetic acid (CH3COOH) and 0.25M CaCl2 then 

washing with water and ethanol was undertaken to create Ca-saturated clays for drying. 

 

Figure 8.2. MIR spectra of clay mineral calibration samples. 

 

Where samples were mechanically dispersed, samples were saturated with magnesium 

(1M MgCl2) and glycerol to orientate clays for XRD analysis. 

XRD patterns were collected on instruments including a Phillips PW1800 

microprocessor-controlled diffractometer, Siemens D500 or D501 diffractometer, or 

PANalytical X'Pert Pro diffractometer, all operating at 40 kV with Co-Kα radiation. 

Scans were collected between 3° and up to 80° in steps of 0.017 to 0.05° (instrument 
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dependent). Quantitative assessment of the diffraction patterns was usually performed 

from full-pattern-fitting based on reference standard patterns using software such as 

SIROQUANT (www.siroquant.com). Quantified mineral phases were normalized to 

100% without amorphous components so reported values may be overestimated. 

8.2.5 Spectroscopic calibration models 

Clay mineral calibrations for kaolinite, illite and smectite were built using partial least 

squares regression (PLSR) and the SIMPLS algorithm (de Jong, 1993) on a single y-block 

datum (quantitative XRD data) at a time using the calibration datasets. Leave–one–out 

cross validation (LOOCV) was used solely to assist identification of outliers in the initial 

calibration dataset. “Venetian blind” cross validation with ten data splits was used to 

determine the root mean square error of cross validation (RMSECV). Further outlier 

assessment procedures included using Mahalanobis distance (Hicks et al., 2015) and 

reported XRD uncertainties to identify these outlier samples. 

Table 8.1. Soil properties for MIR calibration samples. 

Propertya n Minimum 1st Quantile Median Mean 3rd Quantile Maximum 

Clay % 42 2.00 34.25 47.25 45.58 58.00 83.00 

EC dS/m-1 89 0.01 0.07 0.16 0.42 0.31 4.35 

pHw
 89 4.5 6.3 7.4 7.49 8.6 10.1 

pHC 73 4.0 5.5 6.6 6.79 8.1 9.1 

Exch Ca cmolC/kg 75 0.10 2.85 5.90 8.41 9.70 41.00 

Exch Na cmolC/kg 75 0.00 0.35 1.00 2.76 3.05 33.00 

Exch K cmolC/kg 75 0.00 0.36 0.80 1.01 1.54 3.50 

Exch Mg cmolC/kg 75 0.10 3.50 5.20 7.10 7.80 42.00 

TOCM 89 0.06 0.46 1.03 1.58 2.05 8.95 

Total P 71 0.10 0.20 0.40 0.54 0.70 2.30 

Avg. depth 89 0.025 0.100 0.375 0.443 0.650 1.360 
n = number of observations 

a Clay % (Mikhail and Briner, 1978); EC (3A1), pHw
 (4A1), pHC (4B2), Exch Ca/Na/K/Mg (15A1/15D3), 

TOCM (6B4), Total P (9A) in Rayment and Lyons (2011) 
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Spectra were scale centred with a zero mean and converted to unit variance, normalized 

using extended multiplicative scatter correction (Gallagher, 2005) and then transformed 

using a first derivative polynomial Savitzky Golay smoothing function (Savitzky and 

Golay, 1964) that was fitted using 15 points surrounding the transformed spectra 

wavelength. 

Calibration models were initially assessed against the number of latent variables (LVs) 

estimated using the plots of root mean square error of calibration (RMSEC) and 

RMSECV. A randomization function to determine the optimal number of LVs based on 

the statistical confidence limit for each individual loading variable (Wiklund et al., 2007), 

rather than an overall estimate of parsimony as indicated by F tests and predicted residual 

error sum of squares (PRESS) plots was used. Here the confidence level was set at 95%. 

Uncertainty estimates for individual MIR predictions were made with a sample specific 

standard error of prediction technique for multivariate analysis using PLSR. The 

constructed model using training samples, where the predictor and predictand are known, 

was then used to compare against reference samples not used in model development. This 

provided an estimate of the average prediction uncertainty, otherwise known at the root 

mean squared error of prediction (RMSEP). Faber and Bro (2002) suggest the 

accommodation of heteroscedastic errors in the predictors to calculate the variance of the 

prediction error by: 

	 ‖ ‖ ∆ ∆ 	‖ ‖ ∆
/  

where  is the scalar of the unknown sample leverage, || || are the Euclidean norm, ∆  is 

the variance of the measurement error (uncertainty) for the calibration method and ∆  is 

the independently and identically distributed error assumption for ∆ . The method 

provides a sample specific RMSEP rather than a standard error of prediction and 
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compromises by not accounting for bias and selecting less factors in the model. Where 

bias is negligible, the MSEC can be used to calculate the predictor error by: 

	 1 ∆
/  

Methods including PLS weightings (Wong et al., 2005) and regression coefficients 

(Haaland and Thomas 1988; Viscarra Rossel et al., 2008) were used to assess the most 

influential MIR frequencies in the regression model,). Variables were assessed for this 

study using variable importance for projection (VIP, Kvalheim et al., 1994) and the 

selectivity ratio (SR, Rajalahti et al., 2009). The SR and VIP are determined by: 

	 	 	 /	 /	‖ ‖ 	/	  

where 	  (1), and: 

	 	/	  

where  = explained for each variable,  = residual for each variable. 

VIP scores >1 are considered important in the given model (Chong and Jun, 2005) and 

larger SR scores indicate more useful variables in the model. Lower scoring variables can 

be excluded without model performance degradation. Both the VIP and SR were used to 

assess the important frequencies in the PLS models and their relationship with diagnostic 

absorption features of the MIR spectrum. 

The final calibration models were applied to the spectra from the 2795 sites to predict 

kaolinite, illite and smectite abundance (wt.%). 
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8.2.6 Mapping clay minerals 

Mapping was undertaken with guidance from the SCORPAN framework (McBratney et 

al., 2003) to predict the relative abundance of clay minerals across the study region with 

primary factors:  

	 , , , , , , 	

where Sx is the predicted soil property (e.g. clay mineral), s is soil information from a 

prior map, remote or proximal sensing, or from expert knowledge, c represents the 

climate at a point, o is the organisms, r is the topography/landscape attributes, p is parent 

material, a equals time and n is the spatial position. For this study, the first five factors (s, 

c, o, r and p) were used in mapping. 

Spatial covariates used as environmental predictors were chosen to represent these spatial 

soil forming factors (Table 8.2). All covariates were resampled to a 50m resolution in the 

GDA94 Vicgrid94 projection using nearest neighbour interpolation. This was undertaken 

for computational efficiency and proportional upscaling and downscaling of input 

variables. Spatial models for the clay minerals were undertaken using the M5 system that 

constructs tree-based models that can handle high data dimensionality in production of 

multivariate linear models (Quinlan, 1992). The Cubist package, as implemented in the R 

environment (Kuhn et al., 2014), implements a tree structure via if/then conditions 

resulting in regression models at the ‘leaves’ that can be further pruned (reducing input 

parameters) or combined to reduce the estimated error. These smaller and simpler models 

enable better prediction and reduced error (Quinlan, 1992).  

Map predictions and uncertainty estimates were derived using a 10-fold cross validation 

with no constraints on the number of rules to be derived from Cubist. Predictions from the 

10 models were averaged to produce a mean value with prediction intervals (as per Kidd 
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et al., 2015) at the 5th and 95th quantiles determined from held-back data for each cross 

validation (Malone et al., 2014). Diagnostic statistical measures including R2, root-mean-

square error (RMSE), bias and concordance (ρc) using the Lins concordance correlation 

coefficient (Lin 1989) and percentage of values within the 90% prediction interval were 

used to assess map outputs.  

Table 8.2. Environmental covariates used in Digital Soil Mapping. 

Factor Variable name Description Agency/Source 

S (soil) Victoria land units 
Victorian Soil type mapping from 
harmonised legacy surveys with 3,300 
land units 

Department of Economic 
Development, Jobs, 
Transport and Resources 
(DEDJTR) 

    

C (climate) Evapotranspiration 
Average annual areal actual 
evapotranspiration. 

Australian Bureau of 
Meteorology 

 Pan evaporation Average annual pan evaporation. 
Australian Bureau of 
Meteorology 

 Mean rainfall (1960-1989) 
Average annual rainfall (mm) between 
1960 and 1989. 

Australian Bureau of 
Meteorology 

 Prescott Index 
Prescott Index is an estimate of the water 
balance including leaching potential from 
evaporation and precipitation data. 

CSRIO; Gallant and Austin 
(2015) 

    

O (organisms) NDVI 2009 

MODIS NDVI 2009 Timesat derivatives 
(amplitude, base, beginning, large integer, 
end, left derivative, max, length, right 
derivative, middle, small integer) using a 
Savitzky–Golay filter. 

DEDJTR; Eklundh and 
Jönsson (2015) 

 NDVI 2011 

MODIS NDVI 2011 Timesat derivatives 
(amplitude, base, beginning, large integer, 
end, left derivative, max, length, right 
derivative, middle, small integer) using a 
Savitzky–Golay filter. 

DEDJTR; Eklundh and 
Jönsson (2015) 

 Maxlen205k23k 
Maximum growing season length from 16 
day time periods (MODIS time-series 
imagery) over the period 2001-2009. 

DEDJTR; Eklundh and 
Jönsson (2015) 

 Smaint201k35k 

Small integer (area under the EVI curve, 
i.e. green vegetation produced during the 
growing season) of the maximum growth 
for any growing season between 2001 and 
2009. 

DEDJTR; Eklundh and 
Jönsson (2015) 

 TM_2004 
Landsat TM National Mosaic for 2004 
(Bands 1, 2 and 3) 

Geoscience Australia 

 TM50 
Landsat TM National Mosaic (no fixed 
date) – 4 bands 

Geoscience Australia 

 Veg_fpar 

MODIS vegetation indices for 
photosynthetic vegetation and non-
photosynthetic vegetation (max, min, 
mean, median, standard deviation) 

Geoscience Australia 

 Veg_landcover_EVI_trend 
Dynamic Land Cover indices for 
Australia from MODIS (class, max, min, 
mean) 

Geoscience Australia; 
Lymburner et al. (2011) 
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Table 8.2 (continued) 

Factor Variable name Description Agency/Source 

O (organisms) Veg_persistent_green_veg 
Persistent Green Vegetation Fraction 
from Landsat (2000-2010) 

Geoscience Australia 

 Lu2005 Land use class in 2005 
Department of Environment, 
Land, Water and Planning 
(DELWP) 

 Luhist2005v2 Land use history classes (1800-2005) DELWP 

 PPL 
Broad land use classes (primary 
production landscapes) 

DEDJTR 

 SDLC_2014 
Secondary Dominant Land Cover 
(SDLC) from classified MODIS 
imagery for 2014 

DEDJTR 

 TDLC_2014 
Tertiary Dominant Land Cover (SDLC) 
from classified MODIS imagery for 
2014 

DEDJTR 

    

R (relief) DTM20 

Vicmap elevation DTM 20 m is at a 
spatial resolution of 20 m and is derived 
from data of various resolutions, 
accuracies and ages with increased 
details in local areas. 

Department of Environment, 
Land, Water and Planning 
(DELWP) 

 Aspect 
Derived from DTM20 – Orientation for 
a cell measured in degrees. 

DEDJTR 

 Flow accumulation 
Derived from DTM20 - is the 
accumulated weight of all cells flowing 
into each downslope cell. 

DEDJTR 

 Flow direction 
Derived from DTM20 – defines the 
direction from the cell to its steepest 
downslope neighbour. 

DEDJTR 

 MrVBF 
Derived from DTM20 – Multi-
resolution Valley Bottom Flatness 
index 

Gallant and Dowling (2003) 

 
Curvature (plan and 
profile) 

Derived from DTM20 – These are 
curvatures of the land surface. Plan 
curvature is the curvature of the surface 
perpendicular to slope and profile 
curvature is the curvature relative to the 
slope direction. 

DEDJTR 

 Slope 
Derived from DTM20 – is the rate of 
maximum change from a cell to its 
lowest neighbour. 

DEDJTR 

 
Topographic wetness 
index 

Derived from DTM20 – a function 
calculated from slope and upstream 
contributing area. 

Beven and Kirkby (1979) 

    

P (parent 
material) 

Geology (1:250k) 1:250,000 geological map units DEDJTR 

 Geomorphology (1:250k) Geomorphology of Victoria (1:250,000)  DEDJTR 

 
Weathering intensity 
index 

Weathering intensity index - degree that 
primary minerals are altered to 
secondary clay minerals and oxides. 

Geoscience Australia; Wilford 
(2012) 

 
GRS – TDose, K, Th, U 
and ratios 

Gamma radiometric concentrations 
from natural gamma rays to a depth of 
approximately 40 cm. Ratios are from 
combinations of the four principal 
bands. 

DEDJTR 

 



263 
 

8.3 Results 

8.3.1 Clay mineral MIR calibration models 

Abundance of the clay minerals kaolinite, illite and smectite, for the calibration samples 

used in the PLSR derived MIR models, are illustrated in Figure 8.3 and summarized in 

Table 8.3. Not all samples possess quantitative XRD values for all three layer silicates, 

therefore the number of samples used in model development were less than the 117 

available. This may be due to the dominance of crystalline phases identified and 

exclusion of interstratified phases, or that these layer silicates were absent or below 

detection limits in the quantitative XRD determination. 

 

Table 8.3. Summary statistics for samples used for calibration purposes (* number of 

samples used in PLSR model). 

 N nM* Min Med. Mean Max St. dev Skewness 

Kaolinite 107 102 7 36 42.6 99 24.5 0.5 

Illite 90 87 2 23.0 26.8 95 18.0 1.6 

Smectite 98 94 0.6 30.5 33.8 100 24.9 0.9 

 

Kaolinite was observed in 107 of the calibration samples and ranged from 7 to 99%. 

Moderate to strong correlation coefficients were found using the Pearson's product-

moment statistic with pHw and pHc (r=0.67), clay % (r=0.47) and Total P (r=0.62) the 

most strongly related to kaolinite. Illite calibration samples (n=90) were positively 

skewed and were square root transformed prior to formulating a PLSR model. Samples 

ranging between 2 and 95% exhibited a weak correlation with TOCM (r=0.3). All other 

correlations for illite were very weak to negligible. Smectite samples ranged from 0.6 to 

100% and were moderately to strongly correlated with pHw (r=0.5) and pHc (r=0.64), 

exchangeable sodium (r=0.47) and Total P (r=0.45).  



264 
 

The multivariate PLSR model for kaolinite incorporated 102 samples with 5 samples 

excluded when assessed against the reference method and spectral residuals criteria 

(Figure 8.4). The RMSE for the calibration set was 5.41% and a R2 of 0.95. A small 

negative bias (-0.06) was found and the cross validation statistics reveal a RMSE of 

11.06% and R2 of 0.77. Seven latent variables (factors) were included in the model with a 

ratio of percentage deviation (RPD) of 2.2 and a ρc of 0.962. There was no noticeable 

benefit from implementing a Support Vector Machine (SVM) for kaolinite (results not 

included) in preference to PLSR. For the illite model, 87 samples were used (3 excluded) 

with values square root transformed to account for skewness in the calibration data. Illite 

abundances for samples from Victoria in the calibration set were generally <45% with 

only 4 samples occurring between 45 and 75%. The two Clay Mineral Society samples of 

89 and 95% provided samples at the high end for calibration purposes. A RMSE of 3.45% 

and R2 of 0.96 was achieved for the calibration model with a RMSE and R2 for the cross 

validation of 10.21% and 0.69. The bias was again small (-0.26) with a modest calibration 

RPD of 1.8 and a ρc of 0.969 from seven latent variables applied in the PLSR model. 

Again the SVM improvements were marginal and are not reported. 

The smectite model included 94 samples, with 4 samples removed using the outlier 

criteria. The majority of smectite abundances in the calibration set were below 50% 

(n=75) with four samples above 70% included. The calibration model results include a 

RMSE of 5.77%, R2 of 0.94, cross validation RMSE of 11.87% and R2 of 0.76 for cross 

validation. Like kaolinite and illite, the negative bias was small (-0.28), with seven latent 

variables included in the model, a RPD of 2.1 and ρc of 0.961 achieved. 
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Figure 8.3. Histogram of clay mineral (kaolinite, illite and smectite) content of samples 

used in PLSR calibration models. 

 

8.3.2 Key absorption features of clay minerals (kaolinite, illite, smectite) 

The key variables to the layer silicate calibration models varied among the three clay 

minerals (Figure 8.5). For kaolinite, there was general correspondence between high VIP 

and SR scores for ranges between 930-1120, 3060-3400, 3600-3950, and 5230-5440 and 

7000-7200 cm-1. Alumino-silicate vibrations at 1020 cm-1 (Nguyen et al., 1991) and 

hydroxyl stretching at 3620 and 7100 cm-1 (well-ordered double or triplet OH feature 

depending upon crystallinity) are attributed to kaolinite. The hydroxyl stretching 

vibrations are considered to be diagnostic for kaolinite and a better diagnostic then using 

XRD (Clark 1999). 
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Figure 8.4. Clay mineral calibration models for kaolinite, illite and smectite. 

 

 
Figure 8.5. VIP and SR scores for the PLSR clay mineral models. 
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The 2:1 layer silicates can vary greatly due to their ionic substitution properties. The 

model for smectite has observable distinguishing frequencies in the 880-910, 1200-1360, 

3050-3440, 3950-4120 and 5240-5470 cm-1 regions. The strong absorbance of the MIR 

spectra by smectite, and overlap with kaolinite including a poorly defined Al-OH bond at 

3620 and 4533 cm-1 was observed. Alumino-silicate substitutions for smectite below 920 

cm-1 are also likely (Nguyen et al., 1991). 

There were considerably fewer corresponding variables in the illite model with two 

notable regions at 3600-3730 and 4200-4460 cm-1. Isolated water vapour as the OH 

stretch at 3652 cm-1 and a short band at 4270 cm-1 are potentially related to these 

distinguishing features in the VIP and SR scores for illite. 

8.3.3 Application of clay mineral spectroscopic models to MIR spectra with sites 

Clay mineral prediction models were applied to the 2795 sites (11,532 samples) with MIR 

spectra (Figure 8.6). The kaolinite model is characterised by predictions from 5 to 100%. 

The distinctive ‘hull’ shape to this model reflect the absence of kaolinite calibration 

samples at low (<5%) and high (>95%) values. Over 99% of errors from the model are 

<12%. Very low kaolinite predictions were found to correspond with pHW values > 8.4, 

field textures are ≥ light clay (LC) and electrical conductivity (EC) is > 0.3. High 

kaolinite predictions were associated with exchangeable calcium <6, EC between 0.05 

and 0.5, and pHW > 9.5 or < 5.5. 

Illite predictions were generally <50% (note one sample was excluded from view as this 

recorded a prediction of >150%). Like the kaolinite model, prediction errors were nearly 

always < 12%. Low illite predictions are all from south-western Victoria with an average 

depth of > 0.5m and EC is < 1. Samples where high illite predictions were determined 

have pHW values > 7.3, high salinity (EC > 2) and as a result there is little difference 
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between pHW and pHC measurements. These samples are predominantly from sites in the 

North Western Dunefields and Plains (Mallee soils) where illite is recognised as the 

dominant clay mineral of aeolian depositional layers with carbonates (Stace et al., 1968; 

Wetherby and Oades, 1975). 

Figure 8.6. Clay mineral predictions for kaolinite (a), illite (b), smectite (c) and associated 

errors for samples. 

 

The majority of samples in the smectite model have observed values of < 70% with nearly 

all errors < 13%. A noticeable increase in prediction error occurs where smectite 

predictions are < 20%. Very low predictions (<10%) are often from sites in south-western 

Victoria with pHw < 6.2, exchangeable calcium < 6 and textures lighter than clay loam 

(CL). High smectite predictions for samples also have high exchangeable calcium, pHW is 

above 6.5, clay % is > 30% and EC is high (> 0.5). These samples are generally found in 

north-western Victoria or as local depressions (e.g. swamps) in the volcanic plains for 

example. 

The three applied models were then aggregated to form a ternary plot (Figure 8.7) that 

emphasized high kaolinite, moderate smectite and low illite predictions for samples from 

western Victoria. Clay mineral predictions were harmonised according to the GSM depth 
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ranges (Table 8.4) using equal area splines as inputs to the formation of model trees in 

Cubist. 

 

Figure 8.7. Ternary diagram of kaolinite, illite and smectite predictions from the 

spectroscopic models. 

 

8.3.4 Mapping of clay mineral abundances 

Output mapping statistics for kaolinite, illite and smectite are presented in Table 8.5 and 

mean prediction with upper and lower limit maps presented in Fig. 8.8 to 8.13. The 10-

fold cross validation statistics of the six GSM depths for kaolinite yielded a RMSE 

between 8.2 and 12.3% and a R2 between 0.65 and 0.77. These results compare 

favourably with those achieved by Viscarra Rossel (2011) of 0.52 and 0.46 for 0-20 and 
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60-80 cm. Strong concordance statistics were achieved for all depths with the 60-100 cm 

depth interval achieving the best results. Validation statistics were generally poorer than 

calibration results although this difference was consistent and relatively small. Between 

87 to 89 % of values occur within the 90% prediction interval.  

 

Table 8.4. Summary statistics for clay mineral data used in the Cubist model trees. 

Depth range (cm) N Minimum 1st Quantile Median Mean 3rd Quantile Maximum 

 Kaolinite 

0-5 2795 9.03 39.26 51.12 49.97 60.84 92.90 

5-15 2795 6.73 37.94 49.65 48.90 59.85 90.67 

15-30 2785 6.79 34.39 46.39 46.69 58.72 97.14 

30-60 2727 2.18 29.39 44.13 45.42 59.93 97.60 

60-100 2207 2.25 23.55 40.24 43.76 63.15 99.92 

100-200 522 3.36 20.51 30.48 38.26 53.99 99.30 

 Illite 

0-5 2783 0.59 12.53 17.00 17.97 22.05 70.29 

5-15 2788 0.11 13.09 17.3 18.20 22.05 67.12 

15-30 2779 0.17 12.55 16.68 17.78 21.70 65.19 

30-60 2722 0.38 9.75 14.69 15.76 20.06 66.02 

60-100 2198 0.25 8.12 13.26 14.43 19.42 67.02 

100-200 528 0 9.08 16.23 16.29 22.67 63.02 

 Smectite 

0-5 2793 0.90 12.26 17.61 20.56 27.49 70.68 

5-15 2794 1.24 12.28 18.08 21.13 28.81 74.99 

15-30 2785 0 12.2 20.45 23.09 32.92 87.83 

30-60 2727 0.49 13.45 25.26 26.95 39.31 82.05 

60-100 2207 0.39 16.04 30.52 31.48 45.90 100.51 

100-200 525 0.84 20.11 38.40 36.03 49.89 110.55 

 

Model statistics for illite were mixed. The prediction error was considerably less than 

those for kaolinite ranging from 5.2 to 6.9% although the coefficient of determination was 

markedly less varying between 0.26 at 0-5 cm to 0.6 at 60-100 cm. Prediction of illite was 

worst at the surface (0-5 cm) and best at 60-100 cm. The poorer model statistics for illite 
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in contrast to kaolinite and smectite was also observed by Viscarra Rossel (2011) with R2 

values of 0.41 and 0.4 for the two depth intervals (as noted earlier). Concordance values 

also improved with depth due to strong correlations below 30 cm. Validation statistics 

were similar for RMSE and ρc, however the R2 was notably lower (0.18 to 0.37) than the 

calibration results. Once again there was good agreement with the 90% PI with 87 to 90% 

of predictions occurring in this interval. 

 

Table 8.5. Map diagnostic results for kaolinite, illite and smectite. Standard deviation for 

map diagnostics is provided in (). 

 Calibration Validation  

Depth range 
(cm) 

RMSE R2 Bias ρc RMSE R2 Bias ρc % within 
90% PI 

 Kaolinite 

0-5 8.6 (0.3) 0.65 (0.02) 0.05 (0.22) 0.78 (0.02) 10.1 (0.5) 0.52 (0.05) -0.01 (0.6) 0.70 (0.03) 0.89 (0.02)

5-15 8.2 (0.4) 0.68 (0.03) 0.04 (0.1) 0.81 (0.02) 9.9 (0.3) 0.54 (0.03) 0.03 (0.73) 0.72 (0.02) 0.89 (0.01)

15-30 8.9 (0.4) 0.68 (0.03) 0.08 (0.21) 0.80 (0.02) 10.8 (0.4) 0.53 (0.04) 0.06 (0.79) 0.71 (0.03) 0.89 (0.02)

30-60 10.5 (0.4) 0.69 (0.02) -0.11 (0.18) 0.82 (0.01) 12.8 (0.7) 0.56 (0.04) -0.16 (0.74) 0.73 (0.02) 0.88 (0.02)

60-100 10.9 (0.3) 0.77 (0.01) -0.13 (0.21) 0.87 (0.01) 14.2 (1.2) 0.62 (0.06) 0.33 (1.17) 0.78 (0.04) 0.88 (0.02)

100-200 12.3 (1.2) 0.71 (0.05) -0.32 (0.36) 0.83 (0.03) 16.5 (2.5) 0.50 (0.09) -0.48 (2.91) 0.68 (0.06) 0.87 (0.05)

 Illite 

0-5 6.9 (0.3) 0.26 (0.06) -0.75 (0.11) 0.40 (0.07) 7.3 (0.5) 0.18 (0.05) -0.74 (0.36) 0.33 (0.05) 0.90 (0.02)

5-15 6.0 (0.2) 0.36 (0.04) -0.55 (0.13) 0.52 (0.04) 6.8 (0.3) 0.22 (0.06) -0.56 (0.39) 0.39 (0.05) 0.89 (0.02)

15-30 6.1 (0.2) 0.36 (0.04) -0.67 (0.09) 0.52 (0.04) 6.9 (0.5) 0.21 (0.06) -0.67 (0.44) 0.38 (0.05) 0.89 (0.02)

30-60 6.0 (0.2) 0.44 (0.03) -0.67 (0.09) 0.61 (0.03) 7.1 (0.9) 0.25 (0.08) -0.68 (0.55) 0.46 (0.08) 0.90 (0.02)

60-100 5.2 (0.2) 0.60 (0.03) -0.42 (0.11) 0.74 (0.02) 6.7 (0.5) 0.36 (0.09) -0.49 (0.40) 0.58 (0.07) 0.88 (0.02)

100-200 6.1 (0.3) 0.55 (0.04) -0.51 (0.15) 0.71 (0.03) 7.3 (1.2) 0.37 (0.10) -0.56 (1.22) 0.57 (0.08) 0.88 (0.05)

 Smectite 

0-5 7.4 (0.2) 0.55 (0.02) -0.76 (0.12) 0.71 (0.02) 8.8 (0.4) 0.37 (0.05) -0.76 (0.67) 0.58 (0.03) 0.88 (0.02) 

5-15 6.9 (0.2) 0.63 (0.02) -0.68 (0.1) 0.77 (0.02) 8.9 (0.6) 0.42 (0.05) -0.69 (0.51) 0.63 (0.04) 0.89 (0.01) 

15-30 7.7 (0.3) 0.66 (0.03) -0.68 (0.12) 0.79 (0.02) 9.7 (0.8) 0.46 (0.07) -0.65 (0.62) 0.66 (0.05) 0.88 (0.02) 

30-60 9.0 (0.5) 0.67 (0.04) -0.47 (0.15) 0.80 (0.03) 11.0 (0.9) 0.51 (0.06) -0.35 (0.6) 0.70 (0.04) 0.88 (0.03) 

60-100 10.0 (0.4) 0.66 (0.03) -0.52 (0.15) 0.80 (0.02) 12.1 (0.8) 0.53 (0.03) -0.42 (0.78) 0.71 (0.02) 0.90 (0.02) 

100-200 12.1 (0.9) 0.58 (0.06) -0.51 (0.42) 0.74 (0.05) 16.4 (4.3) 0.32 (0.17) -0.26 (2.97) 0.51 (0.21) 0.88 (0.06) 
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Similar to kaolinite, smectite mapping model statistics were robust across all depth 

intervals. The RMSE increased with depth to a maximum of 12.1±0.9 at 100-200 cm and 

R2 between 0.55 (0-5 cm) and 0.67 (60-100 cm). Smectite map predictions of the 0-5 cm 

depth range are comparable to those of Viscarra Rossel (2011) for the surface (R2 of 0.61 

for 0-20 cm). Considerable improvements were also observed in the prediction of 

smectite with depth. Like illite, models were negatively biased however the concordance 

statistics were considerably better (between 0.71 and 0.8). Validation results generally 

were slightly poorer while similar trends of model improvement with depth to 60-100 cm 

were noted. Again, there was good agreement with the 90% PI with 88 to 90% 

corresponding with this interval. 

8.3.5 Interpretation of prediction variables and relationship to western Victoria 

(kaolinite, illite, smectite) 

Major predictor variables used in condition statements and regression models from the 

Cubist spatial models to predict the three clay minerals for two sample depths (0-5 and 

60-100 cm) are illustrated in Fig. 8.14 to 8.16. Explanatory variables are grouped 

according to the s, c, o, r and p factors of the SCORPAN model and usage is illustrated 

according to mean application across the 10 models. Effectively, the condition statements 

are the coarse spatial stratification of landscapes while the models reflect local processes 

and variations (Viscarra Rossel 2011).  

Conditional statements of the 0-5 cm kaolinite model include p predictors gamma 

radiometric potassium (pot) and tier 2 geomorphological mapping (gmu250t2), s factor 

land units and o factor (veg_par_median) for all implementations. In condition statements 

for 60-100 cm the r factor elevation (mASL) and o factor (veg_par_mean) were used 

extensively with the s factor land units.  
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Kaolinite models for 0-5 cm are represented by variables of s, c, o, r and p factors. The o 

variables include 2009 NDVI Timesat derivatives (begin, end, length, smallint, largeint, 

median and base) and veg_fpar (mean and median) as important predictors with c 

variables (etaaan, rainann, meanrain6089, prescott and prescott_lg). The more frequently 

used variables in models for 60-100 cm also include o variables from 2009 and 2011 

NDVI Timesat derivatives (e.g. begin, end, length and base), veg_fpar_mean and Landsat 

imagery (TM50_2 and TM50_3). Again, the same c variables (etaaan, rainann, 

meanrain6089, prescott and prescott_lg) were also important as they were for 0-5 cm. 

Prominent p factors include gamma radiometrics (thor, pot, tc and th_pot) and gmu250t2. 

The r factor elevation (mASL) was also frequently used in these models. 

Variables used in condition terms for prediction of illite (0-5 cm depth) include p factors 

pot, geology mapping (geol250), the o factor veg_fpar_std (standard deviation) and c 

variable etaaan. The c factors (rainann and meanrain6089) were important in the 60-100 

cm depth range with p factors pot, geol250 and thorium to potassium ratio (th_pot). 

Models for 0-5 and 60-100 shared important o variables from 2009 NDVI (begin, end and 

length). More frequently used o factors for 0-5 cm also include 2011 NDVI (begin, end 

and length) and for 60-100 cm veg_fpar (mean, median and mean_pv). The c variables 

etaaan, rainann and prescott were prominent in models across both depths while 

prescott_lg and meanrain6089 were also widely applied for 60-100 cm. The p factor pot 

was important for both depth intervals while thor and tc were also important. The r factor 

mrvbf was used in all 10 models. 

The smectite spatial models for 0-5 cm include the s factor land units and o factor 

veg_par_median as the two standout variables of conditional statements. Likewise for the 

60-100 cm, land units were prominent, with additional o, p and r factors including 

veg_par_mean, gmu250t2, tc and elevation. Models for both depths were also strongly 
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influenced by o factors: 2009 NDVI (begin, end and length) and veg_fpar (mean and 

median). Other important o factors for 0-5 cm were 2009 NDVI variables base, largeint 

and smallint. p factors tc and gmu250t2 were used by all 10 models for 60-100 cm with 

pot used in 8 models for 0-5 cm. Additional c variables etaaan, rainann, meanrain6089, 

prescott and prescott_lg were also prominent in the 60-100 cm models. 

Across the spatial prediction models s, c, o, r and p factors have been used for conditional 

statements and models. Variables that were more frequently used include radiometric 

potassium that has been found associated with potassium rich dust of illite and K-feldspar 

(Cattle et al., 2003). Variables such as geol250 and gmu250t2 have proven useful for 

coarse scale stratification where used in conditional statements for illite and kaolinite, and 

land units when used in prediction of smectite for 0-5 cm. o factors were the most used 

variables in models to predict fine scale processes and variation, and were rarely used in 

conditional statements. c factors were also used extensively in models like the o factors. 

Even though these o and c variables are represented as coarse resolution datasets, there is 

adequate differentiation to represent fine scale processes reflected in the distribution of 

kaolinite, illite and smectite for the study region of western Victoria. Surprisingly, the 

higher spatial resolution r variables were rarely used in condition statements or models 

and suggests that local variations were not significantly associated with terrain or that 

sites weren’t adequately located to represent the local range variation. 
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Figure 8.8. Map predictions (lower, mean and upper) from left to right for kaolinite (top), 

illite (middle) and smectite (lower) for 0-5 cm. 
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Figure 8.9. Map predictions (lower, mean and upper) from left to right for kaolinite (top), 

illite (middle) and smectite (lower) for 5-15 cm. 
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Figure 8.10. Map predictions (lower, mean and upper) from left to right for kaolinite 

(top), illite (middle) and smectite (lower) for 15-30 cm. 
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Figure 8.11. Map predictions (lower, mean and upper) from left to right for kaolinite 

(top), illite (middle) and smectite (lower) for 30-60 cm. 
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Figure 8.12. Map predictions (lower, mean and upper) from left to right for kaolinite 

(top), illite (middle) and smectite (lower) for 60-100 cm. 
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Figure 8.13. Map predictions (lower, mean and upper) from left to right for kaolinite 

(top), illite (middle) and smectite (lower) for 100-200 cm. 
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Figure 8.14. Major predictor variables used for kaolinite maps. 

 

8.3.6 Comparison of clay mineral predictions against existing studies and 

investigations 

Map predictions have been compared with published findings on soil clay mineral 

occurrence in Victoria. 

Kaolinite is considered the dominant clay mineral (Norrish and Pickering 1983) for 

Australian soils. Smectite is of minor occurrence; however, interstratified kaolin-

smectites (Norrish and Pickering, 1983; Churchman et al., 1994) are believed to be 

common to Australian soils. Clay mineral maps for western Victoria reflect this 

dominance of kaolinite, especially for southern regions with erosional landscapes, high 

rainfall and deep weathering profiles such as the Dundas Tableland. For the volcanic 
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plains, kaolinite content increases with age of the basalt flow and depth of profile 

(Mokma et al., 1973). This assessment is consistent with derived kaolinite prediction 

maps. There can be considerable halloysite interspersed with kaolinite and pure samples 

that can be easily mistaken for kaolinite, although actual concentrations of halloysite are 

possibly underestimated due to handling effects from drying that reduce its likelihood of 

detection (Norrish and Pickering, 1983). Krasnozems of the newer and older volcanics 

provinces occur with kaolinite either being exclusive (Hosking et al., 1957), or the 

dominant clay mineral phase (Sargeant and Skene, 1970) with minor illite or intermixed 

vermiculite-chlorite. 

Figure 8.15. Major predictor variables used for illite maps. 
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Figure 8.16. Major predictor variables used for smectite maps. 

 

Granitic plutons and their weathering profiles contain variable quantities of kaolinite in 

the clay fraction with some illite and accessory minerals haematite, goethite and gibbsite 

(Hosking et al., 1957). Soils of Palaeozoic sedimentary rocks in central western Victoria 

are dominated by kaolinite with variable quantities of illite and smectite present (Sultan, 

2006). 

Illite occurrence in soils is greatest in central areas of western Victoria that are 

characterized by granitic and sedimentary hills with tertiary and quaternary alluvial and 

colluvial aprons. Granitic plutons at Mafeking, the Mirranatwa Granite in the Grampians 
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Ranges and Stawell Granite, for example, are clearly delineated in mapping with higher 

concentrations of illite than surrounding landscapes. This is likely due to residual 

weathering of muscovite and biotite leaving illite in K-rich sands. Spatial predictions 

suggest that illite concentration decreases with depth which is consistent with findings by 

Norrish and Pickering (1983). This may be attributed to the aeolian source material 

dominated by illite and kaolin blanketing upland landscapes of western Victoria, akin to 

profiles of the alpine regions with elevated illite at the surface (Johnston, 2001). Aeolian 

deposition on to the basalt plains has left quantifiable volumes of illite in clay and silt 

fractions (Jackson et al., 1972). A concentration of illite near the surface, especially for 

Mallee soils, may be due to aeolian deposition although the poor model prediction for 0-5 

cm may be due to surface activities (e.g. cultivation, wind erosion), leading to high 

variability of illite, that are not accommodated in the applied spatial covariates. 

Extremely weathered to fresh bedrock samples of the Otway Group Sandstone from 

southern slopes of the Otway Ranges include illite (16-18%) and minor kaolinite of 1-3% 

(Hall, 2004). Map predictions for illite for all depths have potentially under estimated 

illite occurrence in the Otway Ranges due to an absence of available sites and samples for 

modelling, or that further alteration of illite may occur where bedrock has further 

degraded to higher quantities of kaolinite. In the Wimmera plains, illite concentrations are 

comparable to kaolinite in low-lying areas associated with the Wimmera River. Here soils 

are derived from alluvial processes with potential bedrock sources from the western 

uplands including granites, sedimentary strike ridges and aeolian illite and kaolinite. 

Smectite occurrence tends to reflect localized processes and weathering decay sequences 

as an early stage of this process. As the age of volcanic deposits and associated 

weathering in southern Victoria can be quite variable, smectite occurrence, while 

relatively low at the surface, increases with depth especially for black clay soils derived 
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from basalt. For the black clay soils, smectite phases are often the dominant clay mineral 

(Briner and Jackson, 1970). Average smectite concentrations for these soils have been 

observed at approximately 40%. Interstratified smectite-kaolinite has been found in soils 

associated with volcanic lake and lunette complexes of the western plains at Kariah, 

although the kaolinite layers in these clays can be poorly crystalline (Churchman et al., 

1994). The plains of northern Victoria including the Wimmera have abundant smectite in 

the clay fraction of soils found in swales between, and blanketing NNW trending tertiary 

beach ridges. These uniform self-mulching Vertosols have smectite concentrations 

varying between 20 and 50%. Maps illustrate that smectite % increases with depth and 

this may reflect more advanced weathering at the soil surface (Churchman et al., 1994; 

Viscarra Rossel, 2011).  

 

8.4 Discussion 

Spectroscopic models for kaolinite, illite and smectite using MIR spectroscopy, combined 

with spatial prediction models using model-tree algorithms, has produced reliable maps of 

clay mineral distribution that adhere to GSM standards. By mapping these layer silicates, 

this provides an opportunity to further quantify and understand processes linked to 

fertility and resultant primary production as a key ecosystem service delivered by soil. 

8.4.1 MIR calibration models 

The spectroscopic models for kaolinite, illite and smectite in the <2 μm fraction from 

whole soil samples were highly useful and relatively robust given the number of available 

samples with quantitative XRD assessments for calibration purposes. This may be 

expected given the diagnostic absorption, water and hydroxyl features that are 

characteristic of clay minerals represented in this spectral range (Clark et al., 1990). 
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Initial calibration models (not presented) were supplemented by additional quantitative 

XRD analysis for atypical samples (e.g. high clay mineral prediction or high relative 

error) to improve the overall ‘robustness’ of models for Victorian soils. There was no 

decline in model diagnostics from addition of the atypical samples to models, rather a 

noticeable contraction in prediction error and a reduction in the range of predicted values 

to theoretically possible values, e.g. 0 to 100 %. Cross-validation was applied in model 

development due to the small number of samples available for calibration purposes. 10% 

of samples for each k-fold were retained for validation purposes, reducing potential for 

model overfitting and impacts from outliers. 

Quantitative XRD data used for calibration purposes collected over two decades has 

proven invaluable in development of quantified clay mineral models. Uncertainty 

estimates for these XRD determinations have been provided but were not accommodated 

in spectral models at this stage. Ideally, these XRD determinations can be compared with 

other approaches to determine mineral abundance such as relative spectral determinations 

using continuum removal to normalize reflectance spectra (Clark and Roush, 1984; 

Viscarra Rossel, 2011). Clay mineral abundance could be more adequately represented by 

addressing deficiencies in the distribution of samples for calibration purposes, e.g. above 

50% for illite and for low and high kaolinite concentrations (e.g. <5% and >90%). 

Overall, the models provide estimates of clay mineral abundance that, as a minimum, are 

comparable to qualitative XRD with uncertainty estimates of ±10 % (Briner and Palmer, 

1985). Ideally, the coupling of quantitative XRD with IR spectroscopy offers operational 

advantages in quantitative prediction of phyllosilicates, oxides and carbonates (Janik et 

al., 1995). 

Spectroscopic models were developed using PLSR for this study. This multivariate 

technique is relatively simple to apply and interpret and can handle colinearity in input 
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data (Wold et al., 2001; Soriano-Disla et al., 2014). A limitation of PLSR is the sensitivity 

to asymmetrical (skewed) input distributions in contrast to SVM, artificial neural 

networks or boosted regression trees (Viscarra Rossel and Behrens, 2010). For this study, 

only illite quantitative XRD data was transformed (square root) with no improvements in 

smectite and kaolinite prediction from various transformation algorithms. Assessment of 

diagnostic absorptions and spectral ranges using the VIP and SR for these clay minerals 

models proved useful in qualifying model development. Implementation and comparison 

of these two methods for assessment of critical spectral features has proven successful 

(Farŕes et al., 2015) and provides an improvement on the use of regression vectors 

(Kvalheim, 2010). Implementation of SVMs in preference to PLSR or other multivariate 

assessment techniques has resulted in improved predictions for IR spectroscopy (Viscarra 

Rossel and Behrens, 2010). For this study, improvements were marginal, and therefore 

not pursued, but should be considered in spectral model ensembles using the range of 

multivariate techniques available. 

8.4.2 Maps of soil clay minerals 

The DSM procedure used for this study has been successfully implemented in Tasmania, 

Australia for state soil attribute mapping (Kidd et al., 2015) and adapted to model the 

distribution of soil organic carbon for mainland France (Mulder et al., 2016). The 

implementation of model trees with a 10-fold cross validation has reduced the modelling 

bias, averaged outputs and enabled systematic prediction of the 90% prediction interval 

based on the approach of Malone et al. (2014b). Residual errors from the spatial model 

trees were not assessed for spatial dependence but could be considered for further 

refinements to clay mineral maps. 

Initial selection of covariates was based on their availability and spatial continuity for the 

study area. These covariates were used in a ‘first run’ of the mapping procedure using 
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clay mineral predictions from a reduced calibration set. Important covariates used in 

development of condition statements and regression models across the three clay minerals 

were retained and superfluous covariates removed from further model iterations. 

Sites and samples used in spatial models have been applied, with no formal sample 

design, for their distribution in space or time. MIR predictions for these samples are 

consistent with trends observed in map outputs and published findings that:  

 kaolinite content decreases with depth, potentially indicating greater weathering at 

the soil surface than with depth;  

 mean and median values for kaolinite are at least twice that of illite;  

 illite also decreases with depth and over 50% of predictions occur between 8 and 

22%;  

 smectite concentration increases with depth and mean/median predictions are 

slightly higher than illite.  

This suggests a sequence of abundance whereby kaolinite > smectite > illite for western 

Victoria, with both illite and kaolinite decreasing with depth and smectite increasing. This 

sequence will vary though depending upon the landscape and history of soil formation. 

There are some limitations in the soil site distribution for this study. There are areas of the 

Southern Uplands (e.g. Otway Ranges), Western Uplands, Northern Riverine Plains, and 

public lands of the North Western Dunefields and Plains (linear and parabolic dunefields) 

which are inadequately represented by sampled sites. An additional finding is that there is 

a deficiency of deep soil samples (>1 m) with fewer than 530 observations (<19% of total 

sites) available for use in the 10 model applications. This has most likely led to the 

deterioration of spatial model performance for the 100-200 cm depth range. 

Uncertainties represented by the 90% PI for this study are from the averaged predictions 

of the 10 models which are consistent with approaches applied by Kidd et al. (2015) and 
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Viscarra Rossel et al. (2015). Upper and lower prediction intervals are spatially consistent 

with patterns observed for mean predictions. The majority of prediction intervals occurred 

with a relative uncertainty of around 40%, although there are areas with higher and lower 

uncertainties depending on site density, covariate quality and representativeness of soil 

landscape features. Uncertainties were found to increase with depth, reflecting the fewer 

sites available for model development (Viscarra Rossel et al., 2015). Temporal 

uncertainty was not considered in this study due to the relative stability and inadequate 

sensitivity of clay formation to time (MacEwan, 1997). Further enhancements leading to 

reduced uncertainty are to be undertaken using the GRUMP framework (Robinson et al., 

2015) to assess and accommodate uncertainties due to input data error sources, model 

assumptions and qualitative understandings not used in production of clay mineralogy 

maps. This should reduce the residual error from the spatial models and this can be 

explored further for spatial dependence across landscapes. 

Map predictions for kaolinite and smectite were reliable and illite results slightly less so. 

Model diagnostics improved with depth and the best results were achieved for the 60-100 

cm depth range, indicating a strong alignment with environmental predictors and 

indicating less spatial variability. This is reflected in the strong association of map 

predictions, with pronounced topographic and lithological discontinuities in the study 

region, such as the deserts along the western border with South Australia. Model 

diagnostics compare favourably with those of Viscarra Rossel (2011) with continuous 

clay mineral predictions derived for the six GSM depth intervals. While it is reassuring 

that both clay mineral mapping attempts have achieved similar results for some 

landscapes using different data sources and IR spectroscopy techniques, there remain 

landscapes that have been under or over classified for some clay minerals (e.g. kaolinite 

in the Southern Uplands) that require further improvement. 
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The distribution of the layer silicates in soil reflects the principal factors of soil formation 

(Jackson, 1957). Climate, relief (topography), parent material, organisms and vegetation 

all influence the distribution and quantity of clay minerals in soil. All s, c, o, r and p 

factors were used in models for the broad scale stratification of the study region for clay 

mineral abundance. The variables most frequently represented are gamma radiometric 

potassium, geomorphological and soil-landform polygonal mapping. These variables are 

strongly aligned to parent material and the changes observed in soil mineral distribution 

of the parent lithology when other factors such as climate are held constant (Jackson, 

1957). Not only are the primary minerals affected by their parent material, secondary clay 

minerals that are reactive are also influenced by the inherent nature of their host rock. 

Weathering processes of transformation and neoformation impacting the parent material 

result in the occurrence and accumulation of soil clay minerals (Wilson, 1999). 

Vegetation (MODIS vegetation indices) was also an important predictor. This may be due 

to the preferential vegetation clearance of land in Victoria where soils of higher 

agricultural capability were cleared first with inherent soil properties (e.g. clay 

mineralogy) that were favoured for farming. This trend continued leaving land of lower 

agricultural potential uncleared (Sheffield and Morse-McNabb, 2015). It is likely that 

vegetation, rainfall and evaporation are linked in their contribution to the models, 

however, further investigation is required to define linkages between vegetation and clay 

mineral distribution. 

Regional or local scale variations represented in regression models were dominantly c, o, 

and p factors. Rainfall, estimated evapotranspiration and the Prescott index were all 

extensively used in predicting clay mineralogy. These climatic variables affect weathering 

rates of parent material and the transformation of primary to secondary clay minerals. 

Gamma radiometrics and geomorphological mapping was also used frequently in models 
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to delineate local differences in clay mineral occurrence associated with parent material, 

weathering state and erosional process of alluvial, colluvial and aeolian deposits. NDVI 

vegetation derivatives from Timesat parameters were also used across the depth intervals 

for the three clay minerals and potentially reflect local soil differences and variations due 

to pedological indicators, e.g. waterlogging and drainage, salinity, rock occurrence, 

cementation and soil strength. 

8.4.3 Looking forwards 

To our knowledge, the maps produced for this study are the first attempts to predict clay 

mineral abundance according to GSM specified depth intervals using MIR spectroscopy. 

Refinement and significant enhancement of maps can be achieved by using uncertainty 

estimates to guide future soil site collection with samples collected representative of the 

depth range (0 to 2 m) for the GSM project. This can be supported through 

implementation of sampling designs such as latin hypercube sampling approaches 

(Minasny and McBratney 2006; Clifford et al., 2014). There also remain many potential 

samples in the archive that could be used to fill some of these voids for the major 

geomorphological divisions of the Southern Uplands, Western Uplands and Northern 

Riverine Plains. Potential improvements through the combining of IR spectral libraries 

should also elicit more detail and better estimates of clay mineral occurrence for these 

landscapes. 

A limitation for this study was the availability of accessible quantitative XRD 

measurements. Re-analysis of earlier determinations using the latest pattern-fitting 

software may yield higher precision in diffraction results and less uncertainty associated 

with these values. Available legacy qualitative XRD data could also be used to contrast, 

compare and integrate with quantitative data either to augment DSM models, or use as an 

independent validation set. Further improvements may occur in response to available new 
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environmental predictors such as passive and active satellite sensors such as Sentinel (1 

and 2), combined with existing platforms such as MODIS and Landsat that offer better 

signal-to-noise ratios and high temporal frequency of image collection. 

 

8.5 Conclusion 

This study presents the first example where MIR spectroscopy and spatial models have 

been implemented to predict clay mineral distribution according to GSM specified depth 

intervals. This has been successfully implemented for the three prominent clay minerals: 

kaolinite, illite and smectite. Not only do the maps provide new predictions of these layer 

silicates to 2m in depth, they also enable users to elucidate new understandings linked to 

ecosystems services such as food production and the identification of potential 

engineering and infrastructure hazards due to expansive clay soils. The methods deployed 

for this study can be easily implemented elsewhere by organisations where MIR spectral 

libraries exist. 

Data derived from this study will also provide reference spectra and mineralogy 

assessments that can be used in derivation of future spectroscopy calibrations. The 

outputs of the study (the mineral prediction maps) will be used as inputs to understand 

yield variability in pasture and cereal systems of Victoria and to support research on 

chemical stabilization processes of SOM and the potential for carbon sequestration. 

Further development of regional and state calibrations using MIR spectroscopy to predict 

other soil minerals (e.g. oxides and carbonates) is also envisaged. 
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Chapter 9 Conclusions 

The primary objective of this thesis was to advance knowledge on Digital Soil Mapping 

(DSM) and how practitioners and users of spatial soil information can benefit from the 

presented research. This chapter summarises the key findings from the literature review 

(Chapter 3) and five chapters in response to the three research objectives posed in Chapter 

1. Research conclusions are summarised from these investigations that can be used to 

support future developments in DSM. 

Discussion 

This thesis presents examples of research to: 

better understand the spatial soil information needs of users; 

identify error sources contributing to aleatory and epistemic uncertainty that 

should be accommodated in modelling and mapping applications, and  

harmonise legacy methods with new analytical techniques to map soil properties 

linked to supporting functions delivered by soil. 

Chapter 4 presents a concise summary of the spatial soil information needs of biophysical 

modellers. A repeat survey of this user group was timely, given the global focus on soil 

and land related issues of primary production to meet global food requirements, poverty 

and concerns on the impact of climate change. The survey identified key soil properties 

that affect model sensitivity and align with GlobalSoilMap priorities, e.g. plant available 

water capacity, clay%, and organic carbon. Given the paucity of published literature on 

user needs for spatial soil information, the survey provides a valuable benchmark to 

understand how needs of modellers continue to evolve in response to environmental and 

agricultural issues. 
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A focus of chapters 5, 6 and 7 was to accommodate various error sources in spatial soil 

information (aleatory and epistemic) using a systematic framework for mapping and 

modelling purposes. Traditional thinking on uncertainty has been largely reductionist, and 

there is a need to think holistically to accommodate the many potential error sources 

using systems-based models. Conventional uncertainty assessment has focused on 

statistical uncertainty and overlooked other possible error sources due to lack of 

information, e.g. measurement error, expert opinion, incorrect context or environment. 

Chapter 5 presents the Global Representation of Uncertainty in the Modelling Process 

(GRUMP) as a framework to embody, and to illustrate to users these error sources and 

how they were accommodated in the map or model. 

Implementations of the GRUMP framework using examples are provided in chapters 5, 6 

and 7. Chapter 6 demonstrates different elements of uncertainty by focusing on one soil 

property (pH) and how expert opinion can be an important source of measurement error. 

The implementation of the GRUMP in Chapter 7 demonstrates how factors that are often 

overlooked in mapping and modelling, such as accounting for temporal variability in a 

soil property and changes in land use (context), can contribute to soil change and error in 

maps and models. 

A novel example using legacy data, archive soil samples and Mid-Infrared (MIR) 

spectroscopy with a spatial inference system to map clay minerals is presented in chapter 

8. This example exploited the wealth of stored archive samples to map a property that is 

expensive to acquire and are poorly connected to existing model approaches. The method 

was applied successfully to map soil clay mineral distribution for kaolinite, illite and 

smectite according to GlobalSoilMap specifications for western Victoria. 
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The thesis makes a valuable contribution to support future assessments of soil functions 

and processes. Land degradation issues such as acidification are a global issue and 

examples presented in chapters 5, 6 and 7 provide better understandings on this its 

distribution and delivery of information that is more certain and tailored towards meeting 

land manager’s needs. Novel research to map the clay mineral distribution in soil 

(Chapter 8) could be used to support spatial quantification of soil services and functions 

such as plant health and production, carbon sequestration and the resilience of soil in 

response to climatic and human induced impacts. 

Summaries of research findings 

 

Research objective 1: Identify what are users’ needs for spatial soil information and 

how this has changed in Victoria over the last century 

Key messages 

 Eight key properties are of immediate focus to support biophysical models. These 

properties are: critical lower limit/permanent wilting point (CLL/PWP); drained 

upper limit/field capacity (DUL/FC); hydraulic conductivity (Ksat); clay 

proportion (clay%); bulk density; organic carbon; soil depth; and effective rooting 

depth. Soil pH and clay mineralogy became the properties of interest for this 

thesis as they are used regularly in land evaluation and are linked to soil functions 

and processes, e.g. buffering capacity.  

 The number of biophysical models being used for landscape analysis has 

decreased, but the frequency with which those models that are still being used has 

increased (especially for point/site based models). 
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 A common response from modellers is that high resolution soils data is often not 

required for their purposes – rather their preference is for accessible, available and 

contemporary soil data. 

 Data harmonisation and uncertainty are important to ensure future relevance and 

accuracy of the models from the influx of new soil data sources, e.g. in-field 

sensors. 

 The needs of users through time have reflected the major challenges or issues to 

government, e.g. settlement in the 1880’s to 1950’s, agricultural production from 

the 1950’s to 1980’s and 2010’s, conservation from the 1930’s through to the 

1990’s, and urban development from the 1980’s to 2000’s. Currently there is a 

global-national-state focus on primary production and meeting global food 

security needs. 

 

Throughout the last century for many countries across the globe, market forces (e.g. 

government policy intervention or industry development such as adoption of precision 

agriculture) are the principle causes for ebbs and flows in the supply-driven or demand-

driven provision of soil information. The connection between supply and demand 

ultimately defines the value of a service, and this is no different for spatial soil 

information. 

This disequilibrium due to either excess supply or demand tends to correspond with soil 

survey phases throughout history. For example, general purpose surveys reflect periods of 

over supply with the impetuous for survey largely driven by the pedological community. 

The need for spatial soil information requires a clear mandate supported by the citizens 

rather than purely supply driven scientific considerations (Bouma and Drooge, 2007). 
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Conversely, surveys undertaken for specific purposes correspond with demand driven 

periods in history where there was a perceived need by communities, industries or 

government for soil information to assist their decision making. Here the connection with 

real-world situations rather than just research studies with little relevance to current agro-

ecological conditions are required. 

What makes this relationship between supply and demand volatile is the time factor. The 

provision of new soil information relies upon time in the supply relationship. Here the 

market must be responsive to identify these future demands and that adequate resourcing 

is provided to respond to this demand. Meeting the needs of biophysical modellers as 

primary users of soil information is one such example. Modellers demand for soil 

information has fluctuated depending upon the environmental and agricultural production 

questions posed and scale (both space and time) of information sought. In Australia, the 

agriculture versus environment paradigm for soil mapping (Bouma, 1989) has endured for 

nearly a century and currently oscillates in favour of agriculture. 

What is clearly evident from the literature on spatial soil information is that benefits to 

users far outweigh the costs of investment. So why does the perception of poor 

investment persist for soil survey? Is it purely that government now sees soil survey as a 

user-pays argument and therefore an option to invest elsewhere with higher perceived 

benefit-to-cost ratios, e.g. human health? Both Manderson and Palmer (2007) and Martin 

(1980) advocate that new soil survey and the provision of spatial soil information should 

not be borne by farmers, rather well-resourced organisations such as government that 

should be committing to long-term programs to support custodians of the land and 

producers of food and fibre for global communities. 
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As any good business operator will attest to, in dynamic markets there is always a need to 

be responsive and to identify what are the current, and the future needs of consumers. In 

this thesis, Chapter 3 describes the evolving spatial soil information demands in Victoria, 

Australia. The initial demand for soil survey due to irrigation failure along the Murray 

River and the transition of the market with advances in technology, changes in societal 

structures and demographics, and understandings of the agro-ecological environment are 

defined. 

The survey of a biophysical modelling community (Chapter 4) established that spatial soil 

information sought by these users should be contemporary and available. While a 

decrease in the number of biophysical models being used (and possibly developed?) was 

observed, there has been a corresponding increase in the application of models for 

agricultural or environmental purposes. This is especially true for point based models 

such as APSIM (Keating and McCown 2001) and its commercially accessible equivalent 

Yield Prophet (www.yieldprophet.com.au/yp/wfLogin.aspx). 

So how sensitive are these models to spatial soil information? A common response from 

modellers was that high resolution soil information is often not required for their 

purposes, rather they favour easy access to spatial soil information online. This is 

consistent with responses from modellers as part of a user needs analysis for the 

Australian Soil Resource Information System (ASRIS). Wood and Auricht (2011) found 

that ‘modellers will continue to require access to raw (primary site) data and continue to 

develop their own derived information and surfaces’. 

The use of biophysical models for agricultural industries was greatest where industries 

were larger users of land area. For intensive industries that operate on a small areal 

footprint (e.g. horticulture), there is a focus on technological innovations rather than the 
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implementation of biophysical models to support their operations. This may be due to 

high resolution demands of these industries that are beyond the scale of most currently 

available spatial soil information. For agricultural industries where spatial soil 

information are used, soil properties related to water availability (especially for plants) 

were identified as the most critical to the implementation of these models. Information 

providers need to be responsive to market demand by providing spatial soil information 

that are focused on these soil water properties of interest.  

A contrary argument is: why are properties such as pH and EC that are recognised in land 

evaluation techniques as key properties to land capability and suitability assessments, of 

little or no interest, to the modelling community? The possible decline in biophysical 

model development corresponds with sentiments expressed by Bouma (2001) that there is 

a tendency to make plant growth models more sophisticated while soil and land properties 

remain static leading to unbalanced models. The relative importance of soil as a medium 

for supporting plant growth and production systems in models appear to be downplayed. 

There is a definite need for model developers and soil information providers to work 

more closely through participatory action (Bouma 2001) to formulate comprehensive 

solutions to agronomic and environmental problems that are defined. 

The development of big data sources such as new sensors and sensor networks will 

produce vast quantities of data on the environment including soil. These new sources of 

data will need to be evaluated, harmonised, and included in modelling solutions that 

incorporate uncertainty and risk. The advent of community sourced soil data, access to 

tacit knowledge, precision agriculture systems and physical collection of new soil 

samples to calibrate spatial soil information products (Rossiter et al., 2015) are exciting 

prospects to the delivery of contemporary and high-resolution spatial soil information. 
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Research objective 2: Develop an approach to accommodate, and illustrate to users 

of spatial soil information, the various error sources in modelling and mapping. 

Key messages 

 The Global Representation of Uncertainty in the Modelling Process (GRUMP) 

framework provides a systematic design to incorporate error sources in a 

comprehensive uncertainty approach. 

 Epistemic uncertainties can be significant for users of maps and models if not 

embodied in the map making or model implementation process. 

 Legacy data sources of soil information can be valuable to understand agro-

ecological condition and changes to soil, however, users must be cautious and 

aware of potential limitations and constraints associated with the data. 

 Understanding fitness-for-use and the risk perception for users of spatial soil 

information through participatory action should be encouraged to support ongoing 

and valued services delivered to users.  

 

Uncertainty analysis in modelling and mapping has focused on statistical variability and 

error as the uncertainty metrics reported to users of these products. For global sensitivity 

and uncertainty assessments to be successful, the process should include a model 

selection phase (epistemic uncertainty) coupled with the statistical variability via error 

propagation or other approaches (aleatory uncertainty). 

A new framework formulated to support uncertainty assessment (the GRUMP) has been 

defined in Chapter 5 that builds upon foundations of uncertainty assessment from 

Refsgaard et al. (2007) and Walker et al. (2003). The approach includes model inputs, 
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model structure and implementation with additional error sources such as expert opinion, 

legacy data issues and software operations. The explicit illustration and enumeration of 

the error sources and uncertainty to users is also of benefit to support the modelling and 

mapping communities towards iterative improvement of maps and models. The GRUMPs 

global applicability and benefit to users is that it enables modellers and users to be 

conscious of uncertainties that may be forgotten or assumed as trivial, where as they way 

be detrimental to the running of a model or delivery of a useful map. 

By considering epistemic uncertainties that are often taken-for-granted (or assumed) in 

mapping and modelling procedures, the framework provides a global system-based 

approach that considers error sources more comprehensively than previous approaches. 

Once epistemic uncertainty can be quantified then it can be integrated with statistical 

variability and uncertainty classified by global metrics, such as total system variance 

(assuming normally distributed errors), or system prediction interval (assuming skewed 

distributions). 

In DSM, no map is perfect and all contain some level of error due to the array of 

integrated factors used in its creation. Unfortunately, uncertainty analysis is often 

considered at the end of an analytical process rather than its coordination with the spatial 

prediction technique from the planning phase to map production. All too often, there are 

successes and failures in the implementation of DSM without adequate examination of 

the environmental characteristics, the pedogenic hypothesis and justification, the spatial 

soil information available for calibration and validation, the adequacy of the spatial 

prediction method, and above all, the assumptions and epistemic uncertainties not 

considered in the initiation phase of a project. 
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Practical examples of factors used in the implementation of the GRUMP framework are 

presented in this thesis (chapters 5, 6 and 7). Error sources embedded in legacy data can 

be relatively important when considering factors such as land use change and resultant 

impacts to soil. The field pH kit example (Chapter 7) demonstrate that there are numerous 

factors (e.g. assessor experience and test kit variety) contributing to measurement error as 

an epistemic uncertainty. This has practical implications to those using field pH kits for 

mapping or modelling, or to manage pH levels through addition of ameliorants such as 

lime. Guidelines are suggested including training and certification of users, regular testing 

of field kits and collection of associated metadata (e.g. time of observation) towards more 

certain predictions. There is now the capability to screen these legacy records more 

closely as the magnitude of errors associated with field pH data has been identified. Field 

pH data that is cleansed can be used as a covariate to support modelling approaches for 

more precise and accurate measurements such as the mapping of laboratory pH. 

The spatio-temporal assessment of change in soil properties using legacy data and model-

based designs is gaining considerable interest (refer to Appendix A) as results are 

expediently derived and it is generally cheaper to implement than formal design based 

monitoring systems. An example presented in Chapter 5 demonstrates that simple 

statistical analysis that don’t account for epistemic uncertainties or statistical assumptions 

can result in misleading conclusions. This can be the case when sample size and statistical 

power is insufficient for assessment of change in hypothesis testing resulting in type I 

(reject H0 when true) or type II (accept H0 when false) errors. For users such as 

government or regional authorities that make decisions on misleading information, there 

may be long-term serious consequences to the environment as a result. 

By accounting for potential error sources using the GRUMP framework to make maps 

based on consideration of factors such as seasonal variability and land use affects, map 
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users can have information with greater certainty and utility to make decisions. As legacy 

soil data issues such as temporal variability of a soil property such as soil pH are rarely, if 

ever addressed in soil maps, there are tremendous opportunities to improve the quality 

and utility of soil maps for users. 

There remains a greater need for soil mapping and monitoring to come together. As there 

are considerable changes occurring in farming systems, management practices and the 

continual motivation to produce more from less, these impacts on land need to be more 

closely monitored and understood. The case study presented in chapter 6 highlights that 

there is a real need to engagement between land users, soil scientists and spatial scientists 

to achieve goals and outcomes that are shared, e.g. reduction in the primary production 

losses due to soil acidification. 

Potential enhancements that should be encouraged in mapping and modelling are multiple 

Monte Carlo simulation experiments as a special case of a GRUMP implementation. Here 

the inputs are replaced by probability distributions and then each distribution would be 

progressively replaced with the mean value, and a corresponding new Monte Carlo 

simulation executed in a manner analogous to step-wise multivariate regression involving 

forward selection and backward elimination. The output distribution for each separate 

simulation can be represented by an uncertainty metric, such as the variance or 

confidence interval, and then compared with the corresponding input distributions in the 

form of a stochastic sensitivity plot. The inputs responsible for the greatest output 

uncertainty were consequently identified and ranked. This approach has similarities to the 

error budget approach suggested by Nelson et al. (2011) to identify the primary error 

sources in the production of a digital soil map. 
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Importantly, the notions of uncertainty and fit-for-purpose need to be combined using risk 

concepts to highlight the importance, and risk acceptable to a decision maker. The 

assessment of fitness-for-use is valuable as it contrasts a risk-in-a-decision with the risk 

acceptable to the decision maker, is simple and cheap to implement and easily understood 

by users (Agumya and Hunter, 1999). In chapter 7, a scenario is highlighted where it is 

the critical pH ranges linked to primary production that are of greatest interest to a land 

manager. Therefore, while high precision in pH determination is useful, in many respects 

the higher precision is potentially only warranted in the pH range of 5.3 to 5.8 where 

cultivars become sensitive to toxic effects from macro and micro nutrients. This pH range 

represents a high risk zone to the farmer, whereas above this range the impacts of 

decisions are likely to be of less consequence, and below the impacts is implicit, e.g. 

reduced plant growth. 

Ultimately the goal of all mapping and modelling should be to provide greater certainty to 

users. Model ensemble techniques as suggested by Finke (2012) and Malone et al. (2014) 

are worthy of greater consideration in DSM exercises to benefit from the wealth of spatial 

inference techniques and environmental covariates that are now freely accessible. 

 

Research objective 3: Investigate the potential use of legacy data supplemented with 

new spectroscopic predictions to predict the regional distribution of two key soil 

properties - pH and clay mineralogy – for areas of western Victoria. 

Key messages: 

 Accurate quantitative spectroscopic models for clay mineral composition and pH 

using whole soil samples (<2 mm) can be achieved using MIR spectroscopy and 

analysis methods such as Partial Least Squares Regression (PLSR). 
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 Relatively few calibration samples are required to develop a robust spectroscopic 

model for clay mineralogy. 

 By incorporating legacy data with new spectral methods and tailored probability 

based schemes, maps of direct applicability can be used for on-ground 

management, e.g. pH. 

 There remains a deficiency of soil samples at depth (>1m). As a result potential 

predictive models deteriorate due to the low number of available sites. Integration 

with other sources or samples, e.g. bore logs and regolith interpretations may 

improve model predictions and support prediction of the clay mineral continuum 

to greater depth.  

 Vegetation indices were useful predictors of clay mineral occurrence. This 

requires further exploration but hints at possible links between soil processes 

attributed to clay mineralogy (e.g. fertility, soil-water regime) and primary 

production. 

 

Prediction of soil properties such as pH is commonly undertaken in DSM as it is seen as a 

key indicator of threatening processes such as acidification and impacts to agriculture 

(e.g. reduced plant production) and environment (e.g. acid sulphate soils). While clay 

mineralogy is a fundamental contributor to the chemical and physical behaviour of soil, it 

is unclear why mineralogy has not been of greater focus in spatial modelling and mapping 

efforts to date (Grunwald, 2009). With current and existing legacy survey programs 

across the globe, there are opportunities using new spectroscopic techniques and archived 

soil samples, and legacy quantitative measurements to develop inexpensive and rapid 

assessments of properties such as clay mineralogy. The example presented in this thesis 
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for western Victoria (Chapter 8) suggests relatively few calibration samples are required 

to produce reliable estimates of difficult to measure (expensive or time consuming) 

properties such an clay mineralogy. 

The application of model-trees for DSM purposes has proven reliable and effective at 

various scales across the globe (e.g. Kidd et al., 2015; Viscarra Rossel et al., 2015; 

Mulder et al., 2016). Further enhancements to the approach implemented in this thesis 

warrant investigation, e.g. accounting for spatial dependence in soil clay mineral 

predictions. The implementation of spatial inference model ensembles that can harness 

the strengths and mitigate the weaknesses of the various combined approaches should 

also be considered. This has been highlighted by Finke (2012) and Malone et al. (2014) to 

reduce associated uncertainties in maps delivered to users. The implementation of linear 

mixed models using REML-EBLUP as advocated by Lark et al. (2006) could be 

implemented more widely. This technique has proven prohibitive for large data sets, but 

enhancements through the inclusion of filtering (Cressie and Kang, 2008), clustering and 

ranking algorithms to address this issue are being pursued (Chia and Robinson, Personal 

Communication). The implementation of a Linear Mixed Model (LMM) incorporating 

additional factors contributing to model uncertainty was successfully implemented to map 

soil pH using maximum likelihood and conditional simulation. This approach with use of 

critical thresholds for agronomic production purposes enables spatial soil information to 

be presented to users in a form that can be more directly linked and used for land 

management decisions. 

Samples and independent validation 

In most DSM applications, there is a dependency on legacy sites and samples for 

calibration and validation purposes. These soil sites may be clustered in space and time 

with no overall coordinated formal sample design across these domains. Ideally, 
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independent validation using a random sample design is advocated, although cost and 

time of implementation often prohibit this from occurring for DSM at all scales. The 

cross-validation approach used in the 3D prediction of clay mineralogy in this thesis is 

based upon the method advocated by Malone et al. (2014) with a 10-fold cross-validation 

procedure that averaged the model tree predictions from the 10 model runs using 90% of 

the data for calibration and 10% for validation purposes. While not optimal and 

vulnerable to bias due to use of a non-probability derived sample set, the cross validation 

is considered better than no validation at all. Furthermore, this cross-validation procedure 

enabled production of lower and upper prediction interval maps to give users guidance on 

the map qualities including accuracy and uncertainty. 

A high dependence upon legacy data, archived samples and new spectroscopic prediction 

also mean that it is either by chance or good luck, if the sample data set adequately 

represents the pedo-geomorphic diversity for the region of interest. In the clay mineralogy 

example, an inadequate spatial coverage for physiographic regions including the Southern 

Uplands and Northern Riverine Plains of Victoria were identified. From expert opinion 

(Dahlhaus, Personal Communication) and other existing evidence on mineral occurrence 

for these landscapes, the clay mineral composition of soils in these landscapes may be 

inadequately represented in the spatial predictions, e.g. low illite predictions for the 

Southern Uplands. This is further complicated by a poor representation of sites for these 

landscapes with samples at depth > 1 m (as discussed earlier). For the pH example 

(Chapter 6), a combination of laboratory, MIR and field pH values were used to provide 

the most comprehensive set of pH observations to complement land use and management 

system changes over time. Supplementing these infrequent samples with new sites and 

samples, or other sources of clay mineral or pH data from bore lithological samples (e.g. 
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piezometer nests) or crowd sourced data could be considered where these samples are 

preserved. 

Spectroscopy 

Analytical methods such as X-Ray Diffraction (XRD) continue to be refined and 

improved with higher sensitivity and reliability. When coupled with complimentary 

techniques such as scanning and transmission electron microscope and particle 

accelerator techniques available through a synchrotron, the prediction of clay minerals 

with high precision is now achievable. Spectroscopic analysis using samples stored in soil 

archives provides a rapid approach to populating spatial soil information systems with 

missing or not observed properties such as clay mineralogy. The implementation of 

spectroscopy for predicting clay minerals is not new (Soriano-Disla et al., 2014) although 

few studies have quantitatively assessed these. Predominantly, these soil mineralogy 

studies have focused on the visible and near-infrared frequency regions on the 

electromagnetic spectrum. The prediction of pH from MIR spectroscopy has proven 

favourable although sample diversity can impact model calibration (Soriano-Disla et al., 

2014). Results presented in Chapter 6 for Victoria include a R2 of 0.88 and RMSE of 0.56 

(roughly equivalent to the error associated with field pH determination). The analysis 

presented in chapter 8 is novel for a number of reasons: 1. the use of MIR to predict the 

dominant layer phyllosilicates for extensive sample sets (>10,000 samples) has not been 

undertaken previously for Australian soils; 2. quantitative XRD measurements were used 

for calibration purposes rather than relying on particular diagnostic absorption features 

and analytical techniques such as continuum removal that are ‘relative’ determination 

procedures; 3. spectroscopic mineral models were based on whole soil samples with 

predictions for the <2 µm fraction only. 
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Various spectroscopic modelling techniques such as continuum removal have been 

successfully implemented to predict various soil properties. PLSR which is used widely 

for quantitative prediction of soil properties was successfully applied to predict clay 

mineral composition using quantitative XRD data for calibration purposes. The advantage 

of PLSR models is their simplicity to implement and interpret by examining significant 

wavelengths through cross-comparison techniques of the variable importance of 

projection (VIP) and selectivity ratio (SR) scores. By reducing the spectral data set to the 

wavelengths of interest as defined from diagnostic absorption features in the literature, or 

the VIP and SR scores, this will remove much of the spectra with relatively little 

deterioration of the spectroscopic model. Future options to improve the spectroscopic 

models would benefit from the inclusion of Support Vector Machines (SVM) which can 

account for non-linearity as part of spectroscopic model ensembles. 

Where improvements may be possible to clay mineral models is by accounting for 

uncertainty in quantitative XRD measurements that have associated measurement errors 

defined. This is often the case for legacy quantitative measurements where errors are 

significantly larger than contemporary assessments using latest advances in quantitative 

XRD analytical procedures and instrumentation. Potential re-examination of these legacy 

x-ray spectra may enable revised quantitative measurements for clay minerals of interest 

and improvement of spectroscopic models. 

Sometimes in mapping and modelling exercises we are unsure how well the initial sample 

set represents the true population. In the development of spectroscopic models for 

kaolinite, illite and smectite, calibration samples and predictions for illite were non 

Gaussian with few values above 60%, and for smectite there are few above 80%. 

Generally for soils of western Victoria the quantity of kaolinite and illite decreased with 

depth while smectite increased. Both illite and smectite exhibited positively skewed 
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distributions while kaolinite was normally distributed as the dominant clay mineral of 

soils in western Victoria. In general terms the relative order of abundance is kaolinite > 

smectite > illite. 

 

Overall research conclusions 

Spatial soil information and its provision have been beneficial to all branches of society. 

Today there are many challenges and threats to using soil in a sustainable manner. With 

advances in technology and increasing knowledge on landscape process, providers of soil 

information must be responsive and pro-active in the formulation of innovative solutions 

for primary production and ecological purposes. 

The research presented in this thesis aims to improve the current understanding on DSM 

and how information that soil mapping practitioners deliver can be improved by: 

understanding the specific needs of users; provide greater certainty in the spatial soil 

information delivered to users, and produce spatial information on soil that is linked to 

services and functions of soil that benefits from legacy soil data and information. 

The key findings established through research investigations include: 

 Users of spatial soil information are seeking accessible and contemporary soil 

properties that will support models and assessments on land for agricultural and 

environmental purposes. Soil moisture characteristics, carbon content and clay% 

are sought by modellers for application at global to local scales. By focussing on 

these, we concentrate efforts on key provisioning roles of soil and factors linked to 

degradation of soil resources. 
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 A new uncertainty framework was presented that supports practitioners and users 

of spatial soil information to consider the diversity of error sources and 

implications to uncertainty in maps and models. The GRUMP provides a 

systematic approach where error sources of significance to users of maps can be 

embodied, illustrated and quantified in the uncertainty assessment.  

 Sources of uncertainty in legacy data were defined for application in soil mapping 

examples for pH. By considering these factors in more holistic approaches to 

DSM, there are opportunities to deliver information that are more certain, and 

therefore of greater utility and of less risk to decision-makers. This is particularly 

useful given the importance of soil acidification as a global issue and losses to 

production that are known to occur in western Victoria. 

 Spectroscopic models for clay minerals and spatial inference techniques were 

developed to predict the 3D spatial distribution of phyllosilicates. This integration 

of spatial models and spectral models provide a valuable example to exploit 

available archive samples to predict properties never before assessed due to their 

expense or difficulty to acquire for large geographical areas. 

 

Future work 

The research presented has established that there are still many questions that remain to 

be addressed, and consequently were not covered in this thesis. These questions are 

focused on DSM and the provision of usable spatial soil information by a community of 

current and future users. 

 The example of using spectroscopic models with spatial inference techniques for 

clay mineralogy highlight the potential to expediently predict and validate the 
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occurrence, distribution and impact of properties linked to functions and processes 

delivered by soil, e.g. primary production. Supporting industries and communities 

with relevant information can lead to shared contributions to lift production and 

protect the environment, e.g. spatial delineation of soil limiting nutrition to grains 

production, degraded soils, threatened biomes in soil. This can be achieved 

through the collections of archived soil samples, new analytical techniques and 

synthesizing these together in spatial prediction models. Model ensemble 

techniques can be tested as part of real applications (Digital Soil Assessments) 

focus on land use and management, e.g. soil acidification and yield response to 

amelioration.  

 Spatial inference model ensembles are advocated and offer the potential of 

reduced uncertainty and more accurate spatial soil information for users. Better 

spatial information should be the number one priority for all DSM practitioners. 

 The expanded uncertainty logic and framework presented in this research can be 

refined to include Monte Carlo simulation methods and other stochastic and 

epistemic error sources in DSM applications. Deployment of uncertainty 

approaches guided by the GRUMP framework would be beneficial to support 

isolation and identification of error sources using different spatial inference 

methods, e.g. data mining techniques as compared to a Linear Mixed Model using 

geostatistical techniques to model error contributions. This should enable users 

and practitioners to focus and investment their efforts to reduce significant error 

and provide greater certainty in spatial soil information. 

 The GRUMP framework provides an ‘illustrative’ guide to consider uncertainty in 

mapping and modelling. The concept can be deployed as a fully functional and 
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operational system akin to the Data Uncertainty Engine (Heuvelink and Brown, 

2007). 

 The focus on research investigations has principally been on soil pH, but there are 

many soil properties with real and potential error sources that may be overlooked 

in existing DSM examples. A priority should be to further knowledge on key soil 

properties and their errors linked to soil services and functions such as soil-

moisture characteristics, organic carbon and clay%. 

 Results presented for the prediction of kaolinite, illite and smectite are 

encouraging, and suggest that other minerals could be expediently predicted using 

3D spatial prediction techniques. Investigations on the links of these minerals with 

other properties of global interest such as carbon sequestration potential, 

engineering characteristics and natural capital concepts are encouraged. 

 Ongoing engagement with users is advocated. There is a continuing need to test 

and evaluate needs of users for spatial soil information to guide the delivery of 

maps that are pertinent, trustworthy and reliable. This will support a clear mandate 

for spatial soil information that is driven by users rather than suppliers. This must 

include modellers in participatory solutions to real-world solutions for agricultural 

and environmental issues. 

 Currently there is a diverse set of DSM techniques to map and predict soil 

properties or classes, but it is uncertain which technique will return the best results 

given available soil observation and environmental variables from one area to 

another. DSM techniques and approaches require further evaluation to understand 

their robustness and utility across different landscapes and the contributing factors 

that can be resolved leading to higher certainty information delivered.  
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 New sources of soil data and information on earth are becoming available 

including citizen science, crowd souring, new sensor networks and satellite 

platforms. Integration of these data sources potentially represent ways of 

delivering information that is of a higher resolution, is cheap and inexpensive to 

acquire, can provide greater certainty and usability for decision making. 

Federating data from disparate databases using web services (WFS) and then 

dynamically modelling using web processing services (WPS) should enable 

refinement and higher certainty in delivery of soil coverages via Web Coverage 

Service (WCS). 

 

Digital soil mapping has evolved as a discipline over the last 40 years that now integrates 

field, laboratory and proximal soil observations with quantitative methods to infer soil 

properties and classes of various spatial and temporal scales (Grunwald, 2010). While 

DSM has progressed to an operational phase to support needs across various spatial and 

temporal scales, there are tremendous opportunities to enhance the science and the 

development of DSM through the participation and interaction of communities including 

modellers and information users. This thesis has gleaned some useful findings from DSM 

assessments in western Victoria that can be used, but more importantly, should be 

considered in the provision of usable spatial soil information. 
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