14,895 research outputs found

    Boolean Delay Equations: A simple way of looking at complex systems

    Full text link
    Boolean Delay Equations (BDEs) are semi-discrete dynamical models with Boolean-valued variables that evolve in continuous time. Systems of BDEs can be classified into conservative or dissipative, in a manner that parallels the classification of ordinary or partial differential equations. Solutions to certain conservative BDEs exhibit growth of complexity in time. They represent therewith metaphors for biological evolution or human history. Dissipative BDEs are structurally stable and exhibit multiple equilibria and limit cycles, as well as more complex, fractal solution sets, such as Devil's staircases and ``fractal sunbursts``. All known solutions of dissipative BDEs have stationary variance. BDE systems of this type, both free and forced, have been used as highly idealized models of climate change on interannual, interdecadal and paleoclimatic time scales. BDEs are also being used as flexible, highly efficient models of colliding cascades in earthquake modeling and prediction, as well as in genetics. In this paper we review the theory of systems of BDEs and illustrate their applications to climatic and solid earth problems. The former have used small systems of BDEs, while the latter have used large networks of BDEs. We moreover introduce BDEs with an infinite number of variables distributed in space (``partial BDEs``) and discuss connections with other types of dynamical systems, including cellular automata and Boolean networks. This research-and-review paper concludes with a set of open questions.Comment: Latex, 67 pages with 15 eps figures. Revised version, in particular the discussion on partial BDEs is updated and enlarge

    Functional Inequalities: New Perspectives and New Applications

    Full text link
    This book is not meant to be another compendium of select inequalities, nor does it claim to contain the latest or the slickest ways of proving them. This project is rather an attempt at describing how most functional inequalities are not merely the byproduct of ingenious guess work by a few wizards among us, but are often manifestations of certain natural mathematical structures and physical phenomena. Our main goal here is to show how this point of view leads to "systematic" approaches for not just proving the most basic functional inequalities, but also for understanding and improving them, and for devising new ones - sometimes at will, and often on demand.Comment: 17 pages; contact Nassif Ghoussoub (nassif @ math.ubc.ca) for a pre-publication pdf cop

    A delay differential model of ENSO variability: Parametric instability and the distribution of extremes

    Get PDF
    We consider a delay differential equation (DDE) model for El-Nino Southern Oscillation (ENSO) variability. The model combines two key mechanisms that participate in ENSO dynamics: delayed negative feedback and seasonal forcing. We perform stability analyses of the model in the three-dimensional space of its physically relevant parameters. Our results illustrate the role of these three parameters: strength of seasonal forcing bb, atmosphere-ocean coupling Îş\kappa, and propagation period Ď„\tau of oceanic waves across the Tropical Pacific. Two regimes of variability, stable and unstable, are separated by a sharp neutral curve in the (b,Ď„)(b,\tau) plane at constant Îş\kappa. The detailed structure of the neutral curve becomes very irregular and possibly fractal, while individual trajectories within the unstable region become highly complex and possibly chaotic, as the atmosphere-ocean coupling Îş\kappa increases. In the unstable regime, spontaneous transitions occur in the mean ``temperature'' ({\it i.e.}, thermocline depth), period, and extreme annual values, for purely periodic, seasonal forcing. The model reproduces the Devil's bleachers characterizing other ENSO models, such as nonlinear, coupled systems of partial differential equations; some of the features of this behavior have been documented in general circulation models, as well as in observations. We expect, therefore, similar behavior in much more detailed and realistic models, where it is harder to describe its causes as completely.Comment: 22 pages, 9 figure

    List of papers presented at the conference

    Get PDF

    Oscillations in I/O monotone systems under negative feedback

    Full text link
    Oscillatory behavior is a key property of many biological systems. The Small-Gain Theorem (SGT) for input/output monotone systems provides a sufficient condition for global asymptotic stability of an equilibrium and hence its violation is a necessary condition for the existence of periodic solutions. One advantage of the use of the monotone SGT technique is its robustness with respect to all perturbations that preserve monotonicity and stability properties of a very low-dimensional (in many interesting examples, just one-dimensional) model reduction. This robustness makes the technique useful in the analysis of molecular biological models in which there is large uncertainty regarding the values of kinetic and other parameters. However, verifying the conditions needed in order to apply the SGT is not always easy. This paper provides an approach to the verification of the needed properties, and illustrates the approach through an application to a classical model of circadian oscillations, as a nontrivial ``case study,'' and also provides a theorem in the converse direction of predicting oscillations when the SGT conditions fail.Comment: Related work can be retrieved from second author's websit

    Phase reduction approach to synchronization of spatiotemporal rhythms in reaction-diffusion systems

    Full text link
    Reaction-diffusion systems can describe a wide class of rhythmic spatiotemporal patterns observed in chemical and biological systems, such as circulating pulses on a ring, oscillating spots, target waves, and rotating spirals. These rhythmic dynamics can be considered limit cycles of reaction-diffusion systems. However, the conventional phase-reduction theory, which provides a simple unified framework for analyzing synchronization properties of limit-cycle oscillators subjected to weak forcing, has mostly been restricted to low-dimensional dynamical systems. Here, we develop a phase-reduction theory for stable limit-cycle solutions of infinite-dimensional reaction-diffusion systems. By generalizing the notion of isochrons to functional space, the phase sensitivity function - a fundamental quantity for phase reduction - is derived. For illustration, several rhythmic dynamics of the FitzHugh-Nagumo model of excitable media are considered. Nontrivial phase response properties and synchronization dynamics are revealed, reflecting their complex spatiotemporal organization. Our theory will provide a general basis for the analysis and control of spatiotemporal rhythms in various reaction-diffusion systems.Comment: 19 pages, 6 figures, see the journal for a full versio
    • …
    corecore