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A Perceptual Comparison of Empirical and
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Abstract—When viewing multimedia presentations, a user only
attends to a relatively small part of the video display at any one
point in time. By shifting allocation of bandwidth from peripheral
areas to those locations where a user’s gaze is more likely to
rest, attentive displays can be produced. Attentive displays aim
to reduce resource requirements while minimizing negative user
perception—understood in this paper as not only a user’s ability to
assimilate and understand information but also his/her subjective
satisfaction with the video content. This paper introduces and
discusses a perceptual comparison between two region-of-interest
display (RoID) adaptation techniques. A RoID is an attentive
display where bandwidth has been preallocated around measured
or highly probable areas of user gaze. In this paper, video content
was manipulated using two sources of data: empirical measured
data (captured using eye-tracking technology) and predictive data
(calculated from the physical characteristics of the video data).
Results show that display adaptation causes significant variation
in users’ understanding of specific multimedia content. Interest-
ingly, RoID adaptation and the type of video being presented
both affect user perception of video quality. Moreover, the use of
frame rates less than 15 frames per second, for any video adap-
tation technique, caused a significant reduction in user perceived
quality, suggesting that although users are aware of video quality
reduction, it does impact level of information assimilation and
understanding. Results also highlight that user level of enjoyment
is significantly affected by the type of video yet is not as affected by
the quality or type of video adaptation—an interesting implication
in the field of entertainment.

Index Terms—Attentive displays, eye tracking, perceptual qual-
ity, region of interest (RoI).

I. INTRODUCTION

V ISUAL information is computationally intense, yet due
to improved rendering hardware, high-quality graphical

displays are now commonplace. With increasing screen sizes
and screen resolutions, the user has a growing expectation of
what defines high-quality video, particularly when transmitted
over bandwidth-constrained environments. Nonetheless, most
of the resources used to produce large high-resolution displays
are wasted, as the user never actually looks at the whole screen
at one point in time: Ocular physiology limits the range of
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high acuity to approximately 2◦ of the visual field, which is
equivalent to approximately the width of a thumbnail at arm’s
length or 2 cm at a typical reading distance of 30 cm [1].
It is interesting to note that if the human visual system can
only process detailed information within an area at the center of
vision (with rapid acuity drop-off in peripheral areas [21]), the
point of user attention, if effectively monitored or predicted, can
be used to manage nonuniform allocation of bandwidth. Such
displays are known as attentive displays. Current attentive dis-
plays form the focus of a wide range of applications (see, for in-
stance, [5], [20], [22], and [29]), including reading, perception
of image and video scenes, virtual reality, computer game ani-
mation, art creation and analysis, and visual search studies [1].

Attentive displays have traditionally been synonymous with
the field of gaze-contingent displays (GCDs). GCDs select the
region of interest (RoI)—the area on the screen where the
user is currently looking—by actively tracking the viewer’s
eyes in real time and maintaining a high level of detail at
the point of gaze. Early attempts at attentive displays suffered
from limited display sizes, noticeable quality edges, and limited
control of resolution [32]. Increased screen and resolution sizes,
as well as the falling cost of eye-tracking equipment, have all
led to increased interest in GCDs; however, such displays still
suffer from considerable practical and application issues. GCDs
necessitate an eye-tracker device with high sample rates, with
corresponding computational, technical, and cost implications,
to ensure appropriate refresh rates (4–15 ms, depending on
window sizes [19], [26]). In addition, GCDs can only be used
in single-user environments, since the eye-tracking device is
only capable of tracking the gaze of a single user. To overcome
these limitations, we propose the concept of region-of-interest
displays (RoIDs). RoIDs use predefined RoI areas to adapt the
video quality such that resource allocation is biased in attentive
areas. RoI areas can be obtained from either prior empirically
collected eye-tracking data or from predicted analysis of video
content.

In this paper, we present the results of a study that compares
the perceptual impact of adapting RoIDs with either empirically
obtained eye-tracking data or computationally defined predic-
tive RoI data.

II. ATTENTIVE PROCESSES AND DISPLAYS

A. Attentive Processes

Light reflected from objects in the visual field enters the
eye and passes through the lens, which projects an inverted
image of an object onto the retina at the back of the eye.
The retina itself consists of approximately 127 million light-
sensitive cells, roughly split as follows: 120 million rods (sen-
sitive to brightness) and 7 million cones (sensitive to color).
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Both cones and rods are unevenly distributed across the
retina. In particular, if cones were distributed evenly across the
retina, their average distance apart would be relatively large,
and the ability to detect fine spatial patterns (acuity) would be
relatively poor. Cones are therefore concentrated in the center
of the retina, in a circular area called macula lutea. Within
this area, there is a depression called the fovea, which consists
almost entirely of cones, and it is through this area of high
acuity, extending over just 2◦ of the visual field, that humans
make their detailed observations of the world. High acuity color
vision therefore relies on cone receptors located in the fovea.
Movements of the eye, head, and body are used to bring RoIs
into the visual path at the center of the fovea. This movement
between items within the stationary field, the eye field, and the
head field is determined by visual attention [30].

The eye naturally selects/fixates on areas that are likely to
be most informative [16]. In between fixations, eye behavior
is characterized by saccades (rapid eye movements between
regions of informative interest). The process of visual attention
is thus broken into two sequential stages: the preattentive stage
and the selection stage [34]. In the preattentive stage, informa-
tion is processed from the whole visual field in parallel and sub-
consciously defines objects from visual primitives, including
motion [12], contrast [7], [37], size [7], [23], shape [8], color
[2], [23], brightness [17], line edges [13], [37], and orientation
[18]. It is the preattentive stage that determines RoIs within
the visual field (defining important visual cues), and based on
this preattentive mapping, the selection stage performs high-
level serial processes, dependent on high-level search criteria,
including location [5], foreground/background [2], [37], and
introduction of people and context [8], [37]. When items pass
from the preattentive stage to the selection stage, these items are
considered as selected. Four distinct looking states have been
defined, which summarize the cognitive state of the user [15]:
spontaneous looking (when a subject is not actively looking for,
or thinking about, any specific object), task-relevant looking
(when a subject is performing a specific task, such as reading),
orientation of thought looking (where eye movements repre-
sent a general orientation toward the object of thought), and
intentional manipulatory looking (where subjects consciously
control their direction of looking).

We are particularly interested in eye movements, since they
offer insights into visual perception, as well as the associated
attention mechanisms and cognitive processes. Moreover, in-
terpretation of eye-movement data is based on the empirically
validated assumption that when a person is performing a cog-
nitive task, while watching a display, the location of his/her
gaze corresponds to the symbol currently being processed in
working memory [14]. Last but not least, as mentioned earlier,
the eye naturally focuses on areas that are more likely to be
informative [21].

B. Adaptive Attentive Displays

While measuring eye movements, Stelmach et al. [33]
showed that eye movements during television viewing are not
idiosyncratic to a specific viewer but that the direction of gaze
is highly correlated among viewers. This view is supported by
the study in [11] and supports the use of attentive displays,
particularly in bandwidth-constrained environments, with the
aim of minimizing the use of bandwidth resource, while lim-

iting negative impact on user perception. As mentioned in
Section I, two main approaches have been developed to im-
plement attentive displays: GCDs (the traditional approach)
and RoID systems (which are being introduced in this paper).
GCD systems facilitate real-time user-specific attention-based
rendering. However, they require an eye-tracker device with
high sample rates and only support a single viewer. Although
not “real-time,” RoIDs are defined in the following: 1) RoIDs
can be achieved at a fraction of the cost of GCDs; 2) can
be developed to accommodate multiple users; and 3) facilitate
distributed bandwidth savings since video can be preencoded,
thus reducing bandwidth needs prior to transmission. Moreover,
RoIDs do not require each user to possess specialized eye-
tracking or video-processing hardware and can therefore easily
be integrated with current display systems, ultimately making
RoIDs more commercially attractive, particularly in bandwidth-
constrained environments.

Studies looking at the benefits and disadvantages of us-
ing GCDs have shown a range of results. Duchowski and
Coltekin [5], also providing a comprehensive introduction to
the area of GCDs (covering topics such as medical applications
of GCDs and perceptually lossless GCDs), present an elegant
pixel shader algorithm showing that real-time GCD processing
can be used on both still image and video content. This implica-
tion is that GCDs can be implemented for real-time video feeds
and that they support the use of video in bandwidth-constrained
environments. In related work, Loschky and Wolverton [20]
considered the issue of continued perceptual disruptions in
GCDs—specifically examining perceptually acceptable update
delays in multiresolution displays. This research suggests that
GCDs, although useable, could introduce considerable percep-
tual distraction that can interrupt normal attentive processes.
In parallel research, Reingold and Loschky found that when
they adapted a high-resolution window at the point of gaze and
degraded resolution in peripheral areas, participants had longer
initial saccadic latencies in peripheral areas (the time taken to
identify a visual target) than when a low resolution was uni-
formly displayed across the whole display window [27]. This
implies that the use of degraded peripheral resolution can lead
to longer search times and therefore impact user preattentive
processes. Moreover, Loschky and McConkie found, in support
of earlier studies [31], that if degradation is increased in periph-
eral areas, the size of the adapted high-resolution window at the
point of gaze also needs to be increased, if the user’s level of
performance is to be maintained [19]. However, this increase in
the high-resolution window cancels out any bonus of peripheral
degradation and limits any gain of using a GCD system.

The use of high-resolution/high-quality regions is central
to most attention-based displays, and therefore, Loschky and
McConkie place into doubt the effectiveness of windowed
gaze-contingent multiresolution displays [19]. Reingold and
Loschky [27] also suggested that reduced reactions may be due
to participants being distracted by boundary edges (a change
in visual resolution). Consequently, Reingold et al. compared
sharp and blended resolution boundary conditions to identify
whether increased saccadic delays were due to boundary lines
[28]. Three conditions were used: 1) the no-window condition
(where all of the images were blurred or of lower quality);
2) a 12◦ window with no blending; and 3) a 12◦ window with a
3◦ wide region of blending. However, results showed that the
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first condition did, indeed, produce shorter mean initial sac-
cades, supporting the work of Czerwinski et al. [4] who stated
that a wider field of view can lead to increase performance in
productivity. Interestingly, Reingold et al. found no difference
in a user’s ability to identify visual errors, as a result of a “win-
dow” edge being either sharp or softened. This is in distinct con-
flict with previous work [35], which indicated that the blending
regions were vital to the perceptual quality of the display.

Arguments presented in [19] and [26] place considerable
doubt on whether GCD displays provide any perceptual advan-
tage, particularly in low-bandwidth environments. Interestingly,
Osberger et al. demonstrate a technique for controlling adaptive
quantization processes in an MPEG encoder, based on frame-
based importance maps (IMs) [25]—a form of RoID. IMs
are produced using segmented images, which are analyzed
using five factors, namely, contrast, size, shape, location, and
background importance. Lower quantization was assigned to
visually important regions, while areas that were classified as
being of low visual importance were more harshly quantized.
This method was evaluated on a wide variety of images with
results indicating that IMs significantly correlate well with
human perception of visually important regions [24] and can be
used to support a reduction of bandwidth without a reduction in
user perception of quality.

In summary, different attentive display implementation ap-
proaches (GCDs or RoIDs), as well as the use of different
adaptation data (empirical and predictive RoI data), appear
to have a significant impact on users’ reaction and ability to
notice video presentation errors. Interestingly, no studies to our
knowledge have considered this issue. Accordingly, this paper
measures the perceptual impact of using attentive RoIDs by
comparing the perceptual impact of empirical eye-gaze and
predictive content-dependent data.

III. QOP

In order to explore the human side of the multimedia expe-
rience, we have used the quality-of-perception (QoP) metric.
QoP captures the multimedia infotainment duality and en-
compasses not only a user’s satisfaction with the quality of
multimedia presentations (denoted by QoP-S) but also his or her
ability to understand and assimilate the informational content of
multimedia (denoted by QoP-IA). QoP-S is subjective in nature
and, in this paper, consists of two component parts: QoP-LoE
(the user’s Level of Enjoyment while viewing the multimedia
content) and QoP-LoQ (the user’s judgement concerning the
Level of Quality of service provision).

A. QoP Versus QoS

In a distributed setting, the quality of digital multimedia
has traditionally been measured using just quality-of-service
(QoS) technical parameters. Although measurable, such objec-
tive parameters disregard the user’s perception of what defines
multimedia quality. Due to the multidimensional nature of
multimedia, however, it is impossible to rely purely on objective
factors alone when defining multimedia quality. Multimedia
applications are produced for the enjoyment and/or education
of human viewers, so their opinion of the presentation quality
is important to any quality definition. Therefore, when evaluat-
ing multimedia quality, subjective testing by viewers must be
considered in combination with objective testing.

B. Measuring QoP

To understand QoP in the context of our work, it is important
that the reader understands how QoP factors are defined and
measured.

1) Measuring IA and Understanding (QoP-IA): In our ap-
proach, QoP-IA was expressed as a percentage measure, which
reflected a user’s level of understanding and information assim-
ilation (IA), from visualized multimedia content. Thus, after
watching a particular multimedia clip, the user was asked a
standard number of questions (ten, in our case) which examined
information being conveyed in the clip just seen. QoP-IA was
calculated as being the proportion of correct answers that users
gave to these questions. For each feedback question, the source
of the answer was determined as having been assimilated from
one or more of the following information sources.
V Information relating specifically to the video window,

e.g., pertaining to the activity of lions in the documen-
tary clip.

A Information which is presented in the audio stream, e.g.,
the audio content of the news.

T Textual information contained in the video window, e.g.,
the newscaster’s name in a caption window.

For each clip, the number of questions targeting a particular
information source was roughly proportional to the importance
of that source (as given by the weighting of Table I) in the
context of the clip. All IA questions must have unambiguous
answers, making it possible to determine if a participant had
answered them correctly or not. Since, in our experiments,
questions can only be answered if information is understood
and assimilated from specific information sources, it is possible
to determine the percentage of correctly answered questions
that relate to the different information sources within a specific
multimedia video clip. Thus, by calculating the percentage
of correctly answered questions from different information
sources, it was possible to generalize from which information
sources participants absorbed the most information. By using
these data, it is possible to determine and compare, over a range
of different multimedia content, potential differences that might
exist in a user’s understanding of the informational content of
the multimedia video, namely, QoP-IA.

2) Measuring Subjective LoQ (QoP-LoQ): The first com-
ponent part of QoP-S is the users’ subjective Level of video
Quality of service. In order to measure this, users were asked to
indicate, on a scale of 0–5, how much they judged, independent
of the subject matter, the presentation quality of a multimedia
that they had just seen (with scores of 0 and 5, respectively,
representing “no” and “absolute” user satisfaction with the
multimedia presentation quality).

3) Measuring Subjective LoE (QoP-LoE): The other com-
ponent part of QoP-S is the subjective LoE (QoP-LoE) experi-
enced by a user when watching a multimedia presentation. To
measure QoP-LoE, the user was asked to express, on a scale of
0–5, how much they enjoyed the video presentation (with scores
of 0 and 5, respectively, representing “no” and “absolute” user
satisfaction with the multimedia video presentation).

IV. EXPERIMENTAL METHODOLOGY

The aim of the study presented in this paper was to measure
and compare the impact that empirical and predicted RoI data
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TABLE I
CLIP DESCRIPTIONS—CHARACTERISTIC WEIGHTINGS, PREVIOUSLY DEFINED BY GHINEA AND THOMAS [9], DESCRIBE THE VIDEO DYNAMIC (D),

VIDEO (V), AUDIO (A), AND TEXTUAL (T) COMPONENTS; SCORES OF 0–2, RESPECTIVELY, REPRESENT LOW, MEDIUM, AND HIGH

have on user perception of RoIDs. Accordingly, the study was
separated into three distinct phases.

1) The first phase comprised an experiment which was run
with a control group visualizing multimedia video con-
tent without any gaze-contingent adaptation. Participants’
eye-gaze location was recorded, and the data used to
determine relevant RoIs for each frame of the multimedia
clips were viewed.

2) The second phase involved the implementation of empiri-
cal and predictive RoIDs for the multimedia content used
in our study. The former RoID used data obtained from
the first phase of the study, while the latter was based on
automated analysis of video content.

3) The third and last phase of our study comprised measur-
ing and comparing the perceptual impact of empirical and
predictive RoIDs using the QoP metric.

A. Multimedia Content

To ensure consistency, identical multimedia video clips were
used throughout the experimental process. The multimedia
video clips were chosen to cover a broad spectrum of infotain-
ment subject matter. Multimedia video clips vary in nature from
those that are informational (such as a news/weather forecast) to
ones that are usually viewed purely for entertainment purposes
(such as an animation, a music clip, or a sports event, as detailed
in Table I).

B. Phase 1: Control Experiment

1) Participants: To obtain eye-tracking data, yet ensure that
participants had a consistent type of looking for both phases 1
and 3 of our study, our control experiment incorporated the
QoP experimental process. Thirty-six participants were evenly
divided into three experimental groups, used to distinguish the
viewing order and frame rate at which participants viewed
multimedia video clips. Participants were aged between 21
and 55 and volunteered to take part in the study. They were
recruited from the authors’ circle of academic, professional, and
personal contacts, specifically to represent a range of different
nationalities and backgrounds. All participants spoke English
as either their first language or to a degree-level standard. All
participants were computer literate. In our study, this category
defined those users who professed to being proficient at using
Internet/Web applications as well as standard desktop applica-
tions, such as word processors and spreadsheets.

2) Setup: To ensure consistent participant looking, it was
vital that the process used to obtain eye-tracking data, to
enable an empirical RoID, was the same as the process used
during perceptual experimentation. Inconsistent use of method
could lead to varied participant looking, which, in turn, might
result in adaptation of non-RoI areas. Consequently, the method
described in Section III-B was also used when we collected
empirical data.

In our control experiment, a within-subjects design was cho-
sen. Thus, each participant viewed four video clips at 5 frames
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per second (fps), four at 15 fps, and four at 25 fps, in order to
view content with a wide spectrum of QoS. Moreover, in order
to counteract any possible order effects, the video clips were
shown in a number of order and frame-rate combinations.

To guarantee that experimental conditions remained constant
for all control participants, consistent environmental condi-
tions were used. An Arrington Research, Power Mac G3 (9.2)
infrared camera-based pupil tracking, ViewPoint EyeTracker
was used to extract eye-tracking data, in combination with
QuickClamp Hardware. The QuickClamp system is designed
to limit head movement, including chin, nose, and forehead
rests. Consequently, the position of nose and forehead rests
remained constant throughout all experiments (45 cm from
the screen). The positions of the chin rest and camera were,
however, changed, depending on the specific facial features of
the participant. To avoid audio and visual distraction, a dedi-
cated uncluttered room was used throughout all experiments.
To limit physical constraints, except from those imposed by the
QuickClamp hardware, tabletop multimedia speakers were used
instead of headphone speakers. A consistent audio level (70 dB)
was used for all participants.

3) Experimental Process: To ensure that all participants
were able to view menu text on the eye-tracker screen without
spectacles, each was asked to take part in a simple eye test.
Participants wearing contact lenses were not asked to remove
lenses; however, due to the eye-tracking device, special note
was made and extra time was given when mapping the surface
of the participant’s eye to ensure that a pupil fix was maintained
throughout the entire visual field. Users were given an intro-
duction to the experiment. They were then asked to place their
nose in the QuickClamp nose rest and their forehead on the
forehead rest, thus removing risk of rotation or tilt during the
study session. As the shape and color shades of participants’
facial features varied considerably, time was taken to adjust
the chin rest, infrared capture camera, and software settings to
ensure that pupil fix was maintained throughout the entire visual
field. Once the configuration setup was complete, automatic
calibration was made using a full-screen stimulus window.

When calibration was complete, the appropriate presentation
order was loaded, and the presentation state was incremented,
which started the first video clip. After showing each video
clip, the video window was closed, and the participant was
asked a number of QoP questions relating to the video that they
had just shown. QoP questions were chosen to encompass both
objective (QoP-IA) and subjective (QoP-LoE and QoP-LoQ)
aspects of the information presented in the specific clip. The
questions were designed to examine the type of information
assimilated by the user in accordance with the QoP definition.
The participant was asked questions orally, and the answers
were all noted at the time of asking.

C. Phase 2: Implementation of Empirical and
Predictive RoIDs

1) Extracting Eye-Tracking Data: Empirical RoIDs were
determined using data obtained in phase 1 of our study. Eye-
tracking data samples contained X values, Y values, and timing
data (synchronized during data cleaning for a specific frame).
X- and Y -coordinate values (in the range of 0–10 000) were
defined automatically by the ViewPoint EyeTracker system

Fig. 1. Eye-based RoI areas.

and, respectively, represented the minimum and the maximum
horizontal and vertical angular extent of eye movements on the
screen, from the top left corner (0,0) to the bottom right corner
(10 000, 10 000). In order to simplify data comparison between
participant sets, eye-tracking data were sampled at 25 Hz for
all clips used as part of our experiments, corresponding to the
maximum frame rate being displayed.

For each video frame, empirical eye-based RoI data were
extracted by taking the fixation data from each participant [XY ]
and identifying a RoI square (±4◦ of the visual field) that was
centered around the coordinate pair location (Fig. 1). ±4◦ of
the visual field was used to ensure that the area of participant
focus was always covered at a higher frame rate [19] while
accounting for the potential tolerance in the used eye tracker.
Accordingly, 36 RoI squares were recorded for each of the
video frames contained in the multimedia clips, facilitating
the implementation of an empirical RoID. RoID squares were
exported to a RoID script, which contains all RoI squares for
each frame of each multimedia video clip.

2) Extracting Predictive RoI Data: In our study, predictive
RoI data were obtained through automated analysis of video
content. This was a two-stage process, the first of which com-
puted primitive images, with the second extracting RoIs for
each primitive image. Accordingly, the primitive images con-
sidered in our study were based on the visual primitives of color
contrast, edges, and movement, identified in the literature [2],
[12], [13], [23], [37] as being perceptually relevant.

1) Color contrast images: A 640 × 480 pixel image was
extracted from each video frame [see Fig. 2(a)], for all
12 video clips described in Section IV-A. These color
images were subsequently used to calculate the areas of
frames that had a high level of color contrast.

2) Edge images: Edges characterize boundaries and are
therefore fundamentally important in image processing.
Most edge-detection methods work on the assumption
that this is a very steep gradient in the image; accordingly,
by using a weighted mask, it was possible to detect edges
across a number of pixel values [see Fig. 2(b)].

3) Movement images: The pixel difference between
frame N and N + 1 determined the level and location
of movement in subsequent video frames. Software was
developed to clearly identify the pixel difference between
two subsequent frames [see Fig. 2(c)].

A distribution of the RGB pixel values was made for each
color, edge, and movement image. This allowed mean pixel
and standard deviation values to be determined for each image.
By combining image data, a mean pixel and standard deviation
value was calculated for each of the 12 video clips. Important
regions of color, edges, and movement can be identified by
assuming the following: For color, an abnormal distribution of
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Fig. 2. Primitive Images. (a) Original video frame. (b) Edge detection in video frame. (c) Motion detection in video frame.

Fig. 3. Overlapping pixel squares.

Fig. 4. Content-dependent RoI areas.

color suggests an area of contrast or an abnormal color; for
edges, an abnormal average pixel value suggests a greater level
of black lines, i.e., edges; and for movement, a higher than
average pixel value suggests a greater variation level of pixel
values between frames, i.e., movement.

To calculate significant areas of specific frames, the color,
edge, and movement images for each image were split into
overlapping 32 × 32 pixel squares (Fig. 3). A distribution of
the RGB pixel values in each square was made, allowing the
mean pixel and standard deviation values to be determined for
each 32 × 32 pixel square. A square was considered to be
important if the mean pixel value (± standard deviation for a
32 × 32 block) was greater or less than either the mean
pixel value of the specific frame (± pixel standard deviation
for a specific frame) or the mean pixel value for the specific
video clip (± pixel standard deviation for the entire video). As
considerable variation in color, level of edges, and movement is
possible both in a particular frame and throughout the video, it
was considered equally important to include both conditions.

The 16-pixel shift between squares ensures that the majority
of the image is covered by four separate comparisons. However,
the image edges are only covered by two comparisons, and the
corner 16 × 16 pixel squares are only covered by one result.
Areas deemed as having important content are written to an
output file, called a RoI script, which contains all RoI squares
for each frame of each multimedia video clip. This script, as
in the case of eye-tracking data, is subsequently used to adapt
RoIDs. Content-dependent RoI for a specific frame can be seen
in Fig. 4.

Fig. 5. Shows the nine video combinations (c = control; e = empirically
defined video; v = predicted defined video). The first number represents the
foreground frame rate, and the second number represents the background frame
rate. Control video implements multiple-frame-rate video.

3) Video Creation Using Empirical and Predictive RoID
Data: To create RoIDs, we are required to produce video that
has an adaptive nonuniform distribution of resource allocation.
To achieve this, we used empirical eye-based and predictive
content-dependent RoI data to adapt the frame rate in particular
regions of the screen. Thus, it was decided that RoI areas,
herewith referred to as foreground areas, should be refreshed
at a relatively higher frame rate than that of the non-RoI areas
(background areas).

Software was developed, using the Java Media Framework,
which took the original video (at 25 fps) and a RoI script (either
containing empirical or predictive RoI data) and, using a five-
frame buffer, produced a playable RoID, which presents the
foreground (RoI) and background (non-RoI) regions at different
frame-rate combinations (see Fig. 6). At playback, this video
can be considered as a RoID, as it plays defined RoI at a higher
“quality” than that of peripheral areas.

To identify how varied foreground and background frame-
rate combinations impact user perception, our study considers
three quality combinations for the control videos, and empirical
and predictive RoIDs. Accordingly, nine potential (display,
frame rate) combinations were considered as part of our per-
ceptual experiments: control video (no background) at 25 fps
(c25), control video (no background) at 15 fps (c15), control
video (no background) at 5 fps (c5), empirically defined RoI
with 25 fps in the foreground and15 fps in the background
(e25_15), empirically defined RoI with 25 fps in the foreground
and 5 fps in the background (e25_5), empirically defined RoI
with 15 fps in the foreground and 5 fps in the background
(e15_5), predicted RoI with 25 fps in the foreground and 15 fps
in the background (v25_15), predicted RoI with 25 fps in the
foreground and 5 fps in the background (v25_5), and predicted
RoI with 15 fps in the foreground and 5 fps in the background
(v15_5). This is shown in Figs. 5 and 6.
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Fig. 6. Process of adapting RoIDs from eye-based content-dependent data. White area in output video signifies higher refresh area.

D. Phase 3: Perceptual Experiments

Perceptual experiments were carried out to answer the fol-
lowing questions.

1) Does the use of eye-based (empirical) or content-
dependent (predictive) RoIDs impact a user’s level of IA
and understanding?

2) Does the use of empirical or predictive RoIDs impact a
user’s perceived subjective LoQ or a user’s LoE?

1) Participants: In our perceptual experiment, we wanted
participants to view all nine potential (display, frame rate)
combinations—to ensure that all RoID display types and frame-
rate combinations were viewed by each participant (see Fig. 5).
Accordingly, in order to ensure that all 12 video clips were
shown at all qualities, we required nine experimental groups.
Fifty-four participants—different from those in phase 1—were
evenly divided into nine experimental groups. Participants in
this phase of our study were aged between 21 and 67. Analo-
gously to phase 1 of the study, participants volunteered to take
part, were drawn from the authors’ contacts, and represented a
mix of different nationalities and backgrounds.

2) Perceptual Experiment—Setup: To ensure that experi-
mental conditions remained consistent, the same experimental
equipment was used for all participants. An HP mobile laptop
AMD Athlon XP 2000+, with an inbuilt 15-in LCD monitor
and a ATI Radeon IGP 320M, was used to display video
with a resolution of 640 × 480. Video clips, as described in
Section IV-D, were embedded in an Internet Explorer browser,
thus simulating realistic conditions under which RoIDs might
be used. To ensure that a consistent audio level (70 dB) was
used for all participants, headphones were used when a video
was playing. Once the laptop and headphones were appropri-
ately set up and the user felt comfortable with the position of
the screen, the experimental process, defined in Section IV-B3,
was applied. Instead of closing the video window, a blank
webpage was used to hide the video after each viewing.

V. RESULTS

The aim of attentive displays is to provide a high level of
perceived quality, with the least use of processing, memory,
and bandwidth resources. To achieve this, we need to better
understand the two dimensions of infotainment, both informa-
tion transfer and user satisfaction. Accordingly, the following
results consider the impact that RoID manipulation quality (see
Fig. 5) has on user IA (QoP-IA), user perception of quality
(QoP-LoQ), and user perception of enjoyment (QoP-LoE).

A. Impact of RoID Quality and Clip Type on QoP-IA

QoP-IA (a user’s level of IA/understanding) was expressed as
a percentage measure, which reflected the level of information
assimilated from visualized multimedia content. A multiple
analysis of variance test was used with display type (control,
empirical, predictive) and minimum video frame rate (5 fps: c5,
e25_5, e15_5, v25_5, v15_5; 15 fps: c15, e25_15, v25_15; or
25 fps: c25) as separate independent variables. This revealed
that combined display and minimum frame-rate combinations
do not have a significant effect on user QoP-IA {F (1, 2) =
0.223, p = 0.800} [see Fig. 7(a)]. When analyzed separately,
no significant QoP-IA variation was identified as a result of the
display type (control, empirical, or predictive RoIDs) or due
to foreground/background combinations (i.e., 25/15, 25/5, or
15/5 fps). This finding complements a previous work target-
ing non-RoI video [9] and suggests that adaptation of video
playback can take place without detrimentally impacting user
understanding of the video content. This result implies that
users are still able to absorb the critical information despite
considerable frame loss and perceptual issues introduced by
RoID. Therefore, we can claim that video frame loss does not
prevent the user from understanding the video narrative.

Interestingly, a multiple analysis of variance test, with dis-
play, minimum frame rate, and video clip as separate fixed
factors, showed that a user’s ability to assimilate and understand
information from certain video clips was significantly impacted
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Fig. 7. Mean and 95% significance plot for QoP-IA—dependent on (a) quality and (b) video type.

Fig. 8. Mean and 95% CI plot for QoP-LoQ, dependent on (a) display and frame-rate combinations and (b) video type.

{F (1, 22) = 1.879, p = 0.09}. This suggests a significant vari-
ation in the level of information being assimilated when
watching specific video clips. It is noteworthy to observe the
significant variation in user IA {F (1, 11) = 6.771, p < 0.001}
that exists as a result of the video clip type [see Fig. 7(b)].
Results show that, despite a constant number of questions, the
type of video being presented is more significant to the level of
user IA than the quality at which the video is being presented.

This result is of considerable interest, particularly in the
fields of advertising and education, as it implies that in order to
ensure that users understand and assimilate the optimum level
of information, the type of video being presented is more signif-
icant to user QoP-IA than the quality of the video presentation.
Beyond the scope of this paper, additional research is needed
to more fully investigate relationships that exist between video
type and QoP-IA.

B. Impact of RoID Quality and Clip Type on QoP-LoQ

User LoQ (QoP-LoQ) defines the user’s subjective opinion
concerning video QoS. A multiple analysis of variance test
showed QoP-LoQ as being independently affected by dis-
play type {F (1, 2) = 9.071, p < 0.001}, minimum frame rate
{F (1, 2) = 38.196, p < 0.001} [see Fig. 8(a)], and type of
video {F (1, 11) = 5.831, p < 0.001} [see Fig. 8(b)], as well
as the combined effect of all multiple factors {F (1, 22) =

2.166, p = 0.002}. QoP-LoQ was significantly different when
videos were presented using different techniques (i.e., con-
trol versus RoID). However, no variation occurred as a result
of using specifically empirical or predictive RoID techniques
(Post-Hoc Tukey-Test: p = 0.632). Results imply that the user
is aware of certain quality reduction in video, even when this
reduction does not impact upon the user’s overall level of
understanding (QoP-IA). Accordingly, just because the user
understands the content of the video does not mean s/he ac-
cepts the video as being of good quality. The risk, particularly
when manipulating educational material, is to assume that
information transfer is sufficient. These results, however, imply
that perception of quality and general satisfaction should be
measured and manipulated as separate factors. Moreover, these
results state that the video content is essential to user perception
of quality, and imply that this should be considered in addition
to traditional technical quality criteria.

Post-Hoc Tukey-Tests showed a significant difference in
QoP-LoQ between control videos shown at 5 fps, compared
to those shown at both 15 fps {p = 0.040} and 25 fps
{p = 0.031}. No significant difference was measured between
QoP-LoQ when participants were shown control videos at 15
and 25 fps, suggesting that participants view 15 and 25 fps
as being of similar quality [this is shown in Fig. 8(a)]. Results
revealed significant differences in the level of QoP-LoQ
between videos shown with a foreground/background
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Fig. 9. Mean and 95% significance plot for QoP-LoE, dependent on (a) quality and (b) video type.

combination of 25/15 fps and all other RoID videos,
independent of the display approach {e25/15 − e25/5 : p <
0.001; e25/15 − e15/5 : p < 0.001; v25/15 − v25/5 : p <
0.001; v25/15 − v15/5 : p < 0.001}. This implies that the use
of multi-frame-rate adapted RoIDs, with a background frame
rate of less than 15 fps, will negatively affect the user perception
of quality. This supports the work of Wijesekera et al. [36]
that suggests that frame rate should be maintained at or above
12 fps if the user’s perception of quality is to be maintained.
Accordingly, all video-based manipulation should endeavor to
maintain a frame rate of at least 15 fps if user perception of
quality is to be maintained.

C. Impact of RoID Quality and Clip Type on QoP-LoE

QoP-LoE is the subjective LoE experienced by a user when
watching a multimedia presentation. It is intuitive to assume
that, as a result of personal preference, the type of video being
presented to a participant will significantly affect a user’s LoE.
This is supported by our work {F (1, 11) = 8.911, p < 0.001}
and can be clearly seen in Fig. 9(b). Further work is required to
identify whether a relationship exists between LoE, variations
in user demographic, video clip content, and presentation style.
Such research, in support of findings in Section V-B, would
help increase user enjoyment, which, in turn, could be used to
augment user quality perception.

More interestingly, our results identify that user LoE is
not significantly affected by combined display and minimum
frame-rate combinations {F (1, 2) = 0.16, p < 0.985} [see
Fig. 9(a)], even though we have already identified earlier that
users are able to effectively distinguish between the quality
of video presentations. Accordingly, it seems that independent
of whether the video was perceived as being enjoyable, users
can distinguish between the video quality and their subjective
LoE. This result shows that the LoE is more significantly
related to the type of video being presented than the technical
quality of the presentation. This is an interesting result, partic-
ularly in the field of entertainment and/or within bandwidth-
constrained environments, as it suggests that changes in the
presentation approach do not significantly impact a user’s LoE.
Moreover, it supports the claim that effective content adaptation
and personalization of information could be used to improve
user perception where technical limitations are identified.

VI. CONCLUSION

The user perspective of multimedia video quality, although
an important determinant of quality, is rarely used to adapt me-
dia content in current distributed multimedia environments. In
this paper, we have presented the results of a study, which used
empirically captured eye-tracking data and predicted content
primitive data to allow us to implement two RoID techniques. In
our study, perception encapsulated multimedia’s infotainment
duality and was understood as not only a user’s understanding
of the video content (QoP-IA) but also his/her subjective opin-
ion concerning video: regarding QoS provision (QoP-LoQ) and
perceived LoE (QoP-LoE).

Results show that the presentation method (i.e., control
video, empirical RoID, and predictive RoID) does not signif-
icantly impact user ability to understand video narrative. This
result highlights the fact that the expensive task of preliminary
gathering of eye-tracking data, to define RoI, is not necessary
if effective automatic processing can be achieved. If automatic
processing allows effective frame-based adaptation of video,
then real-time automatic RoID players could be developed.
Conversely, a considerable mean variation in user understand-
ing was measured as a result of the video clip type; moreover,
both types of adaptation (empirical and predictive) considered
in this paper, as well as the type of video being presented,
affect user perceived quality. This means that RoID frame-
rate displays are unable to maintain a high perceived LoQ,
if frame rates less than 15 fps are used. This has interesting
implications, both for producers of media content as well as
for its transmission. Further research is required to investigate
better ways of extracting, mapping, and displaying variable
quality video content.

Our findings are of particular interest for the transmission of
entertainment-oriented multimedia in bandwidth-constrained/-
hungry environments [2], [26], since they show that while user
LoE was significantly affected by the type of video being
shown, QoP-LoE was not affected by display and minimum
frame-rate combinations. Nonetheless, the implications of our
work go beyond entertainment-related content, because they
could be potentially applied to any application area associated
with transmission of video in bandwidth-limited environments
or video storage on systems in which computer memory is
at a premium—real-time traffic monitoring and surveillance,
tele-surgery and electronic storage of video-intensive medical
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records, immersive vision applications, e-learning, to mention
a few. All represent avenues for future research, and our work
highlights the potential advantages of using attentive RoIDs in
these contexts.
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