253 research outputs found

    Soft Robot-Assisted Minimally Invasive Surgery and Interventions: Advances and Outlook

    Get PDF
    Since the emergence of soft robotics around two decades ago, research interest in the field has escalated at a pace. It is fuelled by the industry's appreciation of the wide range of soft materials available that can be used to create highly dexterous robots with adaptability characteristics far beyond that which can be achieved with rigid component devices. The ability, inherent in soft robots, to compliantly adapt to the environment, has significantly sparked interest from the surgical robotics community. This article provides an in-depth overview of recent progress and outlines the remaining challenges in the development of soft robotics for minimally invasive surgery

    Cable-driven parallel mechanisms for minimally invasive robotic surgery

    Get PDF
    Minimally invasive surgery (MIS) has revolutionised surgery by providing faster recovery times, less post-operative complications, improved cosmesis and reduced pain for the patient. Surgical robotics are used to further decrease the invasiveness of procedures, by using yet smaller and fewer incisions or using natural orifices as entry point. However, many robotic systems still suffer from technical challenges such as sufficient instrument dexterity and payloads, leading to limited adoption in clinical practice. Cable-driven parallel mechanisms (CDPMs) have unique properties, which can be used to overcome existing challenges in surgical robotics. These beneficial properties include high end-effector payloads, efficient force transmission and a large configurable instrument workspace. However, the use of CDPMs in MIS is largely unexplored. This research presents the first structured exploration of CDPMs for MIS and demonstrates the potential of this type of mechanism through the development of multiple prototypes: the ESD CYCLOPS, CDAQS, SIMPLE, neuroCYCLOPS and microCYCLOPS. One key challenge for MIS is the access method used to introduce CDPMs into the body. Three different access methods are presented by the prototypes. By focusing on the minimally invasive access method in which CDPMs are introduced into the body, the thesis provides a framework, which can be used by researchers, engineers and clinicians to identify future opportunities of CDPMs in MIS. Additionally, through user studies and pre-clinical studies, these prototypes demonstrate that this type of mechanism has several key advantages for surgical applications in which haptic feedback, safe automation or a high payload are required. These advantages, combined with the different access methods, demonstrate that CDPMs can have a key role in the advancement of MIS technology.Open Acces

    Microdispositivos:: herramientas para aplicaciones médicas

    Get PDF
    Abstract: This article reviews the literature on the latest advances in microdevices for medical applications. The objective is to show an overview of the latest devices and their applications, as well as future development vectors in the area. A search of about 170 articles was performed, most of them published between the years 2015 and 2021, of which 53 were chosen as they were the most topical and impactful in the research fields referred to drug delivery, minimally invasive surgery, and cranial and vascular intromissions. It is concluded that, although microdevices are at an advanced stage of research, they still have many challenges to be solved, which has not allowed clinical trials to be completed in many cases. One of the great challenges ahead is to increase the precision in locomotion and to make the devices capable of performing more complex tasks with the help of smaller-scale electronic devices.Resumen: El presente artículo realiza una revisión de la literatura sobre los últimos avances en cuanto a los micro dispositivos para aplicaciones médicas. El objetivo es mostrar un panorama general de los últimos dispositivos y sus aplicaciones, así como los futuros vectores de desarrollo en el área. Se realizó una búsqueda de alrededor de 170 artículos, la mayoría de ellos publicados entre los años 2015 y 2021, de los cuales se eligieron 53 al ser los de mayor actualidad e impacto en los campos de investigación referidos a la administración de fármacos, la cirugía mínimamente invasiva, y las intromisiones craneales y vasculares. Se concluye que, si bien los micro dispositivos están en una etapa avanzada de investigación, aún tienen muchos desafíos por solucionar, lo cual no ha permitido completar en muchos casos las pruebas clínicas. Uno de los grandes desafíos futuros es incrementar la precisión en locomoción y conseguir que los dispositivos puedan realizar tareas más complejas con ayuda de dispositivos electrónicos de menor escala

    Medical Imaging of Microrobots: Toward In Vivo Applications

    Get PDF
    Medical microrobots (MRs) have been demonstrated for a variety of non-invasive biomedical applications, such as tissue engineering, drug delivery, and assisted fertilization, among others. However, most of these demonstrations have been carried out in in vitro settings and under optical microscopy, being significantly different from the clinical practice. Thus, medical imaging techniques are required for localizing and tracking such tiny therapeutic machines when used in medical-relevant applications. This review aims at analyzing the state of the art of microrobots imaging by critically discussing the potentialities and limitations of the techniques employed in this field. Moreover, the physics and the working principle behind each analyzed imaging strategy, the spatiotemporal resolution, and the penetration depth are thoroughly discussed. The paper deals with the suitability of each imaging technique for tracking single or swarms of MRs and discusses the scenarios where contrast or imaging agent's inclusion is required, either to absorb, emit, or reflect a determined physical signal detected by an external system. Finally, the review highlights the existing challenges and perspective solutions which could be promising for future in vivo applications

    Recent advances in biomedical photonic sensors: a focus on optical-fibre-based sensing

    Get PDF
    In this invited review, we provide an overview of the recent advances in biomedical pho tonic sensors within the last five years. This review is focused on works using optical-fibre technology, employing diverse optical fibres, sensing techniques, and configurations applied in several medical fields. We identified technical innovations and advancements with increased implementations of optical-fibre sensors, multiparameter sensors, and control systems in real applications. Examples of outstanding optical-fibre sensor performances for physical and biochemical parameters are covered, including diverse sensing strategies and fibre-optical probes for integration into medical instruments such as catheters, needles, or endoscopes.This work was supported by Ministerio de Ciencia e Innovación and Agencia Estatal de Investigación (PID2019-107270RB-C21/AEI/10.13039/501100011033), and TeDFeS Project (RTC-2017- 6321-1) co-funded by European FEDER funds. M.O. and J.F.A. received funding from Ministerio de Ciencia, Innovación y Universidades of Spain under Juan de la Cierva-Formación and Juan de la Cierva-Incorporación grants, respectively. P.R-V. received funding from Ministerio de Educación, Cultura y Deporte of Spain under PhD grant FPU2018/02797

    Development of A Soft Robotic Approach for An Intra-abdominal Wireless Laparoscopic Camera

    Get PDF
    In Single-Incision Laparoscopic Surgery (SILS), the Magnetic Anchoring and Guidance System (MAGS) arises as a promising technique to provide larger workspaces and field of vision for the laparoscopes, relief space for other instruments, and require fewer incisions. Inspired by MAGS, many concept designs related to fully insertable magnetically driven laparoscopes are developed and tested on the transabdominal operation. However, ignoring the tissue interaction and insertion procedure, most of the designs adopt rigid structures, which not only damage the patients\u27 tissue with excess stress concentration and sliding motion but also require complicated operation for the insertion. Meanwhile, lacking state tracking of the insertable camera including pose and contact force, the camera systems operate in open-loop control. This provides mediocre locomotion precision and limited robustness to uncertainties in the environment. This dissertation proposes, develops, and validates a soft robotic approach for an intra-abdominal wireless laparoscopic camera. Contributions presented in this work include (1) feasibility of a soft intra-abdominal laparoscopic camera with friendly tissue interaction and convenient insertion, (2) six degrees of freedom (DOF) real-time localization, (3) Closed-loop control for a robotic-assisted laparoscopic system and (4) untethering solution for wireless communication and high-quality video transmission. Embedding magnet pairs into the camera and external actuator, the camera can be steered and anchored along the abdominal wall through transabdominal magnetic coupling. To avoid the tissue rapture by the sliding motion and dry friction, a wheel structure is applied to achieve rolling motion. Borrowing the ideas from soft robotic research, the main body of the camera implements silicone material, which grants it the bendability to passively attach along the curved abdominal wall and the deformability for easier insertion. The six-DOF pose is estimated in real-time with internal multi-sensor fusion and Newton-Raphson iteration. Combining the pose tracking and force-torque sensor measurement, an interaction model between the deformable camera and tissue is established to evaluate the interaction force over the tissue surface. Moreover, the proposed laparoscopic system is integrated with a multi-DOF manipulator into a robotic-assisted surgical system, where a closed-loop control is realized based on a feedback controller and online optimization. Finally, the wireless control and video streaming are accomplished with Bluetooth Low Energy (BLE) and Analog Video (AV) transmission. Experimental assessments have been implemented to evaluate the performance of the laparoscopic system

    Modeling and design of an electromagnetic actuation system for the manipulation of microrobots in blood vessels

    Get PDF
    Tese de mestrado integrado em Física, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2015A navegação de nano/microdispositivos apresenta um grande potencial para aplicações biomédicas, oferecendo meios de diagnóstico e procedimentos terapêuticos no interior do corpo humano. Dada a sua capacidade de penetrar quase todos os materiais, os campos magnéticos são naturalmente adequados para controlar nano/microdispositivos magnéticos em espaços inacessíveis. Uma abordagem recente é o uso de um aparelho personalizado, capaz de controlar campos magnéticos. Esta é uma área de pesquisa prometedora, mas mais simulações e experiências são necessárias para avaliar a viabilidade destes sistemas em aplicações clínicas. O objectivo deste projecto foi a simulação e desenho de um sistema de atuação eletromagnética para estudar a locomoção bidimensional de microdispositivos. O primeiro passo foi identificar, através da análise de elementos finitos, usando o software COMSOL, diferentes configurações de bobines que permitiriam o controlo de dispositivos magnéticos em diferentes escalas. Baseado nos resultados das simulações, um protótipo de um sistema de atuação magnética para controlar dispositivos com mais de 100 m foi desenhado e construído de raiz, tendo em conta restrições de custos. O sistema consistiu num par de bobines de Helmholtz e rotacionais e um par de bobines de Maxwell dispostas no mesmo eixo. Além disso, componentes adicionais tiveram de ser desenhados ou selecionados para preencher os requisitos do sistema. Para a avaliação do sistema fabricado, testes preliminares foram realizados. A locomoção do microrobot foi testada em diferentes direções no plano x-y. As simulações e experiências confirmaram que é possível controlar a força magnética e o momento da força que atuam num microdispositivo através do campos produzidos pelas bobines de Maxwell e Helmholtz, respectivamente. Assim, este tipo de atuação magnética parece ser uma forma adequada de transferência de energia para futuros microdispositivos biomédicos.Navigation of nano/microdevices has great potential for biomedical applications, offering a means for diagnosis and therapeutic procedures inside the human body. Due to their ability to penetrate most materials, magnetic fields are naturally suited to control magnetic nano/microdevices in inaccessible spaces. One recent approach is the use of custom-built apparatus capable of controlling magnetic devices. This is a promising area of research, but further simulation studies and experiments are needed to estimate the feasibility of these systems in clinical applications. The goal of this project was the simulation and design of an electromagnetic actuation system to study the two dimensional locomotion of microdevices. The first step was to identify, through finite element analysis using software COMSOL, different coil configurations that would allow the control of magnetic devices at different scales. Based on the simulation results, a prototype of a magnetic actuation system to control devices with more than 100 m was designed and built from the ground up, taking into account cost constraints. The system comprised one pair of rotational Helmholtz coils and one pair of rotational Maxwell coils placed along the same axis. Furthermore, additional components had to be designed or selected to fulfil the requirements of the system. For the evaluation of the fabricated system, preliminary tests were carried out. The locomotion of a microdevice was tested along different directions in the x-y plane. The simulations and experiments confirmed that it is possible to control the magnetic force and torque acting on a microdevice through the fields produced by Maxwell and Helmholtz coils, respectively. Thus, this type of magnetic actuation seems to provide a suitable means of energy transfer for future biomedical microdevices

    Application of micro/nanorobot in medicine

    Get PDF
    The development of micro/nanorobots and their application in medical treatment holds the promise of revolutionizing disease diagnosis and treatment. In comparison to conventional diagnostic and treatment methods, micro/nanorobots exhibit immense potential due to their small size and the ability to penetrate deep tissues. However, the transition of this technology from the laboratory to clinical applications presents significant challenges. This paper provides a comprehensive review of the research progress in micro/nanorobotics, encompassing biosensors, diagnostics, targeted drug delivery, and minimally invasive surgery. It also addresses the key issues and challenges facing this technology. The fusion of micro/nanorobots with medical treatments is poised to have a profound impact on the future of medicine

    Photonic sensors

    Get PDF
    This invited featured paper offers a Doctrinal Conception of sensing using Light (SuL) as an “umbrella” in which any sensing approach using Light Sciences and Technologies can be easily included. The key requirements of a sensing system will be quickly introduced by using a bottom-up methodology. Thanks to this, it will be possible to get a general conception of a sensor using Light techniques and know some related issues, such as its main constituted parts and types. The case in which smartness is conferred to the device is also considered. A quick “flight” over 10 significant cases using different principles, techniques, and technologies to detect diverse measurands in various sector applications is offered to illustrate this general concept. After reading this paper, any sensing approach using Light Sciences and Technologies may be easily included under the umbrella: sensing using Light or photonic sensors (PS).This work has been supported by Ministerio de Ciencia e Innovación and Agencia Estatal de Investigación (Grant PID2019-107270RB-C21 funded by MCIN/AEI /10.13039/501100011033) and also TeDFeS Project (grant RTC-2017-6321-1) co-funded by European FEDER funds ( as a way of making Europe)
    corecore