research

Ore- and Fan-type heavy subgraphs for Hamiltonicity of 2-connected graphs

Abstract

Bedrossian characterized all pairs of forbidden subgraphs for a 2-connected graph to be Hamiltonian. Instead of forbidding some induced subgraphs, we relax the conditions for graphs to be Hamiltonian by restricting Ore- and Fan-type degree conditions on these induced subgraphs. Let GG be a graph on nn vertices and HH be an induced subgraph of GG. HH is called \emph{o}-heavy if there are two nonadjacent vertices in HH with degree sum at least nn, and is called ff-heavy if for every two vertices u,vV(H)u,v\in V(H), dH(u,v)=2d_{H}(u,v)=2 implies that max{d(u),d(v)}n/2\max\{d(u),d(v)\}\geq n/2. We say that GG is HH-\emph{o}-heavy (HH-\emph{f}-heavy) if every induced subgraph of GG isomorphic to HH is \emph{o}-heavy (\emph{f}-heavy). In this paper we characterize all connected graphs RR and SS other than P3P_3 such that every 2-connected RR-\emph{f}-heavy and SS-\emph{f}-heavy (RR-\emph{o}-heavy and SS-\emph{f}-heavy, RR-\emph{f}-heavy and SS-free) graph is Hamiltonian. Our results extend several previous theorems on forbidden subgraph conditions and heavy subgraph conditions for Hamiltonicity of 2-connected graphs.Comment: 21 pages, 2 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions