79 research outputs found

    Deep Network for Simultaneous Decomposition and Classification in UWB-SAR Imagery

    Full text link
    Classifying buried and obscured targets of interest from other natural and manmade clutter objects in the scene is an important problem for the U.S. Army. Targets of interest are often represented by signals captured using low-frequency (UHF to L-band) ultra-wideband (UWB) synthetic aperture radar (SAR) technology. This technology has been used in various applications, including ground penetration and sensing-through-the-wall. However, the technology still faces a significant issues regarding low-resolution SAR imagery in this particular frequency band, low radar cross sections (RCS), small objects compared to radar signal wavelengths, and heavy interference. The classification problem has been firstly, and partially, addressed by sparse representation-based classification (SRC) method which can extract noise from signals and exploit the cross-channel information. Despite providing potential results, SRC-related methods have drawbacks in representing nonlinear relations and dealing with larger training sets. In this paper, we propose a Simultaneous Decomposition and Classification Network (SDCN) to alleviate noise inferences and enhance classification accuracy. The network contains two jointly trained sub-networks: the decomposition sub-network handles denoising, while the classification sub-network discriminates targets from confusers. Experimental results show significant improvements over a network without decomposition and SRC-related methods

    Robust Detection of Moving Human Target in Foliage-Penetration Environment Based on Hough Transform

    Get PDF
    Attention has been focused on the robust moving human target detection in foliage-penetration environment, which presents a formidable task in a radar system because foliage is a rich scattering environment with complex multipath propagation and time-varying clutter. Generally, multiple-bounce returns and clutter are additionally superposed to direct-scatter echoes. They obscure true target echo and lead to poor visual quality time-range image, making target detection particular difficult. Consequently, an innovative approach is proposed to suppress clutter and mitigate multipath effects. In particular, a clutter suppression technique based on range alignment is firstly applied to suppress the time-varying clutter and the instable antenna coupling. Then entropy weighted coherent integration (EWCI) algorithm is adopted to mitigate the multipath effects. In consequence, the proposed method effectively reduces the clutter and ghosting artifacts considerably. Based on the high visual quality image, the target trajectory is detected robustly and the radial velocity is estimated accurately with the Hough transform (HT). Real data used in the experimental results are provided to verify the proposed method

    Statistical Modeling of SAR Images: A Survey

    Get PDF
    Statistical modeling is essential to SAR (Synthetic Aperture Radar) image interpretation. It aims to describe SAR images through statistical methods and reveal the characteristics of these images. Moreover, statistical modeling can provide a technical support for a comprehensive understanding of terrain scattering mechanism, which helps to develop algorithms for effective image interpretation and creditable image simulation. Numerous statistical models have been developed to describe SAR image data, and the purpose of this paper is to categorize and evaluate these models. We first summarize the development history and the current researching state of statistical modeling, then different SAR image models developed from the product model are mainly discussed in detail. Relevant issues are also discussed. Several promising directions for future research are concluded at last

    Development and Evaluation of a Multistatic Ultrawideband Random Noise Radar

    Get PDF
    This research studies the AFIT noise network (NoNET) radar node design and the feasibility in processing the bistatic channel information of a cluster of widely distributed noise radar nodes. A system characterization is used to predict theoretical localization performance metrics. Design and integration of a distributed and central signal and data processing architecture enables the MatlabŸ-driven signal data acquisition, digital processing and multi-sensor image fusion. Experimental evaluation of the monostatic localization performance reveals its range measurement error standard deviation is 4.8 cm with a range resolution of 87.2(±5.9) cm. The 16-channel multistatic solution results in a 2-dimensional localization error of 7.7(±3.1) cm and a comparative analysis is performed against the netted monostatic solution. Results show that active sensing with a low probability of intercept (LPI) multistatic radar, like the NoNET, is capable of producing sub-meter accuracy and near meter-resolution imagery
    • 

    corecore