4,394 research outputs found

    Preoperative electrophysiological characterization of patients with primary macula-involving rhegmatogenous retinal detachment

    Get PDF
    Purpose: To determine 1) which components of retinal function are impaired after rhegmatogenous retinal detachment, 2) which outer retinal pathways (rod- or cone-driven) are more severely affected, and 3) whether there is concomitant inner retinal dysfunction. Methods: We conducted a prospective observational study in a large academic institution. We performed preoperative electroretinography on eight patients to assess outer and inner retinal function. In all cases, a comparison between the eye with the detached retina and the control fellow eye was made. Results: Eyes with a detached retina had significantly lower a-wave and b-wave amplitudes with respect to both rod- and cone-dominated testing parameters (P < 0.05) and reduced 30 Hz flicker responses compared to fellow eyes (P < 0.05); the effect size was similar for all significantly reduced parameters (r~0.6). There were no significant differences between eyes with detached retinas and control fellow eyes with respect to b/a-wave ratios, a-wave latencies, or b-wave latencies. Conclusion: Patients with rhegmatogenous retinal detachment have preoperative outer retinal dysfunction equally affecting both rod- and cone-driven pathways, and they have minimal inner retinal dysfunction

    Multi Resonant Boundary Contour System

    Full text link

    A perceptual comparison of empirical and predictive region-of-interest video

    Get PDF
    When viewing multimedia presentations, a user only attends to a relatively small part of the video display at any one point in time. By shifting allocation of bandwidth from peripheral areas to those locations where a user’s gaze is more likely to rest, attentive displays can be produced. Attentive displays aim to reduce resource requirements while minimizing negative user perception—understood in this paper as not only a user’s ability to assimilate and understand information but also his/her subjective satisfaction with the video content. This paper introduces and discusses a perceptual comparison between two region-of-interest display (RoID) adaptation techniques. A RoID is an attentive display where bandwidth has been preallocated around measured or highly probable areas of user gaze. In this paper, video content was manipulated using two sources of data: empirical measured data (captured using eye-tracking technology) and predictive data (calculated from the physical characteristics of the video data). Results show that display adaptation causes significant variation in users’ understanding of specific multimedia content. Interestingly, RoID adaptation and the type of video being presented both affect user perception of video quality. Moreover, the use of frame rates less than 15 frames per second, for any video adaptation technique, caused a significant reduction in user perceived quality, suggesting that although users are aware of video quality reduction, it does impact level of information assimilation and understanding. Results also highlight that user level of enjoyment is significantly affected by the type of video yet is not as affected by the quality or type of video adaptation—an interesting implication in the field of entertainment

    Stars in their eyes: What eye-tracking reveal about multimedia perceptual quality

    Get PDF
    Perceptual multimedia quality is of paramount importance to the continued take-up and proliferation of multimedia applications: users will not use and pay for applications if they are perceived to be of low quality. Whilst traditionally distributed multimedia quality has been characterised by Quality of Service (QoS) parameters, these neglect the user perspective of the issue of quality. In order to redress this shortcoming, we characterise the user multimedia perspective using the Quality of Perception (QoP) metric, which encompasses not only a user’s satisfaction with the quality of a multimedia presentation, but also his/her ability to analyse, synthesise and assimilate informational content of multimedia. In recognition of the fact that monitoring eye movements offers insights into visual perception, as well as the associated attention mechanisms and cognitive processes, this paper reports on the results of a study investigating the impact of differing multimedia presentation frame rates on user QoP and eye path data. Our results show that provision of higher frame rates, usually assumed to provide better multimedia presentation quality, do not significantly impact upon the median coordinate value of eye path data. Moreover, higher frame rates do not significantly increase level of participant information assimilation, although they do significantly improve overall user enjoyment and quality perception of the multimedia content being shown

    In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography

    Get PDF
    We present in vivo volumetric images of human retinal micro-circulation using Fourier-domain optical coherence tomography (Fd-OCT) with the phase-variance based motion contrast method. Currently fundus fluorescein angiography (FA) is the standard technique in clinical settings for visualizing blood circulation of the retina. High contrast imaging of retinal vasculature is achieved by injection of a fluorescein dye into the systemic circulation. We previously reported phase-variance optical coherence tomography (pvOCT) as an alternative and non-invasive technique to image human retinal capillaries. In contrast to FA, pvOCT allows not only noninvasive visualization of a two-dimensional retinal perfusion map but also volumetric morphology of retinal microvasculature with high sensitivity. In this paper we report high-speed acquisition at 125 kHz A-scans with pvOCT to reduce motion artifacts and increase the scanning area when compared with previous reports. Two scanning schemes with different sampling densities and scanning areas are evaluated to find optimal parameters for high acquisition speed in vivo imaging. In order to evaluate this technique, we compare pvOCT capillary imaging at 3x3 mm^2 and 1.5x1.5 mm^2 with fundus FA for a normal human subject. Additionally, a volumetric view of retinal capillaries and a stitched image acquired with ten 3x3 mm^2 pvOCT sub-volumes are presented. Visualization of retinal vasculature with pvOCT has potential for diagnosis of retinal vascular diseases

    Portable dynamic fundus instrument

    Get PDF
    A portable diagnostic image analysis instrument is disclosed for retinal funduscopy in which an eye fundus image is optically processed by a lens system to a charge coupled device (CCD) which produces recordable and viewable output data and is simultaneously viewable on an electronic view finder. The fundus image is processed to develop a representation of the vessel or vessels from the output data
    corecore