243 research outputs found

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 212

    Get PDF
    A bibliography listing 146 reports, articles, and other documents introduced into the NASA scientific and technical information system is presented. The subject coverage concentrates on the biological, psychological, and environmental factors involved in atmospheric and interplanetary flight. Related topics such as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, and exobiology are also given attention

    Parallel Robot Translational Performance Evaluation through Direction-Selective Index (DSI)

    Get PDF
    Performance indexes usually provide global evaluations of robot performances mixing their translational and/or rotational capabilities. This paper proposes a definition of performance index, called direction-selective index (DSI), which has been specifically developed for parallel manipulators and can provide uncoupled evaluations of robot translational capabilities along relevant directions. The DSI formulation is first presented within a general framework, highlighting its relationship with traditional manipulability definitions, and then applied to a family of parallel manipulators (4-RUU) of industrial interest. The investigation is both numerical and experimental and allows highlighting the two chief advantages of the proposed DSIs over more conventional manipulability indexes: not only are DSIs more accurate in predicting the workspace regions where manipulators can best perform translational movements along specific directions, but also they allow foreseeing satisfactorily the dynamic performance variations within the workspace, though being purely kinematic indexes. The experiments have been carried out on an instrumented 4-RUU commercial robot

    A bibliometric overview of Mechanism and Machine Theory journal: publication trends from 1990 to 2020

    Get PDF
    This work reports a bibliometric overview of Mechanism and Machine Theory journal in the timespan 1990-2020. This desideratum is achieved by considering the most relevant features associated with the life of this scientific journal, namely in terms of publications, citations, regions of origin of publications, authors, institutions, etc. In the present study, the Scopus database was chosen as the platform to identify and extract information on those aspects. Thus, based on the data collected, a comprehensive bibliometric analysis of Mechanism and Machine Theory is performed, which permits to reveal the overall picture of the journal trends in evolution, as well as its impact and influence in the mechanism and machine science community. Overall, the outcomes presented in this study allow to observe that Mechanism and Machine Theory journal has been attracting more and more interest year after year.FCT -Fundação para a Ciência e a Tecnologia(UIDB/04436/2020

    A generalized approach for computing the transmission index of parallel mechanisms

    Get PDF
    This paper presents a novel approach for computing the transmission index of parallel mechanisms. The approach is based on an extended concept to compute the maximal virtual coefficient, which is an important notion involved in the formulation of dimensionally homogeneous transmission indices for singularity analysis and dimensional optimization of parallel mechanisms. By exploiting the dual property of the virtual coefficient, two characteristic points instead of one as in the current state of the art are defined: one characteristic point – termed the transmission characteristic point – is located on the ‘floating’ axis of the transmission wrench, as in existing approaches, while a second one – termed the output characteristic point – is located on the floating axis of the output twist of the platform, which is a novel concept. This allows one to define two characteristic lengths, namely, the transmission and output characteristic lengths, respectively, of which the larger is then used for the measure of the “distance” between the transmission wrench screw and the output twist screw. As shown in this paper, this new measure makes it possible to discern more finely the configuration-dependent properties of kinematic performance of parallel mechanisms, thus making it more suitable for dimensional optimization. Confidence in this statement is demonstrated through the comparative study of two in-parallel mechanisms using the new method and previously existing ones

    Design of compliant parallel grippers using the position space concept for manipulating submillimeter objects

    Get PDF
    The structure or configuration of compliant mechanisms can be reconfigured through changing the positions of each compliant module thereof within their position spaces. A number of 1-DOF 2-PRRP compliant parallel grippers (CPGs) can be obtained using the structure re-configurability for manipulating sub-millimeter objects. Even with the geometrical parameters for the system’s pseudorigid-body model (PRBM) and each compliant module kept at the same values, the position of each compliant joint can be anywhere within its position space. The performance of the resulting CPG varies with the position of the compliant joint. In this paper two typical CPG designs are presented and analyzed. Comparisons between FEA simulaiton resutls and analytical models show that the input-output kinematic relationship of the non-compact design agrees better with that of the PRBM due to its better load transmissibility. One can design different structures based on specific design requirements

    Dexterity, workspace and performance analysis of the conceptual design of a novel three-legged, redundant, lightweight, compliant, serial-parallel robot

    Get PDF
    In this article, the mechanical design and analysis of a novel three-legged, agile robot with passively compliant 4-degrees-of-freedom legs, comprising a hybrid topology of serial, planar and spherical parallel structures, is presented. The design aims to combine the established principle of the Spring Loaded Inverted Pendulum model for energy efficient locomotion with the accuracy and strength of parallel mechanisms for manipulation tasks. The study involves several kinematics and Jacobian based analyses that specifically evaluate the application of a non-overconstrained spherical parallel manipulator as a robot hip joint, decoupling impact forces and actuation torques, suitable for the requirements of legged locomotion. The dexterity is investigated with respect to joint limits and workspace boundary contours, showing that the mechanism stays well conditioned and allows for a sufficient range of motion. Based on the functional redundancy of the constrained serial-parallel architecture it is furthermore revealed that the robot allows for the exploitation of optimal leg postures, resulting in the possible optimization of actuator load distribution and accuracy improvements. Consequently, the workspace of the robot torso as additional end-effector is investigated for the possible application of object manipulation tasks. Results reveal the existence of a sufficient volume applicable for spatial motion of the torso in the statically stable tripodal posture. In addition, a critical load estimation is derived, which yields a posture dependent performance index that evaluates the risks of overload situations for the individual actuators

    Vision-Based Hybrid Controller to Release a 4-DOF Parallel Robot from a Type II Singularity

    Get PDF
    [EN] The high accuracy and dynamic performance of parallel robots (PRs) make them suitable to ensure safe operation in human¿robot interaction. However, these advantages come at the expense of a reduced workspace and the possible appearance of type II singularities. The latter is due to the loss of control of the PR and requires further analysis to keep the stiffness of the PR even after a singular configuration is reached. All or a subset of the limbs could be responsible for a type II singularity, and they can be detected by using the angle between two output twist screws (OTSs). However, this angle has not been applied in control because it requires an accurate measure of the pose of the PR. This paper proposes a new hybrid controller to release a 4-DOF PR from a type II singularity based on a real time vision system. The vision system data are used to automatically readapt the configuration of the PR by moving the limbs identified by the angle between two OTSs. This controller is intended for a knee rehabilitation PR, and the results show how this release is accomplished with smooth controlled movements where the patient¿s safety is not compromised.This research was funded by the FEDER-CICYT project with reference PID2020-119522RBI00 (ROBOTS PARALELOS DE REHABILITACION: DETECCION Y CONTROL DE SINGULARIDADES EN PRESENCIA DE ERRORES DE MANUFACTURA), Spain.Pulloquinga-Zapata, J.; Escarabajal-Sánchez, RJ.; Ferrándiz, J.; Vallés Miquel, M.; Mata Amela, V.; Urízar, M. (2021). Vision-Based Hybrid Controller to Release a 4-DOF Parallel Robot from a Type II Singularity. Sensors. 21(12):1-21. https://doi.org/10.3390/s21124080121211

    Investigation on the Effort Transmission in Planar Parallel Manipulators

    Get PDF
    International audienceIn the design of a mechanism, the quality of effort transmission is a key issue. Traditionally, the effort transmissivity of a mechanism is defined as the quantitative measure of the power flowing effectiveness from the input link(s) to the output link(s). Many researchers have focused their work on the study of the effort transmission in mechanisms and diverse indices have been defined. However, the developed indices have exclusively dealt with the studies of the ratio between the input and output powers and they do not seem to have been devoted to the studies of the admissible reactions in passive joints. However, the observations show that is possible for a mechanism to reach positions in which the transmission indices will have admissible values but the reaction(s) in passive joint(s) can reach excessively high values leading to the breakdown of the mechanism. In the present paper, a method is developed to ensure the admissible values of reactions in passive joints of planar parallel manipulators. It is shown that the increase of reactions in passive joints of a planar parallel manipulator depends not only on the transmission angle but also the position of the instantaneous centre of rotation of the platform. It allows the determination of the maximal reachable workspace of planar parallel manipulators taking into account the admissible reactions in its passive joints. The suggested method is illustrated vie a 5R planar parallel mechanism and a planar 3-RPR parallel manipulator. I Introduction Parallel manipulators have many advantages in terms of acceleration capacities and payload-to-weight ratio [1], but one of their main drawbacks concerns the presence of singularities [2]-[5]. It is known that in the neighbourhood of the singular positions the reactions in joints of a manipulator considerably grow up. In order to have a better understanding of this phenomenon, many researchers have focused their works on the analysis of the effort transmission in parallel manipulators. One of the evident criterions for evaluation of effort transmission is the transmission angle (or pressure angle which is equal to 90 degrees minus the transmission angle) [7]-[9]. The pressure angle is well known for characterizing the transmission quality in lower kinematic pairs, such as cams [10], but this idea was also used for effort transmission analysis in the parallel manipulators [7], [9]. To evaluate the effort transmission quality, several indexes have been introduced. One of the first attempts was proposed in [6]. This paper presents a criterion named the Transmission Index (TI) that is based on transmission wrench screw. The TI varies between 0 and 1. If it is equal to 0, the considered link is in a dead position, i.e. it cannot move anymore. If it is equal to 1, this link has the best static properties. In the same vein as [6], the study [11] generalizes the TI for spatial linkages and defines the Global TI (GTI). The authors also prove that the GTI is equal, for prismatic and revolute joints, to the cosine of the pressure angle. The conditioning index was also proposed [12] for characterizing the quality of transmission between the actuators and the end-effector. This index is based on the Jacobian matrix or its "norm", which relate the actuator velocities (efforts, resp.) to the platform twist (wrench, resp.) by the following relations:  t Jq  and T   w J τ , where J is the Jacobian matrix, t the platform twist, q  the input velocities,  the actuator efforts, and w the wrench applied on the platform. All these indices have been used in many works for design and analysis of parallel mechanisms [14]-[21]. However, it is also known that because of the non homogeneity of the terms of the Jacobian matrix, the conditioning index is not well appropriated for mechanisms having both translational and rotational degrees of freedom (DOF) [13]. Moreover, all the previously mentioned indices do not take into account the real characteristics of the actuators, i.e. the fact that their input efforts are bounded between [-max i  , max i  ] [13]. In order to solve this problem, in study [22] a numerical analysis method has been developed. It has been proposed to characterize the force workspace of robots taking into account a given fixed wrench applied on the platform and actuator efforts comprised in the boundary interval [-max i  , max i  ]. However, this workspace depends on the given direction and norm of the external force/moment and will change with the variation of the applied wrench. Moreover, for many robot applications, the external wrench direction is not known, contrary to its norm. Therefore, in [23], a way to compute the maximal workspac
    corecore