24,901 research outputs found

    A demand-driven approach for a multi-agent system in Supply Chain Management

    Get PDF
    This paper presents the architecture of a multi-agent decision support system for Supply Chain Management (SCM) which has been designed to compete in the TAC SCM game. The behaviour of the system is demand-driven and the agents plan, predict, and react dynamically to changes in the market. The main strength of the system lies in the ability of the Demand agent to predict customer winning bid prices - the highest prices the agent can offer customers and still obtain their orders. This paper investigates the effect of the ability to predict customer order prices on the overall performance of the system. Four strategies are proposed and compared for predicting such prices. The experimental results reveal which strategies are better and show that there is a correlation between the accuracy of the models' predictions and the overall system performance: the more accurate the prediction of customer order prices, the higher the profit. Ā© 2010 Springer-Verlag Berlin Heidelberg

    From supply chains to demand networks. Agents in retailing: the electrical bazaar

    Get PDF
    A paradigm shift is taking place in logistics. The focus is changing from operational effectiveness to adaptation. Supply Chains will develop into networks that will adapt to consumer demand in almost real time. Time to market, capacity of adaptation and enrichment of customer experience seem to be the key elements of this new paradigm. In this environment emerging technologies like RFID (Radio Frequency ID), Intelligent Products and the Internet, are triggering a reconsideration of methods, procedures and goals. We present a Multiagent System framework specialized in retail that addresses these changes with the use of rational agents and takes advantages of the new market opportunities. Like in an old bazaar, agents able to learn, cooperate, take advantage of gossip and distinguish between collaborators and competitors, have the ability to adapt, learn and react to a changing environment better than any other structure. Keywords: Supply Chains, Distributed Artificial Intelligence, Multiagent System.Postprint (published version

    Detecting and Forecasting Economic Regimes in Multi-Agent Automated Exchanges

    Get PDF
    We show how an autonomous agent can use observable market conditions to characterize the microeconomic situation of the market and predict future market trends. The agent can use this information to make both tactical decisions, such as pricing, and strategic decisions, such as product mix and production planning. We develop methods to learn dominant market conditions, such as over-supply or scarcity, from historical data using Gaussian mixture models to construct price density functions. We discuss how this model can be combined with real-time observable information to identify the current dominant market condition and to forecast market changes over a planning horizon. We forecast market changes via both a Markov correction-prediction process and an exponential smoother. Empirical analysis shows that the exponential smoother yields more accurate predictions for the current and the next day (supporting tactical decisions), while the Markov correction-prediction process is better for longer term predictions (supporting strategic decisions). Our approach offers more flexibility than traditional regression based approaches, since it does not assume a fixed functional relationship between dependent and independent variables. We validate our methods by presenting experimental results in a case study, the Trading Agent Competition for Supply Chain Management.dynamic pricing;machine learning;market forecasting;Trading agents

    Real-time Tactical and Strategic Sales Management for Intelligent Agents Guided By Economic Regimes

    Get PDF
    Many enterprises that participate in dynamic markets need to make product pricing and inventory resource utilization decisions in real-time. We describe a family of statistical models that address these needs by combining characterization of the economic environment with the ability to predict future economic conditions to make tactical (short-term) decisions, such as product pricing, and strategic (long-term) decisions, such as level of finished goods inventories. Our models characterize economic conditions, called economic regimes, in the form of recurrent statistical patterns that have clear qualitative interpretations. We show how these models can be used to predict prices, price trends, and the probability of receiving a customer order at a given price. These Ć¢ā‚¬Å“regimeĆ¢ā‚¬ models are developed using statistical analysis of historical data, and are used in real-time to characterize observed market conditions and predict the evolution of market conditions over multiple time scales. We evaluate our models using a testbed derived from the Trading Agent Competition for Supply Chain Management (TAC SCM), a supply chain environment characterized by competitive procurement and sales markets, and dynamic pricing. We show how regime models can be used to inform both short-term pricing decisions and longterm resource allocation decisions. Results show that our method outperforms more traditional shortand long-term predictive modeling approaches.dynamic pricing;trading agent competition;agent-mediated electronic commerce;dynamic markets;economic regimes;enabling technologies;price forecasting;supply-chain

    Flexible Decision Control in an Autonomous Trading Agent

    Get PDF
    An autonomous trading agent is a complex piece of software that must operate in a competitive economic environment and support a research agenda. We describe the structure of decision processes in the MinneTAC trading agent, focusing on the use of evaluators Ć¢ā‚¬ā€œ configurable, composable modules for data analysis and prediction that are chained together at runtime to support agent decision-making. Through a set of examples, we show how this structure supports sales and procurement decisions, and how those decision processes can be modified in useful ways by changing evaluator configurations. To put this work in context, we also report on results of an informal survey of agent design approaches among the competitors in the Trading Agent Competition for Supply Chain Management (TAC SCM).autonomous trading agent;decision processes

    Determining the Optimal Price in the Steel Industry Using Multilateral Monopoly Patterns with the Approach of Neural Networks and Game Theory

    Get PDF
    IntroductionThe field of supply chain management has focused on crucial topics such as coordination, cooperation, and competition among chain members. Game theory has emerged as a valuable tool for examining supply chain management issues, as it analyzes various situations and their impact on supply chain performance (Naimi Sediq et al., 2013; Shafi'i et al., 2018). While every action and performance within the supply chain influences the outcomes of the game, it does not solely determine them. The goal is to balance the parties involved in the supply chain and create satisfaction for the end customer (Metinfer et al., 2018).Although extensive research has been conducted in supply chain management within the steel industry, the impact of sanctions on Nash equilibria and the application of three approaches (Cournot, Stackelberg, and collusion) to achieve game balance in different scenarios have not been thoroughly investigated. This research aims to fill this gap by addressing the mentioned research question. The current study focuses on determining the optimal price using an intelligent decision-making system based on game theory within the steel industry, considering the presence or absence of the sanctions variable.Our country currently possesses several relative advantages in terms of steel production conditions, including abundant and affordable energy, iron ore and refractory raw materials, considerable steel production experience, and a skilled and cost-effective workforce. By acquiring new production technology, these advantages enable our country to play a competitive and influential role in the global steel market. However, the steel industry faces significant challenges such as price fluctuations, extreme price disparities across regions, and delayed delivery due to a lack of efficient supply chain management. Therefore, the main research question aims to provide a model that incorporates key variables, such as the supply and demand of final and intermediate products in the steelmaking industry and the future trends in production and quantity changes.Research methodThis article introduces a composite model that combines artificial neural networks and game theory to assist stakeholders in the steel industry in determining optimal production levels and price levels. To predict the price of steel, three techniques were employed: Bayesian neural networks, support vectors, and Grassberg anti-diffusion. Additionally, to address the issue of binary identification in the neural network, three different network structures were introduced: feedforward network structure, competitive network structure, and backward associative memory network structure.Research findingsThe first scenario is the non-cooperative game (Cournot model scenario) where each participant aims to maximize their profit and would not deviate from their strategy as it would lead to a reduction in their profits. The second scenario is the sequential non-cooperative game (Stackelberg model scenario), in which two chains engage in a confrontation of the Stackelberg game type. The leader's goal is to determine the best strategy while considering all rational strategies that follower players can employ to maximize their income. This scenario demonstrates that the rate of price and profit increase is lower compared to sequential and cooperative game modes. The third scenario is the cooperative game (collusion model scenario). In this scenario, the allocation of profits among the cooperating members is crucial to ensure the stability of their cooperation. The Grassberg anti-diffusion method exhibits higher accuracy due to its higher true positive (TP) and true negative (TN) values compared to other algorithms. Additionally, it has fewer false positives (FP) and false negatives (FN) because a higher TP and TN indicate more accurate predictions in the tested dataset, while FP and FN represent incorrect predictions. The inclusion of the sanctions variable as a moderating factor in the steel price forecasting model accounts for the potential reduction in production and increased cost price. Through the model, it was discovered that the Grossberg method yields more accurate steel price forecasting. Consequently, price forecasting in the model is based on the Grossberg method.Research resultsThe results indicate that transitioning from the Cournot game to the Stackelberg game and from the Stackelberg game to the collusion game in the steel industry's supply chain leads to a $6 increase in price per ton and a product supply ranging from 1500 to 4000 tons. In other words, as collusion in the steel market intensifies, more products are introduced into the market, resulting in an increase in product prices and a decrease in the welfare of steel consumers. According to the findings, increased competition in the industry reduces the profitability and production levels of producers while enhancing consumer welfare. Conversely, higher levels of monopoly exhibit the opposite effect. To maintain a balanced supply chain in the steel industry and prevent potential problems, it is recommended to adopt the Stackelberg game approach, which aligns more closely with reality. It is worth noting that the order in which players enter the game impacts the Nash equilibrium. Therefore, exploring market entry monitoring regulations and rules in this industry becomes crucial since the steel industry involves high entry and exit costs. Policymakers and industry managers should consider monitoring the entry and exit of players, formulate game standards and rules among market participants. Based on the results, the primary recommendation of this research is to increase competition intensity and adopt the Cournot approach in the industry to reduce prices and increase production. Additionally, enhancing international relations and diplomatic efforts will mitigate the impact of sanctions on the industry, leading to cost price improvements and an increase in the level of comparative advantage at the international level

    E-Fulfillment and Multi-Channel Distribution Ć¢ā‚¬ā€œ A Review

    Get PDF
    This review addresses the specific supply chain management issues of Internet fulfillment in a multi-channel environment. It provides a systematic overview of managerial planning tasks and reviews corresponding quantitative models. In this way, we aim to enhance the understanding of multi-channel e-fulfillment and to identify gaps between relevant managerial issues and academic literature, thereby indicating directions for future research. One of the recurrent patterns in todayĆ¢ā‚¬ā„¢s e-commerce operations is the combination of Ć¢ā‚¬Ėœbricks-and-clicksĆ¢ā‚¬ā„¢, the integration of e-fulfillment into a portfolio of multiple alternative distribution channels. From a supply chain management perspective, multi-channel distribution provides opportunities for serving different customer segments, creating synergies, and exploiting economies of scale. However, in order to successfully exploit these opportunities companies need to master novel challenges. In particular, the design of a multi-channel distribution system requires a constant trade-off between process integration and separation across multiple channels. In addition, sales and operations decisions are ever more tightly intertwined as delivery and after-sales services are becoming key components of the product offering.Distribution;E-fulfillment;Literature Review;Online Retailing

    Evolution of a supply chain management game for the trading agent competition

    Get PDF
    TAC SCM is a supply chain management game for the Trading Agent Competition (TAC). The purpose of TAC is to spur high quality research into realistic trading agent problems. We discuss TAC and TAC SCM: game and competition design, scientific impact, and lessons learnt
    • ā€¦
    corecore