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Murphy and Arkins (2007) provide a comprehensive account of equine learning behaviour, 

evaluating evidence from a broad range of studies. Throughout their review they highlight the 

importance of identifying the natural abilities of the horse with the ultimate aim of optimising our 

training of this domestic species. It is clear that although the success of the horse-human 

relationship is largely dependent upon such training, our knowledge of the cognitive abilities of this 

species is sadly lacking. Given the role of the horse as an elite athlete and developments in other 

areas, for example in equine assisted therapy, an improved understanding of the factors that 

influence learning in this species is now required. 

In particular, Murphy and Arkins (2007) identified two factors that are central to our understanding 

of the processes involved in equine learning. The first is the need for further investigation of the 

equine visual system and the effect that the features of this system has on both the acquisition of 

information from, and reaction to, the environment. The second is the identification of stimuli that 

are salient to the horse and thus attract the most attention. In order to optimise training, a primary 

requirement is that the animal is paying attention to relevant cues and ignoring irrelevant ones. By 

utilizing our knowledge of features of the equine visual system it is possible to present stimuli in a 

manner that is most likely to be noticed by the horse. The question of what attracts the horse’s 

attention can thus be answered, at least in part, by a greater understanding of equine perceptual 

ability. In this commentary the link between the visual system of the horse and their ability to learn 

will be explored, in addition to related behavioural adaptations that may impact on their cognition.   

Recent evidence relating to the structure and function of the equine eye can be used to explain the 

findings of previous studies into the ability of the horse to perform visual tasks. However, the 

behavioural investigation of equine vision and how it may affect the learning ability of the horse has 

until now been limited by two factors. Without detailed evidence of retinal structure, the visual 

features of stimuli that are available to the horse and factors that affect this visibility have 

necessarily been the result of guesswork (largely based on features of human visual perception). 

Further behavioural evidence of this visual ability has, at least in part, been restricted by the time it 

takes to train the horse to perform visual discriminations with the consistency required to draw 

conclusions about what they can actually see. Despite these problems, behavioural evidence of the 

ability of the horse to use pictorial depth cues (Timney and Keil, 1996), to use stereoscopic vision 

to judge depth and distance (the ability to see depth based on binocular disparity; Timney and Keil, 

1999), and to see certain colours (Grzimek, 1952; Pick et al., 1994; Macuda and Timney, 1999; 

Smith and Goldman, 1999) has been obtained. 

Features of the equine eye reflect the requirements of the natural lifestyle of the horse. Feral horses 

spend approximately 50 – 60% of their time grazing with their heads lowered and their eyes near 

ground level (Mayes and Duncan, 1986). They often inhabit open grassland and are open to 
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predation. Horses are active and feed during both the day and the night, but feeding behaviour peaks 

after dawn and before dusk (Mayes and Duncan, 1986). Adaptations of the equine visual system 

provide the horse with an effective early warning system for the detection of approaching predators. 

The lateral position of the equine eye provides an extensive visual field, the majority of which is 

monocular (Harman et al., 1999). The eye is adapted to function in low light levels, possessing a 

rod-rich retina (Wouters and De Moor, 1979) and an intra-ocular reflective structure, the tapetum 

lucidum (Ollivier et al., 2004). In conjunction with other visual features, these adaptations have 

evolved to reduce the vulnerability of the horse in its natural environment. The impact of each of 

these features on the ability of the horse to perform specific tasks should be considered in both the 

design of experimental studies of learning and in the interpretation of the results. 

The ability to perceive visual images is dependent upon the amount of information available from 

the retina. Two main classes of photoreceptor are present, rods and cones. The rods are responsible 

for vision in low light (scotopic) conditions; the cones are less sensitive to low light levels and are 

responsible for vision in brighter (photopic) conditions. Within the equine retina the rods outnumber 

the cones by approximately 20:1 (Wouters and De Moor, 1979). In a study that investigated factors 

that affected stimulus visibility for horses it was found that bright daytime conditions were less 

favourable to the rod-dominated equine eye than lower light levels (Saslow, 1999). Although bright 

(photopic) conditions maximize human visual performance, scotopic conditions are advantageous to 

the horse.  

Visual acuity (the ability to perceive detail) can be estimated by assessing the type of 

photoreceptors present in the retina, their connections with bipolar cells, as well as the size and 

density (and by implication, receptive fields) of the retinal ganglion cells. Both of the classes of 

photoreceptor (rods and cones) synapse with bipolar cells, which in turn synapse with retinal 

ganglion cells. A relatively large number of rods (up to 45) synapse with each bipolar cell and they 

provide poor spatial resolution compared to the cones (Barlow, 1988). The cones are less sensitive 

to low light levels, but result in better spatial resolution as a result of their neural connections (in the 

human fovea each connects with a single bipolar cell). The cones also respond to light more quickly 

than the rods, hence resulting in improved temporal resolution (Barlow, 1988). The predominance 

of rods over cones in the equine retina is likely to limit their ability to perceive detail, particularly 

when compared with human vision. Although the horse does not have an area of the retina that 

consists entirely of cones (as in the central area of the human fovea; Curcio et al., 1987), a higher 

percentage of the photoreceptors were found to be cones in the area of the visual streak (François et 

al., 1980; Sandmann et al., 1996). 

Within the area of the visual streak (which is located along a straight horizontal line dorsal to the 

optic disc) retinal ganglion cell density was found to be higher than in other areas of the retina 
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(Hebel, 1976). The density was found to be greatest at the temporal end of this visual streak (Hebel, 

1976; Harman et al., 1999; Guo and Sugita, 2000), corresponding with the area responsible for 

binocular vision. The binocular portion of the visual field is located down the nose of the horse and 

is limited to between 65° (Crispin et al., 1990) and 80° (Harman et al., 1999). Harman et al. (1999) 

also found that a blind spot existed in front of the forehead. When the horse lowers its head to 

observe stimuli on the ground, the image will be projected onto the most sensitive area of the retina. 

Ehrenhofer et al. (2002) found that in most parts of the equine retina there were large gaps between 

the ganglion cells, the majority of which were found to be large and to have input from many 

amacrine cells. The fast conduction of the axons of these large ganglion cells and their connections 

with the amacrine cells suggests that the horse is particularly sensitive to subtle changes in 

illumination and stimulus motion (Ehrenhofer et al., 2002). The resultant fast response of the horse 

to sudden movement in the peripheral visual field, although a useful adaptation to escape from 

predators, is one that is often unwelcome in ridden work and also one that persists regardless of the 

level of training. 

Retinal sensitivity to low light levels is increased by the tapetum lucidum that reflects light back 

through the photoreceptor layer (Ollivier et al., 2004) at the expense of resolution by the scattering 

of this light (Hebel, 1976). The lower margin of the tapetum in the horse coincides with the location 

of the visual streak (Hebel, 1976), and it extends to form a rounded triangle in the upper half of the 

retina (Ollivier et al., 2004). The position of this reflective layer will increase the horse’s sensitivity 

to light, particularly to that reflected from the ground (Saslow, 2002). 

The link between the learning ability of the horse and features of the equine visual system (as 

detailed above) requires further investigation. In their review, Murphy and Arkins (2007) discuss 

the findings of an early series of studies into equine visual discrimination by Gardner (1937a and 

1937b) in relation to the effect of age and sex of the horses tested. An additional feature that was 

found to affect performance in these tasks was that of stimulus position. In the first study carried out 

by Gardner (1937a), horses were trained to select a feed box covered with a black cloth from two 

other plain feed boxes. The black cloth was subsequently re-positioned to either above or below the 

box containing the food reward (Gardner, 1937b). Although more errors were made when the black 

cloth was placed in either of the new positions, performance was found to be more accurate when 

the black cloth was in the low position than in the high position. As stated above, Harman et al. 

(1999) found that when the horse lowers its head to observe stimuli on the ground, the image will 

be projected onto the most sensitive area of the retina. By approaching with the head lowered, the 

binocular field is directed towards the ground and should result in the stimuli remaining visible to 

the horse. In contrast, if stimuli are presented at a higher level and the horse fails to raise its head 

sufficiently it is possible that they will disappear from view if in line with the forehead of the horse. 
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The position of the tapetum also accentuates light that is reflected from the ground making low-

level stimuli more noticeable to the horse than those at a higher level (Saslow, 2002). The height at 

which visual stimuli are presented to the horse is thus likely to affect performance. 

Visual discrimination training has been used to assess learning in the horse with the stimuli 

generally being presented at a height of 1m or above (Sappington and Goldman, 1994; Flannery, 

1997; Hanggi, 1999). The initial findings of Gardner (1937b), that stimuli placed at a low level 

resulted in fewer errors than those placed in a high position, appear to have been disregarded. While 

placing stimuli at “eye level” for human subjects is generally not a matter for debate, “eye level” for 

the horse is dependent upon head and neck position. As noted by Saslow (1999), the position of the 

head and consequently the level at which the eye is carried is important in projecting the image onto 

the most sensitive areas of the retina, particularly while the horse is in motion. Further evidence of 

the effect of stimulus height on visual discrimination in horses was found in a more recent study. 

When eight horses were trained to perform a simple two-choice, black/white discrimination with the 

stimuli presented at one of two heights (at ground level or at a height of 70 cm from the ground) 

performance was found to be better when the stimuli were presented on the ground (Hall et al., 

2003). 

In simple visual discrimination tasks the increased sensitivity to ground level stimuli, which relates 

in part to the reflective function of the tapetum lucidum, appears to be advantageous to the horse. 

However, in more complex discriminations the associated lack of resolution may prove to be 

disadvantageous. For example, the shapes used as discriminative stimuli in the study by Sappington 

and Goldman (1994), and those used in the relational discrimination tests by Flannery (1997), may 

have appeared less clear to the horse if presented on the ground. Further study is required in order to 

determine whether the positional advantage would be lost in the discrimination of more complex 

stimuli or whether the increased attention that appears to be paid to ground level stimuli would still 

facilitate learning. 

In addition to the importance of presenting stimuli at an optimum height, when testing the learning 

ability of the horse using visual stimuli it is important that they are of a size that is clearly visible to 

the horse. Even in the area of the visual streak the horse has a limited ability to see detail in 

comparison with the human. Anatomical data provided an estimate of peak visual acuity in the area 

of the visual streak of about 16.5 cycles / degree, with far lower acuity (3.3 – 3.5 cycles / degree) in 

other retinal regions (Harman et al., 1999). Behavioural evidence of visual acuity in the horse has 

also been obtained. By using a two-choice visual discrimination task Timney and Keil (1992) 

assessed the ability of three horses to select a stimulus that consisted of high contrast gratings 

(vertical stripes whose spatial frequency was varied) against a negative stimulus whose spatial 

frequency was beyond the animals’ resolution acuity. A range of values was obtained, with the 
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highest acuity being 23.3 cycles / degree and the lowest 10.9 cycles / degree. Individual variation in 

both the size (of the horse) and the approach to the task were attributed as the cause of this 

variation. In comparison, although acuity varies in the human, the limit of resolution of a normal 

observer lies between 50 and 60 cycles / degree (Woodhouse and Barlow, 1988). This level of 

acuity is confined to the central region of the fovea, with values of between 35 and 40 cycles / 

degree for the greater part of the visual field (Campbell and Green, 1965). It is clear that throughout 

the visual field the human observer can see in far more detail than the horse. Care must thus be 

taken when assessing learning ability using visual tasks that the stimuli being presented are clearly 

visible to the horse and that any deficits in performance are not purely the consequence of 

perceptual constraints, unless it is visual ability that is under investigation.  

As in humans (Curcio et al., 1991), visual acuity has been found to vary in the horse according to 

the colour of the stimulus. Acuity with blue targets has been found to be poorer than with other 

colours, including yellow. Although the horse could detect a perpendicular yellow line 5 

millimetres wide from a distance of 3.3.metres (equivalent to 18.46 cycles / degree), a blue line had 

to be 20 millimetres wide for detection to be possible from the same distance (equivalent to 2.9 

cycles / degree), (Grzimek, 1952). These values correspond with acuity values obtained for the 

visual streak and peripheral retina respectively (Harman et al., 1999). It is likely that this is the 

result of the relative distribution of the two different cone types, the short wavelength 

photoreceptors being less prolific than the medium-long wavelength photoreceptors in the visual 

streak (Sandmann et al., 1996). This may also result in blue being particularly visible in the 

peripheral visual field of both horse and human. When presenting visual stimuli to the horse, in 

order to guarantee visibility regardless of colour, they should be of a size that when viewed from the 

assigned distance, result in a visual angle that is greater than 0.5 degrees. 

The link between what is now known about the structure and function of the equine eye and 

behavioural evidence of what horses can see is an important one. In addition to providing an 

explanation for previous findings, it is now more possible to make informed predictions about 

equine visual ability that can subsequently be tested behaviourally. The correlation between visual 

mechanisms and behavioural performance has recently been demonstrated in an investigation into 

colour vision in the horse (Hall et al., in press). Behavioural studies into the ability of animals to see 

colours have generally involved training them to discriminate between chromatic and achromatic 

stimuli, where all other cues (in particular differences in lightness, olfactory and spatial cues) have 

been made irrelevant. Four colours (red, green, blue and yellow) had previously been used to test 

the ability of the horse to discriminate colours using this method. As noted by Murphy and Arkins 

(2007), there had been conflicting reports of which of these colours horses could successfully 

discriminate from greys (Grzimek, 1952; Pick et al., 1994; Macuda and Timney, 1999; Smith and 
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Goldman, 1999). However, there was a general consensus that they possess two types of cone 

photopigment and are thus classed as dichromatic. Values for the spectral peaks of these two 

photopigments have been estimated at 429 nanometres (nm) and 545 nm (Macuda, 2000). By using 

these values it is possible to predict the effect that a colour (whose reflectance spectrum is known) 

will have on the cone photopigments of the horse. The effectiveness of this method was confirmed 

when significant correlations were found between the ability of horses to discriminate fifteen 

different colours from various greys and the predictions made (Hall et al., in press). Cone excitation 

ratios were calculated for each colour then compared to the constant cone excitation ratio calculated 

for the achromatic stimuli (the greys). The extent to which the ratio for the colour differed from that 

for the greys was used to predict how “colourful” the stimulus appeared to the horse. Those colours 

predicted to appear most colourful to the horse were also those that were most readily discriminated 

from grey (Hall et al., in press). In a further study it was found that when the horses were offered a 

choice between pairs of colours (selection of either of the colours resulted in a food reward), those 

that were predicted to appear most “colourful” were selected most frequently (Hall et al., 2005). As 

in an early study by Grzimek (1952), yellow was the colour selected most frequently, followed by 

orange then blue. It is clear that, at least in relation to colour, the visual features that attract the most 

attention from the horse can be predicted by analysis of features of the equine visual system.     

The point so clearly made throughout the review of equine learning behaviour (Murphy and Arkins, 

2007), that learning ability in the horse relates to survival requirements within a specific ecological 

niche, applies equally to their visual ability. It is also clear that equine learning behaviour, at least in 

visual tasks, is dependent upon the features of their visual system. The ability to focus on the 

ground when grazing while scanning the horizon for potential threats (Harman et al., 1999) is 

advantageous for avoiding predation, but may well limit the focal attention required by some tests 

of equine learning ability (Lea and Kiley-Worthington, 1998). The importance of recognizing 

stimuli as either beneficial or a potential threat, with no second chances, may limit the capacity of 

the horse to reverse previously learned associations. While the horse has been shown to readily 

reverse spatial cues once visual cues are associated with a reward they seem to be resistant to 

reversal (Sappington et al., 1997; Martin et al., in press). This has previously been cited as evidence 

of a lesser ability to learn in comparison with other species. The horse has also been found to have 

difficulty in applying responses learned in one task to a novel task (McCall et al., 2003). It seems 

likely that the formation of specific associations and the lack of generalization shown by the horse 

reflect the strategies that have evolved to enhance survival.  

As also befits a herd dwelling prey species, the ability of the horse to respond to minimal visual 

cues given by either con-specifics or by human trainers is renowned. The famous case of Clever 

Hans, the horse that apparently demonstrated the ability to count, involved the horse in question 
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responding to minimal changes in tension in his human trainer. Unbeknownst to him, the trainer, 

Mr von Osten, was thought to have changed his posture slightly once the horse had tapped out the 

correct number (Pfungst, 1965). Further investigation of the ability of the horse to respond to such 

minimal visual cues could aid in the development of effective training methods and increase human 

awareness of cues unintentionally given.   

In accordance with Murphy and Arkins (2007) the evidence presented here confirms that an 

understanding of visual perception is central to further investigation of equine learning. Also, 

human visual perception should not be relied upon when designing visual tasks for the horse. 

Features of the equine visual system are well documented although further demonstrations of the 

impact that these have on learning behaviour (as well as on behaviour in general), is required. 

Visual perception undoubtedly determines the ability to learn visual tasks. With the emphasis that is 

put on this sensory modality in most studies of equine learning, consideration of both the visual 

ability and behavioural tendencies of the horse is necessary to improve our understanding of 

learning behaviour in this species.   
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