725 research outputs found

    Assessing the Computational Complexity of Multi-Layer Subgraph Detection

    Get PDF
    Multi-layer graphs consist of several graphs (layers) over the same vertex set. They are motivated by real-world problems where entities (vertices) are associated via multiple types of relationships (edges in different layers). We chart the border of computational (in)tractability for the class of subgraph detection problems on multi-layer graphs, including fundamental problems such as maximum matching, finding certain clique relaxations (motivated by community detection), or path problems. Mostly encountering hardness results, sometimes even for two or three layers, we can also spot some islands of tractability

    Characterising and recognising game-perfect graphs

    Get PDF
    Consider a vertex colouring game played on a simple graph with kk permissible colours. Two players, a maker and a breaker, take turns to colour an uncoloured vertex such that adjacent vertices receive different colours. The game ends once the graph is fully coloured, in which case the maker wins, or the graph can no longer be fully coloured, in which case the breaker wins. In the game gBg_B, the breaker makes the first move. Our main focus is on the class of gBg_B-perfect graphs: graphs such that for every induced subgraph HH, the game gBg_B played on HH admits a winning strategy for the maker with only ω(H)\omega(H) colours, where ω(H)\omega(H) denotes the clique number of HH. Complementing analogous results for other variations of the game, we characterise gBg_B-perfect graphs in two ways, by forbidden induced subgraphs and by explicit structural descriptions. We also present a clique module decomposition, which may be of independent interest, that allows us to efficiently recognise gBg_B-perfect graphs.Comment: 39 pages, 8 figures. An extended abstract was accepted at the International Colloquium on Graph Theory (ICGT) 201

    Ore- and Fan-type heavy subgraphs for Hamiltonicity of 2-connected graphs

    Full text link
    Bedrossian characterized all pairs of forbidden subgraphs for a 2-connected graph to be Hamiltonian. Instead of forbidding some induced subgraphs, we relax the conditions for graphs to be Hamiltonian by restricting Ore- and Fan-type degree conditions on these induced subgraphs. Let GG be a graph on nn vertices and HH be an induced subgraph of GG. HH is called \emph{o}-heavy if there are two nonadjacent vertices in HH with degree sum at least nn, and is called ff-heavy if for every two vertices u,vV(H)u,v\in V(H), dH(u,v)=2d_{H}(u,v)=2 implies that max{d(u),d(v)}n/2\max\{d(u),d(v)\}\geq n/2. We say that GG is HH-\emph{o}-heavy (HH-\emph{f}-heavy) if every induced subgraph of GG isomorphic to HH is \emph{o}-heavy (\emph{f}-heavy). In this paper we characterize all connected graphs RR and SS other than P3P_3 such that every 2-connected RR-\emph{f}-heavy and SS-\emph{f}-heavy (RR-\emph{o}-heavy and SS-\emph{f}-heavy, RR-\emph{f}-heavy and SS-free) graph is Hamiltonian. Our results extend several previous theorems on forbidden subgraph conditions and heavy subgraph conditions for Hamiltonicity of 2-connected graphs.Comment: 21 pages, 2 figure

    Ore-degree threshold for the square of a Hamiltonian cycle

    Full text link
    A classic theorem of Dirac from 1952 states that every graph with minimum degree at least n/2 contains a Hamiltonian cycle. In 1963, P\'osa conjectured that every graph with minimum degree at least 2n/3 contains the square of a Hamiltonian cycle. In 1960, Ore relaxed the degree condition in the Dirac's theorem by proving that every graph with deg(u)+deg(v)ndeg(u) + deg(v) \geq n for every uvE(G)uv \notin E(G) contains a Hamiltonian cycle. Recently, Ch\^au proved an Ore-type version of P\'osa's conjecture for graphs on nn0n\geq n_0 vertices using the regularity--blow-up method; consequently the n0n_0 is very large (involving a tower function). Here we present another proof that avoids the use of the regularity lemma. Aside from the fact that our proof holds for much smaller n0n_0, we believe that our method of proof will be of independent interest.Comment: 24 pages, 1 figure. In addition to some fixed typos, this updated version contains a simplified "connecting lemma" in Section 3.

    Proper connection number of graphs

    Get PDF
    The concept of \emph{proper connection number} of graphs is an extension of proper colouring and is motivated by rainbow connection number of graphs. Let GG be an edge-coloured graph. Andrews et al.\cite{Andrews2016} and, independently, Borozan et al.\cite{Borozan2012} introduced the concept of proper connection number as follows: A coloured path PP in an edge-coloured graph GG is called a \emph{properly coloured path} or more simple \emph{proper path} if two any consecutive edges receive different colours. An edge-coloured graph GG is called a \emph{properly connected graph} if every pair of vertices is connected by a proper path. The \emph{proper connection number}, denoted by pc(G)pc(G), of a connected graph GG is the smallest number of colours that are needed in order to make GG properly connected. Let k2k\geq2 be an integer. If every two vertices of an edge-coloured graph GG are connected by at least kk proper paths, then GG is said to be a \emph{properly kk-connected graph}. The \emph{proper kk-connection number} pck(G)pc_k(G), introduced by Borozan et al. \cite{Borozan2012}, is the smallest number of colours that are needed in order to make GG a properly kk-connected graph. The aims of this dissertation are to study the proper connection number and the proper 2-connection number of several classes of connected graphs. All the main results are contained in Chapter 4, Chapter 5 and Chapter 6. Since every 2-connected graph has proper connection number at most 3 by Borozan et al. \cite{Borozan2012} and the proper connection number of a connected graph GG equals 1 if and only if GG is a complete graph by the authors in \cite{Andrews2016, Borozan2012}, our motivation is to characterize 2-connected graphs which have proper connection number 2. First of all, we disprove Conjecture 3 in \cite{Borozan2012} by constructing classes of 2-connected graphs with minimum degree δ(G)3\delta(G)\geq3 that have proper connection number 3. Furthermore, we study sufficient conditions in terms of the ratio between the minimum degree and the order of a 2-connected graph GG implying that GG has proper connection number 2. These results are presented in Chapter 4 of the dissertation. In Chapter 5, we study proper connection number at most 2 of connected graphs in the terms of connectivity and forbidden induced subgraphs Si,j,kS_{i,j,k}, where i,j,ki,j,k are three integers and 0ijk0\leq i\leq j\leq k (where Si,j,kS_{i,j,k} is the graph consisting of three paths with i,ji,j and kk edges having an end-vertex in common). Recently, there are not so many results on the proper kk-connection number pck(G)pc_k(G), where k2k\geq2 is an integer. Hence, in Chapter 6, we consider the proper 2-connection number of several classes of connected graphs. We prove a new upper bound for pc2(G)pc_2(G) and determine several classes of connected graphs satisfying pc2(G)=2pc_2(G)=2. Among these are all graphs satisfying the Chv\'{a}tal and Erd\'{o}s condition (α(G)κ(G)\alpha({G})\leq\kappa(G) with two exceptions). We also study the relationship between proper 2-connection number pc2(G)pc_2(G) and proper connection number pc(G)pc(G) of the Cartesian product of two nontrivial connected graphs. In the last chapter of the dissertation, we propose some open problems of the proper connection number and the proper 2-connection number
    corecore