1,509 research outputs found

    Participatory design in the development of the wheelchair convoy system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In long-term care environments, residents who have severe mobility deficits are typically transported by having another person push the individual in a manual wheelchair. This practice is inefficient and encourages staff to hurry to complete the process, thereby setting the stage for unsafe practices. Furthermore, the time involved in assembling multiple individuals with disabilities often deters their participation in group activities.</p> <p>Methods</p> <p>The Wheelchair Convoy System (WCS) is being developed to allow a single caregiver to move multiple individuals without removing them from their wheelchairs. The WCS will consist of a processor, and a flexible cord linking each wheelchair to the wheelchair in front of it. A Participatory Design approach – in which several iterations of design, fabrication and evaluation are used to elicit feedback from users – was used.</p> <p>Results</p> <p>An iterative cycle of development and evaluation was followed through five prototypes of the device. The third and fourth prototypes were evaluated in unmanned field trials at J. Iverson Riddle Development Center. The prototypes were used to form a convoy of three wheelchairs that successfully completed a series of navigation tasks.</p> <p>Conclusion</p> <p>A Participatory Design approach to the project allowed the design of the WCS to quickly evolve towards a viable solution. The design that emerged by the end of the fifth development cycle bore little resemblance to the initial design, but successfully met the project's design criteria. Additional development and testing is planned to further refine the system.</p

    The Remote Controllable Electric Wheelchair System combined Human and Machine Intelligence for Caregivers and Care Receivers

    Get PDF
    Thesis (Master of Science in Informatics)--University of Tsukuba, no. 41280, 2019.3.2

    Unlimited-wokspace teleoperation

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2012Includes bibliographical references (leaves: 100-105)Text in English; Abstract: Turkish and Englishxiv, 109 leavesTeleoperation is, in its brief description, operating a vehicle or a manipulator from a distance. Teleoperation is used to reduce mission cost, protect humans from accidents that can be occurred during the mission, and perform complex missions for tasks that take place in areas which are difficult to reach or dangerous for humans. Teleoperation is divided into two main categories as unilateral and bilateral teleoperation according to information flow. This flow can be configured to be in either one direction (only from master to slave) or two directions (from master to slave and from slave to master). In unlimited-workspace teleoperation, one of the types of bilateral teleoperation, mobile robots are controlled by the operator and environmental information is transferred from the mobile robot to the operator. Teleoperated vehicles can be used in a variety of missions in air, on ground and in water. Therefore, different constructional types of robots can be designed for the different types of missions. This thesis aims to design and develop an unlimited-workspace teleoperation which includes an omnidirectional mobile robot as the slave system to be used in further researches. Initially, an omnidirectional mobile robot was manufactured and robot-operator interaction and efficient data transfer was provided with the established communication line. Wheel velocities were measured in real-time by Hall-effect sensors mounted on robot chassis to be integrated in controllers. A dynamic obstacle detection system, which is suitable for omnidirectional mobility, was developed and two obstacle avoidance algorithms (semi-autonomous and force reflecting) were created and tested. Distance information between the robot and the obstacles was collected by an array of sensors mounted on the robot. In the semi-autonomous teleoperation scenario, distance information is used to avoid obstacles autonomously and in the force-reflecting teleoperation scenario obstacles are informed to the user by sending back the artificially created forces acting on the slave robot. The test results indicate that obstacle avoidance performance of the developed vehicle with two algorithms is acceptable in all test scenarios. In addition, two control models were developed (kinematic and dynamic control) for the local controller of the slave robot. Also, kinematic controller was supported by gyroscope

    A novel collaboratively designed robot to assist carers

    Full text link
    © Springer International Publishing Switzerland 2014. This paper presents a co-design process and an assisted navigation strategy that enables a novel assistive robot, Smart Hoist, to aid carers transferring non-ambulatory residents. Smart Hoist was codesigned with residents and carers at IRT Woonona residential care facility to ensure that the device can coexist in the facility, while providing assistance to carers with the primary aim of reducing lower back injuries, and improving the safety of carers and patients during transfers.The Smart Hoist is equipped with simple interfaces to capture user intention in order to provide assisted manoeuvring. Using the RGB-D sensor attached to the device, we propose a method of generating a repulsive force that can be combined with the motion controller’s output to allow for intuitive manoeuvring of the Smart Hoist, while negotiating with the environment.Extensive user trials were conducted on the premises of IRTWoonona residential care facility and feedback from end users confirm its intended purpose of intuitive behaviour, improved performance and ease of use

    Design and implementation of advanced sensor systems for smart robotic wheelchairs: A review

    Get PDF
    Smart robotic wheelchairs have emerged as promising assistive devices to enhance mobility and independence for individuals with mobility impairments. The successful integration of advanced sensor systems plays a critical role in improving the functionality and safety of these wheelchairs. This paper presents a comprehensive review of the design and implementation of advanced sensor systems for smart robotic wheelchairs. Through an extensive literature review, the limitations of existing sensor technologies are identified, and the potential of advanced sensors is explored. Vision-based sensors, range and proximity sensors, force and pressure sensors, inertial sensors, and environmental sensors are discussed in detail. Furthermore, this review highlights the design considerations, hardware components, software development, and calibration procedures involved in implementing advanced sensor systems. Evaluation and performance analysis metrics are discussed to assess the effectiveness of the sensor systems. The research findings indicate that advanced sensor systems have the potential to significantly enhance the functionality and safety of smart robotic wheelchairs. However, challenges such as sensor integration, data fusion, and user feedback must be addressed. This review paper concludes by discussing the implications of advanced sensor systems in improving wheelchair functionality and user experience, and proposes future directions for research in this domain

    Effort reduction and collision avoidance for powered wheelchairs : SCAD assistive mobility system

    Get PDF
    The new research described in this dissertation created systems and methods to assist wheelchair users and provide them with new realistic and interesting driving opportunities. The work also created and applied novel effort reduction and collision avoidance systems and some new electronic interactive devices. A Scanning Collision Avoidance Device (SCAD) was created that attached to standard powered wheelchairs to help prevent children from driving into things. Initially, mechanical bumpers were used but they made many wheelchairs unwieldy, so a novel system that rotated a single ultra-sonic transducer was created. The SCAD provided wheelchair guidance and assisted with steering. Optical side object detectors were included to cover blind spots and also assist with doorway navigation. A steering lockout mode was also included for training, which stopped the wheelchair from driving towards a detected object. Some drivers did not have sufficient manual dexterity to operate a reverse control. A reverse turn manoeuvring mode was added that applied a sequential reverse and turn function, enabling a driver to escape from a confined situation by operating a single turn control. A new generation of Proportional SCAD was created that operated with proportional control inputs rather than switches and new systems were created to reduce veer, including effort reduction systems. New variable switches were created that provided variable speed control in place of standard digital switches and all that research reduced the number of control actions required by a driver. Finally, some new systems were created to motivate individuals to try new activities. These included a track guided train and an adventure playground that including new interactive systems. The research was initially inspired by the needs of young people at Chailey Heritage, the novel systems provided new and more autonomous driving opportunities for many powered wheelchair users in less structured environments.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Shared Control for Wheelchair Interfaces

    Get PDF
    Independent mobility is fundamental to the quality of life of people with impairment. Most people with severe mobility impairments, whether congenital, e.g., from cerebral palsy, or acquired, e.g., from spinal cord injury, are prescribed a wheelchair. A small yet significant number of people are unable to use a typical powered wheelchair controlled with a joystick. Instead, some of these people require alternative interfaces such as a head- array or Sip/Puff switch to drive their powered wheelchairs. However, these alternative interfaces do not work for everyone and often cause frustration, fatigue and collisions. This thesis develops a novel technique to help improve the usability of some of these alternative interfaces, in particular, the head-array and Sip/Puff switch. Control is shared between a powered wheelchair user, using an alternative interface and a pow- ered wheelchair fitted with sensors. This shared control then produces a resulting motion that is close to what the user desires to do but a motion that is also safe. A path planning algorithm on the wheelchair is implemented using techniques in mo- bile robotics. Afterwards, the output of the path planning algorithm and the user’s com- mand are both modelled as random variables. These random variables are then blended in a joint probability distribution where the final velocity to the wheelchair is the one that maximises the joint probability distribution. The performance of the probabilistic approach to blending the user’s inputs with the output of a path planner, is benchmarked against the most common form of shared control called linear blending. The benchmarking consists of several experiments with end users both in a simulated world and in the real-world. The thesis concludes that probabilistic shared control provides safer motion compared with the traditional shared control for difficult tasks and hard-to-use interfaces

    Rehabilitation Engineering

    Get PDF
    Population ageing has major consequences and implications in all areas of our daily life as well as other important aspects, such as economic growth, savings, investment and consumption, labour markets, pensions, property and care from one generation to another. Additionally, health and related care, family composition and life-style, housing and migration are also affected. Given the rapid increase in the aging of the population and the further increase that is expected in the coming years, an important problem that has to be faced is the corresponding increase in chronic illness, disabilities, and loss of functional independence endemic to the elderly (WHO 2008). For this reason, novel methods of rehabilitation and care management are urgently needed. This book covers many rehabilitation support systems and robots developed for upper limbs, lower limbs as well as visually impaired condition. Other than upper limbs, the lower limb research works are also discussed like motorized foot rest for electric powered wheelchair and standing assistance device

    Development of a new elastic path controller for the collaborative wheelchair assistant

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Design of a portable device: Toward assisting in tongue-strengthening exercises and dysphagia management

    Get PDF
    A Tongue-Machine Interaction System (TMIS) can serve as a valuable tool for tongue strengthening training which could contribute to rehabilitation of patients with dysphagia and eventually help in mending the oropharyngeal pattern of swallowing. The TMIS can also facilitate research into dysphagia, as tongue positioning and Range-of-Motion are commonly used outcome parameters in dysphagia research. Using a TMIS (for interacting with computers, a variety of communication devices and mobility support systems) would be tantamount to performing tongue muscle strengthening exercises. Such exercises can help patients with dysphagia in improving strength of the oral musculature. TMIS’s features can also provide valuable biofeedback during the tongue muscle exercises. The adoption of TMIS’s in clinical practice has been limited in the past since many of them require patients to have a palatal plate or some component of interactivity mounted in the mouth and/or on the tongue. This paper reports the design and implementation of a portable, low-cost, minimally invasive and, easy to learn TMIS which can be utilized for training and strengthening of tongue musculature. The selection and incorporation of design features important to the target patient demography are also discussed
    corecore