12 research outputs found

    On the stability of isothermal shocks in black hole accretion disks

    Full text link
    Most black holes possess accretion disks. Models of such disks inform observations and constrain the properties of the black holes and their surrounding medium. Here, we study isothermal shocks in a thin black hole accretion flow. Modelling infinitesimal molecular viscosity allows the use of multiple-scales matched asymptotic methods. We thus derive the first explicit calculations of isothermal shock stability. We find that the inner shock is always unstable, and the outer shock is always stable. The growth/decay rates of perturbations depend only on an effective potential and the incoming--outgoing flow difference at the shock location. We give a prescription of accretion regimes in terms of angular momentum and black hole radius. Accounting for angular momentum dissipation implies unstable outer shocks in much of parameter space, even for realistic viscous Reynolds numbers of the order ≈1020\approx 10^{20}.Comment: 26 page

    Inflection, Canards and Folded Singularities in Excitable Systems: Application to a 3D FitzHugh–Nagumo Model

    Get PDF
    Specific kinds of physical and biological systems exhibit complex Mixed-Mode Oscillations mediated by folded-singularity canards in the context of slow-fast models. The present manuscript revisits these systems, specifically by analysing the dynamics near a folded singularity from the viewpoint of inflection sets of the flow. Originally, the inflection set method was developed for planar systems [Brøns and Bar-Eli in Proc R Soc A 445(1924):305–322, 1994; Okuda in Prog Theor Phys 68(6):1827–1840, 1982; Peng et al. in Philos Trans R Soc A 337(1646):275–289, 1991] and then extended to N-dimensional systems [Ginoux et al. in Int J Bifurc Chaos 18(11):3409–3430, 2008], although not tailored to specific dynamics (e.g. folded singularities). In our previous study, we identified components of the inflection sets that classify several canard-type behaviours in 2D systems [Desroches et al. in J Math Biol 67(4):989– 1017, 2013]. Herein, we first survey the planar approach and show how to adapt it for 3D systems with an isolated folded singularity by considering a suitable reduction of such 3D systems to planar non-autonomous slow-fast systems. This leads us to the computation of parametrized families of inflection sets of one component of that planar (non-autonomous) system, in the vicinity of a folded node or of a folded saddle. We then show that a novel component of the inflection set emerges, which approximates and follows the axis of rotation of canards associated to folded-node and folded-saddle singularities. Finally, we show that a similar inflection-set component occurs in the vicinity of a delayed Hopf bifurcation, a scenario that can arise at the transition between folded node and folded saddle. These results are obtained in the context of a canonical model for folded-singularity canards and subsequently we show it is also applicable to complex slow-fast models. Specifically, we focus the application towards the self-coupled 3D FitzHugh–Nagumo model, but the method is generically applicable to higher-dimensional models with isolated folded singularities, for instance in conductance-based models and other physical-chemical systems.Ikerbasque (The Basque Foundation for Science

    Classification of bursting patterns: A tale of two ducks

    Get PDF
    Bursting is one of the fundamental rhythms that excitable cells can generate either in response to incoming stimuli or intrinsically. It has been a topic of intense research in computational biology for several decades. The classification of bursting oscillations in excitable systems has been the subject of active research since the early 1980s and is still ongoing. As a by-product it establishes analytical and numerical foundations for studying complex temporal behaviors in multiple-timescale models of cellular activity. In this review, we first present the seminal works of Rinzel and Izhikevich in classifying bursting patterns of excitable systems. We recall a complementary mathematical classification approach by Bertram et al., and then by Golubitsky et al., which together with the Rinzel-Izhikevich proposals provide the state-of-the-art foundations to these classifications. Beyond classical approaches, we review a recent bursting example that falls outside the previous classification systems. Generalizing this example leads us to propose an extended classification, which requires the analysis of both fast and slow subsystems of an underlying slow-fast model and allows the dissection of a larger class of bursters. Namely, we provide a general framework for bursting systems with both subthreshold and superthreshold oscillations. A new class of bursters with at least two slow variables is then added, which we denote folded-node bursters, to convey the idea that the bursts are initiated or annihilated via a folded-node singularity. Key to this mechanism are so-called canard or duck orbits, organizing the underpinning excitability structure. We describe the two main families of folded-node bursters, depending upon the phase (active/spiking or silent/non-spiking) of the bursting cycle during which folded-node dynamics occurs. We classify both families and give examples of minimal systems displaying these novel bursting patterns. Finally, we provide a biophysical example by reinterpreting a generic conductance-based episodic burster as a folded-node burster, showing that the associated framework can explain its subthreshold oscillations over a larger parameter region than the fast-subsystem approach

    Rate-Induced Tipping to Metastable Zombie Fires

    Full text link
    Zombie fires in peatlands disappear from the surface, smoulder underground during the winter, and `come back to life' in the spring. They can release hundreds of megatonnes of carbon into the atmosphere per year and are believed to be caused by surface wildfires. Here, we propose rate-induced tipping (R-tipping) to a subsurface hot metastable state in bioactive peat soils as a main cause of Zombie fires. Our hypothesis is based on a conceptual soil-carbon model subjected to realistic changes in weather and climate patterns, including global warming scenarios and summer heatwaves. Mathematically speaking, R-tipping to the hot metastable state is a nonautonomous instability, due to crossing an elusive quasithreshold, in a multiple-timescale dynamical system. To explain this instability, we provide a framework combining a special compactification technique with concepts from geometric singular perturbation theory. This framework allows us to reduce an R-tipping problem due to crossing a quasithreshold to a heteroclinic orbit problem in a singular limit. We identify generic cases of tracking-tipping transitions via: (i) unfolding of a codimension-two heteroclinic folded saddle-node type-I singularity for global warming, and (ii) analysis of a codimension-one saddle-to-saddle hetroclinic orbit for summer heatwaves, in turn revealing new types of excitability quasithresholds.Comment: 35 pages, 15 figure

    Spike-adding in a canonical three time scale model: superslow explosion & folded-saddle canards

    Get PDF
    International audienceWe examine the origin of complex bursting oscillations in a phenomenological ordinary differential equation model with three time scales. We show that bursting solutions in this model arise from a Hopf bifurcation followed by a sequence of spike-adding transitions, in a manner reminiscent of spike- adding transitions previously observed in systems with two time scales. However, the details of the process can be much more complex in this three-time-scale context than in two-time-scale systems. In particular, we find that spike-adding can involve canard explosions occurring on two different time scales and is associated with passage near a folded-saddle singularity. We show that the character of the bursting and the form of spike-adding transitions that occur depend on the geometry of certain singular limit systems, specifically the relative positions of the critical and superslow manifolds. We also show that, unlike the case of spike-adding in two-time-scale systems, the onset of a new spike in our model is not typically associated with a local maximum in the period of the bursting oscillation

    The hyperbolic umbilic singularity in fast-slow systems

    Get PDF
    Fast-slow systems with three slow variables and gradient structure in the fast variables have, generically, hyperbolic umbilic, elliptic umbilic or swallowtail singularities. In this article we provide a detailed local analysis of a fast-slow system near a hyperbolic umbilic singularity. In particular, we show that under some appropriate non-degeneracy conditions on the slow flow, the attracting slow manifolds jump onto the fast regime and fan out as they cross the hyperbolic umbilic singularity. The analysis is based on the blow-up technique, in which the hyperbolic umbilic point is blown up to a 5-dimensional sphere. Moreover, the reduced slow flow is also blown up and embedded into the blown-up fast formulation. Further, we describe how our analysis is related to classical theories such as catastrophe theory and constrained differential equations.Comment: 56 pages, 19 figure
    corecore