Development and Evaluation of a Multistatic Ultrawideband Random Noise Radar

Abstract

This research studies the AFIT noise network (NoNET) radar node design and the feasibility in processing the bistatic channel information of a cluster of widely distributed noise radar nodes. A system characterization is used to predict theoretical localization performance metrics. Design and integration of a distributed and central signal and data processing architecture enables the Matlab®-driven signal data acquisition, digital processing and multi-sensor image fusion. Experimental evaluation of the monostatic localization performance reveals its range measurement error standard deviation is 4.8 cm with a range resolution of 87.2(±5.9) cm. The 16-channel multistatic solution results in a 2-dimensional localization error of 7.7(±3.1) cm and a comparative analysis is performed against the netted monostatic solution. Results show that active sensing with a low probability of intercept (LPI) multistatic radar, like the NoNET, is capable of producing sub-meter accuracy and near meter-resolution imagery

    Similar works