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Abstract 
This paper presents a novel approach for computing the transmission index of parallel mechanisms. The approach is based on an 

extended concept to compute the maximal virtual coefficient, which is an important notion involved in the formulation of 

dimensionally homogeneous transmission indices for singularity analysis and dimensional optimization of parallel mechanisms. By 

exploiting the dual property of the virtual coefficient, two characteristic points instead of one as in the current state of the art are 

defined: one characteristic point is located on the ‘floating’ axis of the transmission wrench, as in existing approaches, while a second 

one is located on the floating axis of the output twist of the platform, which is a novel concept. This allows one to define two 

characteristic lengths, of which the larger is then used for the measure of the “distance” between the transmission wrench screw and 

the output twist screw. As shown in this paper, this new measure makes it possible to discern more finely the configuration-dependent 

properties of kinematic performance of parallel mechanisms, thus making it more suitable for dimensional optimization. Confidence 

in this statement is demonstrated through the comparative study of two in-parallel mechanisms using the new method and previously 

existing ones. 
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1. Introduction 
Finding suitably informative and sufficiently discernable performance indices is of crucial significance in the singularity analysis 

and dimensional optimization of parallel mechanisms having coupled translational and rotational movement capabilities. Although 

several performance indices have been proposed in the past using the algebraic characteristics of the Jacobian, these cannot be 

directly adopted for kinematic performance evaluation because the Jacobian varies with the scaling owing to the inconsistency in the 

physical units [1]. There are two ways to overcome this problem. The first one is to formulate a dimensionally homogeneous 

Jacobian in which all entries have the same physical units. The methods available for doing so include: (1) a length-based method, in 

which all translational elements in the Jacobian are normalized with the help of a “characteristic/natural length” [2-8]; however, this 

method depends on the choice of the characteristic length, and – although a “best” characteristic length can be defined by 

optimization notions [6] – the choice of an appropriate characteristic length and with this the combination of translational and 

rotational metrics for a particular operation is not unique; and (2) the point-based method, which makes use of linear maps between 

the joint rates and velocities of several points on the platform to overcome the problem of non-existence of a bi-invariant metric for 

combined rotation and translation [9-13]; however, defining good criteria for choosing proper points is an open issue needing 

investigation, as the locations of these points affect the algebraic characteristics of the Jacobian.  

An alternative way to circumvent inhomogeneity of coordinates is to use the concept of the virtual coefficient [14] representing 

the virtual power delivered by a unit transmission wrench on the corresponding unit output twist of the target body. The virtual 

coefficient, closely related to the transmission/pressure angles of linkages [14-18], was originally introduced for evaluating the force 

transmission quality of single-loop linkages, i.e. the capability of a linkage to transmit a wrench via the motion-coupling joint of the 

output link. The virtual power delivered by the transmission wrench screw (TWS) on the output twist screw (OTS) was defined as the 

transmission factor (TF) [19]. Its normalized value, known as the transmission index (TI), was then defined in [20] by dividing the 

configuration-dependent value by the maximally attainable value when the transmission wrench screw is (virtually) rotated about a 

certain characteristic point, which in [20] was placed on the TWS axis at the point of intersection of the common normal of the TWS 

and the OTS. The thus defined TI has the merits of being invariant with regards to the coordinate frame of reference and 

dimensionally homogeneous in nature. However, problems can arise with this treatment, yielding undefined values, when the axes of 

the TWS and OTS are parallel. Moreover, the thus defined TI is configuration dependent, and thus lacks the notions of how the local 

value performs in comparison with the overall workspace. Thus, in [21] the concept of the TI was extended by specifying a new 

characteristic point on the axis of the TWS as the foot of the perpendicular to a “pressure centre” at the joint where the TWS is 

transmitted to the output link, and using as normalizing factor the maximum of all achievable maximal virtual coefficients obtained 

by rotating the TWS about the characteristic point at all configurations of the output link workspace. Unfortunately, this approach is 

suited solely for single-loop linkages in which the axis of the OTS is fixed on the ground. Recently, the concept of the virtual 

coefficient has been extended to deal with singularity identification and kinematic performance evaluation of parallel mechanisms 

[22-25]. In this setting, the input transmission index (ITI), the output transmission index (OTI), and the constraint transmission index 

(CTI) were defined for the assessment of the ‘closeness’ to different types of singularities of lower-mobility parallel manipulators 

throughout the entire workspace [25], showing that they are frame-independent and that they lie in a range [0, 1]. However, in these 

approaches only the orientation of the TWS is varied when determining the maximal virtual coefficient, and as shown in this paper 

the thus computed maximal virtual coefficients may fail to sense architectural or configuration variations, which again may lead to 

saddle points in some transmission indices that are detrimental when being used as cost functions in parallel mechanism dimensional 

optimization procedures.  

To overcome this problem, this paper presents a new systematic approach to determine the maximal virtual coefficient of parallel 

mechanisms that takes into account both TWS and OTS axis-orientation variations. The paper focuses on two issues: (1) geometric 

derivation of the maximal virtual coefficient computation; and (2) determination of characteristic points on the axes of the TWS and 
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OTS such that the maximal distance between them can be specified for all 

possible platform configurations and variations. Confidence in the 

correctness of this new approach is provided by two examples, comparing 

the results between the new and the previous methods, respectively. 

 

2. Determination of maximal virtual coefficient 
This section briefly reviews previous work on determining the 

maximal virtual coefficient in order to explore its application and 

limitations, respectively. Without loss of generality, consider a unit wrench 

ˆ
w$  known as the transmission wrench screw (TWS) and a unit twist ˆ

t$  

known as the output twist screw (OTS), as defined in [21]. The output 

twist screw ˆ
t$  is assumed to be the unit screw about which the output 

link rotates instantaneously when inducing a small position variation. For 

the case of a single-loop mechanism this axis is fixed. The transmission 

wrench screw ˆ
w$  is the unit screw along which the transmitting link 

(mostly known as coupler in a single-loop mechanism, not shown in Fig. 1) 

transmits a wrench to the output link. For illustration purposes, the joints 

connecting the output link to the ground and to the transmitting link are 

shown in Fig. 1 as revolute joints, but any other joints can be used as well. 

The two screws can be expressed in the Plücker ray-coordinates and 

axial-coordinates, respectively, as 

0

ˆ w w

w

w w w w wh

   
    

    

s s

s r s s
$ , 

0ˆ t t t t t

t

t t

h    
    
   

s r s s

s s
$                              (1) 

where 
ws  (

ts ) is the unit vector of the screw axis; 
wh  (

th ) is the pitch and 
wr  (

tr ) the position vector of an arbitrary point on 

the axis of ˆ
w$  ( ˆ

t$ ). Then, the virtual coefficient can be defined by the inner product [21],  

       
TT Tˆ ˆ cos sinw t t w w t t w t w t wh h h h θ d θ       s s r r s s$ $                          (2) 

where d  and   are the distance and angle between the two screw axes (see Fig. 1). For single-loop spatial linkages, the maximal 

virtual coefficient was defined in [21] by (a) introducing an “application point” A located at the “centroid” of the joint connecting the 

output link with the wrench-transmitting link, and (b) determining the “characteristic point” C as that located on the axis of ˆ
w$  

closest to A. Then, the virtual coefficient can be rewritten as 

  2T 2

WSmax

ˆ ˆ maxw t t wh h ρ  $ $                                       (3) 

where ρ , known as the “characteristic length” (different than as defined in [2-8]), denotes the minimum distance from point C to the 

axis of ˆ
t$ . It can be seen that T

max

ˆ ˆ
w t$ $  in Eq. (3) is a function of the maximal values of 

th , 
wh , and ρ  throughout the entire 

workspace. However, for a parallel mechanism, since the axis of the output twist screw ˆ
t$  is unfixed and configuration dependent, 

it is infeasible to find these values because they vary with the shape, size, and location of the workspace. For this reason, a modified 

version of the maximal virtual coefficient was defined without proof in [25] as 

 
2T 2

max
max

ˆ ˆ
w t t wh h d  $ $                                         (4) 

where maxd  represents the maximal length of the common normal of the axes of ˆ
w$  and ˆ

t$  when the screw axis of ˆ
w$  is 

rotated about the application point. Here, the application point was not defined unambiguously, although the authors stated it was 

more or less the same as the characteristic length proposed by Chen and Angeles [21].  

At this point, it can be verified that the dual property of the virtual coefficient as expressed in Eq. (2) makes it possible to define 

two characteristic points, located respectively on the axes of ˆ
w$  and ˆ

t$ , about which either the transmission wrench screw axis or 

the output twist screw axis can be rotated, respectively. This gives rise to a new sense of determining the characteristic length ρ  

and the maximal distance maxd , in which the corresponding quantities defined in [21, 25] are just a special case. This is derived and 

illustrated by examples in the sequel.  

 

3. Determination of the maximal virtual coefficent for a given configuration 
Addressing the problems mentioned above, this section presents an expression for the maximal virtual coefficient and derives 

explicit expressions for the orientation of the screw axes and the characteristic lengths at the maximally achievable values of the 

virtual coefficient for application to parallel mechanisms. The presented approach is valid for parallel mechanisms, in which the last 

joint of a limb connecting the platform can be decomposed as 1-DOF revolute or prismatic joint. 

Let a general wrench screw ˆ
w$  and a general twist screw ˆ

t$  be given, and let two arbitrary points 
wB  and 

tB  be chosen on 

the wrench and twist axes ˆ
w$  and ˆ

t$ , respectively (Fig. 2(a)). Application of Eq. (2) and cyclic permutation of the vectors involved 

Fig. 1  The characteristic length defined in [21] 
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in the triple scalar product allows one to obtain two equivalent expressions for the virtual coefficient: 

   T T Tˆ ˆ
t ww t t w w t w t B Bh h   s s s s r$ $                                      (5a) 

   T T Tˆ ˆ
w tw t t w w t t w B Bh h   s s s s r$ $                                      (5b) 

where 
t w w tB B B B t w   r r r r . Each of these expressions gives rise to a different geometrical interpretation of the computation of the 

maximal virtual coefficient, as explained below. For simplicity, we initially consider only Eq. (5a); a similar result can be derived 

from Eq. (5b) by a similar rationale. If 
w t wB t B Bd  s r  denotes the orthogonal distance from point 

wB  on the axis of ˆ
w$  to the 

axis of ˆ
t$ , Eq. (5a) can be rewritten as  

     Tˆ ˆ cos cos
ww t t w Bh h θ d β  $ $                                      (6) 

where   is the angle between 
ws  and 

t wt B Bs r  as shown in Fig. 2(b). According to the law of cosines, 

     cos cos sinθ γ β                                           (7) 

where γ  is the dihedral angle. Substituting Eq. (7) into Eq. (6) yields 

       Tˆ ˆ cos sin cos
ww t t w Bh h γ β d β  $ $                                   (8) 

If one allows the wrench axis ˆ
w$  to rotate freely about point 

wB , it is easy to prove that Tˆ ˆ
w t$ $  associated with 

wBd  takes the 

maximal value  

 
2T 2

max

ˆ ˆ +
w

w

B

w t t w Bh h d $ $                                     (9) 

when  

0wB
γ   , 

π
arctan

2

ww
BB

t w

d
β

h h

 
  
 
 

                                (10) 

Obviously, its counterpart associated with Eq. (5b) can be obtained by allowing now the twist screw ˆ
t$  to rotate freely about point 

tB . Hence, using 
t w tB w B Bd  s r  as the orthogonal distance from point 

tB  on the axis of ˆ
t$  to the axis of ˆ

w$ , the maximal 

virtual coefficient associated with rotational variations of the twist screw ˆ
t$  about point tB  is given by 

 
2T 2

max

ˆ ˆ +
t

t

B

w t t w Bh h d $ $                                     (11) 

when  

0tB
γ   , 

π
arctan

2

tt
BB

t w

d
β

h h

 
  
 
 

                                (12) 

As both previous variations are conceivable for the determination of the maximal virtual coefficient, the overall maximal virtual 

Fig. 2  Relationships between a twist and a wrench 
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coefficient, as proposed in this paper, must be determined by the maximum of the two:  

 T T T

max max max

ˆ ˆ ˆ ˆ ˆ ˆmax ,
w tB B

w t w t w t$ $ $ $ $ $                                     (13) 

Note that in the previous definition, the individual maximal virtual coefficients depend on the choice of points 
wB  and 

tB  located 

on the general wrench and twist screws, respectively. For parallel mechanisms, these points should be selected such that they 

characterize the effects of the corresponding transmission wrench and output twist screws at the boundary between the leg and the 

platform. Thus for this case they are termed “the transmission characteristic point and the output characteristic point” and are denoted 

by 
wC  and 

tC , respectively. We define the characteristic points 
wC  and 

tC  according to Chen and Angeles [21] as the points on 

the screw axes ˆ
w$  and ˆ

t$ , respectively, that are closest to the so-called “centroid” A of the joint connecting the corresponding limb 

with the platform. The centroid can be interpreted here as the center of the embodiment of the joint, which is unique for the case of 

spherical joints but depends on the manufacturing form for revolute or prismatic joints (Fig. 3). By choosing orthogonal radius 

vectors wp  and tp  from the (moving) platform reference origin O  to arbitrary points wP  and tP  on the wrench and twist 

screw axes ˆ
w$  and ˆ

t$ , respectively, explicit expressions for 
tCd  and 

wCd  termed “the transmission characteristic length and the 

output characteristic length” can be obtained as 

  T

wC t t w w w wd     s p p p a s s                                    (14a) 

  T

tC w w t t t td     s p p p a s s                                     (14b) 

where 0w w w p s s  and 0t t t p s s , and a  is the position vector from the (moving) platform reference origin O  to the 

application point A of the actual leg. These considerations enable the maximal virtual coefficient to be finally determined by 

 
2T 2

max
max

ˆ ˆ +w t t wh h d $ $ ,  max max ,
w tC Cd d d                              (15) 

It should be pointed out that if the pitch of either ˆ
w$  or ˆ

t$  is infinite, then all terms in Eq. (15) apart from the infinite pitch can be 

neglected and thus one obtains [20, 21]:  

Table 1  Explicit expressions of T

max

ˆ ˆ
w t$ $  

         ˆ
w$  

    ˆ
t$  

wh   , 
0

ˆ w

w

w

 
  
 

s

s
$  

wh  , ˆ
w

w

 
  
 s

0
$  

th   , 
0ˆ t

t

t

 
  
 

s

s
$  

 
2T 2

max
max

ˆ ˆ +w t t wh h d $ $ ,  max max ,
w tC Cd d d  

  T

wC t t w w w wd     s p p p a s s  

  T

tC w w t t t td     s p p p a s s  

0w w w p s s ,
0t t t p s s  

T

max

ˆ ˆ
w t wh$ $  

th  , ˆ t

t

 
  
 

s
$

0
 

T

max

ˆ ˆ
w t th$ $  N/A  

 

Fig. 3  Two possible definitions of characteristic points 
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(1) if 
th  is infinite, then T

max

ˆ ˆ
w t th$ $ ;  

(2) if 
wh  is infinite, then T

max

ˆ ˆ
w t wh$ $ ； 

(3) the case that both pitches are infinite does not exist for the transmission wrench and the output twist [21].  

Table 1 summarises the explicit expressions for T

max

ˆ ˆ
w t$ $  for all possible cases.  

 
4. Performance indices formulation using the virtual coefficient  

We apply the above derived expression of the maximal virtual coefficient to compute the output and constraint transmission 

indices, respectively developed in [21, 25]. In order to illustrate the concepts, the derivations are made for f-DOF ( 6f  ) 

non-overconstrained and non-redundant in-parallel mechanisms composed of f limbs having exactly one actuator each. For such 

parallel mechanisms, the local transmission indices, i.e. the output transmission index (OTI) and the constraint transmission index 

(CTI) [25] are considered since the kinematic performance in the directions of theoretically accessible and inaccessible instantaneous 

motions must be evaluated at the same time. The thus introduced output and constraint transmission indices are defined, respectively, 

as 

OTI        

 

 

TT

, ,

TT

, ,
max

ˆ ˆ

min min
ˆ ˆ

T i O i

O i
i i

T i O i

γ η

 
 

   
 
 

$ $

$ $
, 1, 2, ,i f                             (16) 

CTI      
 

 

CT

, ,

CT

, ,
max

ˆ ˆ

min min
ˆ ˆ

C j O j

C j
j j

C j O j

γ ε

 
 

   
 
 

$ $

$ $
, 1, 2, ,6j f                            (17) 

Utilizing the terminology and notation given in [25], ,
ˆ

T i$  is referred to as the thi  transmission wrench screw (TWS), which is 

produced at the boundary of the leg with the platform by the ith actuated joint, while ,
ˆ

C j$  is referred to as the thj  constraint 

wrench (CWS) , which is produced by the jth remaining locked spatial directions at one of the legs when the actuator joints of all legs 

are released. Note that the number of TWS and CWS always sums up to 6 for the case of a non-overconstrained platform. Along the 

same lines, 
 T

,
ˆ

O i$  is referred to as the thi  output twist screw, produced by locking all actuated joints but the ith one, and recording 

small platform pose variations, while 
 C

,
ˆ

O j$  is referred to as the jth constraint twist screw, which is produced by locking all actuated 

joints and releasing one characteristic constraint direction along a virtual constraint joint, and observing again the variations of pose 

of the platform. Here, the term ‘virtual constraint joint’ represents a fictitious joint that is added to a leg in one-to-one correspondence 

to a CWS, which is normally fixed due to rigidity but which can be “released” for conceptual reasons. A virtual constraint joint can 

actually generate small motions in a platform due to elasticity and/or clearance effects; the set of virtual constraint joints can then be 

regarded as representing the minimal system of characteristic small perturbations due to elasticity and/or clearance. Note again that 

the number of joint twist screws and constraint twist screws sum up to 6 for the case of non-overconstrained platforms. By the dual 

and reciprocal properties of the screw system of a limb, a TWS is reciprocal to all joint twists but the actuated one in the 

corresponding limb, while a CWS is reciprocal to all joint twists, including the passive and actuated ones in the corresponding limb 

[26]. They thereby can be formulated by means of the observation method [27]. Note that as thus ,
ˆ

T i$  ( ,
ˆ

C j$ ) only exerts power on 

(T)

,
ˆ

O i$  ( (C)

,
ˆ

O j$ ), then given ,
ˆ

T i$  and ,
ˆ

C j$ , (T)

,
ˆ

O i$  and (C)

,
ˆ

O j$  can uniquely be determined by two steps 

(1) Solve a set of linear equations for B  

T B A                                          (18) 

where  

,1 , ,1 ,6
ˆ ˆ ˆ ˆ

T T f C C f
 
 

A $ $ $ $ , (T) (T) (C) (C)

,1 , ,1 ,6O O f O O f
    B $ $ $ $  

(2) Determine (T) (T) (C) (C)

,1 , ,1 ,6
ˆ ˆ ˆ ˆ

O O f O O f
 
 

B $ $ $ $  by normalizing each column vectors of B  with its magnitude such that 

(T) (T)

, ,(T)

1ˆ
O i O i

iλ
$ $ , (C) (C)

, ,(C)

1ˆ
O j O j

jλ
$ $ , 1,2, ,i f , 1,2, ,6j f                       (19) 

Consequently, a parallel mechanism is said to be at an output transmission singularity if 
 T(T) T

, ,
ˆ ˆ 0i T i O iλ  $ $ , and at a constraint 

singularity if 
 C(C) T

, ,
ˆ ˆ 0j C j O jλ  $ $ . Therefore, larger values of transmission indices given in Eqs. (16) and (17) indicate better 

corresponding kinematic performance.  

Note that while the OTI describes how much of the actuation effort is actually transformed into motion of the platform, and how 

much is pried upon in the locked subspace of restriction forces, the CTI describes how much of the constraint forces in the locked 

directions of the legs are transmitted to the constrained motion directions of the platform when all actuated joints are released. Values 

of one describe in both cases an optimal transmission (e.g. a pressure angle of 90° for pure forces), while values of 0 denote 

singularity: in the case of the OTI signalling so-called output singularities, where the motion of the platform cannot be controlled by 

all actuated joints (i.e. no joint effort can be transmitted to platform); in the case of CTI signalling so-called constraint singularities, 
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where the platform will move even if all actuated joints are locked). 

In what follows we will use the indices normalized by our new maximal virtual coefficient to evaluate kinematic performance of 

two in-parallel mechanisms, and the results will be compared with those obtained by other methods. 

 

5. Computation of output and constraint transmission indices for a 3-SPR parallel mechanism 
The first example under consideration is a 3-SPR in-parallel mechanism composed of a base, a platform and three identical SPR 

limbs (Fig. 4). Here, R and S represent a revolute and spherical 

joint, respectively, and the underlined P denotes a prismatic 

joint driven by a servomotor. A fixed reference frame O xyz  

is placed on the base with O  being at the centre of 1 2B B  

such that the x y  plane contains the triangle 1 2 3ΔB B B  with 

the y  axis parallel to 1 2B B . A moving reference frame 

O x y z     in which all screws are evaluated is also set to have 

O  coincident with the centre of 1 2A A  while keeping its three 

orthogonal axes parallel to those of O xyz . Here, iB  is the 

center of the spherical joint; iA  is the intersecting point of the 

axis of the prismatic joint with the axial axis of the revolute 

joint.  

For illustration purposes, the transmission indices are 

evaluated within a cylindrical task workspace, with H being the 

distance from the top plane to 1 2 3ΔB B B , R being the radius, 

and h being the height of the workspace as shown in Fig. 4. 

However, similar qualitative properties as the ones shown here 

apply also when the evaluated positions are in the 

neighbourhood of the reachable workspace boundaries, as will 

be shown in the second example. As the focus of this paper is 

on the proposition and verification of a new TI measurement, 

determining the reachable workspace for general parallel 

manipulators is outside of the scope of this paper.  

The centroids iA  ( 1, 2,3i  ) are chosen as the 

intersections of the leg axes with the revolute joint axes on the 

platform, respectively. The TWS and CWS can be formulated 

by  

4,

,
4,

ˆ i

T i
i i

 
  

 

s

a s
$ , 

 
5,

,
4, 5,

ˆ i

C i
i i i iq

 
  
   

s

a s s
$ , 1, 2,3i                             (20) 

where ia  is the position vector of iA ; iq  is the thi  limb length; 4,is  is the unit vector of the actuated prismatic joint and 5,is  

is the unit vector of the revolute joint connecting the thi  limb with the platform, satisfying 4, 5,i is s , 5,1 3s a , 5,2 3s a , and 

5,3 1 2A As . This allows 
 T

,
ˆ

O i$  and 
 C

,
ˆ

O i$  to be computed by the procedure given in Section 4.  

For realistic parameters, we set 1 2 75 mm a a , 3 150 mma , 1 2 250 mm b b , 3 500 mmb , 750 mmH  , 

800 mmR  , and 200 mmh  . Fig. 5(a)-(d) show how the OTI and the CTI vary within the top, middle, and bottom layers of the 

cylindrical task workspace. Fig. 5(a) and (c) show the OTI determined by max wCd d  and by  max max ,
w tC Cd d d , respectively; 

it turns out that they are numerically the same. This means that maxd  is dominated by 
wBd  regardless of the system configurations. 

In contrast, the CTI defined by max wCd d  is completely different from that defined by  max max ,
w tC Cd d d , as shown in Fig. 

5(b) and (d), respectively. In fact, as can be seen from the non-overlapping level sets of Figs. 5(b) and 5(d), in the case of the CTI 

actually maxd  is now dominated, for this particular platform, by 
tCd  and it holds max tCd d  everywhere regardless of the 

confirmation. In particular, one can see that the CTI using the existing approach with max wCd d  displays a saddle, making its use 

for optimization purposes impractical. On the other side, by using the here proposed maximal virtual coefficient 

 max max ,
w tC Cd d d , a positive definite behaviour is noticeable in the neighbourhood of the maximum, which makes of the use of 

the CTI as cost function for optimization tasks a well-posed problem. The underlying behaviour can be seen from Fig. 6, which 

shows the variation of the CTI along the z axis ( 0x   and 0y  ). Clearly, CTI defined by max wCd d  remains nearly constant at 

a value of 0.7, while the CTI defined by the present approach as  max max ,
w tC Cd d d  linearly decreases as the z coordinate 

increases. Moreover, there is no intersection between the two lines, showing that 
tCd  is always larger than 

wCd . This also indicates 

that, while the previously published CTI is everywhere insensitive to platform configuration, the newly presented CTI shows a clear 

dependency on platform position, making it suitable to optimize platform position with respect to the CTI. 

In order to compare the performance index developed here, we compare our results with a “conventional” performance index 

Fig. 4  Schematic diagram of a 3-SPR mechanism 
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computation using the condition number. In order to be able to compute the condition number, we have to find a Jacobian that is 

homogeneous in the chosen coordinates. We can achieve this in this particular case by choosing the three coordinates of the position 

vector  
T

x y zr  of the platform center as generalized coordinates. Then, the 3x3 Jacobian can be formulated as 

Jr q , 1
vv vω ωω ωv

 J J J J J                                       (21) 

where 

Fig. 6  Variation of CTI along the z axis, when 0x   and 0y   
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Fig. 7  Distribution of  1 κ J   1: 750 mmz  ; 2: 850 mmz  ; 

3: 950 mmz   
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Fig. 5  Distributions of OTI and CTI  (a) OTI and (b) CTI with 
max wCd d ; (c) OTI and (d) CTI with  max max ,

t wC Cd d d  

1: 750 mmz  ; 2: 850 mmz  ; 3: 950 mmz   
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and r is the vector connecting the base origin O to the platform origin O . As the Jacobian J  is now dimensionally homogeneous, 

it can be computed using the procedure described in [13]. Because J  fully contains the transmission and constraint wrench screws 

simultaneously as seen in Eq. (21), it is reasonable to expect that the distributions of OTI and CTI as separate measures are consistent 

with that of the inverse of the condition number of J. As shown in Fig. 7, the inverse of the condition number of J,  1 κ J , 

throughout the task workspace has a shape and variation of magnitude along the z axis that match well those of the OTI and the CTI 

computed by  max max ,
w tC Cd d d , but inconsistent with that of the CTI computed by 

wCd . This shows that the newly proposed 

transmission indices agree well with the “classical” performance index employing the inverse of the condition number when the 

Jacobian is dimensionally homogeneous, which is not the case for the previously defined transmission indices. In this setting, it 

should be noted that the application of the present method to a platform with homogenizable Jacobian has been performed here for 

comparison purposes only. By using other generalized coordinates, the Jacobian would not have been homogeneous and the 

condition number would not be a sensible measure. However, as the present approach does not depend on dimensionally 

homogeneous Jacobians, it can be applied also to cases where the parallel mechanism has coupled translational and rotational 

movement capabilities and/or the choice of generalized coordinates does not render a dimensionally homogeneous Jacobian. Such a 

case is shown in the next example, where a 3-RPS parallel mechanism is treated. 

 

6. Computation of output and constraint transmission indices for a 3-RPS parallel mechanism 
Using the same performance indices OTI and CTI, a 3-RPS in-parallel 

mechanism with coupled translational and rotational movement capabilities is 

investigated in this section to further show the consistency of the proposed 

approach with the method using the condition number of an equivalent 

dimensionally homogeneous Jacobian based on the point-based method.  

Fig. 8 shows the schematic diagram of the mechanism composed of a base, 

a platform and three identical RPS limbs. A fixed reference frame O xyz  is 

placed on the base with O  being at the centre of the equilateral triangle 

1 2 3ΔB B B  such that the x y  plane contains the triangle, with the x  axis 

parallel to 1 2B B . An moving reference frame O x y z     in which all screws 

are evaluated is also set to have O  coincident with the centre of the 

equilateral triangle 1 2 3ΔA A A  while keeping its three orthogonal axes parallel 

to those of O xyz . Here, iA  is the center of the spherical joint; iB  is the 

intersecting point of the axis of the prismatic joint with the axial axis of the 

revolute joint. 

It is well known that the 3-RPS parallel manipulator has two rotational and 

one translational degrees of freedom. Its orientation matrix of the platform with 

respect to the base can be obtained using three Euler angles, ψ , θ  and   

in terms of precession, nutation, and body rotation according to the z-x-z 

convention, and the relationship ψ   holds for ψ  and   [13]. Its 

kinematic performance can be investigated in the orientation workspace with 

ψ  and θ  for fixed z coordinate. The centroids iA  ( 1, 2,3i  ) are chosen as 

the intersections of the leg axes with the revolute joint axes on the platform, 

respectively. The TWS and CWS can be formulated by  

2,

,
2,

ˆ i

T i
i i

 
  

 

s

a s
$ , 

1,

,
1,

ˆ i

C i
i i

 
  

 

s

a s
$ , 1, 2,3i                                   (22) 

where ia  is the position vector of iA ; 2,is  is the unit vector of the actuated prismatic joint and 1,is  is the unit vector of the 

revolute joint connecting the thi  limb with the base, satisfying 1, 2,i is s . This allows 
 T

,
ˆ

O i$ and
 C

,
ˆ

O i$ , to be computed by the 

procedure given in Section 4. Then, given a set of geometric parameters 250 mmi a  and 312.5 mmi b , the distributions of 

OTI and CTI in the orientation workspace of the mechanism are shown in Fig. 9 given z=536.4 mm to z=736.4 mm. It can be seen 

from Fig. 9(a) that the values of the OTI take the maximum when 0θ   and decrease monotonically with the increase of θ , and 

approach to zero at 55.13θ   for z=536.4 and 60ψ  , 180 , and 300 . Meanwhile, the values of the CTI also approach zero at 

the transmission singular configurations as shown in Fig. 9(b) though they remain almost constant elsewhere. Moreover, the values of 

the OTI increase as the z coordinate increases, meaning that the kinematic performance can be improved slightly by increasing the 

distance between O  and O  within the given range of the stroke. The computational results show that 

 max max ,
w t wC C Cd d d d   for both OTI and CTI in this particular problem, thus for this case the newly presented TI coincides 

Fig. 8  Schematic diagram of a 3-RPS mechanism 
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with the existing one in [25]. As a comparison study, Fig. 10 

shows the distribution of the inverse of the condition number of J, 

 1 κ J , in the orientation workspace, where J is the 

dimensionally homogeneous Jacobian derived using the 

point-based method [13]. It can be seen that the OTI has a shape 

and variation of magnitude along the z axis that match well those 

of  1 κ J . Again, this coincidence shows that the proposed TI is 

a good performance index which for the case of homogeneous 

Jacobians reproduces well the “classical” performance indices, 

thus supporting it general relevance. It should be noted however 

that by the new approach the equivalent performance indices can 

be determined without any need to “homogenize” the Jacobian, 

which requires the choice of measurement points.  

 

7. Conclusions 
This paper presents a new procedure to determine the 

maximal virtual coefficient and by this a new generalized 

approach for computing the transmission index of parallel 

mechanisms. In this setting, the following conclusions can be 

drawn: 

(1) The characteristic length defined in previous papers for single-loop linkages having a fixed axis for the output twist screw 

(OTS) can be generalized for parallel mechanisms.  

(2) Utilizing the dual property of the virtual coefficient, two characteristic points Cw and Ct on the axes of the transmission 

wrench screw (TWS) and output transmission screw (OTS) can be defined, respectively, about which the corresponding screw axes 

may be virtually rotated for finding the maximal value of the characteristic length. This leads to two characteristic lengths 
wCd  and 

tCd  between the TWS and the OTS from which the maximum  max max ,
w tC Cd d d  can be used for computing the maximal 

virtual coefficient.  

(3) The newly introduced maximal virtual coefficient provides a new approach for computing the output and constraint 

transmission indices, OTI and CTI, respectively, which as shown by the example of a 3-SPR, is more sensitive to platform 

configuration for the CTI than the existing method and thus is better suited for platform configuration optimization. 

(4) An analysis of the two examples 3-SPR and 3-RPS parallel mechanisms shows that for the case of dimensionally 

homogenizable Jacobians, the transmission index proposed in this paper behaves similar to the inverse of the condition number of 

dimensionally homogeneous Jacobians. In particular, a comparison of the new TI approach with the existing one shows for the 

example of the 3-SPR that the CTI displays a convex behaviour in the neighbourhood of the maximum, while the previous TI 

approach yields a saddle point. This makes the approach interesting for generating well-posed cost function in kinematic performance 

optimization of lower-mobility parallel mechanisms.  

(5) While the approach presented in this paper yields similar behaviour as the classical condition number kinematic performance 

measure, it has the advantage that no “homogenization” steps for the Jacobian are required such as selection of points for point-based 

Jacobians or the introduction of a characteristic length. Instead, using the proposed OTI and CTI allows one to assess kinematic 

performance in terms of transmission and constraint in a separate manner. 
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Table 1  Explicit expressions of T
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