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1 Introduction

Nowadays, graph theory is one of the most interesting subjects in discrete mathematics.
The problem that is often said to be the birth of graph theory is the Seven Bridges of
Konigsberg: Is there a walk route that crosses each of the seven bridges of Kénigsberg
exactly once? In 1736, Euler published the paper on solution of this problem which is
regarded as the first paper in the history of graph theory [33]. After 200 years of the
first paper, the first textbook on graph theory was written. This was done by Konig in
1936 [53]. Since then many publications have been published about the new problems
of graph theory. As well as many textbooks have been written about graph theory.
One of them is the Introduction to Graph Theory of West. In [71]| the author wrote
that graph theory is a delightful playground for the exploration of proof techniques
in discrete mathematics. Graph theory is to study graphs which are mathematical
structures given to model pairwise relations between objects. A graph in this context
consists of the vertices which are connected by the edges. By time to time, graph theory
has developed into an extensive and popular branch of mathematics, which are widely
used to study and model in the distinct areas of mathematics, computer science, social,
natural sciences and other scientific and not-so-scientific areas [40]. They include, study
of molecules, construction of bonds in chemistry and the study of atoms. Similarly,
graph theory is used in sociology for example to measure actor prestige or to explore
diffusion mechanisms [2]. In computer science, graphs are used to represent networks
of communication, data organizations, computational devices, etc.

In graph theory, graph colouring, which plays an important role, is the assigment of
labels or colours to the edges or vertices of a graph. The most common types of
graph colouring are edge-colouring and vertex-colouring. There are many interesting
applications using graph colourings. The committe-scheduling example used graph
colouring to model avoidance of conflicts [71]. Moreover, graph colouring especially
is used in computer science such data mining, image segmentation, clustering, image
capturing, networking etc. For example, a data structure can be designed in the form
of a tree which in turn utilized vertices and edges [69].

The connectivity which is one of the most fundamental concepts of graph theory plays
an important role in a combinatorial and an algorithmic sense. There exist many
interesting results on connectivity in graph theory. Moreover, the connectivity plays
an important role for security in a communication network which is defined in |20, 58,
4] and for accessibility in a communication network which is defined in [57, 35, 4].

Consider a communication network of wireless signal agencies, one fundamental re-
quirement is that the network is connected. Hence, the information is sent through the
network from agency A to agency B by an information transmission path. There are
two types of these paths in the network which are called a direct information transmis-
sion path and an undirect information transmission path, since the direct information



1 Introduction 2

transmission paths for all agencies are expensive. The undirect information transmis-
sion path between two agencies A and B is a set of the direct information transmission
paths such that there are some intermediary agencies on this path connecting them.

Recently, the security of the communication network is very important after the Septem-
ber 11, 2001 terrorist attacks. Hence, the Department of Homeland Security was
created in 2003 in response to weaknesses discovered in the transfer of classified infor-
mation. Ericksen made the following observation [32]:

An unanticipated aftermath of those deadly attacks was the realization
that law enforcement and intelligence agencies couldn’t communicate with
each other through their regular channels, from radio systems to databases.
The technologies utilized were separate entities and prohibited shared access,
meaning that there was no way for officers and agents to cross check infor-
mation between various organizations.

The information is sent from agency A to agency B by the information transmission
path need to be protected, (since the secure requirements which permit access between
appropriate parties). Hence, we must require a large enough number of passwords and
firewalls that are able to prevent the attack to the information transmission paths.
A natural question appears: What is the minimum number of passwords or firewalls
needed that allows at least one secure information transmission path between two
agencies A and B such that the passwords along each path are distinct? By modeling
on a graph, each agency as a vertex, each direct information transmission path between
two agencies as an edge, and each possible password of the information transmission
path as different colours on the edges of this path. It can be readily seen that the
information transfers through the communication network between two agencies A and
B by the secure information transmission path is the connection between two vertices
A and B of the edge-colouring graph by a coloured path whose edges receive distinct
colours. This concept called rainbow connection number was introduced by Chartrand
et al. [20] in 2008.

Shall we come back the above practical problem with other conditions to apply the
results of graph theory for the accessibility of the communication networks? If there
is not any direct information transmission path connecting two agencies A and B,
then there must be some intermediary agencies of the information transmission path
connecting them. To avoid interference, it would help if the input signal and the
output signal of the intermediary agencies can not share the same frequency. The
communication network can be represented by the edge-colouring graph as follows: each
agency as a vertex, each direct information transmission path between two agencies as
an edge, and each frequency as the colour of the edge. Clearly, the information sends
from agency A to agency B by the information transmission path whose the input
signal and the output signal of the intermediary agencies are different is the connection
between two vertices A and B of the edge-colouring graph by a coloured path whose
consecutive edges receive distinct colous. This concept called proper connection number
was introduced independently by Borozan et al. [8] and Andrews et al. [4] only recently.

The main contribution of this dissertation is to study the proper k-connection number
pck (@) of connected graphs G. For k = 1, we characterize some classes of 2-connected
graph with proper connection number 2. Besides, we disprove Conjecuture 3 which was
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posed by the authors in [8] by constructing the classes of graphs with the minimum
degree at least 3 have proper connection number 3. For k = 2, we prove a new upper
bound on the proper 2-connection number pcy(G) and determine peo(G) = 2 for several
classes of graphs. The detailed chapters of this dissertation are structured as follows:

In Chapter 2, the theoretical background is described. This includes notation and
terminology of graph theory, the introduction of some frequently used graphs, and
the definition of problem and its related problems.

In Chapter 3, we present the existent results, which are examples, propositions,
corollaries, lemmas, theorems and, conjectures on the proper connection number.
This chapters includes four sections which are the preliminary results, the proper
connection number of a connected bridgeless graph, the proper connection number
of graphs having bridge and proper connection number 2 of some classes of graphs.

In Chapter 4, we consider the relation between the proper connection number
and minimum degree of a connected graph. In this chapter, Conjecture 3 in [8] is
disproved by constructing classes of graphs with minimum degree at least 3 that
have proper connection number 3. Further, we study proper connection number
2 in a 2-connected graph with the condition of minimum degree.

In Chapter 5, we characterize the classes of connected, S; ;-free graphs whose
the proper connection number is 2.

In Chapter 6, we consider the proper 2-connection number of a connected graph G.
We prove a new upper bound for pca(G) and study proper 2-connection number 2
of several classes of graphs, among them the Cartesian product of two non-trivial
connected graphs.

Finally, in Chapter 7, we propose some open questions and problems of the proper
k-connection number.



2 Notation, terminology and
definition

In this chapter, we introduce the definitions, notation and terminologies of graph the-
ory, and the notation of frequently used graphs which are needed to follow the disser-
tation. Moreover, we also describe the problems and its related problems.

2.1 Notation and terminology

In this section, most of the notation and terminologies of graph theory used throughout
in the dissertation are described. All of them can be found in |7, 71].

First of all, we briefly summarize some notation of sets which will be used later on.
For simplified notation, let [k] be the set {1,2,...,k} for some positive integers k. Let
A, B be two sets of elements. We denote by |A| the cardinality of the set A which is its
number of elements. A is a subset of B, denoted by A C B if all elements of A are also
elements of B. The relative complement of B in A denoted by A\ B is set of elements in
A but not in B. A Cartesian product of two sets A, B denoted by A x B is the set of all
ordered pairs (a,b) where a € A and b € B. That is AxB = {(a,b)|a € A,b € B}. The
intersection or the union of two sets A, B are written by AN B or A U B, respectively.
For an arbitrary integer k > 3, we denote by Uf:ﬂUZ- or ﬂleUi the intersection or the
union of k sets U;, where i € [k], respectively. Let LI be the operation symbol for the
disjoint union of sets.

All graphs considered in the dissertation are finite, undirected, simple graphs i.e. with-
out multiple edges and loopless. A graph is an ordered pair G = (V, E) with a vertex
set V(G) and an edge set E(G). The edge set E(G) is a 2-elements subset of V(G) or
an empty set. Since we consider only the finite graph G, it means that both |V(G)| and
|E(G)| are finite. Moreover, |E(G)| is bounded by 0 and ('V(QG)‘) since G is loopless and
without multiple edges. Unless stated otherwise, let us denote by n(G) = |V(G)| and
m(G) = |E(G)| the number of the vertices and the number of the edges of G, respec-
tively. Some times, we denote n(G) as the order of G and m(G) as the size of G. If G
is obviously defined , then we can write V, E,n, m, instead of V(G), E(G),n(G), m(G)
for short, respectively.

Let u,v € V(G) be two distinct vertices in G. By the definition above, if (u,v) € E(G),
then u,v are adjacent in G. Otherwise, u,v are non-adjacent in G. To simplify
notation, we can write uv, instead of (u,v). Vice versa, if e is an edge of E(G),
then there exist two distinct vertices u,v € V(@) such that e = uv. Hence, u, v are
called the end-vertices of e and u, e or v,e are incident. Moreover, v is a neighbour
of u and we denote by v € Ng(u) where Ng(u) is called the neighbour set of w.
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Clearly, for every vertex u € V(G), we denote by Ng(u) = {vjuv € E(G)}. The close
neighbour set of u is denoted by Ng[u] = Ng(u) U {u}. The degree of a vertex u in
G which is the cardinality of Ng(u) is denoted by dg(u) = |Ng(u)|. It is clear that
A(G) = max{dg(u)|u € V(G)} and §(G) = min{dg(u)|u € V(G)} are the mazimum
degree and the minimum degree of G, respectively. We can write A, 0, d(u), instead of
A(G),(G), dg(u) for short, respectively.

For an integer k, a k—regular graph is a graph whose maximum degree and the minimum
degree are number k, i.e. its all vertices are of degree k.

A path is a simple graph on two or more vertices which can be arranged in a linear
sequence in such a way that two vertices are adjacent if they are consecutive in the
sequence, and are non-adjacent otherwise. We denote by P = vyvy... v, or P(vy,v,)
the path between vy, v,,, where n is integer. Hence, dp(v;) = 1 if and only if v; € {vy,v,}
and dp(v;) = 2 if and only if v; € V(P)\{vy, v, }. Moreover, vy, v, are end-vertices of P.
Clearly, |V(P)| =n and |E(P)| =n — 1. For a path P and two vertices v;,v; € V(P),
we denote by v; Pv; the subpath of P from v; to v;.

Likewise, a cycle on three or more vertices is a simple graph whose vertices can be
arranged in a cyclic sequence in such a way that two vertices are adjacent if they are
consecutive in the sequence, and are non-adjacent otherwise. Let n > 3 be an integer.
Hence, we denote by C' = vjvy ... v,v1 or C,, = v10s ... v,v; the cycle on n vertices. All
vertices of C' have degree number 2. Clearly, |V (C)| = |E(C)| = n.

A chord of a cycle C' is an edge not in C' whose end-vertices lie in C'. A chordless cycle
in G is a cycle of length at least 4 in GG that has no chord (that is, the cycle is an
induced subgraph). A graph G is chordal if it is simple and has no chordless cycle.

Let P, @) be two paths connecting u, v in G. Two paths P, () are called internally vertez-
disjoint paths if they have no common internal vertices, i.e. V(P)NV(G) = {u,v}.

A graph G is said to be connected if, for every two distinct vertices v;,v; € V(G),
there exists at least one path P = v;v;41...v;_1v; connecting them in G. That is a
(v;,v;)—path. Otherwise, G is disconnected. If G has a v;, v;—path, then v; is connected
to v; in G. The length of a v;,v;-path denoted by Lg(v;,v;) is its number of edges.
The least length of a v;, vj-path written by d(v;, v;) is said to be the distance from v;
to v;. If G has no such path, then Lg(v;,v;) = dg(vi, vj) = oo. If G is known from the
context, we can write L(v;, v;), d(v;,v;), instead of Le(vs, v;), da(vi, v;), for simplicity.
The diameter of G denoted by diam(G) is max{d(v;, vj)|vi,v; € V(G)}.

A graph H is a subgraph of G if and only if V(H) C V(G) and F(H) C E(G). A
maximal connected subgraph of GG is a connected subgraph which is not contained in
an other connected subgraph of G. The components of a graph G are its maximal
connected subgraphs of G. The number of components of G is written by w/'(G). A
component (or graph) is said to be trivial if it has no edges; otherwise it is non-trivial.
A forest or an acyclic graph is a graph that does not contain any cycle as a subgraph.
Moreover, a connected forest written by 7' is said to be a tree. A leaf or pendant vertex
is a vertex of degree 1.

An operation which is to delete a vertex v from G with together all the edges incident
with v or an edge e from G but keeping all the vertices and the remaining edges intact
is called vertex deletion or edge deletion, respectively. A cut-vertex or a cut-edge of a
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graph G is a vertex or an edge, respectively, whose deletion increases the number of
components. We write G — v or G — S for the subgraph that is obtained by deleting a
vertex v or a vertex subset S C V(@) from G. If G—S has more than one componenent,
then we say that S is a separating set or a vertex-cut set of G. The connectivity of
G written (@) is the minimum size of a vertex subset S C V(G) such that G — S is
disconnected or has only one vertex. A graph G is k-connected if its connectivity is
at least k. Likewise, we write G — e or G — M for the subgraph that is obtained by
deleting an edge e or an edge subset M C E(G) from G. If G — M has more than
one component, then M is said to be a disconnecting set or an edge-cut set of G. The
edge-connectivity of G written £’(G) is the minimum size of an edge subset M C E(G)
such that G— M is disconnected. A graph G is k-edge-connected if its edge-connectivity
is at least k.

A block of a graph G is a maximal connected subgraph of G that has no cut-vertex.
Moreover, if GG itself is connected and has no cut-vertex, then G is a block.

An edge in a graph G is said to be a bridge if it is a cut-edge of G. Vice versa, a
bridgeless graph is a graph without cut-edges. Note that if G is a 2-edge-connected
graph, then G is bridgeless.

We say that a subgraph H is an induced subgraph of G or G induces H if H can be
obtained from G by deleting some (possibly none) vertices together with all incident
edges. For a vertex subset S C V(G), the subgraph obtained from G by deleting all
the vertices from V' (G) \ S is induced by S and denoted by G[S]. A spanning subgraph
H of G is a subgraph which is obtained by deleting some (possibly none) edges, i.e.
V(H) =V(G) and E(H) C E(G). A spanning tree of G is a spanning subgraph of G
that is a tree.

A graph G is said to be F'-free (F-free) if G contains no induced subgraph F' (all graphs
of F) which is isomorphic to F' (all graphs of F).

Let G and H be two graphs. An isomorphism from G to H is a bijection function
f:V(G) = V(H) such that wv € E(G) if and only if f(u)f(v) € E(H). We say that
G is wsomorphic to H denoted by G = H if there exists a isomorphism from G to H.

The complement of a simple graph G, denoted by G, is the simple graph with vertex

set V(@) defined by uv € E(G) if and only if uv ¢ E(Q).

A vertex subset S C V(G) is said to be an independent set of G or a clique of G if every
two vertices u,v € S are non-adjacent or adjacent, respectively. The independence
number of G denoted by «(G) is the maximum size of an independent set in G. The
clique number of G written by w(G) is the cardinality of a maximum clique in G.

A Hamiltonian path is a path that visits each vertex exactly once such a graph is also
called traceable. Morveover, a Hamiltonian graph is a graph with a spanning cycle,
also called a Hamiltonian cycle.

For two simple graphs G and H, the Cartesian product G and H, denoted by GLIH,
is the simple graph with vertex set V(G) x V(H) specified by putting (u,v;) adjacent
to (ug,v9) if and only if u; = uy and vyvy € E(H), or v; = vy and wjus € E(G). It
means that

E(GOH) = {(u1,v1)(ug,v2) : u1 = ug and vyvy € E(H), or v; = ve and uyuy € E(G)}.
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If G is a graph and U;, Uy C V(G) are two disjoint vertex sets, then [Uy, Us] denotes
the set of edges between vertices of Uy and vertices of Us.

The union of graphs Gy --- Gy, written G7 U --- U Gy, is the graph with vertex set
U V(G;) and edge set UF_, E(G;). The graph obtained by taking the union of graphs
G and H with disjoint vertex sets is the disjoint union, written G + H. The join of
simple graphs G and H, written G V H, is the graph obtained from the disjoint union
G + H by adding the edges {zy : 2 € V(G),y € E(G)}.

Let us denote F' be a subgraph of G. An ear of F' in G is a nontrivial path whose only
two end-vertices are in I’ and its others vertices are not in F. An ear decomposition
of G is a decomposition Fy, Py, ..., P, such that Py is a cycle and P, is an ear of
PyU...UP_;.

Let G be a graph, u,v € V(G) be two distinct vertices, and P = wyws . .. wy, be a path,
vertex disjoint from G. We say, we add the ear P to G by adding P and the edges uw;
and vwy. Hence, for a ©-graph G, there exist a cycle C' and a path P such that G is
obtained by adding the ear P to C'. We define a 2-ear-cycle and a 3-ear-cycle to be a
graph obtained by adding an ear to a ©-graph or 2-ear cycle, respectively.

In a graph G, the subdivision of an edge uv is the operation of replacing uv with a
path u,w, v through a new vertex w.

A k-edge-colouring is a labeling ¢ : E(G) — [k] that uses exactly k different colours to
all the edges of GG such that one colour to each edge of G' and two adjacent edges can
be assigned the same colour. Once the edges of G are assigned by ¢, an (edge-)coloured
graph G is given. For an edge e = uv of G, we write by c¢(uv) or ¢(e) the colour of
the edge uv or e. A path P in an edge-coloured graph G is called a coloured path. We
denote by start(P) and end(P), respectively, colour of the first edge and colour of the
last edge of a coloured path P. If P is just an edge uv, then start(P) = end(P) = c(uv).

2.2 Frequently used graphs

In this section, we give the introduction and denotation of some commonly used graphs
that are used several times in this dissertation. Let m be an integer. We denote by
P, = uy...u,, where n > 2 be a path of order n (see Figure 2.1). By the definition
of a path, it can be readily seen that the size of P, is n — 1. Likewise, we write
by C, = uy...unuy, where n > 3 be a cycle of order n (see Figure 2.2). A cycle
is a graph whose the number of vertices and the number of edges are the same, i.e.
\V(Cy)| = |E(Cy)|- A complete graph denoted by K, (see Figure 2.3), where n > 1 is
a simple graph whose vertices are pairwise adjacent.

A graph G is bipartite if its vertex set can be partitioned into two vertex subsets X, Y,
Le V(G) = XUY and X NY = {0} such that every edge has one end-vertex in X and
one end-vertex in Y. A bipartite graph is written by G[X,Y]|. A complete bipartite, see
Figure 2.4, written by K,, ,, is a simple biparte graph and every vertex in X is adjacent
to every vertex in Y. If m = 1, then K, ,, see Figure 2.5, is said to be a star of order
n + 1 and size n. Note that a tree whose the maximum degree is its size is a star. A
claw written by K3 is a star of order 4 where m = 1,n = 3. Let k > 3 be integer.
Likewise, a graph is called multipartite or k-partite if its vertex set can be partitioned
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U1 Ug Uy U2
Up, us
.—.—. ........ .
U1 U2 Uusg Up,
L Un us: LUn—1 F Uy
Fig. 2.1: P, - 3 : :
Fig. 2.2: C, Fig. 2.3: K,,

into k vertex subsets X - - X, i.e V(@) = U, X; and X; N X; = {0} such that every
edge has one end-vertex in X; and one end-vertex in X, , where i, j € [k] and i # j.

Let 7, 7, k be three integers such that ¢ > 7 > k > 0. For generality of two graphs P, and
K, 3, we denote by S; j , a graph that contains three induced paths F;, P;, P, of orders
i, j, k, respectively, such that they have a common initial vertex v, i.e. BNP;NP, = {v}
and P, N P, = {v}, where z,y € {7, j, k}, see Figure 2.6.

Ui U Ug Um, u

Uy Uz U

........... [

@:-rrrrrnann .

Wy, Wo w1 VNV1 U2 Uj

........... )

U1 () Up U1 V2 U3 Un
Flg 2.6: Sz’,j,k
Fig. 2.4: K, ,, Fig. 2.5: K1,

2.3 Definition of problem and its related problems

Let G be an edge-coloured graph by c. If adjacent edges of G receive different colours,
then c is proper (edge-)colouring. Moreover, G is called a proper (edge-)coloured graph.
The minimum number of colours needed to colour all the edges of G to make it proper
coloured is called chromatic index number. That is denoted by x'(G).

The edge colouring problem is to determine the chromatic index number x'(G) of a
nontrivial, connected and edge-coloured graph G, that is, the minimum number of
colours needed to colour all the edges of G such that no two adjacent edges have
the same colours. This problem, which was first written in 1880 by Tait et al. [6§]
in relation with four colour problem, is an interesting problem in graph theory. It
has many applications in scheduling, for example, the sport timetabling. In [13], the
authors show that the edge colouring problem of a complete graph can be used to
schedule a round-robin tournament into a few rounds as possible so that each team
plays against each other in one of the rounds. In this application, the vertices of G
correspond to the teams, the edges of G correspond to the games and the coloured
edges correspond to the rounds in which the games are played.

Connectivity which is very important in graph theory has many application in Com-
puter Science and Biology. There are many interesting results which are related to the
connectivity in graph theory e.g, independent set in a connected graph, Hamiltonian
cycle in 2-connected claw-free graphs, pancyclic of 3-connected graphs,... Recently,
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many problems of the information security and the information transmission in a com-
munication network are solved by using a connected, coloured graph G. These problems
may be used by the graph theoretic model as follows:

Let us denote by GG a nontrivial, connected and edge-coloured graph of order n and size
m. A path in G is said to be a P-coloured path, or more simply a P-path if its edges
receive colours with the property P. An edge-coloured graph G is called P-connected
if every two vertices are connected by at least one P-path. The P-connection number
of a connected graph G is the smallest number of colours that are needed in order to
make it P-connected.

The concept of the P-connection number which is said to be the rainbow connection
number r¢(G) was first introduced by Chartrand, Johns, McKeon, and Zhang [20]
in 2008. For a rainbow connected graph, every two distinct vertices are connected
by a rainbow path whose no two edges are assigned the same colours. The rainbow
connection number 7¢(G) of a connected graph G is the minimum number of colours
that are needed in order to make it raibow connected graph. Recently, many interesting
results of the rainbow connection number r¢(G) are published, for example the rainbow
connection number 2 for several classes of graphs by Kemnitz et al. [50, 51|, the rainbow
connection number and forbidden subgraphs by Holub et al. [41, 42, 43|, the rainbow
connection number and minimum degree by Caro et al. [14] and Schiermeyer et al. [66,
67]. More results in this topic are referred to Li et al. [58] for a survey. Furthermore, the
NP-hardness of determining r¢(G) and the NP-complete of deciding whether re(G) = 2
were proved by Chakraborty et al. [15].

Inspired of the rainbow connection number and conflict-free colouring of graphs and
hypergraphs in |22, 23, 34, 64|, the conflict-free connection number denoted by cfc(G)
was introduced by Czap, S. Jendrol’, and J. Valiska [26] in 2016. An edge-coloured
graph G is conflict-free connected graph if every two distinct vertices are connected
by a path, which contains a colour used on exactly one of its edges. The conflict-free
connection number cfc(G) of a connected graph G is the smallest number of colours
that are needed in order to make it conflict-free connected. After the definition of the
conflict-free connection number, there are many nice results which are immediately
published in [16, 18, 27].

The newest concept of the P—connection number which is the odd connection number is
recently introduced by Brause, Jendrol’, and Schiermeyer [12| during the C5 workshop
2017 in Rathen. A path in an odd connected graph G is an odd coloured path if each
colour is either used an odd or zero number of times for the edges. The odd connection
number of a connected graph G, denoted by oc(G), is the minimum number of colour
that are needed in order to make it odd connected graph.

The proper connection number denoted by pc(G) is one of the most interesting concept
of the P—connection numbers. Motivated by the rainbow connection number and
proper colouring, Borozan, Fujita, Gerek, Magnant, Manoussakis, Montero, and Tuza
[8] and Andrews, Lumduamhom, Laforge, and Zhang [4] have independently introduced
the concept of pc(G). A path P in an coloured graph G is called a proper coloured path,
or more simply proper path if two its consecutive edges receive different colours. An
edge-coloured graph G is called a properly connected graph G if every pair of vertices
is connected by a proper path. The proper connection number pc(G) of a connected
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graph G is the smallest number of colours that are needed in order to make G properly
connected. There exist many interesting results of proper connection number which
are recently studied by the Mathematicians and Researchers, for example the proper
connection number 2 and minimum degree by Borozan et al. [8], by Brause et al. [11,
9], by Huang et al. [44, 45], the proper connection number 2 and forbidden subgraph
by Brause et al. [10], the proper connection number and size of graphs by Aardt et al.
[1], the proper connection of products of graphs by Mao et al. [62], by Hammack et al.
[38], the large proper connection number in several graphs by Lumduanhom et al. [60]
and some other interesting results in [48, 17, 37, 31, 47, 46, 56, 59, 36]. More detailed
results can be seen in the dynamic survey of the proper connection number by Li et
al. [57].

After the concepts of the P-connection number are defined, the natural question about
its existence in a connected graph G appeared. Since P, is the smallest nontrivial
connected graph, the P-connection number of G is at least 1. Moreover, if we colour
all the edges of G of size m such that each edge is assigned by a different colour from
[m], then G is a P-connected graph. Hence, the P-connection number of G is at most
m. Therefore, the P-connection number which always exists in a connected graph is
bounded by 1 and m.

By the definition above, the connectivity of graph theory is the minimum number of
vertices or edges which are removed to disconnect the graphs. Nowadays, the connec-
tivity has many applications, especially in computer science. In |71, 6], the authors
described the important role of the connectivity of graph theory in a communication
network. They said that a good communication network is hard to disrupt. It means
that if a communication network is represented by a graph, then the graph is still
connected even when some vertices or edges are removed from it. Let k,[ be two in-
tegers, where 1 < k < [. Suppose that G is an [-connected graph. Hence, it follows
from a well-known theorem of Whitney in [72] that every two distinct vertices of G
are connected by k internally vertex-disjoint paths. Motivated by this concept, the
P-k-connection number of a nontrivial, -connected and coloured graph G is defined as
follows:

A graph G is said to be a P-k-connected graph if every two vertices of G are connected
by at least k£ internally vertex disjoint P-coloured paths, more simply k disjoint P-
paths. The P-k-connection number of G is the smallest number of colours that are
needed in order to make it the P-k-connected graph.

The rainbow k-connection number of the l-connected graph G which was also intro-
duced by Chartrand, Johns, McKeon, and Zhang [21]| in 2009 is denoted by rci(G).
Graph G is called a rainbow k-connected graph if every pair of vertices are connected
by k disjoint rainbow path. The rainbow k-connection number is the minimum num-
ber of colours that are needed in order to make G rainbow k-connected graph. When
k =1, we denote by rc¢(G), instead of rei(G).

Inspired of the rainbow connectivity of the [-connected graph G, Borozan et al. [8]
also introduced the concept of proper k—connection number denoted by pc(G). A
coloured-graph G is said to be a proper k—connected graph if there exist at least k
internally vertex disjoint proper paths, more simply k disjoint proper paths connecting
two distinct vertices u,v € V(G). When k = 1, we denote by pc(G), instead of pey (G).
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Recently, there are only some results for pco(G) proved by Huang et al. [48], Doan et
al. [30] and not many results for pcg(G), for generality of integer k, of several special
classes of graphs proved by Borozan et al. [8], Laforge et al. [56].

Similarly to the P-connection number of a nontrivial connected graph, there always
exists the P-k-connection number of a [-connected graph G of size m, where 2 < k < [.
If we assign every edge e € E(G) by a different colour from [m|, then G is a P-k-
connected graph. Hence, there always exists the P-k-connection number of a graph
GG. Moreover, the upper bound of the P-k-connection number is at most m. By the
definition of the P-k-connection number above, it can be readily seen that there are at
least two edges of the k-th P-path. It follows that the P-k-connection number of G is
at least 2.
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3 The proper connection number

pe(G)

In this chapter, we study the proper connection number pc(G) of a connected graph
G. This chapter is organized as follows: the first section is written some fundamental
results on the proper conection number, the second section contains the results on the
proper connection number of bridgeless connected graphs, the third section consists of
the results on the proper connection number of connected graphs having bridges and
in the last section some results on the proper connection number 2 of connected graphs
are presented. Let G be a nontrivial connected graph of order n and size m. From
Section 2.3, we know that the proper connection number pc(G) is bounded by:

1 <pc(G) <m

Moreover, the proper connection number pc(G) is related to the rainbow connection
number r¢(G) and the chromatic index number x/(G). If we colour all the edges of G by
X'(G) colours to make G a properly coloured graph, then G is a proper connected graph
by the definition of the proper connected graph in Section 2.3. Hence, pc(G) < x/(G).
By the definitions of a rainbow connected graph and a proper connected graph, it
follows that if G is a rainbow connected graph, then G is a proper connected graph,
too. Hence, pc(G) < rc(G). Therefore, the authors in [4, 8] immediately deduce that
the proper connection number pc(G) is bounded by:

1 < pc(G) < min{x'(G),rc(G)} <m

To clearly understand the concept of the proper connection number, we consider the
following example, the 3-regular graph H; in Figure 3.1, that is given by Andrews et al.
[4]. This graph consists of three bridges which must receive distinct colours. It can be
readily observed that pc(H;) > 3. On the other hand, three colours which are shown in
Figure 3.1 are enough to make H; a proper connected graph. By the definition of the
proper connection number, the number of colours is minimum so pc(H;) < 3. Hence,
pc(Hy) = 3. Note that each uncoloured edge can be assigned an arbitrary colour from
[3]. Moreover, this assignment has no effect on the result of the proper connection
number of H;.

For general cases, the proper connection number pc(G) is bounded by the maximum of
the rainbow connection number r¢(G) and the chromatic index number y'(G). Hence,
the following results illustrate that there exist infinitely many connected graphs whose
pairs of (pc(G),rc(G)) or (pe(G), X' (G)) can receive arbitrary values.

Proposition 3.1 (Andrews et al. [4]). Let a,b be two integers, where 2 < a < b.
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Fig. 3.1: pc(H;) = 3 (Andrews et al. [4])

1. There is a connected graph G such that pc(G) = a and rc¢(G) = b,
2. There exists a connected graph G such that pc(G) = a and x'(G) = b.

The most fundamental results on the proper connection number which were claimed
by the authors in [4, 8] are listed as follows.

Fact 3.2 (Andrews et al. [4], Borozan et al. [8]). If G is a nontrivial, connected graph
of order n and size m, then

1. pc(G) =1 if and only if G = K,,, where n > 2,

2. pe(G) = m if and only if G = K ,,, where m > 1,
3. pc(P,) =2, where n > 3,

4. pc(Cy) =2, where n > 4.

By Fact 3.2, there are infinitely many connected graphs whose proper connection num-
ber obtains the lower bound 1 or the upper bound m, where m is size of a connected
graph. Now, we continue to present some known and interesting results of the proper
connection number in the next sections.

3.1 Preliminary results

At the first section of Chapter 3, we state some preliminary results on the proper
connection number pc(G). Since some uncoloured edges of the graph H; in Figure 3.1
can be assigned any colours from [3], it follows that the proper connection number of a
new graph which is obtained by removing these edges is not changed. Generally, if every
two vertices are connected by a proper path P in a connected spanning subgraph of G,
then this proper path P may be still a proper path connecting them in GG. Therefore, the
following proposition which is the relationship between the proper connection number
of G and the proper connection number of a connected spanning subgraph of G is
proved by Andrews et al. [4].
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Proposition 3.3 (Andrews et al. [4]). Let G be a nontrivial connected graph. If H is a
connected spanning subgraph of G, then pc(G) < pc(H). In particular, pc(G) < pe(T)
for every spanning tree T' of G.

Recently, many interesting results on the proper connection number are proved by
using the result of Proposition 3.3, for instance, in [8, 9, 10, 11| the authors proved
their results by taking a 2-connected spanning subgraph, in [48] the authors proved
that there exists a 2-connected bipartite spanning subgraph of G on the condition of its
size. Moreover, by Fact 3.2 and Proposition 3.3, the following result was immediately
deduced by Andrews et al. [4] and Borozan et al. [8].

Corollary 3.4 (Andrews et al. [4] & Borozan et al. [8]). If G is a traceable graph that
is not a complete graph, then pc(G) = 2.

By Proposition 3.3 and Corollary 3.4, it can be readily seen that the proper connection
number of a Hamiltonian graph is determined by the following corollary.

Corollary 3.5. Let G be non-complete, connected graph of order n > 4. If G is
Hamiltonian, then pc(G) = 2.

By Fact 3.2, pc(G) = 1 if and only if G ~ K,,, where n > 2, so many nice results
which are published recently study classes of connected graphs whose proper connection
number is 2, for more details, see [8, 45, 17, 48, 1, 11, 44, 9, 10]. Moreover, deciding
whether a connected graph has proper connection number pc(G) = 2 is still an open
question by Ducoffe et al. [31]. The main results of this dissertation which are presented
in next the chapters are also to determine several classes of connected graphs having
proper connection number 2. One of the most beautiful results on the proper connection
number 2, which is proved by Borozan et al. [8], is very useful to study the proper
connection number 2 of a connected graph. This result is as follows.

Lemma 3.6 (Borozan et al. [8]). Let G be a nontrivial connected graph and H be a
connected subgraph of G such that pc(H) < 2. Ifu € V(G)\ V(H) and Ny(u) > 2,
then pc(H Uu) < 2.

As the general case of Lemma 3.6, Yue et al. [73] gave the following proposition.

Proposition 3.7 (Yue et al. [73|). Let G be a nontrivial connected graph and H be a
connected subgraph of G such that pc(H) = k, where k > 2. Ifu e V(G)\ V(H) and
Ny (u) > 2, then pc(H Uu) < k.

The result of Lemma 3.6 is a process which creates a subgraph of GG consisting of a
connected graph H of proper connection number at most 2 and a new vertex u that is
not in A and has at least two neighbours in H. Then HU{u} has the proper connection
number at most 2. Motivated by Lemma 3.6, we introduce the new extension result as
follows which is already published in [11].

Lemma 3.8 ([11]|). Let G be a graph and H C G be a subgraph of G such that
pe(H) < 2. If there is a cycle C in G of even length such that V(C) NV (H) # 0
and V(C)\ V(H) # 0, and the colouring of H admits a proper colouring of C[V (H)],
then pc(G[V(H)UV(C)]) < 2.
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Proof. [11] For simplicity, let us denote C' = wy - - - wyvy - - - v; be a cycle of even length,
where wy ---wy, € V(H) and vy ---v, € V(G) \ V(H). Note that possibly £ = 1 or
[l = 1but k+1 > 4 since C' is the even cycle. By the condition of Lemma 3.8,
the edge-colouring of H restricted to the edges wiws, wows - - - wi_qwy of C'" admits a
proper colouring for C[V(H)]. By using this edge-colouring we continue to colour all
the remaing edges of C' by alternatingly. Hence, a proper colouring of C' is obtained,
i.e every two consecutive edges of C' receive distinct colours. Since C' is not necessarily
induced in G, we colour all noncoloured remaining edges of G|V (H) U V(C)] by some
arbitrarily colour.

It can be readily seen that C' and H are properly connected by themselves. Hence, it
remains to show that there exists a proper path between all pairs of vertices v; € V(C)
and w € V(H) \ {wy - --wg}. Since H has proper connection number at most 2, there
is a shortest proper path, say @, between w and a vertex w; € V(C) in H, i.e. w; is
the first common verter of V(@) and V(C'). Moreover, since C' is not only the even
cycle but also the properly connected graph, every pair vertices of C' are connected by
two proper paths Pi, P, such that start(Py) # start(P,) and end(Py) # end(P,). So
we can choose one of them connecting v; and w; on C, say Py, such that wQuw; P v; is
a proper path. Hence, G[V(H) U V(C)] has proper connection number 2.

This finishes the proof of our Lemma. O

Clearly, Lemma 3.8 is an extensive version of Lemma 3.6. Furthermore, that lemma
can be used as a basic tool to study our several results which will be showed in the
next chapters.

Motivated by Proposition 3.7 and Lemma 3.8, we immediately obtain the following
result.

Proposition 3.9. Let G be a nontrivial connected graph and H be a connected subgraph
of G such that pc(H) = k, where k > 2. If there is a cycle C in G of even length such
that V(C)NV(H) # 0 and V(C)\ V(H) # 0, and the colouring of H admits a proper
colouring of C[V(H)], then pc(G[V(H) UV (C)]) < k.

3.2 The proper connection number of a connected
bridgeless graph

In this section, we introduce some well-known results of the proper connection number
of graphs having no bridges. First of all, the concept of the strong property which was
suggested by Borozan et al. [8] is written as follows.

Definition 1 (Borozan et al. [8]). Let G be a properly connected graph. G is said to
have the strong property if for any pair of vertices u,v, there always exist two proper
paths (not necessary internally vertez-disjoint proper paths), say Py and Ps, such that

start(Py) # start(Py) and end(Py) # end(P;).

The authors in [8] claimed several results of the proper connection number depending
on the connectivity of a connected graph. Moreover, the following result improves upon
the upper bound of the proper connection number to the best possible.
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Theorem 3.10 (Borozan et al. [8]). If G is a 2-connected graph, then pc(G) < 3.
Furthermore, there exists an edge-colouring ¢ : E(G) — [3]| having the strong property.

By Theorem 3.10, the proper connection number of a 2-connected graph is bounded by
3. Moreover, the authors in [8] introduced a construction of 2-connected graphs having
the proper connection number 3. It means that the upper bound of Theorem 3.10 is
reached by the following proposition.

Proposition 3.11 (Borozan et al. [8]). Given an interger k > 12. Let C' = uy - - - uy,
be an even cycle, 1 < i1 < 19 < 13 < 1y < 15 < 16 < k be six integers such that
iy — 1,14 — i3,76 — 15 > 3, and Py = vj---v} , Py =vi-- vy, Py =v}---uv} be three
verter disjoint paths such that ki + io — i1, ko + 14 — i3, ks + ig — i5 are even. Then
the graph obtained by adding the edges u; vy, Ui, vy , Ui V3, Wi, VR, , Ui U7, UiV}, has proper
connection number 3.

The smallest 2-connected graph having proper connection number 3 is depicted in
Figure 3.2. It follows that By having proper connection number 3 is also an example
of Proposition 3.11.

Fig. 3.2: Graph B; with pc(B1) =3 . )
(Borozan et al. [8]) Fig. 3.3: Graph B, with pc(Bs) = 3

It can be readily seen that all 2-connected graphs with the proper connection number
3 constructed by Propostion 3.11 contain some odd cycles, for example B;, which
contains three odd cycles. A question immediately arises about the proper connection
number of a 2-connected graph that has no odd cycle. The answer for this question
was studied by the authors in [8] as follows.

Theorem 3.12 (Borozan et al. [8]). If G is a 2-connected bipartite graph, then pc(G) =
2. Furthermore, there ezist an edge-colouring ¢ : E(G) — [2] having the strong property.

The following result which was proven by Paulraja et al. [65] is very important to
determine the proper connection number pc(G) of a connected graph with high con-
nectivity.

Theorem 3.13 (Paulraja et al . [65]). If G is a 3-connected graph, then G has a
2-connected bipartite spanning subgraph.

By using Theorem 3.12 and Theorem 3.13 the following result was readily deduced by
the authors in [§].
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Theorem 3.14 (Borozan et al. [8]). If G is a 3-connected and non-complete graph,
then pc(G) = 2. Furthermore, there exists an edge-colouring ¢ : E(G) — [2] having the
strong property.

Based on Fact 3.2 and Theorem 3.14, it follows that every non-complete graph G with
k(G) > 3 has proper connection number 2.

The well-known result of the relationship between the (vertex-) connectivity x(G) and
the edge-connectivity x'(G) of a graph was published many years ago by Whitney et
al. [72].

Theorem 3.15 (Whitney et al. [72]|). If G is a simple graph, then k(G) < K'(G) <
I(G).

By Theorem 3.15, every k-connected graph is a k-edge-connected graph. So it is quite
natural to consider the proper connection number of a 2-edge-connected graph. In
[8] the authors presented theirs proofs of Theorem 3.10 and Theorem 3.12 by using
an induction on the number of ears in an ear decomposition. Moreover, using the
same argument, the authors in [8] claimed that the results still hold if one replaces
2-connectivity by 2-edge-connectivity. But they did not give the detailed proofs of
the proper connection for a 2-edge-connected graph. On the other hand, by using an
induction on the number of blocks, the detailed proofs of the proper connection number
for a 2-edge-connected graph and a 2-edge-connected bipartite graph were reproven by
Huang et al. [48|. Since a graph is said to be 2-edge-connected if it is bridgelese, the
results are listed as follows.

Theorem 3.16 (Borozan et al. (8] & Huang et al. [47]). If G is a bridgeless graph,
then pc(G) < 3. Furthermore, there exists an edge-colouring ¢ : E(G) — [3] having the
strong property.

Theorem 3.17 (Borozan et al. [8] & Huang et al. [47]). If G is a bridgeless bipartite
graph, then pc(G) = 2. Furthermore, there exists an edge-colouring ¢ : E(G) — [2]
having the strong property.

Note that any graph which is constructed by Proposition 3.11 is not only 2-connected
but also 2-edge-connected, for example B;, By are depicted in Figure 3.2 and Figure
3.3. Hence, there exist many 2-edge-connected graphs whose proper connection number
reaches the upper bound of Theorem 3.16. Further, there are 2-edge-connected graphs
which are not 2-connected have proper connection number 3. For example, graph Bs,
see Figure 3.4, is 2-edge-connected with a cut-vertex. By a simple case to case analysis,
one can readily observe that pc(Bs) = 3.

Since all graphs having 3-cut-edges or more and motivated by results of Theorem 3.14,
we study the proper connection number of 3-edge-connected graphs. The following
result, which is published in [10] determines the proper connection number of graphs
having high edge-connectivity.

Theorem 3.18 ([10]). If G is a 3-edge-connected non-complete graph, then pc(G) = 2.
Furthermore, there ezists an edge-colouring ¢ : E(G) — [2] having the strong property.
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Fig. 3.4: B3 = kKy x K1, where k > 4

It can be readily observed that Theorem 3.18 closes the gap in transforming Theorems
3.12 and 3.14 to their edge-connected version.

Before we start proving Theorem 3.18, let us mention some well-known results, which
are very important in our proofs.

Theorem 3.19 (Menger [63]). Let G be a graph. If u,v € V(G) are two distinct,
non-adjacent vertices, then the size of a minimum vertex-cut for u and v equals the
mazimum number of internally pairwise vertex disjoint u — v paths.

In our proofs in the following chapters, we use sometimes different versions of Theorem
3.19, which are well-known, too. The following results are described below.

Corollary 3.20. Let G be a graph. If u € V(G) is a vertex and A € V(G) \ {u} is
a vertex set, then the size of a minimum vertex-cut for u and A equals the mazximum
number of, besides u, pairwise vertex disjoint u — A paths.

Corollary 3.21. Let G be a graph. If U;,Uy C V(G) are two disjoint vertex sets,
then the size of a minimum vertex-cut for Uy and Uy equals the mazimum number of
pairwise vertex disjoint Uy — Us paths.

Corollary 3.22. Let G be a graph. If Uy, Uy C V(G) are two disjoint vertex sets, then
the size of a minimum edge-cut for Uy and Uy equals the mazimum number of pairwise
edge disjoint Uy — Us paths.

The following result, which can be considered as the edge version of Paulraja’s result
(see Theorem 3.13), is immediately obtained by using Corollay 3.22.

Lemma 3.23 ([10]). Let G be a 3-edge-connected graph. If H is a 2-edge-connected
bipartite graph in G, then there exists a 2-edge-connected bipartite spanning subgraph
of G containing H.

Proof. This lemma is proved by the recursive construction using the following claims.

Claim 3.23.1. Let H be a bipartite subgraph of G with n(H) > 1, A and B be the
partite sets of H, and v € V(G) \ V(H) be a vertex. If there are three, besides v,
vertex-disjoint paths connecting v and V (H), then there exists a bipartite subgraph H'
of G such that V(H) C V(H'). Furthermore, if n(H) = 1 or H is 2-edge-connected,
then H' is 2-edge-connected.
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Proof. Let Py, P, and P3 be three vertex-disjonit paths connecting v and V(H). It
can be readily observed that all graph H;, which are obtained by adding P; to H, are
bipartite graph for ¢ € [3]. Now we define A;, B; to be the partite sets of H; such that
ACA;or BCB,forie 3]

One can easily see that there always exist two vertex-disjoint paths, besides v, from
{Py, P, P3} such that v € A; N A; or v € B; N B;. Therefore, H', obtained by adding
P, and P; to H is bipartite. Moreover, any edge of P; and P; is not a bridge since H
is connected. Thus, H' is 2-edge-connected if n(H) = 1 or H is 2-edge-connected.

This finishes the proof. )

Claim 3.23.2. Let H be a bipartite subgraph of G with n(H) > 1, A and B be the
partite sets of H, and v € V(G) \ V(H) be a vertex. If there are three edge-disjoint
paths connecting v and V (H), then there exists a bipartite subgraph H' of G such that
V(H) c V(H'). Furthermore, if n(H) = 1 or H is 2-edge-connected, then H' is
2-edge-connected.

Proof. Let Py, Py, Py be three edge-disjoint paths connecting v and V' (H). Let uy, ug, us
be three not necessarily distinct end-vertices of Pj, P, Py in H. It can be readily
observed that all graph H;, which are obtained by adding P; to H, are bipartite graph
for © € [3]. Now we define A;, B; to be the partite sets of H; such that A C A; or
B C B; for i € [3]. Furthermore, for i € [3], let w; € V(P;) be the shortest distance
from w; to w; in H; such that w; € V(P;) UV (P;), where i ¢ {j, k}.

It can be readily observed that, if all three vertices wy, wsy, w3 are the same, then a
2-edge-connected bipartite subgraph H’ is found by Claim 3.23.1. Moreover, by the
fact of Claim 3.23.2, we deduce that there always exist two vertices from {wy, wq, w3}
are the same. Renaming three paths if necessary, we may assume that w; = ws and
wz € V(P3) NV (P,). Now, the three paths uj Pywy,us Pywy,usz Psws Pyw; are, besides
wy, are vertex-disjoint. We obtain the desired result by Claim 3.23.2.

This finishes our proof.

()

Now, we are able to prove our lemma by a recursive constrution: Let u € V(G) be a
vertex and H = G[u] be a subgraph. By Claim 3.23.2, we always construct a 2-edge-
connected bipartite subgraph H of GG. By the recursive use of Claim 3.23.2, we extend
the subgraph H until V(H) = V(G) which is a 2-edge-connected bipartie spanning
subgraph of G.

We obtain the result. O

Now we prove Theorem 3.18 which determines the proper connection number of a
3-edge-connected graph. Recall its statement.

Theorem 3.18 If G is a 3-edge-connected non-complete graph, then pc(G) = 2. Fur-
thermore, there exists an edge-colouring ¢ : E(G) — [2] having the strong property.
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Proof. Let G be a 3-edge-connected graph. By Lemma 3.23, there is a 2-edge-connected
bipartite spanning subgraph of G, say H. Hence, by Theorem 3.17, H has the strong
property with two colours. It follows that G has the strong property with two colours,
too.

This finishes our proof. n

The proper connection number of a non-complete, bridgeless graph is determined by
the results above. The proper connection number of a connected, non-complete graph
with high edge-connectivity, '(G) > 3, equals 2 by Thereom 3.18. Furthermore, a
bipartite graph having edge-connectivity x’'(G) = 2 has proper connection number 2,
too, by Theorem 3.17. For general case, the proper connection number of a bridgeless
graph is at most 3 by Theorem 3.16. In the next section, we introduce the results of
the proper connection number of a connected graph having bridges.

3.3 The proper connection number of a connected
graph having bridges

In this section, we present some existent results of the proper connection number of a
graph having bridges which improve bounds of the proper connection number. Recall
that the proper connection number of a bridgeless graph is bounded by 3 as shown in
the previous section. Unlike the previous results, there does not exist a constant C'
such that the proper connection number of every graph having bridges is at most C.
Note that every edge of a star is a bridge, i.e the number of bridges of a star is its
size. By Fact 3.2, the proper connection number of a star equals its number of bridges.
Hence, there is a relationship between the number of bridges and the proper connection
number of a connected graph. The following result which was studied by Andrews et
al. [4] determines a lower bound of the proper connection number in a connected graph
having bridges incident to a single vertex.

Proposition 3.24 (Andrews et al. [4]). Let G be a nontrivial connected graph that
contains bridges. If b is the maximum number of bridges incident with a single vertex
in G, then pc(G) > b.

The proper connection number of a star which is presented in Fact 3.2 is one of the
results that can be easily computed by using Propostion 3.24. Further, recall the graph
H, see Figure 3.1, having three bridges incident with a single vertex, so pc(H;) > 3.
Now we consider the proper connection number of a nontrivial tree T" whose all edges
are bridges. Note that the chromatic index number x'(G) of a bipartite graph was
determined by Ko6nig’s Theorem a long time ago. Further, 7" is a bipartite graph, since
T is acyclic. Hence, x'(T') = A(T).

Theorem 3.25 (Konig et al. [52|). If G is bipartite, then X'(G) = A(G).

On the other hand, the rainbow connection number of T" was determined by Chartrand
et al. [20].



3 The proper connection number pc(G) 21

Proposition 3.26 (Chartrand et al. [20]). If T is nontrivial tree of size m, then
re(T) = m.

Since pc(T) < min{x'(T),rc(T)}, it can be readily obtained that pc(T) < A(T'). By
Proposition 3.24, the authors in [4] immediately deduced the proper connection number
of a tree as follows.

Proposition 3.27 (Andrews et al. [4]). If T is a nontrivial tree, then pc(T) = x'(T) =
A(T).

By Proposition 3.3 and Proposition 3.27, the upper bound of a nontrivial connected
graph can be improved by the following proposition.

Proposition 3.28 (Andrews et al. [4]). If G is a nontrivial connected graph, then
pe(G) < min{A(T) : T is a spanning tree of G}.

Just like a lower bound of the proper connection number, bridges also play an important
role in its upper bound. In [47], the authors considered the upper bound of the proper
connection number of a nontrivial connected graph having bridges. First of all, they
proved that the proper connection number is bounded by the cardinality of the set of
the pendant vertices which is the set of all vertices of degree 1.

Lemma 3.29 (Huang et al. [47]). Let G be a graph and H = G — PV(G), where
PV (G) denotes the set of the pendant vetices of G. If H is bridgeless, then pc(G) <
maz{3,|PV(G)|}.

Furthermore, Huang et al. [47] denote by B C FE(G) the set of cut-edges of a
nontrivial connected graph G and denote by C the set of connected components of
G' = (V(G), E(G) \ B). Contracting each element of C, which is not a singleton to a
new single vertex, a new graph G*, which is said to be the well-known bridge-block tree
of GG, is obtained. Hence, the following result which is stronger than Lemma 3.29 was
proved by Huang et al. [47].

Theorem 3.30 (Huang et al. [47]). If G is a nontrivial connected graph, then pc(G) <
maz{3, A(G*)}.

Adding the condition of a bipartite graph to the Proposition 3.24, the authors in [73],
recently, proved the following result which is the upper bound of a connected, bipartite
graphs containing bridges.

Theorem 3.31 (Yue et al. [73|). Let G be a connected bipartite graph containing
bridges. If b is the maximum number of bridges incident with a single vertex in G, then
pc(G) < b+ 2 and this upper bound is sharp.

Together with the results of Proposition 3.24 and Theorem 3.31, Yue et al. [73] directly
obtained the following corollary.

Corollary 3.32 (Yue et al. [73]). Let G be a connected bipartite graph containing
bridges. If b is the maximum number of bridges incident with a single vertex in G, then
pc(G) € {b,b+1,b+ 2}.
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3.4 Proper connection number pc(G) =2 of a
connected graph

As already mentioned above, the proper connection number of a nontrivial connected
graph G equals 1 if and only if G is a complete graph by Fact 3.2. It can be readily seen
that the proper connection number of a non-complete connected graph is at least 2, for
example the proper connection number of a path of order at least 2, a cycle of order at
least 4, or 3-edge-connected graphs equals 2. The results in Section 3.2 in this chapter
have shown that the proper connection number of a non-complete bridgeless graph is
2 or 3. Further, there are infinitely many bridgeless graphs having proper connection
number 3 by Proposition 3.11, more details see Figures 3.2, 3.3, 3.4. On the other hand,
deciding whether the proper connection number of a non-complete, bridgeless graph
equals 2 or 3 is still an open question by Ducoffe et al. [31]. Therefore, many researchers
in graph theory study proper connection number 2 of a connected graph. It follows that
from time to time, after the concept of the proper connection number is introduced in
[8, 4], many beautiful results of connected graphs having proper connection number 2
are published. The section of this chapter is devoted to list several existent classes of
connected graphs having proper connection number 2.

Recall that by Theorem 3.17, the proper connection number of a bipartite graph having
no bridges equals 2. For generality, there are many bipartite (or multipartite) graphs
whose proper connection number is greater than 2, for example, the proper connection
number of a tree 7" with A(7") > 3 by Proposition 3.27, or a star K, with m > 3 by
Fact 3.2 is at least 3. By adding some other conditions for a multipartite graph, the
authors in [4] studied the proper connection number of a complete multipartite graph
as follows.

Theorem 3.33 (Andrews et al. [4]). If G is a complete multipartite graph that is
neither a complete graph nor a tree, then pc(G) = 2.

Now, the results of the proper connection number of the specials classes of graphs
obtained from well-known graph operations including the join of graphs, Cartesian
product of graphs, direct product, permutation graphs, line graphs and power graphs
are presented below.

The authors in [4] studied the proper connection number of the joins of two connected
graphs.

Theorem 3.34 (Andrews et al. [4]). Let G, H be two connected graphs. If GV H is
non-complete, then pc(GV H) = 2.

A similar result to Theorem 3.34 was also studied by Andrews et al. [4] for the Cartesian
product GLJH of two nontrivial connected graphs G, H as follows.

Theorem 3.35 (Andrews et al. [4]). If G, H are nontrivial connected graphs, then
pc(GOH) = 2.

The direct product of G and H is the graph G x H with vertex set V(G) x V(H) and
edges {(g,h)(¢', 1) | g¢ € E(G) and hh' € E(H)}. The proper connection number
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of the direct product of two connected non-bipartite graphs, and one of them is 2-
connected, were proved by Hammack et al. [38].

Theorem 3.36 (Hammack et al. [38]). Let G, H be two connected non-bipartite graphs.
If one of them is (vertex) 2-connected, then pc(G x H) = 2.

The concept of permuation graphs was first introduced by Chartrand et al. [19]. Let
G be a graph with vertex set V(G) = {v; - -- v, } and « be a permutation of the set [n].
The permutaion graph P,(G) of G is the graph of order 2n obtained from two copies
of GG, where the second copy of G is denoted by G’ and the vertex corresponding to
v; € V(G) is denoted by u; € V(G’). The vertex v; is joined to the vertex uy;) € V(G').
The edges viu,(;) are called the permutation edges of Py ). In [4], the authors showed
that every permutation graph of a Hamiltonian path has proper connection number 2
by the following result.

Theorem 3.37 (Andrews et al. [4]). If G is a nontrivial traceable graph of order n,
then pc(Pn(G)) = 2 for each permutation « of [n].

Note that Theorem 3.37 holds when G is a traceable graph. However, the proper con-
nection number is also 2 for several classes of permutation graphs of others connected
graphs which are not traceable graphs. The result is obtained as follows.

Proposition 3.38 (Andrews et al. [4]). Every permutation graph of a star of order at
least 4 has proper connection number 2.

The last two results of the proper connection number of line graphs and powers of
graphs were presented in the Phd Thesis of Laforge [55]. The line graph of a graph G,
written L(G), is the graph whose vertices are the edges of G, with ef € E(L(G)) when
e =wuv and f =ovw in G.

Theorem 3.39 (Laforge et al. [55]). If G is a connected graph of order at least 3 that
is neither a star nor Ks, then pc(L(G)) = 2.

Let G be a connected graph and k be a positive integer, the kth power of G, written
by G*, is the simple graph G* with the vertex set V(G) and the edge set E(G) = {uv :
da(u,v) < k}. The graph G? is called the square of G

Theorem 3.40 (Laforge et al. [55]). If G be a connected graph of order at least 3,
then pc(G?) = 2.

By Fact 3.2, the proper connection number of a complete graph equals 1. Note that
the diamater of a complete graph is 1. The authors in [8] claimed that if G has small
diameter, then its proper connection number is also small. More detailed, the following
theorem was proved for 2-connected graphs with small diameter.

Theorem 3.41 (Borozan et al. [8]). Let G be a nontrivial 2-connected graph. If
diam(G) = 2, then pc(G) = 2.

After Theorem 3.41 was proved, Li and Magnant in [57] posed the following conjecture
of 2-connected with diamater 3.
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Conjecture 3.42 (Liet al. [57]). Let G be a nontrivial 2-connected graph. If diam(G) =
3, then pc(G) = 2.

Conjecture 3.42 was proved by Huang et al. [45].

Theorem 3.43 (Huang et al. [45]). If G is a 2-connected graph with diam(G) = 3,
then pc(G) = 2.

By Fact 3.2, Theorem 3.41 and Theorem 3.43, it can be readily seen that the proper
connection number can decrease if we add edges to a graph. It means that if a graph
has many edges or high minimum degree, then its proper connection number is small.
Hence, there are several beautiful results of dense connected graphs of proper connec-
tion number 2 which are published recently. For a graph with high minimum degree,
the famous result of Hamiltonian path was proved by Dirac a long time ago.

Theorem 3.44 (Dirac et al. [28]). Let G be a graph of order n. If 6(G) > "1, then
G is traceable. Moreover, if 6(G) > %, then G is Hamiltonian.

By Theorem 3.44, Proposition 3.3 and Fact 3.2, it can be readily obtained that every
connected graph of order n having 0(G) > "T’l has proper connection number 2. In
[8], the authors gave the much better result of a connected graph with the minimum
degree that has proper connection number 2. The following result is sharp.

Theorem 3.45 (Borozan et al. [8]). Let G a connected non-complete graph of order
n > 68. If 5(G) > 4, then pc(G) = 2.

Furthermore, the authors in [8] also confirmed that the minimum degree condition of
Theorem 3.45 is best possible by the following counterexample. Let G; be a complete
graph of order % and take a vertex v; of Gy, where i € [4]. Let By, see Figure 3.5, be
a graph obtained from G, Gs, G35, G4 by adding the edges vivs, v1v3,v1v4. Note that
d(Bs) = % —1 and By has three bridges. By Proposition 3.24, it can be readily observed

that pe(By) > 3.

V2 U3

U4

Fig. 3.5: Graph B, with §(By) = 4 — 1 has pc(B4) = 3 (Borozan et al. [8])

Although, the lower bound on the minimum degree is sharp, but the authors in 8] did
not consider that the lower bound on the order number n > 68 is best possible. After
that Li and Magnant [57] proposed the following conjecture.
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Conjecture 3.46 (Li et al. [57]). Let G be a connected non-complete graph of order
n>5. If 6(G) > 4, then pc(G) = 2.

The authors in [57] thought that the lower bound on the order could be n > 5 since
the proper connection number of a claw K; 3 equals 3. After finding some gaps of
the proof of Theorem 3.45, Huang et al. [44] proved Conjecture 3.46 without two
counterexamples Bs, Bg, see Figure 3.6 & 3.7, that pc(Bs) = pc(Bg) = 3. Note that Bs
is one example of Bj, see Figure 3.4, where k = 3.

Theorem 3.47 (Huang et al. [44]). Let G be a connected non-complete graph of order
n>5. If G ¢ {Bs,Bs} and 0(G) > §, then pc(G) = 2.

Fig. 3.6: Graph B; with pc(Bs5) = 3 (Huang
et al. [44] & Chang et al. [17]) Fig. 3.7: Graph Bs with pc(Bg) = 3 (Huang
et al. [44] & Chang et al. [17])

If the minimum degree condition of Theorem 3.47 is changed to the degree sum condi-
tion, then the following results were proved by Chang et al. [17].

Theorem 3.48 (Chang et al. [17]). Let G be a connected non-complete graph of order
n > 5 with G ¢ {Bs, Bs, Br}, see Figure 3.6 & 3.7 & 3.8. If d(z) +d(y) > § for every
ry ¢ E(G), then pe(G) = 2.

The sum degree condition of two non-adjacent vertices of Theorem 3.48 can be improved
for a connected, bipartite graph. So the following result was confirmed by the authors
in [17].

Theorem 3.49 (Chang et al. [17]). Let G be a connected bipartite graph of order
n>4. If d(z) +d(y) > ™ for every vy ¢ E(G), then pc(G) = 2.

Fig. 3.8: Graph B; with pc(B7) = 3 (Aardt Fig. 3.9: Graph Bg with pc(Bg) = 3 (Aardt et al.
et al. [1] & Chang et al. [17]) 1))

In [1], the authors considered proper connection number 2 of a connected graph with

its given number of edges without two counterexamples which are depicted in Figure
3.8 & 3.9.
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U1 VU2 Vk+1

N\

Fig. 3.10: Graph G, with |[E(Gy)| = (""57") + k + 1 has pc(Gy) > k (Aardt et al. [1])

Theorem 3.50 (Aardt et al. [1]). Let G be a connected graph of order n with G ¢
{Br, Bs}, see Figure 3.8 & 3.9. If G is non-complete and |E(G)| > (",°) + 4, then
pe(G) = 2.

The authors in [1] improved Theorem 3.50 in general case to obtain a new upper bound
of the proper connection number. That is as follows.

Theorem 3.51 (Aardt et al. [1]). Let k > 3 be an integer and G be a connected graph
of order n. If |E(G)| > (" 57") + k + 2, then pc(G) < k.

Furthermore, they deduced that the lower bound on the size of a connected graph Gy
is best possible by the following counterexample. Let H be a complete graph of order
n —k — 1 and take a vertex v € V(H), v; ¢ V(H) be k + 1 others vertices, where
i € [k+1]. Let Gy, see Figure 3.10, be a graph obtained from H and k + 1 vertices
V1, ..., V41 by adding edges viv, ..., vgp10. Note that |[E(Gy)| = ("5 ") + k+ 1 but
pc(Gy) > k.

Recently, many results for graph classes with proper connection number 2 have been
published. But the problem to determine the proper connection number of an arbitrary
connected graph is still difficult. Further, the authors in [31] claimed that the com-
plexity of computing the proper conneciton number of a given graph as an interesting
open question. In the next chapters of the thesis, we study several classes of connected
graphs having proper connection number 2.
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4 The proper connection number
and minimum degree condition
of graphs

In this chapter, we study sufficient conditions in terms of the ratio between minimum
degree and order of a 2-connected graph G implying that G has proper connection
number 2. We note that an extended abstract containing some results in this chapter
but no detailed proof is already published in [9] in 2016. Moreover, the detailed proof
of the results in this chapter can be also found in [11].

4.1 The proper connection number and minimum
degree

Recall that by Theorem 3.10, the proper connection number of a 2-connected graph is
at most 3. By Proposition 3.11, there are many 2-connected graphs of minimum degree
number 2 which have proper connection number 3, see Figure 3.2 & 3.3. Furthermore,
from Theorem 3.45 & 3.47, it can be readily seen that every 2-connected graph of order
n and minimum degree at least % has proper connection number 2. The authors in [§]
believed that this condition of minimum degree can be improved in the 2-connected
graph. Therefore, they posed the following conjecture.

Conjecture 4.1 (Borozan et al. [8]). Let G be a 2-connected graph. If §(G) > 3, then
pe(G) = 2.

Motivated by Conjecture 4.1, in this section we study the proper connection number
of a connected graph with the minimum degree condition. First of all, we disprove
Conjecture 4.1 by constructing a series of 2-connected graphs G; such that §(G;) = 1,
n(G;) = 42i and pc(G;) > 3.

Theorem 4.2 (|9, 11]). For every integer d > 3, there exists a 2-connected graph G of
minimum degree d and order n = 42d such that pc(G) > 3.

For the proof of Theorem 4.2, we will use the graph B; which is depicted in Figure
3.2 as a basic tool in our construction. As a further tool for our theorem, we need the
following lemma.

Lemma 4.3 ([11]). Let k > 3 be an integer, Ky be a complete bipartite graph on
2k wertices, G be a 2-connected graph of proper connection number at least 3, which
is vertex disjoint from Kgg, v € V(G) be one of its vertices of degree at most 3,
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Fig. 4.1: Graph G’ is obtained from G and Ky 5 [11]

{vi,i € [dg(v)]} be its neighbours, uy, us, ug be three vertices of the same partite set in
K. If G' is the graph obtained from G by removing v and adding the graph Ky and
the edges u;v; for i € [dg(v)], then pe(G') > 3 and G’ is 2-connected.

A 2-connected graph G’ obtained from a 2-connected graph G and a complete bipartite
graph Ky j, where k£ > 3 by removing a vertex v € V(G) of degree at most 2 and adding
the edges u;v; for ¢ € [dg(v)] is depicted in Figure 4.1.

Proof. (|[11]) Suppose, to the contrary, that pc(G’) < 2. One can readily observe that
G’ is non-complete. Hence, pc(G') = 2 since pc(G’) = 1 if and only if G’ is complete
by Fact 3.2. Let us denote wi,ws be two arbitrary distinct vertices of G. We now
define two vertices z1, 2o € V(G’) which depend on wy, wq as follows: for i € [2], if w;
is different from v, then z; = w;, otherwise let x; = u;. Let us assign 2-edge-colouring
¢ by labeling ¢ : F(G') — [2] to make G’ properly connected. Now we define an
edge-colouring ¢ to all the edges of G as follows: c¢(e) = (e), for e € E(G) N E(G')
and c(vv;) =  (u;v;) for i € [dg(v)].

By the definition of ¢/, there always exists at least one proper path connecting x; and
zy in G', say P. Note that z1,25 € (V(G) \ {v}) U {u1}, implying that no vertex of
the added complete bipartite graph K} beside u; is an end-vertex of P. If P does
not contain any edge of {w;v; : i € [dg(v)]}, then z; # w; and w; # v for i € [2].
It can be readily seen that P is a proper path connecting wy,wy by ¢ in G. If P
contains only one edge of {wv; : i € [dg(v)]}, say wv; for i € [dg(v)], then v = wy
or v = wy. Hence, either wy = x5 Pv;v = wy or wy = x1Pv;v = wy is a proper path
connecting wy,wy by ¢ in G since c¢(vv;) = (w;v;). If P contains exactly two edges
of {u;v; : i € [dg(v)]}, without lost of generality, we may assume that two edges are
uiv; and ugve. Now, since at most one vertex of 1,z is a vertex of Kjy, all the
internal vertices of V' (vyPvy) are vertices of Ky . Furthermore, the length of vy Py
is even. By our supposition pc(G’') < 2, we deduce that ¢/(ujv1) # (ugvy). It can
be readily observed that c(vvy) # c¢(vvy). Hence, either wy = x; Pvjvvg Py = ws or
wy = 11 Pvyvvy Pry = wy is a proper path connecting wy and wsy by ¢ in G. It remains to
consider that dg(v) = 3 and three edges ujvy, usvs, usvs € E(P). By the construction
of G’ the set {uv; : i € [de(v)]} is a cut-edge set. Hence, renaming vertices if necessary,
we may assume that z; = u; and w3 is the shortest distance to x5 on P. Note that
w1 = v. Therefore, w; = vvgPry = wy is a proper path connecting w; and ws by ¢ in

G.
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By the observation above, there always exists a proper path connecting any two ver-
tices wy,ws € V(G) by ¢. We deduce that G is the properly connected graph by c.
Furthermore, the number of colours used by ¢ is at most the number of colours used
by ¢, implying pc(G) < pe(G') < 2, a contradiction. Therefore, pc(G”") > 3.

It remains to prove that G’ is the 2-connected graph. Suppose, to the contrary, that
G’ has a cut-vertex, say x € V(G'). If z € V(G)NV(G'), then G —x is disconnected, a
contradiction. Furthermore, if z € V(G’) \ V(G), then it can be readily observed that
G — v is disconnected, a contradiction. Hence, G’ is 2-connected.

We complete our proof.

]

By using the graph By, see Figure 3.2, and Lemma 4.3, we are able to prove Theorem
4.2. Recall its statement here.

Theorem 4.2 For every integer d > 3, there exists a 2-connected graph G of minimum
degree d and order n = 42d such that pc(G) > 3.

Proof. (|[11]) Let B be the graph B; which is depicted in Figure 3.2 of proper connection
number 3. Let us label all the vertices of V(B) by v;, where i € [n(B)]. Note that
n(B) = 21. By choosing k = d, an iterative use of the construction described in
Lemma 4.3 for every vertex v; € V(B) (with the replacement each v; by a complete
bipartite graph Ky j of order 2k) constructs a new graph By which is 2-connected and
has proper connection number at least 3. It can be readily seen that §(By) = k = d
and n(By) = 42k = 42d since n(B) = 21.

We obtain the result. O

By using Theorem 4.2, there are many 2-connected graph of minimum degree 3 that
has proper conneciton number 3. Hence, Conjecture 4.1 is disproved. In particular, if
we take d = 3, then one can be readily obtained that there is a 2-connected graph G
of order n(B) = 126 with the minimum degree §(G) = 3 that has proper connection
number 3. But G is not the smallest 2-connected graph of §(G) = 3 with proper con-
nection number 3 by our construction. The following corollary is showed the smallest
2-connected graph with minimum degree at least 3 by our technique that has proper
connection number 3.

Corollary 4.4. There exists a 2-connected graph G of order n with the minimum degree
0(G) > min{ 35,3} that has proper connection number 3.

Proof. Similarly to the proof of Theorem 4.2, let B be the graph B; which is depicted
in Figure 3.2 of proper connection number 3. Let us denote V*(B) the subset vertices
of degree 2 of V(B). It can be readily seen that |V (B)| = 6 and |V*(B)| = 15. Labeling
all the vertices of V*(B) by v;, where i € [|V(*(B))|]. By choosing k = 3, an iterative
use of the construction described in Lemma 4.3 for every vertex v; € V*(B) (with the
replacement each v; by a complete bipartite graph K3 3) constructs a new graph B*

which is 2-connected and has proper connection number 3. One can easily observe that
n(B*) =15%6+ 6 = 96 and §(B*) =3 = .
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Fig. 4.2: Graph By is obtained from By and K3 3 has pe(Big) = 3

The proof is obtained. ]

At the same time, when we submited our result in [11], Conjecture 4.1 also is disproved
by Huang et al. [45]. But our technique is different from their technique. Moreover,
by their technique, the smallest 2-connected graph with minimum degree 3 of proper
connection number 3 has order 114. By Corollary 4.4, we have a smaller 2-connected
graph of order 96 with minimum degree 3, see Figure 4.2, that has proper connection
number 3.

By Theorem 4.2, there are many 2-connected graphs with the arbitrary minimum degree
at least 3 having proper connection number 3. Note that, the main idea of the proof
of Theorem 4.2 is to replace a vertex of a 2-connected graph by a complete bipartite
graph Kj, , where k > 3. Our construction technique still holds for a connected graph
in a slightly different way, i.e the result of Theorem 4.2 can be extended by replacing a
vertex of a connected graph by a complete graph K. More general, there exist many
connected graphs with the large minimum degree having the large proper connection
number. Hence, we obtain the next result.

Theorem 4.5 (|9, 11]). Let d,k > 2 be two integers. There exists a connected graph
G of minimum degree d and order n = (d + 1)(k + 1) such that pc(G) = k.

Proof. (|11]) If k = 2, then let G be the graph consisting of three pairwise disjoint
vertex sets Uy, Us, Us of cardinality d + 1 such that G[U;, Us] is a complete bipartite
graph, G[Us, Us] is a complete bipartite graph minus a perfect matching, and G[U;, Us]
contains no edges. One can easily observe that G is connected, non-complete and a
bipartite graph, §(G) = d, n(G) = 3(d + 1). Moreover, G is 2-connected since d > 2.
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By Fact 3.2, pc(G) = 1 if and only if G is complete graph. By Theorem 3.12, we deduce
that pc(G) = 2. Therefore, we may assume that k£ > 3.

Let G be the graph obtained from k + 1 cliques Ci,Cy,...Cyyq of size d + 1, each
containing a labeled vertex v(C;), by adding the edges between v(C;) such that the
graph induced by {v(C;) : i € [k + 1]} is a star K. Renaming cliques if necessary,
we may assume that ¢(Ciy1) is the center of the star. Hence, G is connected and
n(G) = (d+1)(k+1). Note that, any colouring ¢ making G properly connected makes
G{v(C;) : i € [k+1]}] properly connected. Moreover, it can be readily seen that there
exists exactly one internally vertex disjoint path between v(C;, ) and v(C},) for any two
distinct iy,iy € [k + 1]. Therefore, pc(G) > pe(Kyx) = k since pc(Ki ) = k by Fact
3.2. For our considerations, we take an k-edge colouring making G[{v(C;) : i € [k+1]}]
properly connected. Moreover, for ¢ € [k], we colour all the edges of the cliques C; by
a colour different from the colour on the edge connecting C; to v(Cky1). Let w be a
vertex in Cyyq distinet from v(Clyq). Now, we colour the edge v(Cyy1)w by colour
1, for all vertices z in the non-empty set V(Cyy1) \ {v(Cii1), w}, we colour the edge
v(Cky1)z by colour 2, and colour all the remaining edges by colour 3. Thus, one can
easily check by a simple case to case analysis, GG is properly connected using k colours
and, since pc(G) > k, we deduce that pc(G) = k.

This completes the proof. O

After disproving Conjecture 4.1, we note that there are infinitely many 2-connected
graphs with the condition of the minimum degree which have proper connection number
3. Hence, we study the condition of the minimum degree of a 2-connected graph which
has proper connection number 2 in the next section.

4.2 The 2-connected graphs with a sufficient
minimum degree condition implying proper
connection number 2

In Section 4.1, we have already disproved Conjecture 4.1 by constructing a series of
2-connected graphs with minimum degree at least 3 having proper connection number
3. By Theorem 4.2, one cannot bound the minimum degree of a 2-connected graph G
from below by a constant such that pc(G) < 2 follows. Moreover, by Theorem 3.45
and Theorem 3.47, every connected non-complete graph of order n > 5 with minimum
degree at least 7 has proper connection number 2. One can readily observe that this
result still holds for every 2-connected graph. Therefore, it is natural to ask for a
ratio between minimum degree and order of a 2-connected graph, implying pc(G) < 2.
Motivated by this question, in this section we study the sufficient condition in term of
the ratio between minimum degree and order of a 2-connected graph G implying that
G has proper conneciton number 2. The following result answeres this question.

Theorem 4.6 (|9, 11]). Let G be a 2-connected graph of order n = n(G) and minimum
degree §(G). If §(G) > max{2, 28} then pc(G) < 2.

720

Before starting to prove Theorem 4.6, we state some useful results which are related
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to the vertex disjoint paths between two vertex subsets of a graph. Morovere, some
results of the proper connection number which are listed in the previous chapters are
also used in our proof of this theorem. The first result which is well-known as Menger’s
theorem is a basic tool at several points throughout the proof. Recalls its statement.

Corollary 3.21 Let G be a graph. If Uy,Us C V(G) are two disjoint vertez sets, then
the size of a minimum vertex-cut for Uy and Uy equals the maximum number of pairwise
vertex disjoint Uy — Us paths.

By the concept of vertex-cut set and connectivity of a graph, we note that the size
of a minium vertex-cut set for two disjoint vertex subsets U; and U, is at least the
connectivity of the graph. Furthermore, we will not only use the existence of the vertex
disjoint paths in our proof, but we also need a minimum length of it. A helpful result
which was proved by Jackson [49] plays an important role in our proof to determine
the ratio between minimum degree and order of 2-connected graph G.

Theorem 4.7 (Jackson [49]). If S is a 2-connected bipartite graph with bipartition
(S1,52) and u,v € V(G) are two of its vertices, then S contains an u—v path of length
at least 20" — 2, where 6" = min{dg(z) : z € V(S) \ {u,v}.

For simplifying our proof, we introduce graph families. Let G be a multigraph shown
in one of the Figure 4.3—4.7. We say that a graph G’ belongs to the family S(G) if
and only if it can be obtained from G by subdividing edges. We note that the thick
edges which belong to every graph in Figure 4.4—4.7 can be seen as the last added ear
in an ear decomposition. Moreover, these edges play an special role to compute the
number vertices of a subgraph in our proof.

Coming back to the concepts of 2-ear-cycle and 3-ear-cycle defined in Chapter 2 and
by a simple case to case analysis, we immediately obtain the following two facts.

Fact 4.8 ([11]). If G is the set of all 2-ear-cycles, then G = L;cgS(S;).

Fact 4.9 ([11]). If G is the set of all 3-ear cycles, then

g=|Ussh|ul Ussh)ul Usesh)ulUssi
]

Jel] Jjef2] je[3] Jjel6

and the thick edges represent the last added ear.

Now we study a basic result of the proper connection number which we use later on
in our proof. The proper connection number of traceable graphs such as a cycle and
O-graph as well as in 2-ear-cycles is proved as follows.

Lemma 4.10 (|9, 11|). Fach cycle, ©-graph, and 2-ear-cycles has proper connection
number at most 2.
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Proof. (|11]) By Corollary 3.4, it remains to determine the proper connection number
of 2-ear-cycles since cycles and ©-graphs are traceable.

Let GG be a 2-ear-cycle. One can be readily observe that G contains an even cycle, say
C : ujus ... uyuy, and two added ears, say Ry and Rs, since it is constructed from a
©-graph. Renaming vertices or ears if necessary, we may assume that u; and u;, where
1 <1 <y <21, are the end-vertices of R;. If an end-vertex of Rs is on C, say uy, where
k € [2l] and k =i or k = j is possible, then we colour all the edges of C' alternatingly
by two colours from [2], the edges of Ry and Ry such that w;_yu; Ryu; and g ug Ry are
proper paths by two colours from [2]. By some simple case to case analysis, one can
be readily check that this colouring makes G properly connected. If no end-vertex of
Ry is on C, then the end-vertices of Ry are two distinct vertices of Ry \ {u;, u;}, say uy
and u;. Without lost of generality, we may assume that u; has the smaller distance to
u; on Ry. Now we colour all the edges of C' alternatingly by two colours from [2], and
the edges of R; and Ry such that w;_ju; RyupRou; and ujiu;Riuy are proper paths by
two colours from [2]. Again, by some simple case to case analysis, one can be reaidily
check that this colouring makes G properly connected.

This finishes our proof. O

Lemma 4.11 ([11]). Let H be a 2-connected graph. If uy,us are two distinct vertices
of H and P : vivy... v is a path, vertex disjoint from H, of order k > 1, then the
graph H' obtained by adding edges uivy and ugvy, is 2-connected.

Proof. [11] Suppose, to the contrary, that H’ is not 2-connected. Hence, there is a
cut-vertex in H', say z € V(H'). If z € V(H), then z is a cut-vertex in H, contracting
the assumption on H. It follows that z € V(P). But one can be easily seen that H' — z
is connected, a contradiction. Therefore, H' is 2-connected.

The result is obtained. O

Now we are able to prove our theorem. Recall its statement.

Theorem 4.6 Let G be a 2-connected graph of order n = n(G) and minimum degree
6(G). If 6(G) > max{2, =B}, then pc(G) < 2.

Proof. [11] Suppose, to the contrary, that G is a 2-connected graph of order n, minimum
degree §(G) > max{2, ”Q—JBS}, and proper connection number at least 3. Trivially, any
2-connected graph has a cycle as a subgraph. Furthermore, by ear decomposition, any
2-connected graph which is not a cycle or a ©-graph has a 2-ear-cycle as a subgraph.
By our supposition and Lemma 4.10, one can be readily observe that G contain 2-
ear-cycles as subgraphs. Now let us take one of largest order, say ). Note that @ is

2-connected and pc(Q) < 2 by Lemma 4.10. Now we take a subgraph H of G such that
(i) @ is a subgraph of H, H is 2-connected, pc(H) < 2, and
(ii) subject to (i), n(H) is maximum.

Since the existent of ) in GG, we always find such a 2-connected subgraph H. Moreover,
requiring two conditions above, (i) and (ii), we cannot find any 2-connected subgraph



4 The proper connection number and minimum degree condition of graphs 35

of G, say H', such that n(H') > n(H) and pc(H') < 2. Now, we follow a series of
claims to conclude with the implication of the non-existence of G.

First of all, we show that there is no vertex in V(G) \ V(H) having two neighbours in
H by the following claim. Otherwise, we have a contradiction to the maximal order of
H.

Claim 4.11.1. There exists no vertez in V(G) \ V(H) having two neighbours in H.

Proof. Suppose, to the contrary, that there exists vertex u € V(G) \ V(H) such that
u has two neighbours in H. Let us denote H' = G[H U u]. Hence, n(H') > n(H). By
Lemma 4.11, H' is 2-connected. Moreover, by Lemma 3.6, pc(H') < 2 since pc(H) < 2,
contradicting the maximality of H.

It finishes the proof. ©)

Claim 4.11.2. There exists no cycle C' of even length such that V(H) NV (C) # 0,
(V(G)\V(H))NV(C) # 0, and a colouring of H, using two colours and making H
properly connected, restricted to the edges of C makes C[V(H)| a proper path.

Proof. We use the same technique in the proof of Claim 4.11.1 to prove this claim.
Suppose, to that contrary, that there exists such a cycle C'. Let us denote H' =
G[HUC]. Hence, n(H') > n(H) since (V(G)\V(H))NV(C) # 0. By Lemma 4.11, H’
is 2-connected. Moreover, by Lemma 3.8, pc(H') < 2 since pc(H) < 2, contradicting
the maximality of H.

This finishes the proof. @)

Claim 4.11.3. G — V(H) is bipartite

Proof. Suppose, to the contrary, that there exists an odd cycle in G — V(H), say
C’. By the well-known different version of Menger’s Theorem (i.e. Corollary 3.21),
there are two vertex disjoint paths, say Pj, P, between V(H) and C’ since G is 2-
connected graph. We note that these lengths can be one. Let us denote by z; and
2o the end-vertices of P, and P, in H, respectively, as well as by z; and z, the end-
vertices of P, and P, respectively. Since H has proper connection number at most
2, there exists a proper path between x; and x5 in H, say P*"*2. Furthermore, let
us denote by R; and Ry two disjoint vertex paths connecting z; and z, in C’. Since
(" is the cycle of odd length, hence, one of two cycles C' : x1Pjz1 Ry 20 Pyxo P™"2 14
or C' : x1 P21 Rozo Pyxo P™"2 21 is an even cycle such that C[V(H)] is a proper path,
contradicting Claim 4.11.2.

This finishes the proof. ©)

Claim 4.11.4. No vertex of H is adjacent to two vertices of the same component S of

G- V(H).

Proof. Suppose, to the contrary, that there exists a vertex u € V(H) such that u has
two neighbours v; and v, in one component S of G — V(H). Now, let us denote by
R the shortest path between v; and ve in G — V(H). By Claim 4.11.2, n(uv; Rvqu)
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is odd. By the well-known different version of Menger’s (i.e. Corollary 3.21), there
exists a path, say R’ between a vertex of V(R), say v,, and a vertex of V(H), say u/,
which does not contain u or any vertex of V(R) \ {v,}. Since H has proper connection
number at most 2, let us denote by P a proper path between v and v’ in H. Now, either
C : uvy Rv.R'v/'Pu or C' : uvyRv,. R'v/ Pu is an even cycle such that C[V(H)| = uPu’ is
a proper path, contradicting Claim 4.11.2.

This finishes our proof. =)

Claim 4.11.5. There ezists no 2-edge-connected subgraph S of G — V (H) such that
[V (H),V (9] = 2.

Proof. Suppose, to the contrary, that there exists such a subgraph. Let us take a 2-
edge-connected subgraph S of G—V (H) such that |[V(H), V(5)]| > 2 and, with respect
to this condition, n(S) is minimum. Now, we may assume that there exist two edges
uyvy and ugve of [V(H), V(S)] such that uy, us € V(H) and vy, vy € V(S). Since n(H)
is maximal, by Claim 4.11.1 and Lemma 4.11, vy # v, and by Claim 4.11.4, u; # us.
Furthermore, by the minimality of S, G|V (H)UV(S)] is 2-connected. Otherwise, there
is a cut-vertex, say x € V(H)UV(S). One can be readily seen that z € V(.5) since H
is 2-connected. Hence, G|V (H)UV(S)] — z consists of k components Sy, ..., Sk, where
k > 2. It implies that there exists i € [k] such that V(S;) C V(S). Moreover, S—V(5;)
is 2-edge-connected, and |[V (H),V(S) — V(S;)]| > 2, contradicting the maximality of
S. We obtain the result.

We note that, now, S is bridgeless and bipartite, by Claim 4.11.3. Hence, by Theorem
3.17, there exists an edge-colouring for S using two colours from [2] having strong
property. Let us use such a colouring and an edge-colouring of H making H properly
connected by using the same two colours. It can be readily seen that there exists a
proper path, say R, between u; and uy in H. We note that the length of this path
at least 1 since u; # wug. We extend the colouring of two edges uiv; and usvy such
that vyuy Rugvy is a proper path by two colours from [2]. Clearly, H and G[S] are
properly connected. Hence, we show that there exists a proper path between a vertex
in H and a vertex in S. If w € V(H) and z € V(.59), then let us take by R’ a shortest
proper path in H from w to a vertex in R, say w’. We note that the length of R’
can be 0, i.e. w = w', but [V(R) NV (R')| = 1. One can be readily seen that either
wR'w' Ruyvy or wR'w' Rugvs is a proper path. Renaming vertices and paths if necessary,
we may assume the first case. By the strong property of the edge-colouring used for
S, we can extend the proper path wR'w'Ruqyv; to a proper path from w to z. Hence,
between any two vertices w € V(H) and z € V(S) there is a proper path connecting
them. We deduce that G[V(H) U V(S)] has proper connection number 2. Moreover,
GIV(H)UV(9)] is 2-connected, contradicting the maximality of H.

This finishes our proof. ©)

By Theorem 3.15, any 2-connected graph is 2-edge-connected graph. Therefore, Claim
4.11.5 remains true if we replace the condition of 2-edge-connectivity by the condition
of 2-connectivity.

Clearly, since GG is 2-connected, there are at least two edges between any component
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S of G —V(H) and V(H). Furthermore, Claim 4.11.5, it implies that S contains a
bridge. Let T be the block-cut-vertex-tree of S, i.e. the vertices of T represent all
maximal 2-connected graphs or cut-edges (also known as blocks) in S, and there is an
edge between two vertices of T' if and only if the corresponding blocks are connected
by a cut-vertex (more detail see [39]). Trivially, 7" is a graph (more precisely, it is a
tree) and contains at least two leaves, say t; and ty. Furthermore, let us denote by
Ty, T, the two 2-connected graphs which correspond t, ts, respectively.

Claim 4.11.6. Fori € [2], |V(T;)| > 3.

Proof. Suppose, to the contrary, that there exists an i € [2] such that |V(T;)| < 2.
Clearly, T; is a K3 since T; is a block of the block-cut-vertex-tree T'. Furthermore, for
i € [2], V(T;) contains one cut-vertex, say t, in S. Now we denote by ¢ the second
vertex of T;. By the 2-connectivity of G, t has at least and, by Claim 4.11.1, at
most one neighbour in V(H). On the other hand, t# is no cut-vertex of S, implying

da(t) = 2, a contradition to the condition of Theorem 4.6 that 6(G) > 2.

This finishes our proof. @)

By Claim 4.11.6, it implies that V(7;) > 3 for i € [2]. Moreover, for i € [2], V(T;)
consists of exactly one cut-vertex, say t7, in S. Clearly, G is 2-connected, it implies
that |[V(T;),V(H)]| > 1. Moreover, by Claim 4.11.5, we deduce the equality, i.e.
|[V(T;),V(H)]| = 1. Clearly, again by the 2-connectivity of G, ¢ is distinct from the
vertex in V(T;) incident to the egde in [V (T;), V(H)], say tZ, for i € [2]. Furthermore,

since |V (T;)| > 3 and |[V(T;),V(H)]| = 1 implying min{dg(v) : v € V(T;) \ {tZ, 7} >
§(Q), for i € [2]. By Claim 4.11.5, it can easily deduce that t7 # ¢5.

By Theorem 4.7, there exists a path, say P; € T; between ¢; and tZ of length at
least 20" — 2, where &' = min{dg(t) : t € V(T;) \ {7, tF}} > §(G), for i € [2]. Now,
let R be a path connecting t7 and ¢35 in S. Let u; and uy be the neighbours of ¢
and ti in V(H), respectively. By Claim 4.11.4, u; and uy are distinct. Moreover,
by the 2-connectivity of H and the well-known different version of Menger’s Theorem
(i.e. Corollary 3.21), there always exist two vertex disjoint paths, say @); and @,
connecting {uy,us} and V(G). Let uy, ¢, be two end-vertices of @1 and ug, g2 be two
end-vertices of (J3. One can reaidly see that ¢; # ¢». We note that the lengths of ),
and @), are possibly 0, i.e. m(Q;) = 0 if and only if u; € V(Q), for i € [2]. Therefore,
P qiQuitf Pit§ Rt§ PytHuags is a path of length 40(G) — 1 connecting ¢, and ¢y.

Let @' be the graph obtained by adding ear P\ {q1, ¢} to Q. Now, we continue with
a fact which can be observed by a small case to case analysis. Recall, the thick edges
in Figure 4.4—4.7 represent the last added ear.

Fact 4.12. Any multigraph in {S7,...,S1,53,...,593%,53,...,833,51,...,5%} has 4
non-thicks edges, say e, es, €3, €4, such that G—ey, is a multigraph which can be obtained
by subdividing edges, if necessary, of a multigraph Sy, Ss, Ss, S4, for k € [4].

By using the maximality of () we consider our last claim as follows.

Claim 4.12.1. n(Q) > 166(Q) — 6
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Proof. By Fact 4.9, there are some i and j such that Q' € S (Sf ) and P correspond to
the subdivision of the thick edge. Furthermore, let ey, €5, €3, €4 be the 4 edges given by
Fact 4.12 and P, P.,, P.,, P, be their correponding paths in @’. Since, by Fact 4.12,
S? — ey, is a multigraph which can be obtained by subdividing edges, if necessary, of
multigraph S;, Ss, S3 or S;. It can be readily deduce that S(S‘Z —ep) € G = Ui S(5;)
for k € [4]. On the other hand, by Fact 4.8, Q" — {v € V(P,,) : dp, = 2} is a 2-ear-
cycle for all k € [4]. Furthermore, by choosing the maximality of @, the lengths of
P, ,P.,, P., and P,, are at least the length of P. Hence, counting vertices, we obtain
the desired result n(Q) > 4(m(P) — 1) +2 = 166(G) — 6.

This finish the proof. ©)

From the definition of P and @ it follows that V(P) N V(Q) = {¢1, ¢}, implying
n(G) > n(P)+n(Q) — 2 =206(G) — 8 > n(G), a contradiction.

Therefore, the proof is obtained.
O

Theorem 4.6 also shows, that if we require the graph G to be 2-connected, then the
minimum degree bound 6(G) > 2 of Theorem 3.47 can be significantly lowered down

1
to 6(G) > max{2, %2}
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5 The proper connection number
and forbidden induced subgraphs

In graph theory, a branch of mathematics, the term of forbidden induced subgraphs,
that is to describe a finite set of individual graphs which do not contain any of these
graphs as induced subgraphs or minors, is studied since a long time. There are a lot
of interesting problems that have been studied by using this term. One of the most
well-known examples of this term is Kuratowski’s theorem, see Kuratowski [54], which
states that a finite graph is planar if and only if it does not contain either of two
forbidden subgraphs, say the complete graph K5 and the complete bipartite graph
Kg’g.

From time to time, graphs characterized in terms of forbidden induced subgraphs and
the connectivity of a graph are known to have many interesting properties. On the
one hand, it is well-known that the hereditary graph properties can be described by
forbidden induced subgraph characterizations and so it is quite natural to consider them
in connection with forbidden induced subgraphs. For example, researchers in graph
theory study forbidden induced sugbraphs implying a polynomial-time complexity for
computing maximum independent sets or a k-colouring of a graph. On the other hand,
there are a lot of properties which are not hereditary, but forbidden subgraphs give nice
and simple charaterizations, for example the property of a graph to be hamiltonian or
pancyclic.

Moreover, forbidden induced subgraphs play an important role to determine the rain-
bow connection number, say rc(G), of connected graphs. There are many nice results of
the rainbow connection number using this term, see [41, 42, 43|. Since the proper con-
nection number was motivated by the rainbow connection number and proper colour-
ing, one is the starting point for our work to study the proper connection number in
connected graphs with forbidden induced subgraphs. Furthermore, in [5], Bedrossian
characterized pairs of forbidden induced subgraphs for 2-connected graphs implying
hamiltonicity. Thus, since every non-complete hamiltonian graph has proper connec-
tion number 2 by Corollary 3.5, this characterization is motivated for us to find suf-
ficient conditions in terms of connectivity and forbidden induced subgraphs such that
pc(G) < 2 holds for all graphs of the corresponding graph classes.

In this chapter, we consider proper connection number at most 2 of connected graphs in
the terms of connectivity and forbidden induced subgraphs. We note that an extended
abstract containing some results of this chapter is already published in [10].
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5.1 The proper connection number of connected,
F-free graphs

There are some results of the proper connection in connected graphs with forbidden
induced subgraphs that are published, recently. Huang et. al. [46] showed proper
connection number 2 of connected graphs by using the condition of triangle-free in its
complement.

Theorem 5.1 (Huang et. al. [46]). Let G be a connected and non-complete graph. If
G is triangle-free, then pc(G) = 2.

The following result which was studied by the authors in [36] provides an upper bound
of the proper connection number in connected graphs with a forbidden induced star.

Theorem 5.2 (Gerek et. al. [36]). Let s > 2 be an integer. If G is a connected,
K s-free graph, then pc(G) < s — 1.

Moreover, the authors in [36] claimed that the result of Theorem 5.2 is sharp by
considering any subdivision of a star K; s_;. When we study the proper connection
number of connected graphs with the condition of forbidden induced subgraphs and
connectivity, the first consideraion is claw-free, as well as a case s = 3 of Theorem
5.2. But our technique used to prove this result is different from their technique in
[36]. Moreover, this technique will be used several times in our results of later sections.
Therefore, we introduce our technique as follows.

Theorem 5.3 ([10]). If G is a non-complete, connected, claw-free graph, then pc(G) =
2.

Proof. We note that pc(G) = 1 if and only if G is complete by Fact 3.2. Since G
is connected, non-complete, one can readily deduce that pc(G) > 2. Suppose, to
the contrary, that there exists a connected, non-complete graph of proper connection
number at least 3. Let G be a counterexample of minimum order, i.e. G is connected,
non-complete, claw-free, but pe(G) > 3, but for all non-complete properly connected
induced subgraphs G’ of G, it holds pc(G') = 2. Now, let H be a connected induced
subgraph in G such that

(i) H has proper connection number 2, and
(ii) n(H) is maximum.

Clearly, there always exists such subgraph H since G is connected and a path P has
proper connection number 2 by Fact 3.2. Moreover, by our supposition above, it can
be readily observed that |V(G)\ V(H)| > 1. Hence, there is a vertex v € V/(G)\ V(H)
which is adjacent to a vertex in V (H), say u. If there is at least two distinct neighbours
of v in V(H), i.e. v has another neighbour in V(H) that is different from u, then by
Lemma 3.6, the connected subgraph G[H'| = G[H U u] has proper connection number
2, a contradiction to the maximality of H. Hence, u is only one neighbour of v in
V(H). If u has only one neighbour in V(H), say w, then we colour c(uv) # c(uw).
It can be easily observed that the subgraph G[H'] = G[H U u] is properly connected
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with two colours, a contradiction to the maximality of H. Hence, u has at least two
distinct neighbouts in V' (H), say w; and ws. Since GG, and thus H, is claw-free, one can
readily deduce that Ngy(u) is complete and of cardinality at least 2. Hence, H — u is
connected. By the minimality of G, pc(H — u) < 2 and therefore, the 2-edge-colouring
on H — u can be extended as follows: colour uv by the colour of wiws, and ww., uwsy
differently. Clearly, H — u is properly connected with two colours. Let x € V(H — u)
be a vertex. By the concept of the properly connected graph, there is a proper path,
say P, from x to w; or we. Without loss of generality, we may take a shortest one.
Moreover, renaming vertices if necessary, we may assume that it contains w; but not
wy. Hence, either x Pwuv or x Pwsw uv is proper path between x and v, depending
on the colour of the edge incident to w; on P. By similar arguments above, G[H U u]
is properly connected subgraph. This conclusion contradicts the maximality of H.

This completes our proof. ]

Now remember the graphs By, By, B, see Figures 3.2, 3.3, 3.4. The graphs By, By have
proper connection number 3. Moreover, let k& > 4 be integer. By the simple case to
case analysis, one can be readily deduced that the proper connection number of the
windmill graph By = KKy x K is 3, too. Hence, these example graphs show that the
boundary class in terms of a single connected forbidden induced subgraph (without
adding any further condition) is already reached. But all the results mentioned by
Borozan et. al. [8], see Proposition 3.11 and Theorem 3.10, motivated us to find
necessary conditions on forbidden induced subgraphs of 2-connected graphs having
proper connection number 2.

5.2 The proper connection number of 2-connected,
F'—free graphs

Since the boundary class in terms of single connected forbidden induced subgraph
(without adding any further condtion) is already reached by some graphs, for example
By, By and Bs = kK5 x K1, where k > 4, in this section, we study proper connection
number 2 of 2-connected graphs which are H-free. Let S be the set of graphs whose
every component is of the form S ;; for some 0 < i < j < k. We denote by 9(5) the
subset of vertices of S C V(@) which have neighbours in V(G) \ S. First of all, the
detailed structure of a finite set of graphs H is defined as follows

Proposition 5.4 ([10]). (i) Let F be a finite set of graphs. If FNS =0, then there
exists a 2-connected, F-free graph G such that pc(G) = 3.

(ii) Let 1,7,k be three integers. Ifi > 3, ori = 0 and j+ k > 15, then By is a
2-connected, S; ; p-free graph such that pc(By) = 3.

Proof. Let F be a finite set of graphs such that F NS = (). Further, let F' be a graph
of order n(F) of F and p be an integer such that p > n(F) for all ' € F. Hence, by
Proposition 3.11, there exists a 2-connected graph G such that G has proper connection
number 3, A(G) = 3,dg(u,v) > p+ 1 for all pairs of vertices u,v € V(G) of degree 3,
and G is of girth at least p + 1. Therefore, G' contains no induced copy of all graphs
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in F which have a cycle as a subgraph, a vertex of degree at least 4, or two vertices of
degree 3. Thus, G is F-free and (i) is obtained.

We note that (ii) is immediately obtained from the construction of B;.

This finishes our proof. O

The characterization of Proposition 5.4 is the motivation for us to study the structure
of a subgraph F' that is forbidden in a 2-connected graph with proper connection
number at most 2. Since the structure is described by the characterization, it is the
starting point forbid S; ;, with small 4, j, and k, for example P5 (=2 Sp4), Si12 in
a 2-connected graph. Adding the condition of minimum degree at least 3 gives us a
further result which is proper connection number 2 in a non-complete, 2-connected,
S1,1,6-free graphs. Let us recall some useful results in the previous sections that will be
used several times throuhout our later proofs. First, the different version of Menger’s
Theorem are listed.

Corollary 3.20 Let G be a graph. If u € V(G) is a vertex and A € V(G) \ {u} is
a vertex set, then the size of a minimum vertez-cut for u and A equals the maximum
number of, besides u, pairwise vertex disjoint u — A paths.

Corollary 3.21 Let G be a graph. If Uy, Uy C V(G) are two disjoint vertex sets, then
the size of a minimum vertez-cut for Uy and Uy equals the mazimum number of pairwise
vertex disjoint Uy — Uy paths.

Now, the useful results on the proper connection number are listed as follows.

Lemma 3.6 Let G be a nontrivial connected graph and H be a connected subgraph of
G such that pc(H) =2. Ifu € V(G)\ V(H) and Ng(u) > 2, then pc(H Uu) = 2.

Lemma 3.8 Let G be a graph and H C G be a subgraph of G such that pc(H) < 2. If
there is a cycle C' in G of even length such that V(C)NV (H) # 0 and V(C)\V (H) # 0,
and the colouring of H admits a proper colouring of C[V(H)|, then pc(G[V(H) U
V(O <2

The last result which is constructed from a 2-connected graph and a path is stated
below.

Lemma 4.11 Let H be a 2-connected graph. If ui,us are two distinct vertices of H
and P : v1vs ... vy 18 a path, vertex disjoint from H, of order k > 1, then the graph H'
obtained by adding edges uivy and ugvy s 2-connected.

Lemma 5.5. Let G be a 2-connected graph, H be a subgraph of G with pc(H) < 2 of
mazimum order, and S be a component in G —V(H). Every vertex of H has at most
one neighbour in V(S) and every vertex in S has at most one neighbour in V(H), i.e.

A(GIV(H), V(S)]) < 1.
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Proof. Let u € V(S) be a vertex. Suppose, to the contrary, that u has two neighbours
in H. Let us denote by H' = H Uwu. By Lemma 3.6, pc(H') < 2. Moreover, one can
be readily seen that n(H’) > n(H), a contradiction to the maximality of H.

By Claim 4.11.4, one can be readily observed that there is no vertex of H that has two
neighbours in the same component S of G — V(H).

This completes our proof. ]

In Theorem 5.3, we study proper conneciton number 2 of a connected, claw-free graph
(claw = Sy11). We note that the claw is a graph of order 4. Hence, the later results
are dealing with proper connection number 2 of a non-complete, 2-connected, S; ; x-free
graph, where §; ;1. is of order at least 5. The next two results are considered the cases
of S; jr of order 5. The first result of 5; ;1 of order 5 is obtained as follows.

Theorem 5.6 ([10]). If G is a non-complete, 2-connected, Ps-free graph, then pc(G) =
2.

Proof. By Fact 3.2, G has proper connection number 1 if and only if G is complete. In
our proof, we only consider that x(G) = 2 by Theorem 3.14. Now, we suppose, to the
contrary, that G is non-complete, 2-connected, Ps-free graph of minimum order number
that has proper connecion number at least 3. Therefore, all properly induced subgraph
of G have proper connection number at most 2. Let us denote by H a 2-connected
properly induced subgraph of G' of maximum order. It follows that pc(H) < 2 and
that there exists a vertex v € V(G) \ V(H). By Corollary 3.20, there are two, besides
v, vertex-disjoint paths, say P; and P,, between v and V(H). Clearly, we may assume
that P, and P, are two induced paths. Let u; and us be two end-vertices of P, and P,
in H, respectively. One can readily observe that there is a shortest path, say R, in H
connecting u; and us by the connectivity of H. Let C'= G[V(R) UV (P,) UV (FP2)] be
a cycle. Trivially, we may assume that C' is induced. Otherwise, we can redefine P, P,
and v such that the corresponding cycle is induced. If the length of C'is at least 6, then
there exists a path Ps contained in C, a contradiction. Hence, n(C) < 5. On the other
hand, by Lemma 5.5 no vertex in V/(C') NV (H) has two neighbours in one component
of G—V(H) and no vertex in V(C)N(V(G)\V(H)) has two neighbours in H. One can
be readily observed that |V(C)NV(H)| > 2 and [(V(G)\V(H))NV(C)| > 2, implying
n(C) > 4. If n(C) =4, then |V(C)NV(H)| =2 and |(V(G)\V(H))NV(C)| = 2.
By Lemma 4.11, G[V(H) U V(C)] is 2-connected and n(G[V (H) U V(C)]) > n(H).
Moreover, R = ujus is a proper path of H and the length of C'is even. By Lemma 3.8,
G[V(H)UV (C)] has proper connection number at most 2, contradicting the maximality
of H. Hence, n(C) = 5. If |(V(G) \ V(H))UV(C)| = 3, then let us denote by
C' 1 ujvv9vsuguy a cycle of length 5, where vy, vo,v3 € (V(G) \ V(H)) UV (C). Since
H is 2-connected, there is another neighbour of u; in V(H), say w, different from
uy. By Lemma 3.6, one can be readily seen that w is not adjacent to v; and vs.
Moreover, by Lemma 3.8, w is not adjacent to vy. Hence, {w, uy,v1,ve, v3} induces Ps,
a contradiction. Therefore, |(V(G)\V(H))UV(C)| = 2, implying that C' : ujvjv9uswuy
is a cycle of order 5, where vy, v, € (V(G)\V(H))UV(C) and w € V(H). Note that C
is induced. Let us denote H' = G[V(H) U V(C)]. By Lemma 4.11, H' is 2-connected.
If H' — w is 2-connected, then n(H" — w) > n(H), a contradicting the choice of H.
Hence, there is a vertex, say z, different from w, such that {w,z} is a cut-set in H'.
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Since H is 2-connected, w is not a cut-vertex in H, implying = ¢ {vy,v2}. But = = w;,
where i € [2], is possible. Since u; and uy are connected by the path uy, vy, va, ug, there
exists a vertex, say w’, being adjacent to w that is not in the same component with
uy and ug in H' \ {w, z}. Renaming vertices if necessary, we may assume that = # u;.
Therefore, {w’, w, uy,vy,v9} induces a path Ps, a contradiction.

This completes our proof. O

Clearly, Ps is one of the graphs S; ;; of order 5, where i = 5 = 0 and &k = 4. The
following results is considered the graphs S; ;x, where 1 < ¢ < j < k. Although the
proof of the next theorem is the same as the proof of Theorem 5.6 in their constructs,
but their details are distinct.

Theorem 5.7 ([10]). If G is a non-complete, 2-connected, Si.2-free graph, then
pe(G) = 2.

Proof. By Fact 3.2, the proper connection number of a graph is 1 if and only if this
graph is complete. Hence, from the condition of theorem, we note that the proper
connection number is at least 2 since the graph is non-complete. Suppose, to the
contrary, that there is a 2-connected S; ; o-free graph of proper connection number at
least 3. In all the such 2-connected graph, let G be a counterexample of minimum order
number, i.e. G is 2-connected, S 1 o-free graph, but pc(G) > 3 and for all non-complete
but 2-connected properly induced subgraph, say G’, of G, it holds that pc(G') < 2.
Since G is 2-connected, there is a cycle, as a subgraph of G, that has proper connection
number at most 2 by Fact 3.2. Now, let H be a 2-connected properly induced subgraph
in G such that n(H) is maximum. It can be readily seen that there always such induced
subgraph H. Moreover, by our supposition, pc(H) < 2 since G is of minimum order.

Hence, there exists a vertex of V(G) \ V(H), say v, that is adjacent to at least one
vertex in H, say u. By Lemma 5.5, one can easily observe that v has only one neighbour
in H that is u. Furthermore, by Corollary 3.20, renaming vertices if necessary, we may
assume that there is a path, say vz;...zpw, such that z1,...,2z € V(G) \ V(H),
w € V(H) \ {u} since G is 2-connected. Clearly, & > 1. On the other hand, u has
at least two neighbours in H since H is 2-connected. Now, the following claims are
obtained.

Claim 5.7.1. u is not adjacent to zj.

Proof. By Lemma 5.5, we immediately obtain Claim 5.7.1. Otherwise, n(H) is not
maximum, a contradiction. @)

Claim 5.7.2. No neighbour of u in H is adjacent to 2.

Proof. Let u; € Ny(u) be a neighbour of u in H. Suppose, to the contrary, that z
is adjacent to u;. Hence, C' = uvzjuju is the cycle of even length. By Lemma 3.8,
pe(G[V(H)UV(C)]) < 2 since uuy is the proper path of H. Moreover, by Lemma 4.11,
G[V(H)UV(C)] is 2-connected. Therefore, we get the contradiction of the maximality
of H.
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The proof is obtained. )

Recall that, u has at least two neighbours in H. By Claim 5.7.2 and Claim 5.7.1, one
can readily deduce that Ny (u) is a clique. Otherwise, {u, uy,us, z1,v} induces S 1o,
a contradiction, if uy,us € Ny (u) are independent. The following claim is considered
the subgraph H — .

Claim 5.7.3. H — u is 2-connected.

Proof. Clearly, H—wu is connected since, our supposition, H is 2-connected. Suppose, to
the contrary, that H—u is not 2-connected. Hence, there exists a vertex of V(H —u), say
x, such that H —u— z is disconnected, i.e. x is a cut-vertex of H —u. Therefore, {u, z}
is cut-set in H. Without lost of generality, let us denote by H;, Hy two componnents
of H — {u,z}. Since H is 2-connected, both components H;, H, contain at least one
neighbour of u, say x; and x3. On the other hand, by Claim 5.7.2, z; is adjacent to
xo, contradicting the fact that H; and Hy are two components of H — {u, z}.

The proof is obtained. (@)

Now, H —u is 2-connected. Moreover, by the minimality of G, implying pc(H —u) < 2.
We consider the 2-edge-colouring of H — u in order to make it properly connected. Let
uy1,uz € Ng(u) be two neighbours of u in H. Now, we colour the two edges uuy, uus by
the colour different from the colour of ujus and all the edges of the path uvz; ...z w
such that it is proper path. Clearly, H — u and G[u,uy,us,v, 21, ..., 2] are properly
connected by theirselves. Now, let = € V(H — u) and y € {u,uy,uz,v,21...2:}. By
the definition of the properly connected graph H — u, there always exists a proper
path, say P, from z to u; or us. Without lost of generality, we get the shortest one.
Renaming vertices if necessary, we may assume that P contains u; but not us. Now
either x Pujuvzy ...y or x Pujusuvzy ...y is a proper path between z and y, depending
on the colour of the edge of P incident to u;. Hence, G[V (H)U{v, z1, ... z}] is properly
connected graph. Moreover, one can easily see that, by Lemma 4.11, it is 2-connected.
That contradicts the maximality of H.

This completes our proof.

]

Adding the further condition of minimum degree at least 3, we improve the order of
S; jx-free of 2-connected graph having proper connection number 2 as follows.

Theorem 5.8. If G is a non-complete, 2-connected, S 1-free graph of minimum de-
gree § at least 3, then pc(G) = 2.

Before starting to prove Theorem 5.8, let us denote by 9(S) the subset of vertices of
S C V(@) which have neighbours in V(G) \ S.

Proof. Suppose, to the contrary, that the statement is false. Hence, there exists a
graph G which is non-complete, 2-connected, Si¢-free of minimum degree 6(G) > 3
with proper connection number 1 or at least 3. On the other hand, by Fact 3.2,
pc(G) = 1 if and only if G is complete graph. It can readily deduce that pc(G) > 3.
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Moreover, by Corollary 3.5, G is not Hamiltonian since the proper connection number
of non-complete, Hamiltonian is 2.

Note that every 2-connected graph with minimum degree §(G) at least 3 is either
Hamiltonian or contains a cycle of order at least 25(G). Hence, G contains a cycle, as
a subgraph in G, that has proper connection number at most 2 by Fact 3.2. Now let us
denote by H a largest subgraph of proper connection number at most 2 in GG. Cleary,
such a subgraph always exists, it is induced in G and n(H) > 3, and |V(G)\V(H)| > 1.
It can easily deduce that every vertex of V(G) \ V(H) has at most one neighbour in
H. Otherwise, by Lemma 3.6, an induced connected subgraph containing H and the
vertex which has two neighbours in H has proper connection number at most 2, a
contradiction to the maximality of H. Furthermore, there are at least two vertices
in V(G) \ V(H) that have only one neighbour in H. On the other hand, since the
minimum degree 6(G) at least 3, implying |V(G) \ V(H)| > 3

Let B be the set of non-trivial blocks in G — V(H), i.e. the set of 2-connected induced
subgraph of order at least 3 in G — V(H). For all z € V(G) \ V(H), we denote
V(z) :== V(B) if x € B for some B € B and z is not a cut-vertex in G \ V(H).
Otherwise, we define V' (z) := {z}. Hence, for any two vertices vy, v € O(V(G)\V(H))
since G is 2-connected, connected by a path P in G—V (H), Q(v1,v2) denotes the graph
G[Uwev(P)V(IU)].

Note that we use the same technique of the proof of Claim 4.11.3 and Claim 4.11.5
of Theorem 4.6 to prove two following lemmas although the construction of H of this
theorem is different from the construction of H of Theorem 4.6.

Claim 5.8.1. For any two vertices vy,ve € O(V(G) \ V(H)), Q(v1,v2) is bipartite.

Proof. Suppose, to the contrary, that (v, v2) is not bipartite, i.e. there exists an odd
cycle C'in Q(vy,v2). Let uy and uy be two neighbour of v; and vy in H, respectively.
Note that u; and wuy are not necessarily distinct. Since H has proper connection
number at most 2, there always exists a proper path, say R, connecting u; and us in
H. By the definition and construction above, there is non-trivial block B € B such
that V(C) C V(B) and there is a path, say P, connecting v; and vy in V(G) \ V(H)
such that P contains at least two vertices of V(B), i.e. |[V(P)NV(B)| > 2. Let
z1,x9 € V(P) N V(B) be two vertices having the shortest distance to vy, ve in P,
repsectively. One can readily observe that z; and x5 are distinct. Since B is non-trivial
block, i.e. B is 2-connected, by Corollary 3.21, there are two vertex-disjoint paths, say
P, and P,, between x; to C, and x5 to C, respectively. Without lost of generality, we
may assume that z; € V(P;) and x5 € V(P;). We note that the length of P, or P, is
able to be 0 if z; € V(C) and x9 € V(C). Let z3 and x4 be the end-vertices of P, and
P, in C| respectively. We denote the orientation of C'. Hence, either 1:3<5x4 or x3C x4
is odd length since C' is odd cycle. Therefore, either u,vy PxyPix3C x4Poxe Pvous Ruy
or uyvy Pxy Pyxs CaxyPoxs Puous Ruy is even cyle. Moreover, R is the proper path of H.
By Lemma 3.8, a new induced subgraph in G which contains subgraph H has proper
connection number at most 2. Hence, a contradiction to the maximality of H.

The proof is obtained. @)

Claim 5.8.2. For any two vertices vy, vy € O(V(G)\V(H)), Q(v1,v2) contains bridges.
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Proof. Suppose, to the contrary, that (v, vs) is bridgeless. Moreover, by Claim 5.8.1,
Q)(v1,v9) is bipartite. Hence, by Theorem 3.17, Q(vy,vs) has strong property with
two colours, i.e. every two distinct vertices of V(Q(v1,v2)) are connected by two not
necessarily internally vertex-disjoint proper paths such that the colours of the first egde
and the last edge of their paths are distinct. We colour all the edges of Q(vy,ve) with
two colours from [2] in order to make it properly connected with strong property.

Let u; and us be two not necessarily distinct neighbours of v; and vy in H, respectively.
By our supposition above, pc(H) < 2, there exist a proper path, say R, between u,
and up in H. Now we colour the edges ujv; and usvy with two colours from [2] such
that uiv; Rvsus is a new proper path.

Clearly, H and Q(vy,v9) are properly connected by themselfves with two colours from
[2]. Let x € V(H) and y € V(Q(v1,v2)) be arbitrary vertices, respectively. By defi-
nition, there is a shortest proper path, say P, between x and a vertex of V(R) that
contains only one vertex in R. Depending on the colour of the last edge of P, either
xPwRw; or x PwRws, is a proper path. Renaming vertices if necessary, we may assume
that 2 PwRw is such proper path. Since (v, v9) has strong property, there always ex-
ists a proper path, say @), between y and v; such that wyv;Qy is a proper path. Hence,
xPwRw;v;Qy is the proper path between x and y. Therefore, G[V (H) UV (Q(v1,v2))]
is properly connected with two colours, a contradiction to the maximality of H.

The proof is obtained. @)

By Claim 5.8.2, we deduce that there is a bridge in Q(vy,v2). Now we denote by T
the graph obtained by removing all bridges in G — V(H), contracting each component,
which could possibly consist of one vertex, to a super-vertex, and adding an edge
between the super-vertices ¢; and ts of the components T and T if a vetex of V(T7)
is adjacent to a vertex of V(7Ty) in G — V(H). Clearly, T is a tree, more detail, T is
the superblock-cut-vertex tree, and n(7") > 2.

Claim 5.8.3. Fvery component contracted to a leaf of T has exactly one vertex in
O(V(G)\ V(H). Further, that vertex has exactly one neighbour in V(H).

Proof. Let T'" be a component contracted to a leaf ¢ of T. Since G is 2-connected,
i.e. G is bridgeless, there is a vertex, say x, in T} such that z € O(V(G) \ V(H)).
Obviously, « has exactly one neighbour in V(H) by Lemma 3.6.

Suppose, to the contrary that, 7" has at least two vertices in O(V(G) \ V(H), say
x1, 9. Clearly, T” is the non-trivial block. Hence, by Claim 5.8.2, T” contains a bridge,
a contradiction.

The proof is obtained. ©)

Claim 5.8.4. G does not exist.

Proof. By Claim 5.8.2, there exists bridge in G — V(H) implying T" has at least two
vertices, i.e. n(T) > 2. Hence, there are at least two leaves, say t; and t5, in 7. Now let
Ty and T be two components contracted to two leaves t; and to, respectively. We note
that there is at most one edge in G—V (H ) between vertices of V' (71) and vertices V (T3).
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Further, we denote v; € 9(V(G)\V(H))NV(11) and vy € O(V(G)\V(H))NV(T3). By
Claim 5.8.3, v; has exactly one neigbour in H, say u;, for all i € [2]. By Lemma 5.5, we
note that u; and usy are different. Since the minimum degree of G is at least 3, v; has at
least two neighbours in G — V(H), for all i € [2]. Moreover, it can be readily deduced
that n(7}) > 3 and n(T,) > 3 since t; and ty are leaves of T'. Hence, dr, (v;) > 2, for all
i € [2]. Let 21, 29 and z3, z4 be two neighbours of v; and vy in T} and Ty, respectively.
Clearly, 21, 29, 23, 24 are distinct. Renaming vertices if necessary, we may assume that,
z; and zz are non-adjacent. Hence, each vertex of {z1, 23} has no neighbour in V(H).
Otherwise, by Claim 5.8.2, T; contains a bridge, a contradiction, for all i € [2]. By the
minimum degree condition of G and T; is contracted to a leave t;, each of both vertices
{21, 23} has two neighbours in 7; which are different from zy, 25, 23, 24, for all i € [2]. To
be more precise, let z5 and zg be neighbours of z;, and, z; and zg be neighbours of zs3.
Renaiming vertices if necessary, we may assume that zs, zg, 27, 2g are distinct, and that
z5 and zg are non-adjacent to v, 23, and z7 and zg are non-adjacent to vy, z;. Since the
bipartiteness of G[11] and G|[T3], which follows from Claim 5.8.1, z5 is non-adjacent
to v; and zg, and zg is non-adjacent to vy, and z; is non-adjacent to vo. Moreover,
25, 26, 27 have no neighbour in V(H). Otherwise, by Claim 5.8.2, T; has a bridge, for
all i € [2]. Let P = uy = wy...wx = ug, (k > 2) be the shortest path between u,
and up in H. Hence, G|z, 26, 21, V1W1, . . . W, V2, 23, 27] has an induced subgraph S 16,
a contradiction.

()

This completes our proof.

[]

The proper connection number of a 3-edge-connected graph, in Therem 3.18, is already
proved in Chapter 3 by using the results of Lemma 3.23 and Theorem 3.17. However,
the first part of Theorem 3.18 can be proved without major changes from the proof of
Theorem 5.8. Recall the first part of Theorem 3.18.

Theorem 3.18 If G is a 3-edge-connected non-complete graph, then pc(G) = 2.

Proof. To prove the first part of Theorem 3.18, we again use the techniques, notations,
claimes of the proof of Theorem 5.8. Suppose, to the contrary, there exists a graph,
say G, which is non-complete, 3-edge-connected with proper connection number 1 or
at least 3. Since G is non-complete, by Fact 3.2, pc(G) > 2. Moreover, by Corollary
3.5, G is not Hamiltonian. Thus, pc(G) > 3.

Clealy, in every 3-edge-connected, there always exists a cycle which has proper con-
nection number at most 2 by Fact 3.2, as a subgraph in G. Now let H be a largest
subgraph of proper connection number at most 2 in G. By our supposition above,
we note that such a subgraph H always exists, it is induced in G and n(H) > 3,
|[V(G)\ V(H)| > 1. On the other hand, by Lemma 3.6, every vertex in V(G) \ V(H)
has at most one neighbour in H. By the condition of a 3-edge-connected graph, it
can be readily observed that |V (G) \ V(H)| > 2. The following notations and claims,
which are already mentioned in the proof of Theorem 5.8, are stated here.
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Let B be the set of non-trivial blocks in G — V(H), i.e. the set of 2-connected induced
subgraph of order at least 3 in G — V(H). For all x € V(G) \ V(H), we denote
V(z) := V(B) if v € B for some B € B and x is not a cut-vertex in G \ V(H).
Otherwise, we define V' (z) := {z}. Hence, for any two vertices vy, v, € O(V(G)\V(H))
since G is 2-connected, connected by a path P in G—V (H), Q(v1,ve) denotes the graph

GlUwev(p)V (w)]-
Claim 5.8.1 For any two vertices vi,v2 € O(V(G) \ V(H)), Q(v1,v2) is bipartite.
Claim 5.8.2 For any two vertices vy, vy € O(V(G)\V(H)), Q(v1,vs) contains a bridge.

Claim 5.8.3 Fvery component contracted to a leaf of T has exactly one vertex in
O(V(G)\ V(H). Further, that vertex has exactly one neighbour in V(H).

In the following claim, we verify that there does not exist a 3-edge-connected graph
with proper connection number at least 3.

Claim 5.8.5. G does not exists.

Proof. By Claim 5.8.2, there is a bridge in G — V(H) implying n(7) > 2 and T has
at least two leaves. Hence, there always exits a least t* in T'. Let T™ be the compoent
contracted to t* in 7. By Claim 5.8.3, clearly, there is exact one edge between a vertex
of V(T') and a vertex of V(H) in G, say e;. Furthermore, since t* is one of all leaves of T,
there exists an edge between a vertex of V(7*) and a vertex of V/(G)\ (V(H)UV (T")),
say es. Therefore, {e1, e} is 2-edge-cut, contradicting the 3-egde-connectivity of G.
Hence, G' does not exist.

()

This completes our proof.

We finish Chapter 5 here.
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6 The proper 2-connection number

pea(G)

In graph theory, connectivity is one of the basic concepts and plays an important
role. The concepts and results which are related to the connectivity are presented in
Chapter 4 of the book ’Introduction to Graph Theory’ by West [71]. At the beginning
of Chapter 4, the author introduced the important role of the connectivity as follows:

A good communication network is hard to disrupt. We want the graph
of possible transmissions to remain connected even when some vertices or
edges fail. When communication links are expensive, we want to achieve
these goals with few edges.

Let | > k > 2 be two positive integers. The concept of proper k-connection number was
recently introduced by Borozan et al. [8]. By the definition above, we note that there
always exists the proper k-connection number in every [-connected graph. Moreover,
by Fact 3.2, it can be readily seen that pcx(G) > 2. On the other hand, as well as
the proper connection number pc(G), if G is [-connected graph and a proper colouring,
then G is properly k-connected graph, too. Hence, the proper k-connection number
pck(G) is bounded by x/'(G). Therefore, we get

2 < par(G) < X'(G)
The well-known result of the chromatic index number which is called Vizing’s Theorem
was studied in [70] as follows.
Theorem 6.1 (Vizing’s Theorem [70]). If G is a simple graph, then X'(G) < A(G)+1.
By Vizing’s Theorem, as well as Theorem 6.1, the proper k-connection number is
bounded by the following result
Fact 6.2 (Borozan et al. [8]). Let k,l be two positive integers such that k < 1. If G is
[-connected of mazimum degree A(G), then 2 < pcp(G) < A(G) + 1.

In this chapter, we consider the proper 2-connection number of several classes of con-
nected graphs.

6.1 Results for the proper k-connection number

In this section, we state some existent results of the proper k-connection number pcy(G).
Since the proper connection number of a connected graph is at most the proper connec-
tion number of its connected spanning subgraph, see Proposition 3.3, it can be readily
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deduced that this result still holds for the proper k-connection number, where k& > 2
is an integer. Hence, the following result is immediately obtained.

Lemma 6.3. Let | > k > 2 be two positive integers and G be l-connected graph. If H
is a l-connected spanning subgraph of G, then pcg(G) < pex(H).

Proof. The proof of this lemma is similar to the proof of Proposition 3.3 proved by
Andrews et al. [4]. Since l > k > 2, and G, H are two [-connected graphs, there always
exist pex(G) and peg(H). Let us define by ¢y : E(H) — [pck(H)] a colouring cy in
order to make H proper k-connected graph.

By the concept of the proper k-connected graph, hence, every two distinct vertices, say
u,v € V(H), are connected by k disjoint proper paths. Now, we define a colouring ¢
of G as follows: c(e) = cy(e) if e € E(G)NE(H) and c(e) = 1 if e € E(G) \ E(H).
Clearly, every two vertices, say u,v € V(G), are connected by k disjoint proper paths
since H is [-connected spanning subgraph of G. Hence, by the minimum of the proper
k-connection number, it can be readily deduced that pc,(G) < pey(H).

This completes our proof.

]

Similar as for the proper connection number pc(G), the results of the proper k-connection
number of bipartite graphs are considered. First of all, Borozan et al. [8] posed a gen-

eral conjecture for pci(G) where G is bipartite graph with the specific connectivity

that depends on k.

Conjecture 6.4 (Borozan et al. [8]). If G is a 2k-connected bipartite graph with k > 1,
then pc,(G) = 2.

Note that, the conjecture holds when k = 1, see the first part of Theorem 3.12. If & > 2,
then Conjecture 6.4 is still open. The authors in [8] showed that there is a family of
bipartite graphs which are (2k — 1)-connected with the property that pcx(G) > 2 by
the following proposition.

Proposition 6.5 (Borozan et al. [8]). Let k > 1, p and q be three positive integers. If
p=2k—1 and g > 2, then pcy(K,,) > 2.

Adding further condition, the authors in [8] proved Conjecture 6.4 for complete bipar-
tite graphs.
Theorem 6.6 (Borozan et al. [8]). If G = K, ,, where m > n > 2k for k > 1, then
per(G) = 2.

In thesis [55], which is published recently, the author improved lower bounds for the
proper k-connection number of certain complete bipartite graphs K, , in terms of p
and q.

Theorem 6.7 (Laforge [55]). Let p,q and k be three positive integers.
(i) If p < q and & < k <p, then pcy(Kpq) > [3/4]-
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(7'7’) [fk Z 27 b= 2k —1 and q S 31?7 then pck(an) = [w—l
(iii) If 2 <p < qand 2 < k < p <2k, then pey(Kpq) > [ 2-2+7/q].
(iv) If k>3, p =2k —2 and ¢ > 37", then pey(K,,) = [ /7).

The following results, which are illustrated Theorem 6.7 were presented in [55].
Proposition 6.8 (Laforge [55]). (i) pcs(Kya27) = 3.
(ZZ) pC3<K4’28) =4.

After that, the author in [55] suggested some questions as follows.

Question 6.9 (Laforge [55]). (i) Determine pcs(Ky,) for g > 5.
(i1) Determine pc,_1(K,,) for4 <p <q.
(111) Determine pCprl(an) for7T<p<q andp is odd.

For general graphs, Borozan et al. [8] extended Conjecture 6.4 as follows.

Conjecture 6.10 (Borozan et al. [8]). Let k > 1 be a positive integer. If G is 2k-
connected graph, then pcp(G) < 3.

Conjecture 6.10 was proved for £ = 1, see Theorem 3.10. Similar as for Conjecture
6.4, this conjecture is still open for k& > 2. A stronger result for complete graphs was
studied by Borozan et al. [8].

Theorem 6.11 (Borozan et al. [8]). Let n > 4, k > 2 be two positive integers. If
n > 2k, then pcy(K,) = 2.

Next we state some results of the proper 2-connection number. Since a cycle is one of
the most simple 2-connected graphs, the proper 2-connection number is immediately
obtained as follows.

Fact 6.12. If G is a cycle of order n, then pca(G) =2+ (n mod 2).

Hence, the proper 2-connection number of a cycle is either 2 or 3 depending on its
order. Different to the proper connection number of Hamiltonian graph which is 2, the
proper 2-connection number of Hamiltonian graph is not a constant. By Lemma 6.3
and Fact 6.12, we obtain the proper 2-connection number of a Hamiltonian graph.

Corollary 6.13. If G is Hamiltonian, then 2 < pco(G) < 3. Moreover, pcy(G) = 2 if
[V(G)] is even.

Although the result of Corollary 6.13 was already mentioned in [48], but the authors
did not give the details of a proof. Hence, the proof of this corollary is as follows.

Proof. Clearly, G is a 2-connected graph since G is Hamiltonian. There exists the
proper 2-connection number in G. Moreover, by Fact 6.2, pco(G) > 2, where k = 2.
Let C' be a Hamiltonian cycle of G. It can be easily observed that C' is a spanning
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2-connected subgraph of G. By Lemma 6.3, pc2(G) < pca(C'), where k = 2. On the
other hand, by Fact 6.12, pco(C) < 3. Hence, pea(G) < 3. Clearly, if |V(G)]| is even,
then pcy(G) = 2.

This completes our proof.

[]

Hence, the proper 2-connection number of a Hamiltonian graph is either 2 or 3 by
Corollary 6.13. In [48], the authors proved the proper 2-connection number 2 of Hamil-
tonian with some specific conditions. The following lemma is as a basic tool that is
used several times in our next results.

Lemma 6.14 (Huang et al. [48]). Let C, = vivy...v,v1 be a cycle of order n. If
G = Cy + vp_1v1, then pea(G) = 2.

Since a complete graph of order at least 4 has proper 2-connection number 2, by
Theorem 6.11, and Hamiltonian has proper 2-connection number 2 or 3, Huang et al.
[48] studied the proper 2-connection number of a connected graph which is Hamiltonian
and has fewer edges than a complete graph. In particular, they proved proper 2-
connection number 2 of a connected graph having specific condition of minimum degree
as follows.

Theorem 6.15 (Huang et al. [48]). Let n > 4 be a positive integer, and G be a
connected graph of order n and minimum degree 6(G). If §(G) > 5, then pca(G) = 2.

They showed that §(G) > % is best possible. They denote by By, = K; V (2K}) a

connected graph, where k is a positive integer. Clearly, §(By1) = k < m Since
Biq is not 2-connected, there does not exist the proper 2-connection number in By;.
Hence, the condition of minimum degree cannot be improved. Next, they considered
the following theorem having a weaker condition than the condition of Theorem 6.15.

Theorem 6.16 (Huang et al. [48]). Let n > 4 be a positive integer and G be a
connected graph of order n. If the degree sum of two any non-adjacent vertices is at
least n, then pco(G) = 2.

Note that there exists connected graphs, where the degree sum of two any non-adjacent
vertices is less than their order that the proper 2-connection number neither exist nor
is greater than 2. For example, pcy(Bi1) does not exist, where By; = Kj V (2K},) or
pea(Cs) = 3, where Cj is a cycle of order 5. Hence, the condition of the degree sum of
Thereom 6.16 cannot be improved.

By using the concept of colour coding which was first introduced by Chartrand et al.
[20], the authors in [8] studied the proper 2-connection number for complete bipartite
graphs as follows.

Theorem 6.17 (Borozan et al. [8]). Let n > 3 be an integer. If G = K, 3 is a complete
bipartite graph, then
p if 3<n<6
pea(G) =< 3 if 7T<n<S8
[vnl if nz=9
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Recently, many beautiful results of the proper connection number which are already
mentioned above are published. For general positive integer £ > 2, the results of the
proper k-connection number are studied in the special classes of graphs, for example
complete bipartite graphs with specific conditions or complete graphs. Moreover, there
are still many open conjectures and questions for the proper k-connection number of
general classes of graphs. In the next sections, we consider the proper 2-connection
number for several classes of graphs.

6.2 The bounds of pcy(G)

Clearly, it makes only sense to consider the proper 2-connection number in graphs G of
connectivity 2 or larger. By Theorem 3.10, if G is a 2-connected graph, then Borozan
et al. [8] proved that the upper bound of proper connection number pe(G) is at most
3. One is different from proper connection number pc(G) of connected, in this section
we prove that there does not exist a constant C' such that the proper 2-connection
number is at most C' for all 2-connected graphs. Moreover, when k = 2, Fact 6.2
implies that 2 < pea(G) < A(G) + 1. Now we improve the new upper bound for
pea(@G) of 2-connected graphs and characterize 2-connected graphs achieving equality
pc(G) = A(G) + 1. The following two results which is about the property of chordless
graphs are very important to prove the upper bound of the proper 2-connection number.

Theorem 6.18 (Dirac [29]). If G is a minimally spanning 2-connected graph, then G
is chordless.

Theorem 6.19 (Machado et al. [61]). If G is a chordless graph of mazimum degree
at least 3, then G is A(G)-egde-colourable and (A(G) + 1)-total-colourable.

Now we present our result and are able to prove it.

Theorem 6.20 ([30]). Let G be a 2-connected graph.
(i) If G is different from an odd cycle, then 2 < pca(G) < A(G).

(i) G has proper 2-connection number pco(G) = A(G) + 1 if and only if G is an odd
cycle.

Proof. For (i), trivially, by Fact 6.12, pco(G) = A(G) = 2 if G is an even cycle.

Now let G' be a 2-connected graph different from a cycle. Hence, A(G) > 3. Let H
be a minimally spanning 2-connected subgraph of G (meaning that if we remove any
edge of H then H is 1-connected). One can readily observe that A(H) < A(G) and
pea(H) < X'(H). By Lemma 6.3, for k = 2 implies pco(G) < pea(H). We immediately
deduce that pcy(G) < x/(H). If H is a cycle, then pey(G) < X' (H) <3< A(G). If H is
not a cycle, then A(H) > 3. Moreover, since H is the minimally spanning 2-connected
graph, by Theorem 6.18, H is a chordless graph. By Theorem 6.19, x'(H) < A(H).
Hence pcy(G) < x'(H) < A(H) < A(G) and we obtain the result.

For (ii), we verify that pco(G) = A(G) + 1 if and only if G is an odd cycle. If G is
an odd cycle then pca(G) = 3 by Fact 6.12. We suppose, now, G is not an odd cycle.
Hence G is an even cycle or a 2-connected graph different from a cycle. By our proof
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above, pea(G) < A(G) < A(G) + 1, a contradiction to pcy(G) = A(G) + 1. Hence G is
an odd cycle.

This completes our proof. ]

By Theorem 6.20, we note that pcy(G) > 2 for every general 2-connected graph. The
lower bound of the proper 2-connection number can be improved for some special
classes of graphs having vertices with degree number 2 as in the following lemma.

Lemma 6.21 ([30]). Let G be a 2-connected graph and w be a vertex of G. If S is a
vertex subset of V(G) such that S = {v; € V(G) | dg(v;) = 2,w € Ng(v;)NNg(v)), Vi #
j}, then pes(G) > maz{[S], 2).

Proof. Note that, we consider only |[S| > 2. Otherwise, by Theorem 6.20, pco(G) >
2 > |S|. Since G is 2-connected, there always exist the proper 2-connection number in
G. Now, we may assume, that G is the proper 2-connected graph with pea(G) colours
by assigning: ¢ : E(G) — [pca2(G)], one colour to each edge. Hence, by the concept
above, there always exist two disjoint proper paths between two arbitrary distinct
vertices, say v; and v;, where v;,v; € S. Now we verify that c¢(v,w) # c(v;w). Since
de(vi) = dg(v;) = 2 and w € Ng(v;) N Ng(vj), we denote by Ng(v;) = {u;,w} and
N¢(vj) = {uj, w} the neighbour set of v; and v; in G, respectively (note that, u; and
u; can be the same).

Suppose, to the contrary, that c¢(v;w) = c(v;w). Hence, P = v;wv; is not a proper
path from v; to v; in G. Let us denote by P, = vu,Pfv; and P, = v;wPjv; two
disjoint proper paths between v; and v;. One can be readily observed that |V (P5)| > 0.
Otherwise, P> = v;wv; is a proper path from v; to v; in G, a contradiction to P = v;wwv;
that is not a proper path in G. Therefore, u; € Py since Ng(vj) = {uj,w}. On
the other hand, we note that u; ¢ P, and w € P;. So P, and P, are not pairwise
internally vertex-disjoint paths, a contradiction. It can be immediately deduced that
c(v;w) # c(vjw). By the pigeon hold principal, pcy(G) > |S].

This completes our proof. n

By using Lemma 6.21, we show that there are infinitely many 2-connected graphs whose
proper 2-connection number achieves the upper bound of Theorem 6.20.

Proposition 6.22. Let k > 2 be an integer. There exist infinitely many 2-connected
graphs G with A(G) = k and pce(G) = k.

Proof. Trivially, for k = 2, let G be a cycle of even order. Hence, A(G) = 2 and by
Fact 6.12, pco(G) = 2. So we obtain the result.

Now, we consider, that k > 3. Let C' = wv,_ju; ... u,vpw be an even cycle of order at
least 4, where n is an integer such that n > 1. We denote P, = v}v? ... v" as a path of
order m > 3, where 7 is an integer such that ¢ € [k —2]. Let us construct graph G from
C and k — 2 paths P; by identifying v} and w, v/ and u;, where w,u; € V(C). By the
construction of GG above, one can be easily seen that G is 2-connected different from a
cycle with A(G) = k. Applying Theorem 6.20 implies pcy(G) < k. Next, we denote
S = {v; = v} Vi € [k — 2]} U {vp_1,vx} as a vertex subset of V(G). One can readily
observe that |S| = k and dg(v;) = 2, for all v; € S. Moreover, w € Ng(v;) U Ng(v;),
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where Vv;,v; € S and i # j. By Lemma 6.21, pco(G) > k. Therefore, peo(G) = k =
A(G). The result is obtained.

This completes our proof. ]

For a small k = 4, the graph depicted in Figure 6.1 with pcy(Bi2) = 4 = A(Bj3) is one
of the examples of Proposition 6.22.

Fig. 6.1: Graph with pea(G1) = A(G) =4

Theorem 6.23 (Whitney [72]). A graph G is 2-connected if and only if it has an ear
decomposition. Furthermore, every cycle in a 2-connected graph is the initial cycle in
some ear decomposition.

Note that every 2-connected graph G with minimum degree §(G) > 2 is either Hamil-
tonian or always contains a cycle C' with at least 20(G) vertices by Dirac’s Theorem in
[28]. Hence, there always exists at least a cycle in G. Further, among all cycles of G
we are able to find a cycle of maximum order. By using Theorem 6.20 and Corollary
6.13, the following result is immediately obtained.

Proposition 6.24. Let G be a 2-connected graph of order n.
(i) If G is Hamiltonian, then 2 < pco(G) < 3.

(i1) If G is not Hamiltonian, and C' is the longest cycle of order k in G, i.e. C is of
mazximum order k, then 2 < pcoy(G) <n —k+ 2.

Proof. Cleary, we consider only (ii).

Let G be a 2-connected graph different from Hamiltonian. Hence, there is the largest
cycle in G, say C of order k. Now, let H be a spanning minimally 2-connected subgraph
of G, meaning that the removal of any edge would leave G 1-connected. By Theorem
6.18, H is chordless. It can be readily observed that H is not Hamiltonian and C' is
the longest cycle of order k£ in H. Hence, k <n — 1.

Now we prove that A(H) < n — k + 2 by the induction on an ear decomposition in H.
By Theorem 6.23, let us consider the ear decomposition in H such that C' is the initial
cycleand H=CU P, U...PF. Since k <n — 1, it can be readily observed that [ > 1.
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The base case of this induction is when [ = 1. Hence, A(H) = 3 < n — k + 2, since
k<n-1

Let P, be the last ear added to H' and there is at least one internal vertex of P, that
isin H \ H'. Hence, n(H') < n(H) — 1 Since H is chordless, A(H) < A(H') + 1. By
our induction on the number of ears, we obtain A(H') < n(H') — k + 2. After some
manipulations, we get A(H) < n — k+ 2. By Theorem 6.20, pco(H) < n — k + 2 since
pea(H) < A(H). Applying Lemma 6.3 implies pca(G) < n — k + 2 since pea(G) <
pea(H), where k = 2.

This completes our proof. O

Although, the result of Proposition 6.24 is weaker than the result of Theorem 6.20, this
proposition is very helpful to determine the relation between the proper 2-connection
number and the order of graphs.

Corollary 6.25. Let n > 3 be an integer. If G is 2-connected of order n, then
(1) pca(G) = n if and only if G = Kj.
(i) There is no 2-connected graph such that pco(G) =n — 1.

(111) pea(G) =n—2if and only if G € {Ky, Ky —e,Cy,Cs, Gy, Gg}, where e is an edge
of G, see Figure 6.2.

Proof. Let C' be the largest cycle of order k£ in GG. Note that if G is Hamiltonian, then
k = n. Otherwise, GG is not Hamiltonian, it can be immediately obtained that k > 4.

By Proposition 6.24, hence, if G is not Hamiltonian, then pca(G) <n—k+2 <n—2.
Therefore, for ()& (ii), we only consider that G is Hamiltonian.

For (i). Onme can be readily deduced that G is Hamiltonian since pca(G) = n. By
Corollary 6.13, 2 < pco(G) < 3. It follows that n < 3. One can readily observed that
G = K3, since G is 2-connected of order at most 3. The first case is obtained.

For (ii). Since G is Hamiltonian, by Corollary 6.13, pco(G) = n —1 < 3. Hence, n = 3
or n = 4. By simple case to case analysis, we deduce that there is no Hamiltonian G
of order 3 or 4 such that pco(G) = n — 1. The second case is obtained.

For (i). If G € {Ky, Ky —e,Cy}, then pey(G) =2 =n —2. If G € {G5,Gg}, then
applying Theorem 6.20 implies that pea(G) < A(G;) = n — 2, where i € {5,6}. Let
S =V(G) \ {v2,v4} be a vertices subset of G. Clearly, S fulfills conditions of Lemma
6.21 and |S| = n — 2. Hence, pco(G) > n — 2. Therefore, pea(G) =n — 2.

Now we verify that there is no 2-connected graph G, where G ¢ { K4, K4—e, Cy, Cs, G5, Gg },
such that pea(G) = n — 2. If G is Hamiltonian, then n € {4,5} since 2 < pea(G) =

n — 2 < 3 by Corollary 6.13. Clearly, n = 4, one can be readily observed that

G € {Ky, Ky — e,Cy}, a contradiction. Hence, we consider that n = 5 and G # Cs.
Note that GG is Hamiltonian. Hence, there exists a spanning 2-connected subgraph, say

H = C5 + vvi42, where C5 = vy ...v5v; and v; € V(C), in G. By Lemma 6.3 and
Lemma 6.14, pcy(G) < peo(H) = 2, a contradiction to pea(G) =n —2 = 3.

Now, G is not Hamiltonian and n > 5. Hence, by Corollary 6.25, pca(G) = n —2 <
n — k + 2. It follows that £k = 4. Let us denote by C' = vjvv3v4v, the largest cycle
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Us Vg Up, U5 Vg Un

Fig. 6.2: pcy(G;) =n — 2, where i € {5,6}

of G. Hence, there is at least one vertex v € G\ C since G is not Hamiltonian and C'
is largest cycle in G. By Corollary 3.20, there are two internally vertex-disjoint paths
between v and C', say P, and P,. Renaming vertices if necessary, one can be readily
seen that u; and ugz are two end-vertices of P, and P, in C. Otherwise, there is a larger
cycle than C| a contradiction. Moreover, we note that path P = v; PivPyv3 has exactly
three vertices since C' is the largest cycle in G. By simple case to case analysis, we
deduce that G € {G5, Gg}, a contradiction.

This completes our proof.

6.3 The proper 2-connection number 2 of several
graphs

By Proposition 6.22, there always exist 2-connected graphs having equal proper 2-
connection number pcy(G) and maximum degree A(G), but the difference A(G) —
pc2(G) can be arbitrarily large. Recently, there are some results of proper 2-connection
number 2 for the several graphs proved by Borozan et al. [8] and Huang et al. [48|,
see results in Section 6.1. In this section, we consider some classes of graphs having
pea(G) = 2. Before starting our results in this section, recall the bounds of the proper
2-connection number of Hamiltonian graphs here.

Corollary 6.13 If G is Hamiltonian, then 2 < pco(G) < 3. Moreover, pca(G) = 2 if
|V (G)] is even.

Hamiltonian graph form one of the most interesting problems of graph theory and
has many applications in graph theory and in the real world. Many Researchers and
Mathematicians in graph theory still try to find necessary and sufficient conditions of
an arbitrary graph being Hamiltonian. Nowadays, there exist some results of the proper
k-connection number, where £ > 1 by using the properties of Hamiltonian graphs. For
example, pc(G) = 2 if G is non-complete traceable of order at least 3 by Andrews et
al. [4], or pco(G) = 2 if G is Hamiltonian with the special conditions by Huang et al.
[48], see Theorem 6.15 & Theorem 6.16. It is the starting point for us to consider the
Chvatal and Erdés condtion (a(G) < k(G) with two exceptions) which is one of the
fundamental conditions for Hamiltonian graphs and prove that the proper 2-connection
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number is 2. Furthermore, we show that our result is sharp. Before starting to prove
our result, we mention two well-known results which are very important in our proof.

Theorem 6.26 (Chvatal and Erdés [25]). Let G be a connected graph with |V (G)| > 3.
If a(G) < k(G), then G is Hamiltonian.

Theorem 6.27 (Amar et al. [3]|). Let G be a simple, k-connected graph of order n
with o(G) < k(G). If G is different from Ky and Cs, then G has a C,,—;.

Our result is as follows.

Theorem 6.28 ([30]). Let G be a connected graph with |V (G)| > 3 which is different
from Cs and Cs. If a(G) < k(G), then pcy(G) = 2.

Now we are able to prove Theorem 6.28 by using Theorem 6.27 & Theorem 6.26 as
basic tools.

Proof. By Theorem 6.26, G is Hamiltonian since G is a connected graph with |V(G)| >
3 and o(G) < k(G). We denote, now, C,, = vjvy...v,v1, where n = |V(G)|, as a
Hamiltonian cycle of G. Applying Corollary 6.13 implies that 2 < pey(G) < 3 if |[V(G)|
is odd, and pca(G) = 2 if |V (G)| is even. Hence, we only consider that |V (G)] is odd. It
can be readily deduced that |V (G)| > 5 since G # C5 and G # Cs. If |[V(G)] =5 and
G # Cs, then G has a spanning 2-connected subgraph H, where H = C,, +v;_1v;11. By
Lemma 6.14, pco(H) = 2. By Lemma 6.3, pco(G) < pco(H) = 2. Hence, pea(G) = 2.
Thus, |V(G)| > 7. In order to complete our proof, we follow the series of claims by
constructing H as a spanning 2-connected subgraph of G such that pcy(H) = 2.

Claim 6.28.1. If a(G) = 2, then there exists a spanning 2-connected subgraph H of
G such that pco(H) = 2.

Proof. Suppose, to the contrary, that there does not exist any spanning 2-connected
subgraph H of G such that pco(H) = 2. If either v,_jv; or v,_1v,_5 is an edge of E(G),
then we denote H as a spanning 2-connected subgraph of G such that H = C,, +v,,_1v;
or H=C, + v, 1v,_3. By Lemma 6.14, pca(H) = 2, a contradiction. Hence, neither
Up—101 NOT U, _10,_3 does belong to E(G), i.e. v, 101, 0, 10,3 ¢ E(G). Since a(G) =
2, it can be readily seen that v, 1v; € E(G). Otherwise, S = {v,_1,v,-3,01} is an
independent set of G, a contradiction to a(G) = 2. In the same way, one can easily
observe that both v,_jv3 and v,_sv, are edges of G.

We construct, now, C,,_1 = v, 103 ... U,_3V10V2V,_2U,_1 as an even cycle of order n — 1.
Let us denote H = C),_1 + vpU,_1 + 0,01 + U903 + U, _2v,_3. One can readily observe
that H is a spanning 2-connected subgraph of G. We colour all the edges of C,,_;
alternatingly with two colours from [2]. Thus, every two vertices x,y € V(C,,_1) are
connected by at least two disjoint proper paths. Renaming colours if necessary, we
may assume that c(vsv,_1) = 1. It implies that c¢(viv,_3) = 1. Next, we colour all the
remaining edges of H by colour 2. One can easily observe that there are two disjoint
proper paths between v, and v;, where v; € V(C,,_1) \ {v2, vp_2}. From v, to v, o
or from v, to vy we choose two disjoint proper paths as follows: P, = v,v1v,_3v, o
and Py = v,0,_103020,_o, Or P; = 0,010, _30,_2vs and P, = v,v,_1v3vy, respectively.
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Wit1 Uj—1

Up,— Uu.
n—2 4 g

Fig. 6.3: Cycle C),_1. Fig. 6.4: deg.(v) = 3

Hence, H is a proper 2-connected graph with two colours from [2]. It follows that
pea(H) = 2, a contradiction.

This claim is obtained. @)

Since |V (G)| is odd, it can be readily seen that G # Ky k. Moreover, G # Cs. Applying
Theorem 6.27 implies that G has a C),,_; being an even cycle of order at least 6.
We denote by C,_1 = ujus...u,_1u; a cycle of order n — 1 such that direction of
movement from u; to w4 is clockwise and v € V(G) \ V(C,—1). The direction of
C,_1 by labeling its vertices is depicted in Figure 6.3. Note that taking indices module
n — 1 thus w, = u; and ug = wu,_; in some special cases. By Claim 6.28.1, we
have dg(v) > §(G) > k(G) > «(G) > 3. Let us denote u;,u; € Ng(v) such that
1 <i<j<t<n-—1, where u; € Ng(v) \ {w;,u;} and P;; = u;C,_1u; be a path
between u; and u; along C,_; by clockwise direction. We write w;C,_1u; (uzﬁu])
for the path from u; to u; along C,_; in clockwise (in counterclockwise) direction. We
define S;; = V(P,;) as a vertex subset of V(C,_1) and d;; = |E(F;;)| as a number of
edges of P,;. Hence, u; ¢ S;; if uy € Ng(v) \ {wi, u;}-

First of all, we colour all the edges of C,,_; alternatingly with two colours from [2] and
some edges as follows: c(vu;) = c(uuit1), c(vu;) = c(uju;—1). Hence, there always
exist two disjoint proper paths between x,y, where z,y € V(C,_1), and between v, u,,
where u, € V(Cp—1) \ S;j or uy € {u;,u;}. Clearly, we only consider that d;; > 2. Next,
we prove that there always exist two disjoint proper paths in G' between v, u; such that
u; € Sij \ {wi, u;} by the following claims.

Claim 6.28.2. If deg.(v) > 4, then there are two disjoint proper paths in G between
v and ug, where u; € Si; \ {wi, u;}.

Proof. Without lost of generality, we may assume that u;, u;, ug, w; € Ng(v) such that
1<i<j<k<l<n-—1. Let us colour c(vug) = c(upugs1) and c(vy;) = c(wu_q).
From v to w;, where u; € S;;, we take two disjoint proper paths as follows: P, =
vukmujﬁut and P, = vulCT_iuiCT_l)ut. Hence, there always exist two disjoint
proper paths between v and ;.

This claim is obtained. @)

Applying Claim 6.28.2 implies that if a(G) > 4, or a(G) = 3 and 6(G) > 4, then

there are two disjoint proper paths in GG between any two vertices of GG. Thererfore,
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we consider the last claim such that o(G) = degg(v) = 3.

Claim 6.28.3. If a(G) = degs(v) = 3, then there are two disjoint proper paths between
v and uy in G, where uy € S;; \ {wi, u;}.

Proof. Since degq(v) = 3, let us denote N (v) = {u;, uj, u} such that 1 <i < j <k <
n—1. As in the above definition, we define d; and d; as number of edges between v;, vy,
and between vy, v;, respectively. Clearly, we only consider that 1 < dji, dy; < n — 1.
An example of C,,_; Uv is depicted in Figure 6.4.

Suppose, to the contrary that, there do not exist two disjoint proper paths between v
and u; in G, where u; € S;; \ {w;, u;} if we use two colours from [2]. Thus, w,_1u,11 ¢
E(QG) such that x € {i,j,k}. Otherwise, if u, ju,+1 € E(G) such that z € {i,j},
then, without lost of generality, we may assume that w; ju;11 € E(G). Hence, we
colour c(ui,ﬂl) = c(vy;) and c(vuy) = c(ugugs1). One can readily see that P, =
VUi 1 Cpoquy and Py = vuy n_lujmut are two disjoint proper paths between
v and u;, where u, € S;; \ {u;,u;}, a contradiction. Note that if uy_ur1 € E(G),
then we change labels between wu;, u;, ux, a contradiction. To complete Claim 6.28.3,
we consider the follwing two cases depending on the parity of d;;, d;i, di;. Without lost
of generality, we may assume that c(u;u; 1) = 2.

Case 6.28.3.1. If d;;,d;i, dy; are even numbers, then there exist two disjoint proper
paths between v and u;, where uy € S \ {wi, u;}.

Proof. Since c(uju;+1) = 2 and d;j, djx, di; are even numbers, c(ujujrq) = 2 and
c(ugugy1) = 2. Suppose, to the contrary that, there do not exist two disjoint proper
paths between v and w,; in G, where u; € S;; \ {w;, u;} if we use two colours from [2].
Hence, u;_jur—1 ¢ E(G). Otherwise, we colour c(vuy) = c¢(uj—jur—1) = 1. From v to
uy, we can choose two disjoint proper paths as follows: P; = vugug 1 CT_iuiCn_lut and
Py = vujuj1Cp_qug—1uj—1Cp_1uy, a contradiction. By the symmetry of C,,_;, one can
easily deduce that u;1ug1 ¢ E(G).

Next we consider only, that d;;, dji, dr; > 4. Otherwise, without lost of generality, we
may assume that d;; = 2. Hence, w;41 = u;_;. Since neither u; jup41 ¢ E(G) nor
uj_1up—1 ¢ E(G), it follows that S = {v, w11, ug—1,ur4+1} is an independent set, a
contradiction to a(G) = 3.

Now wip1up—1 € E(G) and uj_jups; € E(G) since S = {ug, v, up—1,ur+1} Is an in-
dependent set of G with |S| > «a(G), where u, = u;41 or u, = uj_;, respectively.
Morveover, u;u,—1 € E(G) since S = {uj_1,u;41,v,u,_1} is an independent set with
|S| > a(G). We colour c(u;y1ui—1) = 2 and all three edges vug, uj_1Ujt1, Uj1ug—1 by
colour 1. Hence, P, = vugup1u—1Cp_1us and Pp = vujujHuk_luiHCT_l)ut are two
disjoint proper paths between v and wu,, a contradiction.

This case is proved. ©)

Case 6.28.3.2. If exactly two integers among d,j, d;i, di; are odd, then there exist two
disjoint proper paths between v and u;, where uy € S;; \ {u;, u;}.

Proof. Without loss of generality, we may assume that dj,,d;; are odd and dj; is
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Fig. 6.5: pco(G;) = 3,7 € {3,4}

even. Note that dy;,d;; > 3 and d;, > 4. Suppose, to the contrary that, there do
not exist two disjoint proper paths between v and u; in G, where u; € S;; \ {u;, u;}
if we use two colours from [2]. Now, we colour c(vuy) = 2. Hence, u;_ju;_1 ¢ E(G).

Otherwise, we colour ¢(uj_quz—1) = 2. Thus, P, = vuu;1Chrug_1u;—1Cpr_qus and
P, = vupup1Cy_1u; are two disjoint proper paths between v, wu;, a contradiction.
Therefore, u;_jur1 € E(G) since S = {v,uj_1,uk—1,ur4+1} is an independent set,
a contradiction to a(G) = 3.
If wipqug—y € E(G), then we colour c(uj_jugt+1) = c(uipi1uk—1) = 2. Hence, P, =
VURUE 11U —1 Cp_1uy and Py = vujuj1Cho1up—1ui41Ch—1u; are two disjoint proper paths
between v, u;, a contradiction. Therefore, u;ugp1 € E(G). We colour ¢(u;yjugyr) =
—
2. We choose P; = vugug1u;1Ch_q1u; as the first proper path between v and wu;.
Hence, either w;_juj_y or w;_ju;+1 is an edge of G since S = {v,u;—1,u;_1,u;41} is
an independent set of G, a contradiction to a(G) = 3. If u;_ju;—; € E(G), then
%
c(ui—yuj_1) = 2. Hence, it can be readily observed that P, = vu;u;_1uj—1Ch_1uy
is the second proper path between v,u;, a contradiction. If u;,_jujyq € E(G), then
S .
c(ui—yujq1) = 2. Hence, Py = vuu;—yuj_1u;C,_qu, is the second proper path between
v, U, a contradiction.

This case is proved. ©)
Now Claim 6.28.3 is obtained. @)
This completes our proof. n

The sharpness examples for Theorem 6.28 are given by the graphs G;, where ¢ € {2, 3,4}
as follows.

Let G5 be a connected graph of order n > 3 consisting of a complete graph K, _; and
another vertex v joined to one vertex of K, ;. It can be readily seen that a(Gy) = 2
and x(G3y) = 1. Clearly, pca(G2) does not exist since Gy is not a 2-connected graph.

Let G5 = 3K7 V K3 be the graph depicted in Figure 6.5. There does exist pco(G's) since
k(G3) = 2. We denote S = {v1,v9,v3} as the unique maximum independent set of G5
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with «(Gs) = 3. Moreover, degg, (v;) = 2 for any v; € S and w € Ne(v;) N Ne(v;)
for any two vertices v;,v; € S. By Lemma 6.21 , pco(G3) > 3. On the other hand,
we use three colours from [3] to colour all the edges of G3 in order to make it proper
2-connected graph. Hence, pca(Gs) = 3.

Let Cy = uyvwusuy be a cycle and K4 = vyvovsvy be a complete graph of order 4. We
construct G4 from Cy and K, by identifying u; and v;, where ¢ € [2]. It can be easily
seen that pey(Gy) exists since k(G4) = 2. Moreover, a(G4) = 3. We use three colours to
make (3 a proper 2-connected graph (cf. Figure 6.5). Hence, 2 < pca(G4) < 3. Next,
we verify that pco(G4) = 3. Suppose, to the contrary, that pco(G4) = 2. One can readily
see that degg, (v) = degg, (w) = 2 and Ng,(v) N Ng,(w) = {vy,v2}. In the similar way
of the proof of Lemma 6.21 implies that c(vvy) # c(wvy) and c(vvy) # c(wvg). If
c(vvy) = 1, then c(wvy) = 2. By symmetry of G4, renaming colours if necessary, we
may assume that c¢(vyv1) = 1. We immediately deduce that P = v vzv1v has to be one
of two disjoint proper paths between v, and v. It can be easily seen that c(vqvs) = 1
and c(vsvy) = 2 since c¢(vvy) = 1. Hence, there do not exist two disjoint proper paths
connecting w and w3, a contradiction to the definition of a proper 2-connected graph.
Therefore, pca(G4) = 3.

The authors in [8] proved pcy(K,) = 2, where K, is a complete graph. Next we
show that pea(G) = 2 of 2-connected graphs having w(G) € {n,n — 1,n — 2}, where
n = |V (G)| by the following result.

Theorem 6.29. Let G be a 2-connected graph of order n and w(G) be the cardinality
of a largest clique in G. If:

(i) w(G) =n andn >4, or

(i) w(G) =n—1, or
(ZZZ) LU(G) =n—2and G ¢ {GQ,Gg},
then pcy(G) = 2.

Proof. Trivially, we verify (i). If w(G) =n and n > 4, then by Theorem 6.6, pco(G) =
2, where k = 2. Note that n > 4 is sharp since pca(K3) = 3 or pea(Ks) does not exist.

To verify (ii). It can be easily seen that n > 4 since G is a 2-connected graph and
w(G) = n—1. We take two vertices vy, v,-1 € Ng(v,) NV (K,_1), where v, ¢ V(K,_1).
We choose C),, = v1v,v,_1...v1 as a Hamiltonian cycle of G. Now, let us denote by
H = C),, + v1v,_1 a spanning 2-connected graph of G. Applying Lemma 6.14 implies
that pca(H) = 2. The result holds.

Finally, we verify (4ii). If n = 4, then G = C and pcy(Cy) = 2. Hence we may assume
that n > 5. Suppose, to the contrary that, there does not exist any 2-connected graph
G with w(G) = n — 2 such that pca(G) = 2. Let G be a 2-connected graph with
w(G) = n —2 and G* be a maximum complete subgraph of G. Hence |V (G*)| =n —2
and |V(G*)| > 3. We denote vy,v2 € V(G) \ V(G*). Since G is the 2-connected
graph with w(G) = n — 2, let C,_o = v3v4v5..v,v3 be a cycle of G* of order n — 2
such that v € Ng(v1), v4 € Ng(ve). If vivg € E(G) or |Ng«(v1) N Ng=(ve)] < 1 or
|Ng+(v1) N N« (v2)| = 2 and Ng=(v1) # Ng«(v2) or |[Ng«(v1) N N« (v2)| > 3, then there
always exists a Hamiltonian cycle C,, of G. Hence, H = C,, + vsv,,_; is a spanning
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2-connected graph of G. By Lemma 6.3 and Lemma 6.14, pco(G) = 2, where k = 2, a
contradiction.

Now we consider that Ng«(v1) = Ng«(ve) = {vs,v4} and v1vy ¢ E(G). Furthermore,
[V(G*)] > 5. Let C,,_1 = v1v4v5..0,v301 be a cycle of order n — 1. To complete our
proof we consider the following two cases depending on the parity of |V (G)|.

Case 1. If |V(G)| is odd, then C,_; is an even cycle. Hence H = C,,_1 + vov3 +
Uy + V3U5 + V40, IS a spanning 2-connected subgraph of G. We colour all the edges
of C,,_1 alternatingly with two colours from [2]. Without lost of generality, we may
assume that c(vivg) = 1 and ¢(v1v4) = 2. Now we colour c(vav3) = c(v4v,) = 2 and
c(vavg) = c(vgvs) = 1. We show that there are two disjoint proper paths between
vs and vy, where vg, v, € V(G). We only consider that vy = ve. If v, € {v1,v3, 04},
then C" = v9u3v104v9 is a 4-cycle with alternating colours. If v, ¢ {vy,v3,v4}, then
P, = vvgvs...vp and Py = vou4v,...0; are two disjoint proper paths connecting them.
Hence, pea(H) = 2, a contradiction.

Case 2. If |V(G)] is even, then |V(G)| > 8 since G # G3. We denote H = C,,_; +
UsU7 + U35 + V40, + V203 + Vo4 as a spanning 2-connected subgraph of G. It can be
readily seen that C,,_o = C,,_1 \ {vg} + vsv7 is an even cycle. We colour all the edges
of C,,_5 alternatingly with two colours from [2]. Without lost of generality, we may
assume that c(vsv7) = 1. Hence we colour ¢(vsvg) = c¢(vgv7) = 1. For any two vertices
vs, vy € V(G) \ {v2}, there are two disjoint proper paths connecting them. Next, we
colour c(vsvs) = c(vavy) = 2, c(v4v,) = c(vevs) = 1. Hence, C' = vqusv1v309 is a
4-cycle with alternating colour. If vy € V(H) \ {v1,vs,v4}, then P, = v9v4v,..0; is the
first proper path between v, and v;. We choose P, = vyv3vsvg if v = vg. Otherwise,
Py = vyvgvsvr...vy. There are always two disjoint proper paths between vy, vy, where
vs, vy € V(H). Hence, pey(H) = 2, a contradiction.

This completes our proof. O

Now we show that the condition of the largest clique number w(G) € {n,n —1,n — 2}
of a 2-connected graph G of order n having pcy(G) = 2 is sharp by the following
proposition.

Proposition 6.30. Let k > 3 andn > k+3 be integers. Then there exists a 2-connected
graph G of order n with w(G) = n — k having pco(G) > k.

Proof. Since k > 3, let P, = vjv;v? be i—th path of order 3, where i € [k]. We
denote K, as a complete graph with V (K, _x) = {u, ua, ..., up_x}, where n — k > 3.
Construct G by identifying v} with u; and v? with uy, where uy,uy € V(K,_;) and
i € [k]. Let S = {vy,vg,...,ux} be a vertex subset of V(G). Hence, |S| = k and
degq(v;) = 2, where v; € S. Moreover, u; € Ng(v;) N Ng(v;), where v;,v; € S. By
Lemma 6.21, pco(G) > k > 3.

This completes our proof. ]
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6.4 The proper 2-connection number of Cartesian
products

Cartesian products are common in Graph Theory. Recently, many interesting prob-
lems of Graph Theory are published on classes of these products. Take, for exam-
ple, Hamiltonian, connectivity, rainbow connection, etc. On the other hand, these
products have numerous applications in Biology, Computer Science and Mathematical
Chemistry. Let G and H be two simple graphs of vertex set V(G) = {u;...us} and
V(H) = {vy1...v:}, respectively. We denote by [u;, vg] a vertex of Cartesian product,
say GLH, of two graphs G and H. Further, we call P,il as a path from [u;, v to
[u;,v)], and Py as a path from [u;, v] to [uj, vi] of GOH. Note that, if P = P,j,lPli’j,
then P = [u;, vg] ... [w, v ... [uy, v

The result of the proper connection number pc(GOH) of two nontrivial connected
graphs G, H is proved by Andrews et al. [4], see Theorem 3.35. Recall its statement.

Theorem 3.35 If G, H are nontrivial connected graphs, then pc(GOH) = 2.

The connectivity of the Cartesian product of two graphs were studied by Chiue et al.
[24].

Lemma 6.31 (Chiue et al. [24]). If G, H are simple graphs, then x(GOH) > k(G) +
k(H).

In this section, we study the proper 2-connection number of the Cartesian product
of two nontrivial connected graphs G, H denoted as GLJH. Applying Lemma 6.31
implies that GLJH is a 2-connected graph. Moreover, it can be readily observed that
A(GOH) = A(G) + A(H). By Theorem 6.20, 2 < pco(GOH) < A(G) + A(H). The
following result shows that there is no analogue of Theorem 3.35 for the proper 2-
connection number, i.e. there does not exist a constant C' such that peo(GOH) = C
for any Cartesian product of two arbitrary nontrivial connected graphs G, H. First of
all, we prove that pco(GOH) = 2 for two nontrivial traceable graphs G, H.

Theorem 6.32 ([30]). If G, H are two nontrivial traceable graphs, then pco(GOH) = 2.

Proof. Suppose, to the contrary that, pco(GOH) > 2. Let us denote P, P, as two
Hamitolnian paths of order at least 2 of GG, H, respectively, since G, H are two nontrivial
traceable graphs. One can readily observe that P,,[]P, is a spanning 2-connected
subgraph of GOH. By Lemma 6.3, pco(GOH) < pco(P,0P,), where k = 2. We
consider only that both m,n are odd. Otherwise, without lost of generality, we may
assume that m is even. Hence P,,[1P, is a Hamiltonian of even order with cycle C,,,
as follows:
Crn = P11’2P12,n71P3f1P371,1P13’4-~-anil’mpﬂlnpgl’lpﬁ,l

For example, Hamiltonian cycle of P;[JP5 depicted in Figure 6.6 is an example of C,,,,.
By Corollary 6.13, pca(P,,00P,) = 2, a contradiction.
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Fig. 6.6: Even cycle of P,,[0P,

Now let us denote k = mn — 1. Hence k is even since m,n are odd. Take C} as a cycle
as follows:

_ plmpm pmm—1pm—-1 pm—1m—2 pm-—2 3,2 p2 2.1 pl 2,1 pl
Cr = Py P Py LY By PrrPLo Py Py g B P

n— n—1ln-

The cycle C34 of P;[1Ps depicted in Figure 6.6 is an example of C}. We colour all
the edges of C} alternatingly with two colours from [2]. Hence, any two vertices of C
are connected by two disjoint proper paths. Let us denote H* = Cy + [uq, v1][ug, v1] +
[, v1][ug, vo] + [us, vo]usg, v3] + [ug, va][ug, v2]. Hence, H* is a spanning 2-connected
subgraph of GOH. By Lemma 6.3, pco(GOH) < pea(H*), where k = 2. Without lost
of generality, we may assume that ¢((ug,vs)(ug,v1)) = 1 and ¢((ug, v2)(ug, v2)) = 2.
Colour

c(fur, v][uz, v1]) = c([uz, va]luz, v3]) = 1
and

c([uz, va]lus, va]) = c([ur, vi][ur, va]) =2

Hence, there are two disjoint proper paths between [uy, v1] and [u;, v;] such that [u;, v] €
V(Cr) \ {[uz,ve]}. From [uj,vq] to [ug,vo], let us take P, = Pll’?’PﬁzP;’Q and P, =
]31173P31 ’2P§2 as two disjoint proper paths connecting them. Hence, H* is a proper 2-
connected graph with two colours from [2]. It follows that peo(H*) = 2, a contradiction.

This completes our proof.

O
The following proposition shows that pco(GOH) can be arbitrarily large if one of the
two graphs G, H is no longer a path.
Proposition 6.33. Let m,n be two integers such that m > 3.
(1) If K., is a star and P, is a path such that n > 2, then pcy(K, ,,,0P,) = m.
(11) If Ky, K1, are two stars such that n > 3, then peo(Ky 0K ,) = max{m,n}.

For our proof of Proposition 6.33, we use the following result.

Theorem 6.34 (Whitney et al. [72]). A graph G of order n > 3 is 2-connected if and
only if for any two vertices of G, there is a cycle containing both.
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Proof. Let us denote V(K ,,) = {ug, u1, ..., um } as the vertex set of K1 ,,, where v is
the center vertex of K7 ,,,. To verify case (ii), without lost of generality, we may assume
that max{m,n} = m. Hence, we prove that pcs(K;,,00K;,) = m. Let us denote
H = P,, where P, = v;...u, for case i) or H = K, where V(K;,) = {vo,v1..., 05, }
and vy is the center vertex of K, for case (ii).

First, we prove that pcy(K1,,0H) > m. Let S = {[u;,v1],Vi € [m]} be a ver-
tex subset of V(K ,,0H). It can be readily seen that |S| = m. Furthermore,
degy, , om([ui, v1]) = 2, where [u;,v1] € S and Nk, ,,om([ui, v1]) N Ni, .o ([w;, v1]) =
{[uo, vi]}, Vs, v1], [uj, v1] € S. Applying Lemma 6.21 implies that pcy (K ,,0H) > m.

To complete our proof of Proposition 6.33, we show that pcy (K ,,,00H) < m. Now for

case (ii), we may assume that m > n+1. Let H' be a subgraph of K, ,,l0H depending
on case (i) or case (ii) as follows:

(a) If H = P,, then H' = Plom. Hence H' is a path of K ,,00P,.
(b) If H = K, then V(H') = {[uo, vg], k € {0} U [n]} and

E(H") = {[uo, vol[uo, vi], Vk € [n]}

Hence, H' is induced as a star in K ,,[0K}, whose the center vertex is [ug, vo].

Let H* be a spanning subgraph of K ,,[0H such that E(H*) = E(K,,,0H) \ E(H’)
and V(H*) = V(K;,0H). Observe that for any two vertices [u;, vg], [uj, vi] € V(H*),
there is a cycle connecting them. By Theorem 6.34, H* is a 2-connected graph. Hence,
there does exist pco(H*). By Lemma 6.3, peo(Ky,,00H) < peo(H*), where k = 2.
Moreover, one can be readily observed that H* being different from an odd cycle has
A(H*) = degy«[ug, vx] = m, where k € [n] for case (i), or k € {0} U [k] for case (7).
Hence, by Theorem 6.20, pco(H*) < A(H*) < m. One can be readily deduced that
pea(Ky,mOH) < m. Therefore, pcy (K ,,0H) = m.

Now, for case (i), we consider that m = n. We verify that pcy(K ,,0K,) < m. Let
us colour all the edges of K ,,[1K; ,, by the following algorithms, see algorithm 1.

Algorithm 1
1: for k=1tom do

2: fori=1tomdo

3: c([uo, vi[wi, ve]) = ((i + k) mod m) +1

4:  end for

5: end for

6: for i =1 to m do

7. for k=1tomdo

8: ([, vol[ui, v]) = ((((1 + k) mod m) 4+ 1) mod m) + 1
9: end for

10: end for

Now, we consider graph G[K7 ,,.0Kj ,, \ [uo, vo]] with the colouring above. By simple
cases to cases analysis, there always exist at least two disjoint proper paths connecting
any two distinct vertices =,y € V(Ky,,0K,,) \ [uo,v0]. Next, we colour all the
remaining edges of K ,,[1K; ,, by the following algorithm, see 2.



6 The proper 2-connection number pca(G) 68

Algorithm 2
1: for =1 tom do

2 c([uo, vol[ui, vo)) = e([us, vo)[us, v1])
3: end for

One can observe that there are at least two disjoint proper paths between [ug, vo] and
[u;, vg] such that i € {0} U [m] and k € {0} U [n] \ {1}. Next, we verify that there are
two disjoint proper paths between [ug, vo] and [u;, v4], for ¢ € {0} U [m].

If m > 4, then for every arbitrary integer i, there are three distinct integers j, k, 1 € [m]
such that i ¢ {j,k,1}. Now, let us take two disjoint proper paths between [ug, vg] and
[u;, v1] as follows - S

b = P(?’]Pg,jpfopgq’zpf,opol,l
and

_ p0k pk pk,0po,l pl 1 1,0 p0,i
P2—P0 PO,kPk Pk Pk,OPO,lpl Pl .

If m = 3, then we colour ¢([ug, vo][ug, v1]) = 1. Now we take two disjoint proper paths
between [ug, vo] and [u;, v1] such that i € {1,3} as follows

Py = Py, P
and '
Py = P(?72P(J2,2P2270P20’1P22,0P8,1-
Two disjoint proper paths between [ug, vg] and [ug, v1] are
P =Py,
and . ‘
Py = PS’ZPOQQP22’0P2071P2l,0P5,1P1170~

We colour ¢([ug, vo][ug, v2]) = 1. Hence two disjoint proper paths between [ug, vo] and
[ug, v1] are

P = P(?,QPQO’QPQQ,OPOQJ
and
Py — BRI P L PR
Clearly, K1 ,,L0K] ,, is a proper 2-connected graph with m colours. Hence pey (K 0K ) <
m.
We deduce that pey( Ky, 00H) = m.

This completes our proof. ]

The graph H* with pey(H*) = 3 depicted in Figure 6.7 is a spanning 2-connected
subgraph of K 30F.

Now, we study the relation between the proper 2-connection number and the proper
connection number. We improve the upper bound of the proper 2-connection number
of the Cartesian product of two nontrivial connected graphs by the following theorem.
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Fig. 6.7: Graph H* with pco(H*) = 3.

Theorem 6.35. [30] Let G, H be nontrivial connected graphs such that |V (G)| > 4
and |V(H)| > 2. If 6(G) > 2, then pco(GOH) < pe(G) + 1.

Proof. Since G, H are nontrivial connected graphs, by Lemma 6.31, GUOH is a 2-
connected graph. Hence there does exist pco(GOH). Let V(G) = {uq,...,u,} and
V(H) = {vy,...,v,}, respectively, be the vertex set of G and H. Note that G is a
properly connected graph with pc(G) colours since G is a connected graph. Hence
we colour all the edges of GG in order to make it properly connected graph such that
clu;u;] € [pe(G)]. Now we colour all the edges of GOH with colour from [pc(G) + 1] as
follows:

1 If wiu; € E(G), then c([u;, v][uj, vg]) = c(usu;) with Yk € [n].
2 If vpv, € E(H), then c([u;, vg][u;, vi]) = pe(G) + 1 with Vi € [m)].

Since any two vertices u;,u; € V(G) are connected by at least one proper path in
GG, one can readily observe that there always exists at least one proper path between
two vertices [ug, vi], [uj, vi] € V(GOH). Let us call Pi” be the proper path connecting
[u;, vg] and [u;, vg] such that [u;, vy], [u;, vg] € V(GOH). Moreover, if vyv, € E(H), then
start(P7) # c([ui, vi)[wi, v]) and end(P}7) # ¢([uj, vi][u;, v1]). In order to complete
our proof, we follow the series of claims by showing two disjoint proper path between
any two vertices [u;, vy], [u;,v;] € GOH. Let us denote Py, P be two disjoint proper
paths connecting them.

Claim 6.35.1. There always exist at least two disjoint proper paths in GUH between
[w;, vg] and [uj, vg] such that u;,u; € V(G) and v, € V(H).

Proof. Suppose, to the contrary that, there do not exist two disjoint proper paths in
GOH between [u;,vy,] and [u;,v]. One can readily observe that P, = P;7. Since H
is the nontrivial connected graph with |V(H)| > 2. Hence |Ng(vg)| > 1. Without
lost of generality, we may assume that v; € Ny (vy). Thus [u;, v] € Neom([ui, vi]) and
[uj, vi] € Neom ([uj, vg]). We immediately deduce that

_ pi phipi
Py = Py B Py,

a contradiction.

The proof is obtained. @)
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Claim 6.35.2. If vyu, € E(H), then there always exist at least two disjoint proper
paths in GOH between [u;, vy and [u;, v]]

Proof. Suppose, to the contrary that, there do not exist two disjoint proper paths in
GOH between [u;, vi] and [u;, v;]. Firstly, if ¢ = j, then one can readily choose

PlIP]zJ.

Since G is a nontrivial connected graph, hence |Ng(u;)| > 1. Let u; € Ng(u;). Hence
[us, v2] € Naow ([us, ve]) such that z € {k,}. We choose

it pt pti
P2—Pk Pk,lPl7

a contradiction.

Secondly, if 7 # j, then we choose P;, P, as follows:
P =P P

and
_ pi phJ
Py = Pk,sz )

a contradiction.

The proof is obtained. (@)

Since H is a nontrivial connected graph, let Py = v,vg,...v;,v; be a path between two
vertices v, v;. Now we consider two disjoint proper paths between [u;, vx] and [u;, v/]
in GOH such that dy(Py) > 2, for any Py = vg...v; of H. Otherwise, by Claim 6.35.2
and Claim 6.35.1, there are two disjoint proper paths connecting them.

Claim 6.35.3. There always ezist two disjoint proper paths between [u;, vx] and [u;, v]]
in GOH such that dy(Py) > 2, for any Py = vg...v; of H.

Proof. Suppose, to the contrary that, there do not exist two disjoint proper paths
between [u;, v] and [u;, v;] in GOH such that dy(Py) > 2. Clearly, |Ng(u;)| > 2,
since G a nontrivial connected graph with 6(G) > 2. Let uy,us € Ng(u;) be two
neighbours of u;. Firstly, if ujuy ¢ E(G) or |[Ng(u1)| > 3 or [Ng(uz)| > 3, then there is
another vertex us € Ng(uy) (or ug € Ng(uz)) such that us ¢ {u;, us} (or ug & {u;, u1})
since §(G) > 2. Without lost of generality, we may assume that uz € Ng(uy). Hence
(us,v;) € Ngop((ui,v,)), where v, € V(Py). If dy(Py) is odd, then dy(Py) > 3.
Now
Py = UL, L PR B

and
o 5i2p2 p2i pi2p? p2i
P2 - Pk P]C,k:1pk1 ]Dll Pl1,lPl )

a contradiction. If dy(Py) is even, then dy(Py) > 2. Note that P>' is a properly
coloured path between [usz,v;] and [u;, v;]. Now

_ pilpl 1,3 1,3 p3 p3ii
P =P Pk,k1pk1 le le,le
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and
7,2 2,1
P2 P Pk kl‘P ‘Pll ‘F)h I3
since P, and Pl?”i are two internally vertex disjoint paths, a contradiction.
Secondly, if wjuy € E(G) and |Ng(u1)| = |Ng(uz)| = 2, then there exists another
vertex ug € Ng(u;) since |V(G)| > 4. If dy(Ppy) is odd, then dg(Py) > 3. Now
i\3 34 pi3 3,i
P =Py Pl?,klpkl By Pl?lpl
and
i1 1,2 21 p21 1,
P2 = Pk‘ Pkl,klpk‘l Pk?thPk‘g Pll ‘Pll1,l‘Pl ?
a contradiction. If dy(Py) is even, then
i pi3p3 i3p3 3
P = Pk,klpkl By BB 1 B
and
1,2 21 pl2 2,i
Py = Pkk B PklePkg By PlllP
a contradiction.

The result is obtained. (@)

Claim 6.35.4. There always exists two disjoint proper paths between [w;, vi] and [u;, v
in GOH such that dy(Py) > 2 and i # j.

Proof. Since i # j and G is the properly connected graph with pc(G) colours, without
lost of generality, we may assume that Pg = u,;u;,...u; u; is a shortest proper path con-
necting u;, u; of G. Hence we immediately deduce that P = [u;, vg][wi,, vg]...[u;, va]
is the proper path between (u;,v,) and (u;,v,), where v, € V(Py). Now we consider
the following some cases depending on the dg(FPg)

Case 6.35.4.1. Ifdg(Pg) > 3, then there always exist two disjoint proper paths between
[wi, vi] and [uj, .

Proof. 1If Lg(Pg) > 3, then we take P; and P, depending on the parity of Ly (Py).

If Ly (Py) is even, then

Pjv]l P]l»]P]

,J1 pJ1 J1.J pJ
P = PPl PP i

k,k1 k1,k2
and
_ pi 1,91 i1 1,8 4,81 pi1 Pi,g
P2 - Pk,klpk’l ‘Pk:l,k‘zpk‘z Pll ‘Pll,lPl .
If Ly(Py) is odd, then

ij PJI:JPJ

_ ptipi J,J1 pJ1
P =P, PMP P I

k1,k2

and
1,81 i1 11,1 11,1 ¥
Py = Pkk1Pk1 L RN PlllP

This case is proved. ©)
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Case 6.35.4.2. If Lg(Pg) = 2, then there always exist two disjoint proper paths be-
tween [w;, vg] and [u;,v].

Proof. Since Pg is the shortest proper path in G between w;, u; and dg(Pg) = 2, it can
be readily seen that u,,u; are not adjacent. Hence without lost of generality, we may
assume that u; € NG(uz) such that u; ¢ {w;, u;,,u;}, since 6(G) > 2. Moreover, there
is a proper path P, " in GOH between [uy,v;] and [u;,v]. Taking Py, P, as follows:

If Ly(Py) is odd, then
Py= PP PP L

and
i pJ ji1  pitd pi
P, =P, Pk . P le Plll

If Ly(Py) is even, then
i i1 i1 1,
b = Pk,k1Pk1 P/il,kz---le lel,le ’

Py =P B, PP PR
One can easily obseve that P, and Pll’j are two internally vertex disjoint path.

This case is proved. @)

Case 6.35.4.3. If Lg(Pg) = 1, then there always exist two disjoint proper paths be-
tween [w;, vg] and [u;, v

Proof. If Ng(u;)NNg(uj) = {0} or |[Ng(u;) > 3| or [Ng(u;)| > 3, then since |V (G)| > 4,
there are two different vertices uy, us such that u; € Ng(u;) and uy € Ng(u;). Now we
choose P;, P, as follows:

Note that Pll’j is the proper path between [uy, v;] and [u;, v;]. If Ly (vg, v;) is odd, then
1 sl Ry
Pl = P]z Pk,klpk’llpkzil,kQ‘”'Pll,l'Pl ]

and
i ) ; 2§ pi
P=P ]P,gk P;gl Pk1 kQP 7. PP
It can be readily seen that P, and Pl 7 are two internally vertex disjoint paths.

If Ly(Py) is even, then
Py = PPk, kPP PP

and
_ pLipi 7,2 D2 2 p2,j
Py, =P, Pk’k,IP,f1 Pkl,kg"'Ph,lPl

If uy € Ng(u;) N Ng(uj) and [Ng(u;)| = |Ne(uj)| = 2, then since |V(G) > 4], there is
another vertex uy such that us ¢ {u,w;,u;}. Furthermore, us € Ng(uq) since G is a
connected graph.
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If Ly(Py) is odd, then o y o
P, = PPl Pi..PYP

and
ilpl  pl2p2 1 plj
P2 — P];L) Pk,7k,1Pk1 P]{Jl,kQ"'Pll,lPl ].
Note that P/ is a proper path between [uy, v] and [uj, v;]. If dg(Py) is even, then
ilpl  pl2p2 12 p2 p2j
P =P, Pk,k1Pk1 Pkl,k2"'Pll Pll,lPl ’
and .. . .. .
Py = Py, PP, P B
One can readily see that P, and Pf’j are two internally vertex disjoint paths.

This case is proved. @)

The result is obtained.

()

Therefore, there always exist two disjoint proper paths in GLIH connecting any two
vertices [u;, vg] and [u;, v;] with pe(G) + 1 colours.

This completes our proof. n

Remark:
1. The condition of minimum degree §(G) > 2 in Theorem 6.35 is sharp. By Proposi-
tion 6.33, if G ~ P,, and H ~ K, (with ¢ > 4), then pco(GOH) = ¢ > pe(G) +1 = 3.

2. If G ~ K,, with m > 4 and H is an arbitrary nontrivial connected graph, then
pe2(GOH) < pe(G)+1 = 2. On the other hand, pco (GO H) > 2. Hence peo(GOH) = 2.
We immediately deduce that pco(K,,00H) = pc(G) + 1 which is the upper bound of
Theorem 6.35.

We finish Chapter 6 here.
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7 Conclusions and Perspectives

In this dissertation, we have presented some results of the proper k—connection number
of a connected graph. In particular, we have studied 2-connected graphs with a given
minimum degree, which have proper connection number 2 or 3, and S ; x-free graphs
with given connectivity and proper connection number 2. Finally, we have studied the
proper 2-connection number of connected graphs. Now, we summarize the results we
have obtained in the present dissertation.

7.1 Contribution summary

In Chapter 4, we study the proper connection number of connected graphs with the
condition of minimum degree. In particular, we disprove Conjecture 4.1 of the authors
in [8] by constructing a class of connected graphs with minimum degree d, where d > 3
and order n = 42d such that its proper connection number equals 3, see Theorem 4.2.
Furthermore, if the condition of connectivity is not considered, then we prove that
there exists a connected graph of minimum degree d and order n = (d+1)(n + 1) such
that pc(G) = k, see Theorem 4.5. Motivated by these results, we study the proper
connection number of 2-connected graphs with the condition in term of ratio between
its minimum degree and order, see Theorem 4.6. By Theorem 4.6 and Corollary 4.4,
we propose the following problem.

Problem 7.1. Let G be a 2-connected graph of order n and minimum degree 6(G) > 3.
Characterize the proper connection number of graphs G if 35 < §(G) < ”2—%8.

In Chapter 5, we consider proper connection number 2 of connected, S; ; i-free graphs,
where all 7, j, k are small, and the condition of connectivity and minimum degree. In
particular, we prove that if G is 2-connected, S ; ¢-free graph of minimum degree at
least 3, then pc(G) = 2, see Theorem 5.8. By Proposition 5.4, we believe that we
can improve \S; j -freeness of a connected graph that has proper connection number 2.
Hence, we pose the following problem.

Problem 7.2. Let G be 2-connected, S; ji-free graph and minimum degree §(G) > 3,
where min{i, j, k} > 2, max{i,j,k} > 7, ori+j+k > 9. Characterize the proper
connection number of G3.

In Chapter 6, we study the proper 2-connection number of connected graphs. Note
that, there are still not many results in this area in the literature. We obtain the new
upper bound of the proper 2-connection number. In particular, we characterize that
a connected graph G has proper 2-connection number A(G) + 1, where A(G) is the
maximum degree of GG if and only if GG is an odd cycle, see Theorem 6.20. Furthermore,
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we study several classes of connected graphs which have proper 2-connection number 2.
Motivated by the result of the proper connection number and size of graphs by authors
in [1], and the proper 2-connection number of 2-connected graph with the large clique
number, see Theorem 6.29, we pose the following conjecture.

Conjecture 7.3. Let G be a 2-connected graph of order n. If |[E(G)| > (") +7, then
pea(G) = 2.

If Conjecture 7.3 is true, then the condition of the size of the graph is sharp. By the
proof of Proposition 6.30, if we choose k = 3, then |E(G)| = (",”) + 6. It follows that
pc2(G) > 3. Moreover, the condition of 2-connectivity of Conjecture 7.3 is necessary
since there is a connected graph that has no the proper 2-connection number.

In particular, we study the relation between the proper 2-connection number and the
proper connection number of the Cartesian product of two arbitrary connected graphs
with specified conditions, see Theorem 6.35. By the proof of this theorem, the following
conjecture is proposed.

Conjecture 7.4. Let H be an arbitray nontrivial connected graph. If K3 is a complete
graph of order 3, then peo( K3OH) = 2.

As the open question of computing the proper connection number which is given by the
authors in [31], and the upper bound of the proper connection number of 2-connected
graph is at most 3, see Theorem 3.10, recently, determining the proper connection
number of arbitrary 2-connected graphs which is 2 or 3 is still open. Therefore, it might
be of interest for further research to study the proper connection number of arbitrary 2-
connected graphs that is 2 or 3. Moreover, computing the proper k-connection number
of a connected graph is interesting, too.
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degree, 5
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direct product, 22
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ear decomposition, 7
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edge set, 4
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Graph Bj with pc(Bs3) =2, 18
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internally vertex disjoint proper paths,

10
internally vertex-disjoint, 5
intersection of two sets, 4
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isomorphism, 6

join, 7
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length, 5
line graph, 23
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maximum degree, 5
minimum degree, 5
multipartite, 7

neighbour, 4

neighbour set, 4
non-adjacent, 4
non-trivial component, 5

number of the edges, 4
number of the vertices, 4

odd coloured path, 9

odd connected graph, 9
odd connection number, 9
order, 4

path, 5

pendant vertex, 5

permuation graph, 23

proper k—connected graph, 10
proper k—connection number, 10
proper (edge-)coloured, 8
proper (edge-)colouring, 8
proper coloured path, 9
proper connection number, 2
proper path, 9

properly connected graph, 9

rainbow k-connection number, 10
rainbow connected, 9

rainbow connection number, 2
rainbow path, 9

relative complement, 4

separating set, 6

set of edges between U; and Us, 7
size, 4

spanning subgraph, 6
spanning tree, 6

square power of graph, 23
star, 7

strong property, 15
subdivision, 7

subgraph, 5

subset, 4

traceable, 6
tree, b
trivial component, 5

union, 7
union of two sets, 4

vertex deletion, 5
vertex set, 4
vertex-cut, 6
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