1,902 research outputs found

    The integration of freely available medium resolution optical sensors with Synthetic Aperture Radar (SAR) imagery capabilities for American bramble (Rubus cuneifolius) invasion detection and mapping.

    Get PDF
    Doctoral Degree. University of KwaZulu- Natal, Pietermaritzburg.The emergence of American bramble (Rubus cuneifolius) across South Africa has caused severe ecological and economic damage. To date, most of the efforts to mitigate its effects have been largely unsuccessful due to its prolific growth and widespread distribution. Accurate and timeous detection and mapping of Bramble is therefore critical to the development of effective eradication management plans. Hence, this study sought to determine the potential of freely available, new generation medium spatial resolution satellite imagery for the detection and mapping of American Bramble infestations within the UNESCO world heritage site of the uKhahlamba Drakensberg Park (UDP). The first part of the thesis determined the potential of conventional freely available remote sensing imagery for the detection and mapping of Bramble. Utilizing the Support Vector Machine (SVM) learning algorithm, it was established that Bramble could be detected with limited users (45%) and reasonable producers (80%) accuracies. Much of the confusion occurred between the grassland land cover class and Bramble. The second part of the study focused on fusing the new age optical imagery and Synthetic Aperture Radar (SAR) imagery for Bramble detection and mapping. The synergistic potential of fused imagery was evaluated using multiclass SVM classification algorithm. Feature level image fusion of optical imagery and SAR resulted in an overall classification accuracy of 76%, with increased users and producers’ accuracies for Bramble. These positive results offered an opportunity to explore the polarization variables associated with SAR imagery for improved classification accuracies. The final section of the study dwelt on the use of Vegetation Indices (VIs) derived from new age satellite imagery, in concert with SAR to improve Bramble classification accuracies. Whereas improvement in classification accuracies were minimal, the potential of stand-alone VIs to detect and map Bramble (80%) was noteworthy. Lastly, dual-polarized SAR was fused with new age optical imagery to determine the synergistic potential of dual-polarized SAR to increase Bramble mapping accuracies. Results indicated a marked increase in overall Bramble classification accuracy (85%), suggesting improved potential of dual-polarized SAR and optical imagery in invasive species detection and mapping. Overall, this study provides sufficient evidence of the complimentary and synergistic potential of active and passive remote sensing imagery for invasive alien species detection and mapping. Results of this study are important for supporting contemporary decision making relating to invasive species management and eradication in order to safeguard ecological biodiversity and pristine status of nationally protected areas

    Commercial forest species discrimination and mapping using cost effective multispectral remote sensing in midlands region of KwaZulu-Natal province, South Africa.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Pietermaritzburg, 2018.Discriminating forest species is critical for generating accurate and reliable information necessary for sustainable management and monitoring of forests. Remote sensing has recently become a valuable source of information in commercial forest management. Specifically, high spatial resolution sensors have increasingly become popular in forests mapping and management. However, the utility of such sensors is costly and have limited spatial coverage, necessitating investigation of cost effective, timely and readily available new generation sensors characterized by larger swath width useful for regional mapping. Therefore, this study sought to discriminate and map commercial forest species (i.e. E. dunii, E.grandis, E.mix, A.mearnsii, P.taedea and P.tecunumanii, P.elliotte) using cost effective multispectral sensors. The first objective of this study was to evaluate the utility of freely available Landsat 8 Operational Land Imager (OLI) in mapping commercial forest species. Using Partial Least Square Discriminant Analysis algorithm, results showed that Landsat 8 OLI and pan-sharpened version of Landsat 8 OLI image achieved an overall classification accuracy of 79 and 77.8%, respectively, while WorldView-2 used as a benchmark image, obtained 86.5%. Despite low spatial of resolution 30 m, result show that Landsat 8 OLI was reliable in discriminating forest species with reasonable and acceptable accuracy. This freely available imagery provides cheaper and accessible alternative that covers larger swath-width, necessary for regional and local forests assessment and management. The second objective was to examine the effectiveness of Sentinel-1 and 2 for commercial forest species mapping. With the use of Linear Discriminant Analysis, results showed an overall accuracy of 84% when using Sentinel 2 raw image as a standalone data. However, when Sentinel 2 was fused with Sentinel’s 1 Synthetic Aperture Radar (SAR) data, the overall accuracy increased to 88% using Vertical transmit/Horizontal receive (VH) polarization and 87% with Vertical transmit/Vertical receive (VV) polarization datasets. The utility of SAR data demonstrates capability for complementing Sentinel-2 multispectral imagery in forest species mapping and management. Overall, newly generated and readily available sensors demonstrated capability to accurately provide reliable information critical for mapping and monitoring of commercial forest species at local and regional scales

    Image fusion techniqes for remote sensing applications

    Get PDF
    Image fusion refers to the acquisition, processing and synergistic combination of information provided by various sensors or by the same sensor in many measuring contexts. The aim of this survey paper is to describe three typical applications of data fusion in remote sensing. The first study case considers the problem of the Synthetic Aperture Radar (SAR) Interferometry, where a pair of antennas are used to obtain an elevation map of the observed scene; the second one refers to the fusion of multisensor and multitemporal (Landsat Thematic Mapper and SAR) images of the same site acquired at different times, by using neural networks; the third one presents a processor to fuse multifrequency, multipolarization and mutiresolution SAR images, based on wavelet transform and multiscale Kalman filter. Each study case presents also results achieved by the proposed techniques applied to real data

    A Comparative Analysis of Phytovolume Estimation Methods Based on UAV-Photogrammetry and Multispectral Imagery in a Mediterranean Forest

    Get PDF
    Management and control operations are crucial for preventing forest fires, especially in Mediterranean forest areas with dry climatic periods. One of them is prescribed fires, in which the biomass fuel present in the controlled plot area must be accurately estimated. The most used methods for estimating biomass are time-consuming and demand too much manpower. Unmanned aerial vehicles (UAVs) carrying multispectral sensors can be used to carry out accurate indirect measurements of terrain and vegetation morphology and their radiometric characteristics. Based on the UAV-photogrammetric project products, four estimators of phytovolume were compared in a Mediterranean forest area, all obtained using the difference between a digital surface model (DSM) and a digital terrain model (DTM). The DSM was derived from a UAV-photogrammetric project based on the structure from a motion algorithm. Four different methods for obtaining a DTM were used based on an unclassified dense point cloud produced through a UAV-photogrammetric project (FFU), an unsupervised classified dense point cloud (FFC), a multispectral vegetation index (FMI), and a cloth simulation filter (FCS). Qualitative and quantitative comparisons determined the ability of the phytovolume estimators for vegetation detection and occupied volume. The results show that there are no significant differences in surface vegetation detection between all the pairwise possible comparisons of the four estimators at a 95% confidence level, but FMI presented the best kappa value (0.678) in an error matrix analysis with reference data obtained from photointerpretation and supervised classification. Concerning the accuracy of phytovolume estimation, only FFU and FFC presented differences higher than two standard deviations in a pairwise comparison, and FMI presented the best RMSE (12.3 m) when the estimators were compared to 768 observed data points grouped in four 500 m2 sample plots. The FMI was the best phytovolume estimator of the four compared for low vegetation height in a Mediterranean forest. The use of FMI based on UAV data provides accurate phytovolume estimations that can be applied on several environment management activities, including wildfire prevention. Multitemporal phytovolume estimations based on FMI could help to model the forest resources evolution in a very realistic way

    The agricultural impact of the 2015–2016 floods in Ireland as mapped through Sentinel 1 satellite imagery

    Get PDF
    peer-reviewedIrish Journal of Agricultural and Food Research | Volume 58: Issue 1 The agricultural impact of the 2015–2016 floods in Ireland as mapped through Sentinel 1 satellite imagery R. O’Haraemail , S. Green and T. McCarthy DOI: https://doi.org/10.2478/ijafr-2019-0006 | Published online: 11 Oct 2019 PDF Abstract Article PDF References Recommendations Abstract The capability of Sentinel 1 C-band (5 cm wavelength) synthetic aperture radio detection and ranging (RADAR) (abbreviated as SAR) for flood mapping is demonstrated, and this approach is used to map the extent of the extensive floods that occurred throughout the Republic of Ireland in the winter of 2015–2016. Thirty-three Sentinel 1 images were used to map the area and duration of floods over a 6-mo period from November 2015 to April 2016. Flood maps for 11 separate dates charted the development and persistence of floods nationally. The maximum flood extent during this period was estimated to be ~24,356 ha. The depth of rainfall influenced the magnitude of flood in the preceding 5 d and over more extended periods to a lesser degree. Reduced photosynthetic activity on farms affected by flooding was observed in Landsat 8 vegetation index difference images compared to the previous spring. The accuracy of the flood map was assessed against reports of flooding from affected farms, as well as other satellite-derived maps from Copernicus Emergency Management Service and Sentinel 2. Monte Carlo simulated elevation data (20 m resolution, 2.5 m root mean square error [RMSE]) were used to estimate the flood’s depth and volume. Although the modelled flood height showed a strong correlation with the measured river heights, differences of several metres were observed. Future mapping strategies are discussed, which include high–temporal-resolution soil moisture data, as part of an integrated multisensor approach to flood response over a range of spatial scales

    Alphabet-based Multisensory Data Fusion and Classification using Factor Graphs

    Get PDF
    The way of multisensory data integration is a crucial step of any data fusion method. Different physical types of sensors (optic, thermal, acoustic, or radar) with different resolutions, and different types of GIS digital data (elevation, vector map) require a proper method for data integration. Incommensurability of the data may not allow to use conventional statistical methods for fusion and processing of the data. A correct and established way of multisensory data integration is required to deal with such incommensurable data as the employment of an inappropriate methodology may lead to errors in the fusion process. To perform a proper multisensory data fusion several strategies were developed (Bayesian, linear (log linear) opinion pool, neural networks, fuzzy logic approaches). Employment of these approaches is motivated by weighted consensus theory, which lead to fusion processes that are correctly performed for the variety of data properties
    • …
    corecore