research

Characterising and recognising game-perfect graphs

Abstract

Consider a vertex colouring game played on a simple graph with kk permissible colours. Two players, a maker and a breaker, take turns to colour an uncoloured vertex such that adjacent vertices receive different colours. The game ends once the graph is fully coloured, in which case the maker wins, or the graph can no longer be fully coloured, in which case the breaker wins. In the game gBg_B, the breaker makes the first move. Our main focus is on the class of gBg_B-perfect graphs: graphs such that for every induced subgraph HH, the game gBg_B played on HH admits a winning strategy for the maker with only ω(H)\omega(H) colours, where ω(H)\omega(H) denotes the clique number of HH. Complementing analogous results for other variations of the game, we characterise gBg_B-perfect graphs in two ways, by forbidden induced subgraphs and by explicit structural descriptions. We also present a clique module decomposition, which may be of independent interest, that allows us to efficiently recognise gBg_B-perfect graphs.Comment: 39 pages, 8 figures. An extended abstract was accepted at the International Colloquium on Graph Theory (ICGT) 201

    Similar works