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Abstract

Bursting is one of the fundamental rhythms that excitable cells can generate either in
response to incoming stimuli or intrinsically. It has been a topic of intense research in
computational biology for several decades. The classification of bursting oscillations in
excitable systems has been the subject of active research since the early 1980s and is
still ongoing. As a by-product it establishes analytical and numerical foundations for
studying complex temporal behaviors in multiple-timescale models of cellular activity.
In this review, we first present the seminal works of Rinzel and Izhikevich in classifying
bursting patterns of excitable systems. We recall a complementary mathematical
classification approach by Bertram et al., and then by Golubitsky et al., which together
with the Rinzel-Izhikevich proposals provide the state-of-the-art foundations to these
classifications. Beyond classical approaches, we review a recent bursting example that
falls outside the previous classification systems. Generalizing this example leads us to
propose an extended classification, which requires the analysis of both fast and slow
subsystems of an underlying slow-fast model and allows the dissection of a larger class
of bursters. Namely, we provide a general framework for bursting systems with both
subthreshold and superthreshold oscillations. A new class of bursters with at least two
slow variables is then added, which we denote folded-node bursters, to convey the idea
that the bursts are initiated or annihilated via a folded-node singularity. Key to this
mechanism are so-called canard or duck orbits, organizing the underpinning excitability
structure. We describe the two main families of folded-node bursters, depending upon
the phase (active/spiking or silent/non-spiking) of the bursting cycle during which
folded-node dynamics occurs. We classify both families and give examples of minimal
systems displaying these novel bursting patterns. Finally, we provide a biophysical
example by reinterpreting a generic conductance-based episodic burster as a folded-node
burster, showing that the associated framework can explain its subthreshold oscillations
over a larger parameter region than the fast-subsystem approach.

Author summary

Bursting is ubiquitous in cellular excitable rhythms and comes in a plethora of patterns,
both experimentally recorded and reproduced through models. As these different
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patterns may reflect different coding or information properties, it is therefore crucial to
develop modeling frameworks that can both capture them and understand their
characteristics. In this review, we propose a comprehensive account of the main
bursting classification systems that have been developed over the past 40 years, together
with recent developments allowing us to extend these classifications. Based upon
bifurcation theory and heavily reliant on timescale separation, these schemes take full
advantage of the fast subsystem analysis, obtained when slow variables are frozen and
considered as bifurcation parameters. We complement this classical view by showing
that nontrivial slow subsystem may also encode key informations important to classify
bursting rhythms, due to the presence of so-called folded-node singularities. We provide
minimal idealized models as well as one generic conductance-based example displaying
bursting oscillations that require our extended classification in order to be fully
characterised. We also highlight examples of biological data that could be suitably
revisited with the lenses of this extended classifications and could lead to new models of
complex cellular activity.

Introduction 1

The fascination of experimentalists, physicists and mathematicians towards spontaneous 2

and complex oscillations dates back to the early twentieth century, particularly through 3

observations of electro-chemical systems [1]. Indeed, how can seemingly “inert 4

sub-components” assemble into “life”, in what is currently understood (in biophysics) as 5

open multi-scale (far from equilibrium) systems with dissipative structures? Van der pol 6

was among the first scientists to exhibit equations with multiple timescales and a 7

dissipative structure, which display oscillations akin to those observed in 8

electro-chemical systems and that indeed could not be explained by previous 9

mathematical theories [2–4]. 10

Despite remarkable advances, it is only relatively recently (since the 1980s) that a 11

deeper understanding of certain types of nonlinear multi-scale complex oscillations was 12

made possible due to the development of a coherent mathematical theory and 13

classification system for so-called bursting oscillations [5]. These developments have 14

shaped mathematical and computational neuroscience, enriched experimental 15

neuroscience and also advanced the understanding of various biological systems. To 16

further stimulate this field, the present review first provides a comprehensive account of 17

several seminal works [6–9] as well as recent developments including our work on 18

multi-scale systems [10,11]. Finally, it proposes an extended classification framework, 19

which we envisage will guide future developments of analytical, numerical and modelling 20

work on multi-scale biological systems. 21

To contain the complexity of multi-scale systems’ characterization, we will focus on 22

the dynamics emerging from the interplay between the explicit timescales of a system of 23

slow-fast Ordinary Differential Equations (ODEs) as this is the main framework 24

underpinning the main bursting classification systems. Thus we will consider models 25

where the timescale ratio between fast and slow variables is explicitly given by a small 26

positive parameter ε. This framework can also be applied to systems where timescale 27

separation is not explicit though revealed through simulations. Such systems naturally 28

emerge in various biological processes and, to showcase the proposed framework at the 29

end of this review we will apply it to a biophysical neuron model. While this focus on 30

only timescale separation circumvents the wider unresolved mathematical barriers in 31

generally describing multi-scale systems across spatio-temporal scales (e.g. via partial 32

differential equations), it will enable us to obtain a significantly deeper insight on 33

emergent timescale-induced dynamics. This will later inform these other multi-scale 34

approaches. Moreover, despite the relative apparent simplicity of minimal slow-fast 35
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Fig 1. Ducks at the transition from rest to spikes in the FitzHugh-Nagumo
model. The dynamics are represented in the phase plane (upper panels) and as
illustrative time courses (lower panels). When increasing the applied current I, the
system’s dynamics transitions from a stable equilibrium (rest state, black dot in (a)),
which is excitable, to a strongly attracting limit cycle (repetitive spiking state, in blue
in (b)). The excitable structure in panel (a) is further illustrated with two trajectories
whose initial conditions are at the stable equilibrium (rest state) and with a step current
of slightly different amplitude: one trajectory (in red) stays below threshold while the
other one (in purple) crosses threshold, fires an action potential and then returns back
to the rest state. The transition from (a) to (b) is continuous but confined to a very
small range of I values around IT . At I ∼ IT , special solutions called ducks emerge (c),
which stay close to the unstable part of the V -nullcline, shown as a cubic curve whose
attracting branches (resp. repulsive branch) are displayed as solid (resp. dashed) black
lines. Two ducks shown in red stay below threshold and correspond to subthreshold
oscillations, while one (in purple) crosses threshold and corresponds to a near-threshold
spiking solution. Also shown in the top row is the w linear nullcline and the equilibrium
point (filled circled when stable, open circle when unstable) at the intersection between
the two nullclines. Single (double) arrows represent fast (slow) flow. Notice that the
purple trajectory in panel (c) has the shape of a leftward-directed duck’s profile; see
top-right inset. The bottom row shows the time courses of the membrane potential V
for all trajectories displayed on the top row, keeping the same colors; for panel (c), only
the time series of the largest red cycle and of the purple one are shown. Equations and
parameter values are given in S1 Text.

ODEs, the associated theory is still in development. More importantly, such 36

multi-timescale systems have already enabled remarkable predictions of complex 37

oscillations, hence their relevance in computational biology [12–14] and 38

neuroscience [15–17], among many application areas. 39

Depending on the dimension of fast and slow components, multiple-timescale 40

systems can reproduce key experimentally observed multi-scale oscillations, in particular 41

in neural recordings: action potentials or spiking behavior [18], bursting [19], 42

mixed-mode oscillations [20]. As the main system parameters (e.g. an applied current) 43

vary, the type of solution can change very rapidly and a minute parameter change may 44

lead to a change in solution type upon a firing threshold crossing. In cases where such 45

multi-scale excitable systems can be modeled by slow-fast equations, then these sudden 46

“explosive” transitions associated with excitability threshold crossings are organized by 47

special solutions called canards or ducks [13, 21,22]. These descriptors are used 48

interchangeably in the literature and we shall employ both terms. 49

Duck solutions have been extensively studied since they were first described in the 50
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Fig 2. Example of electrophysiological recordings of bursting oscillations in four types
of neurons: (a) parabolic-type bursting from the CeN neuron from the melibe (a sea
slug) [23]; (b) square-wave-type bursting from a human β-cell [24]; (c) elliptic-type
bursting from a dorsal-root-ganglia (DRG) neuron of a rat [25]; (d) Pseudo-plateau-type
bursting from a pituitary cell of a rat [26] (“Copyright 2011 Society for Neuroscience”).
In each case, we highlight with colors the two main phases of bursting oscillations: silent
(quiescent) and active (burst). Figures adapted with permission.

late 1970s in the context of the van der Pol circuit model [27]. Since then, they have 51

been analyzed in various theoretical and applied contexts, however most of the time 52

within a rather technical mathematical framework. In the next few paragraphs, we 53

present the salient features of canard dynamics in an idealized neural example, the 54

FitzHugh-Nagumo (FHN) spiking model [28,29]. In other words, we present ducks in a 55

nutshell for the general reader, with the accompanying sketch shown in Fig 1; the expert 56

reader may skip the following paragraphs and move directly to page 8. 57

The well-known FHN model describes the generation of action potentials (or spikes) as 58

stable periodic solutions (limit cycles), which exist for a wide timescale separation 59

between the (fast) membrane potential V and the (slow) recovery current w. Depending 60

on the magnitude of the applied (constant) current I, the system’s long-term dynamics 61

is either a stable equilibrium (rest state, shown in panel (a)) or a stable limit cycle 62

(repetitive spiking state, shown in panel (b)). The transition between these two neural 63

regimes is rather abrupt in terms of I-values. This prompts the following fundamental 64

question: “How does one understand the very sudden emergence within a small change 65

in I from a stable equilibrium (panel (a)) to a strongly attracting limit cycle (panel (b)) 66

whose trajectory corresponds to sharp/fast transitions from one branch to the other of 67

the V -nullcline?” A one-parameter family of duck solutions provide a continuous 68

change in solution amplitude over a very small range of I values near IT , the value of I 69

for which the equilibrium is at the lower “knee” (fold point) of the V -nullcline and the 70

system is near Threshold. On top of existing for an extremely narrow range of I-values, 71

the essence of ducks is that a portion of the trajectory lies along the repulsive branch of 72

the V -nullcline, in the area of the firing threshold. Certain duck solutions stay close to 73

the threshold and then jump down back to baseline (in red in panel (c)) while others 74

jump up and cross threshold while emitting an action potential (in purple in panel (c)). 75

At the end of this transitory regime, a fully developed repetitive spiking solution exists 76
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(in blue in panel (b)) and such solution will remain for a large interval of I-values 77

greater than IT . This main feature of duck solutions, staying close to the repulsive 78

branch of the V -nullcline, hence underlies a common type of threshold behavior in 79

excitable systems of class 2 such as the Hodgkin-Huxley model [18,30]. Furthermore, 80

duck dynamics can be seen in transient responses as well, as part of more complex 81

neural activity (e.g. bursting), where they organize transient passages from 82

subthreshold oscillations to (one or more) spikes. Crucially, duck solutions pass close to 83

special points located at a knee of the V -nullcline (see panel (c) where canard cycles 84

pass near the lower knee), linking continuously a zone of dynamical attraction (to the 85

left of the lower knee) to a zone of dynamical repulsion (to the right of the lower knee). 86

In 2D (spiking) models, such a point is called a canard point, whereas it is called a 87

folded singularity in higher-dimensional models; see Fig 6. 88

Bursting oscillations are ubiquitous in the context of neuronal systems (see Fig 2). 89

In particular, bursting models appeared in the context of classical single-neuron 90

electrophysiological measurements, where the neuron’s voltage time series displays a 91

bursting oscillation either in response to a brief input stimulus or, in absence of any 92

stimuli, in an endogenous manner. These oscillations are defined as having a periodic 93

succession (sometimes irregular) of two distinct epochs of activity. One epoch features 94

slow and low-amplitude activity, and it is typically referred to as the quiescent (or 95

silent) phase. The other epoch features fast and high-amplitude activations (i.e. several 96

action potentials or spikes), and it is classically termed active or burst phase as shown 97

on several experimental examples in Fig 2. 98

From the standpoint of multiple-timescale models, bursting oscillations require at 99

least three dimensions with two fast and one slow variables, where the 2D fast 100

subsystem (obtained by freezing the slow mode and considering it as constant) is 101

bistable within an interval of values of the slow variable (as a parameter) and sustains 102

both stationary and periodic behavior. The quiescent phase corresponds to a slow drift 103

of the solution near a branch of (typically) stationary attractors of the fast subsystem 104

(rest states), and the burst phase to a slow drift with fast oscillatory motion of the 105

solution near a branch of stable limit cycles of the fast subsystem. There can be many 106

ways for a system to produce such alternation between quiescence and burst phases, 107

which motivated scientists early on to develop classification strategies. 108

In the present work, we will review state-of-the-art classification systems for bursting 109

dynamics, their limitations, and then propose an extended classification framework. Our 110

extended classification rests on the fact that all existing bursting classification schemes 111

are solely based upon the knowledge of the fast subsystem without using the information 112

contained in the slow subsystem, obtained when the fast modes have decayed and the 113

associated (fast) variables are slaved to follow the slow variables’ evolution on a limiting 114

phase-space region of slow motion referred to as critical manifold [31, 32]. One can take 115

advantage of the slow subsystem in order to characterise and classify bursting patterns. 116

Our strategy for doing so relies upon a certain type of canard dynamics, namely that 117

generated by a certain type of folded singularity called folded node. In this way, one can 118

extend entire classes of 3D burster to 4D systems, with still two fast variables but one 119

more slow variable. This second slow variable creates a folded node, near which 120

solutions perform small-amplitude subthreshold oscillations [10], hence enriching the 121

quiescent dynamics of the resulting 4D burster. What is more, the slow subsystem is 122

essential to fully characterise this new type of bursting oscillations with a folded node. 123

Slow-fast dynamics near a folded node provide a key mechanism to induce another 124

type of complex oscillations, namely folded-node-induced mixed-mode oscillations [10,34]. 125

Hence the new bursting patterns proposed here are a combination of fold-initiated 126

bursting oscillations (definition given in the next section) and mixed-mode oscillations 127

(MMOs), for which isolated examples were constructed in our previous work [35,36], 128
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Fig 3. Electrophysiological recordings of the lateral thalamic nuclei neuron
in cat from [33] show complex bursting oscillations. Colored boxes highlight
the active (burst) and silent (quiescent) phases of the bursting oscillations. The
quiescent phase comprises one oscillation formed by a slow rise towards bursting
threshold and a faster descent towards baseline. This complex bursting pattern is well
captured by the “Folded-node/Homoclinic” bursting scenario proposed here; fully
described in Fig 8. Figure adapted with permission.

and which we shall generalise and classify in the present work. This extended 129

framework is well suited to revisit a number of biological datasets where the 130

mechanisms underpinning bursting activity may have not been fully unraveled; see Fig 3 131

for an example of such data extracted from [33]. 132

This new class of bursting, which we will henceforth denote as folded-node bursting, 133

should not be confused with the recent work on so-called “pseudo-plateau bursting”. 134

Initially thought of as a bursting scenario [40], the “pseudo-plateau bursting” case was 135

subsequently shown, in various biophysical models of pituitary cells as well as idealized 136

systems, to be better understood as a MMO mechanism [41,42]. Indeed, the 137

small-amplitude oscillations generated by its folded node were first thought to 138

correspond to a bursting phase. However, since the “pseudo-plateau bursting” involves 139

minimally two slow and one fast variable, then it does not fall under the bursting 140

definition that demands the fast subsystem to possess two fast variables. Hence, these 141

other scenarios (including “pseudo-plateau bursting”) are in stark contrast with the 142

novel folded-node bursting concept presented and classified in the present work, which is 143

the superposition of MMO dynamics and bursting dynamics, with minimally two slow 144

and two fast variables. 145

Noteworthy, key to our extended classification are both the fast and slow subsystems. 146

What is more, canards are central to the slow subsystem analysis and hence to the 147

classification. In contrast, in the previous classification systems, which only consider the 148

fast subsystem, canards are not useful to the classification. However, they are important 149

to determine certain features of the dynamics, for example spike-adding 150

transitions [35, 43], which will be fully described in the context of system (1), or torus 151

canards [44], whose definition and description will be given in the section on cyclic 152

folded-node bursting. Note that parabolic bursters [39] require two fast and two slow 153

variables and possess folded-saddle singularities [45], which makes them different from 154

folded-node bursters. 155

Although a great deal of our discussions will be in the context of neuronal dynamics, 156

the mathematical framework intends to capture complex slow-fast oscillations beyond 157

the scope of neuroscientific applications (e.g. in chemical reactions, genetic switches, 158

material transitions, etc.). Moreover, we will focus on the minimal deterministic 159

mathematical setting for bursting oscillations. This minimal setting will inform more 160

complex scenarios involving multi-dimensional systems with multiple timescales. 161

The rest of this article is organized as follows. We will first review existing 162

classification frameworks for bursting oscillations. Subsequently, we will first introduce 163

the key idea of our novel bursting classification based upon the concept of folded-node 164
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Fig 4. Rinzel classification of bursting patterns: square-wave bursting, here in
the Hindmarsh-Rose model [37] (panels (a1)-(b1)); elliptic bursting, here in the
FitzHugh-Rinzel model [6, 38] (panels (a2)-(b2)); parabolic bursting, here in Plant’s
model [39] (panels (a3)-(b3)). In each case, we show a phase-space projection of the
bursting solution of the full system (orange) together with the bifurcation diagram of
the fast subsystem (left panel) and the time course of membrane potential V (orange,
right panel). Labels for bifurcations are: Ho for homoclinic, HB for Hopf bifurcation,
LP for saddle-node (limit point) bifurcation of equilibria and SNP for saddle-node of
periodic orbits. (a3) The critical manifold S0 (green) is the S-shaped (not fully
rendered) surface of equilibria of the fast subsystem; this surface is folded along the fold
curve F . Equations and parameter values are given in S1 Text.

bursting dynamics. This will be followed by showcasing several new examples of 165

folded-node bursting idealized models, first in the case of classical folded node and then 166

in the case of what we will term cyclic folded node. We will explain how to construct 167

such bursting dynamics with simple idealized models, for simplicity, however we will 168
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close with a biologically plausible conductance-based model of episodic bursting 169

from [46], showing that the folded-node bursting scenario is applicable and robust to 170

large parameter changes. Finally, in the conclusion section, we will propose a number of 171

perspectives and future modeling directions worth exploring. 172

State-of-the-art classification of bursting patterns 173

Rinzel’s classification (mid 1980s) 174

Historically, the second author of the present work opened the door towards 175

mathematically understanding bursting oscillations. His seminal work on a 176

mathematical analysis and classification of bursting oscillatory patterns, was first 177

published within two companion manuscripts [6, 38]. The fundamental insight behind 178

Rinzel’s classification is based on so-called slow-fast dissection and, in particular, on 179

describing the bifurcation structure of the fast subsystem where the slow variables are 180

frozen. Subsequently, the time trajectory of the full system (i.e. for small ε>0) is 181

superimposed on top of the bifurcation structure of the fast subsystem. This is the 182

essence of slow-fast dissection, which reveals that the quiescent phase of the bursting 183

cycle corresponds to trajectory segments where the solution slowly tracks families of 184

stable equilibria, or low-amplitude (subthreshold) limit cycles, of the fast subsystem. 185

Conversely, the burst phase of the full system’s cycle corresponds to trajectory segments 186

where the solution slowly tracks families of limit cycles of the fast subsystem. Crucially, 187

the transitions between these two main phases of bursting cycles occur near bifurcation 188

points of the fast subsystem. With this approach, Rinzel proposed three classes of 189

bursting dynamics based on both the bifurcation structure of the fast subsystem and 190

the salient features of the main fast variable’s time profile (in the neuronal context this 191

is typically the neuronal membrane potential). These features include spike frequency 192

during the burst, dynamics during the silent phase (oscillatory or not), shape of the 193

burst (on a plateau compared to the silent phase or, on the contrary, with undershoots). 194

These three features led Rinzel to name three classes: square-wave bursting, observed in 195

a number of recordings and models of pancreatic beta-cells [47] amongst other [48]; 196

elliptic bursting, observed in various neural recordings and models of sensory 197

neurons [15,49]; and parabolic bursting, initially observed in the Aplysia R15 neuron [39] 198

and ever since in various neural models [50]. We show an example of each class in Fig 4. 199

Izhikevich’s classification (ca. 2000) 200

Eugene Izhikevich generalised Rinzel’s approach by considering that a bursting pattern 201

is entirely characterised by a pair of bifurcations (b1, b2) of the fast subsystem. One 202

bifurcation, say b1, explains the transition from quiescence to burst, and the other, b2, 203

marks the inverse transition, from burst to quiescence. Due to the well established 204

bifurcation theory and indeed knowledge of classes of bifurcation, this led to a 205

systematic identification of at least 120 bursting patterns [7]. An example of a bursting 206

model that is not within the Rinzel classification is depicted in Fig 5. In this example 207

the bursting pattern has a transition from quiescence to burst via a homoclinic 208

bifurcation (involving a small homoclinic connection ending a family of small-amplitude 209

limit cycles) and equally, the transition from burst to quiescence is via homoclinic 210

bifurcation (involving a large homoclinic connection ending a family of large-amplitude 211

limit cycles). In many ways, Izhikevich’s work serves as a key source of reference for 212

classification of complex slow-fast oscillations. This is particularly the case in 213

neuroscience since some of the assembled examples were motivated by existing 214

conductance-based neuronal models and demonstrated how complex neuronal 215
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cycle while the main plot better highlights the fast subsystem bifurcation structure.
Labels HB, LP and Ho refer to Hopf bifurcation, saddle-node bifurcation (fold or “limit
point”) and homoclinic bifurcation of the fast subsystem, respectively. Panel (b) shows
the V -time series of this bursting solution.

oscillations could be achieved by adding one slow equation to a spiking model. Indeed, a 216

dedicated book towards neuroscience was later published, where the derived models 217

where also put into context with neurophysiological processes [51]. The result of this 218

deeply insightful work is a quasi-complete classification of bursting patterns in terms of 219

pairs of codimension-one bifurcations of the fast subsystem. Izhikevich’s classification 220

allowed to characterize bursting patterns beyond square-wave, elliptic and parabolic, 221

and already opened the door towards explaining more complex biological data. In 222

particular, one can mention pathological brain activity related to, e.g., epileptic 223

seizure [52] or spreading depolarization [16,53]. According to Izhikevich’s classification, 224

bursting oscillations where the burst initiates via a fold bifurcation of the fast 225

subsystem are termed fold-initiated bursting. In the present work, we will propose an 226

extended classification based upon fold-initiated bursting cases. 227

Bertram et al.’s / Golubitsky et al.’s classification (mid 1990) 228

An alternative approach to classification was proposed by Bertram and colleagues in 229

1995 [8] and extended mathematically by Golubitsky and collaborators in 2001 [9] using 230

a singularity theory viewpoint. The fundamental idea consists in identifying a 231

codimension-k bifurcation point (k ≥ 2) in the fast subsystem and subsequently 232

considering the slow variables of the bursting system as the unfolding parameters of this 233

high codimension bifurcation point. The bursting is then obtained via a path made by 234

the slow variables in the unfolding of that point (i.e. within a multidimensional 235

parameter space). The minimum codimension, whose unfolding allows to create a given 236

bursting pattern, defines the class of the associated bursting patterns provided a notion 237

of path equivalence is properly defined. Specifically, two paths are equivalent if one can 238

pass from one to the other via a diffeomorphism and a re-parameterization. Recently, a 239

review and a showcase demonstrating the construction of bursting oscillations via this 240

approach, including cases for higher codimension bifurcation points was proposed in [54]. 241

It is worth noting that the Rinzel-Izhikevich approach and the Bertram-Golubitsky 242

approach both focus on the fast subsystem only. Moreover, a way to see a link between 243

the two approaches is that the two bifurcation points (b1, b2) of the fast subsystem (as 244

characterised by Izhikevich’s approach) belong to bifurcation curves in a two-parameter 245
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plane, which coalesce at a codimension-two bifurcation point that characterises this 246

particular bursting pattern from the singularity theory viewpoint. This implies that in 247

principle the Rinzel-Izhikevich and the Bertram-Golubitsky approaches both lead to the 248

same number of bursting oscillation cases. Finally, one can consider more complicated 249

slow paths in the fast subsystem’s parameter space, which may induce more than two 250

crossings of bifurcation curves; see e.g. [55]. However, this will likely not increase the 251

number of possible bursting patterns captured. 252

The bursting patterns covered by these three existing classification schemes have not 253

been exhausted yet, even though a large number (way above 100) have already been 254

reported and analyzed in previous works. We have identified a few more cases which we 255

believe have not been considered before and which are presented in idealized models in 256

an earlier version of the present work [56]. In particular, we show scenarios where the 257

burst phase ends due to a transcritical or a pitchfork bifurcation of limit cycles of the 258

fast subsystem. We also propose the concept of isola bursting, where the burst starts 259

and ends through fold-of-cycles bifurcations lying on an isola of limit cycles. Finally, we 260

propose one example (amongst many) of bursting pattern with two slow variables where 261

the burst initiates through a family of transcritical bifurcation of equilibria. 262

As a side note, we mention hybrid models like integrate-and-fire models, including 263

both ODEs and reset maps, which are able to produce bursting oscillations as well as 264

canard-induced spike-adding phenomena; see e.g. [57–61]. To the best of our knowledge, 265

there is no classification of bursting patterns in these models, which might involve 266

additional mechanism due to the non-smooth nature of the equations. However, 267

bursting patterns in fully discrete neural models, i.e. maps, have been classified in [62] 268

using the classical fast subsystem approach. 269

Extended classification: folded-node bursting 270

Going beyond the state-of-the-art 271

There are bursting oscillations beyond the Rinzel-Izhikevich and Bertram-Golubitsky 272

classification approaches, as summarised in Fig 7 (top panel), and which cannot be 273

explained by invoking these classical results. We propose an extended classification 274

system that captures a larger class of bursters beyond state-of-the-art approaches. 275

Indeed, some electrophysiological recordings of bursting dynamics resist the 276

state-of-the-art classification system. A case in point is depicted in Fig 3, where the 277

bursting oscillation has two phases but the quiescent phase is peculiar: it rises twice per 278

period close to a threshold, however the first time the neuron does not transit to the 279

active phase and instead descends back to its baseline activity, while the second time 280

only the active phase emerges. 281

These observations suggest that there is an underlying complex mechanism for the 282

quiescent phase of the oscillations and therefore point towards a bursting classification 283

framework that has to also incorporate the analysis of the slow subsystem, which is in 284

stark contrast to state-of-the-art approaches. Further motivating this view is our earlier 285

study [35], in which we constructed what seems to be the first example of a slow-fast 286

bursting model whereby the burst initiation could not be explained by the fast 287

subsystem of the underlying model; we constructed another example in [36]. However, 288

therein we did not attempt to derive an improved bursting classification framework and 289

it is what we are now proposing. 290

We will show in subsequent sections how to construct a variety of these new cases of 291

bursting oscillations. To further motivate and guide the reader throughout this 292

manuscript, we first delineate the main mechanisms underpinning our extended 293

classification framework. The idea is sketched in Fig 6 and can be summarised in its 294
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Fig 6. Folded-node bursting in a nutshell. The top row shows the essentials of
folded-node bursting: (a) a fold-initiated bursting system (f1, f2, s1) (f1,2 are fast and
s1 is slow) with (b) an added slow variable s2 creating a folded node and corresponding
to the main parameter of the 3D burster organizing spike-adding transitions (not shown,
fully described in Figs. 8, 9, 10), gives (c) a two slow variables /two fast variables
folded-node burster. The bottom row is an extension of the top panel (b) and shows the
essentials of folded-node dynamics (whose typical time course is shown in the top panel
(b)): a canard point (ε = 0) in the (f1, f2, s1) bursting system with s2 as parameter (left
panel) becomes a folded node (black dot, center panel, ε = 0) when the slow dynamics
put on s2 is evolving, for ε = 0 along the attracting and repelling parts S0

a,r of the
critical manifold; for small ε > 0, this folded node creates small-amplitude oscillations
nearby, organized by attracting and repelling slow manifold Sεa,r (perturbations of S0

a,r)
and responsible for the quiescent oscillations of the folded-node burster in the resulting
4D system. See S1 Text for a glossary of labels and technical terms.

simplest form as follows. 295

If one considers any 3D fold-initiated burster and appends to it a second slow 296

variable that organizes (as a bifurcation parameter in the original burster) a 297

spike-adding transition, then one obtains a new bursting system with two slow and two 298

fast variables, for which the bursting pattern can only be fully characterised by using 299

both slow and fast subsystems. Indeed, due to the added second slow variable, the novel 300

burster possesses subthreshold oscillations, which are due to the presence of a 301

folded-node singularity defined in the slow subsystem (ε = 0) and associated canard 302

solutions, which persist for small enough ε > 0. 303

How this type of bursting effectively extends the previous classifications is 304

summarised in Fig 7. Crucially, the folded node due to the second slow variable is not a 305

bifurcation of the fast subsystem even though it lies on a curve of saddle-node (fold) 306

bifurcations of the fast subsystem (see Fig 7 panel (d3)). Such unexpected and 307

non-trivial emergent mathematical objects allow trajectories of the slow subsystem to 308

visit both the attracting (S0
a) and repelling (S0

r ) parts of the critical manifold. In the 309

full system (for small ε>0) the perturbed versions of these manifolds –attracting Sεa 310

and repelling Sεr slow manifolds [31,32]– twist and intersect multiple times (see Fig 7 311

panels (b2)-(c2)) thereby causing trajectories to non-trivially and robustly oscillate 312

during the quiescent phase of the bursting system. 313

In essence, a folded node appears when the slow dynamics at ε = 0 change direction 314

along a fold curve. In the full system, the transition from quiescent to active phase is 315

caused by a repulsion of the trajectory away from the unstable sheet of the critical 316
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Fig 7. Extended classification. (Top part) Main idea of the Rinzel/Izhikevich,
Bertram/Golubitsky et al. and folded-node bursting classifications. ((ai)-(di),
i=1,2,3) Exemplary “folded-node/homoclinic” bursting, presented in the full 4D
system and in its 2D fast and slow subsystems (resp.), showing that both subsystems
are required to fully understand this bursting profile; all equations are given in the left
column (a1)-(a3). Top row (b1)-(d1), full system bursting solution in two
different 3D phase-space projections: 2 slow/1 fast in (b1)-(c1) and 1 slow/2 fast in
(d1), also showing the critical manifold (fast subsystem’s set of equilibria, in green), the
fast subsystem’s limit cycles envelope (blue), as well as relevant bifurcations. In (c1),
the trajectory is zoomed near its small oscillations which follow attracting (red) and
repelling (blue) slow manifolds Sεa,r, perturbations of the attracting and repelling parts
S0
a,r of the critical manifold, and pass near the folded node (dot). Middle row

(b2)-(d2), fast subsystem information: the bifurcation diagram with respect to
one slow variable (s1) in (b2), which we can assume persists as such for a small interval
of values of the other slow variable (s2); this allows to superimpose the projection of the
full system bursting orbit (c2), as done in the Rinzel/Izhikevich classification, and to
compute loci of bifurcation points of this diagram in the 2-parameter plane (s1, p), as
done in the Bertram/Golubitsky et al. classification. However, both approaches classify
this bursting pattern as fold/homoclinic (square-wave), hence failing to capture the
reason for its small oscillations during quiescence, which can only be unraveled by
studying the slow subsystem’s information in the bottom row (b3)-(c3) and
find the existence of a folded node in the slow singular limit; details on labels in S1 Text.

January 12, 2022 12/35



manifold; this phenomenon is mediated by folded-node canards. In this particular 317

example, the fast oscillations of the active phase are due to a nearby Hopf bifurcation in 318

the fast subsystem (not shown). The return back to quiescence is then caused by a 319

family of homoclinic bifurcations (labelled Ho2 in panels (b1), (d1), (b2), (c2)) of the 320

fast subsystem. 321

The key insight is that the fast subsystem is blind to what is causing these 322

small-amplitude oscillations during the quiescent phase, and thus it is unable to classify 323

the initiation of these oscillations based upon the bifurcations of fast subsystem only. 324

This point is illustrated by the Rinzel-Izhikevich slow-fast dissection and projection of 325

the trajectory of the full system onto the bifurcation diagram of the fast subsystem (see 326

Fig 7 panels (b2)-(c2)). 327

Note that by employing the Rinzel-Izhikevich classification system, the bursting 328

dynamics would be explained by two bifurcations of the fast subsystem, namely the fold 329

bifurcation LP2 and the homoclinic bifurcation Ho2. In particular, a fold bifurcation 330

(LP2) does not explain an oscillation. Moreover, a similar argument applies to the 331

Golubitsky approach (see Fig 7 panel (d2)). This panel displays curves of 332

codimension-one bifurcation points of the fast subsystem, which meet at 333

codimension-two e.g. a Bogdanov-Takens BT (within a two-dimensional parameter 334

space). It can then be shown that it is impossible to construct a path for the slow 335

dynamics (within this two-dimensional parameter space), in particular along the 336

homoclinic and saddle-node curves (since these characterise the bursting in the fast 337

subsystem), which could explain folded-node-initiated quiescent phase oscillations. 338

It turns out that amongst all possible folded singularities, only folded nodes (and in 339

limiting cases, so-called folded saddle-nodes) can generate such robust small-amplitude 340

oscillations in the full system, and this is due to the twisting of nearby attracting and 341

repelling slow manifolds. This leads us to a novel bursting classification system (see 342

Fig 7 top panel in blue for the new framework). We believe these insights will fuel 343

subsequent developments in higher-dimensional multi-scale systems. 344

This underlying folded-node signature leads us to name the resulting new classes of 345

bursting models, folded-node bursters. Three fundamental cases are envisaged. The first 346

case are bursters characterised by small-amplitude oscillations that occur during the 347

quiescence phase, in which case we will refer to the classical folded-node bursting 348

scenario. The second case involves slow-amplitude modulation of the burst, which we 349

will denote as the cyclic folded-node bursting scenario. We use the term cyclic folded 350

node since it corresponds to having a folded singularity on a line of cyclic fold 351

bifurcations of the fast subsystem whereas the classical folded node corresponds to 352

having a folded singularity on a line of (stationary) fold bifurcations of the fast 353

subsystem). The third case, combines classical folded-node and cyclic folded-node. 354

These classes of bursting patterns involve both the fast subsystem and the slow 355

subsystem of the model, unlike traditional bursters. A second key aspect of these new 356

classes is the central role played by canards, namely, spike-adding canard cycles involved 357

in the classical folded-node bursting case, and torus canards in the cyclic folded-node 358

bursting case. In the following subsections, we describe in details these two scenarios. 359

Classical folded-node bursting case 360

Here we propose several bursting oscillations mediated by a classical folded node and the 361

modelling steps of underlying idealized models are given. To guide the reader towards a 362

modelling strategy of these systems, we first recall key concepts and mechanisms. 363
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A necessary preliminary step: spike-adding canard explosion 364

First, recall that canards are non-trivial trajectories that emerge due to timescale 365

separation and unexpectedly, these trajectories contain segments that follow both an 366

attracting slow manifold and a repelling slow manifold, which are perturbations of 367

attracting and repelling branches of the fast nullcline, respectively; see Fig 1 (c). This 368

phenomenon has been thoroughly studied in planar systems (i.e. with 1 slow variable 369

and 1 fast variable) [27,63–65], as well as, in 3D systems with two slow 370

variables [10,66,67]. 371

In applications, canards can be associated to complex (bio)physical mechanisms, for 372

example in neuroscience it provides the best approximation to the excitability threshold 373

in certain single-neuron models. This observation was first made by Izhikevich [51], who 374

showed that canards organize the transition to the spiking regime of type II neurons. 375

This was later analyzed in more details in [21,22,68]. 376

Another important mechanism is the so-called spike-adding canard explosion. This 377

canard phenomenon arises in bursting oscillations and can be described as a sequence of 378

canard explosions which organize the transition from subthreshold oscillations to 379

bursting solutions with more and more spikes per bursts. This phenomenon was first 380

described and analyzed (in the case of chaotic dynamics regime) in [69] in the context of 381

square-wave bursting. This was revisited more recently in [70] from the computational 382

standpoint of saddle-type slow manifolds and further described in [71] in a modeling 383

context to explain transient spikes; see also [72,73]. These analyzes were later refined 384

(from a canard standpoint) in [35] and the canard-mediated spike-adding dynamics was 385

fully analyzed in [45] in the context of parabolic bursters (with two slow variables), 386

revealing the central role of folded-saddle canards. 387

Noteworthy, bursting oscillations that possess a spike-adding mechanism correspond 388

to a limiting (borderline) case that already hints at the importance of possibly including 389

the analysis of the slow flow (flow of the slow subsystem; see below) in a bursting 390

classification framework. That is, spike-adding requires a turning point of the slow flow 391

(canard point), whereby each new added spike (within the bursting phase) is born via a 392

slow (delayed) passage through this turning point. Crucially, the fast subsystem is blind 393

to the underlying canard trajectories occurring near the turning point (well-defined as 394

such only in the slow flow) and instead only sees a fold bifurcation. Therefore the 395

state-of-the-art bursting classification systems does not capture this aspect. 396

Nevertheless, we refrain from declaring this phenomenon as a new bursting mechanism 397

because a spike-adding canard explosion gives rise to canard cycles that exist only within 398

exponentially thin parameter regions. Hence, the robust dynamics is the fold-initiated 399

bursting dynamics, and the fast subsystem analysis still prevail in order to classify it. 400

In contrast, if we consider a fold-initiated bursting scenario undergoing spike-adding 401

canard explosion and if we further add a slow dynamics for the parameter that displays 402

the spike-adding canard explosion (i.e. a second slow variable in the extended model) 403

then we obtain a folded-node bursting system. This has a similar effect to the case in 404

classical (van der Pol type) systems where the canard phenomenon becomes robust if 405

one adds a second slow variable, which has the effect of creating a folded singularity in 406

the resulting two-dimensional slow flow and allows for multiple canard trajectories to 407

exist. The idea here is similar, but with two fast variables, allowing for bursting 408

dynamics in conjunction with folded-node dynamics. 409

A first example of this scenario was termed mixed-mode bursting oscillations in [35] 410

but we prefer to denote it more generally folded-node bursting. Indeed, folded-node 411

bursting is a new form of bursting pattern with two slow variables where the silent 412

phase contains small-amplitude (subthreshold) oscillations due to the presence of a 413

folded node in the slow subsystem. This folded node is responsible for the presence of a 414

funnel region in the full system and trajectories entering this funnel make a number of 415
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rotations (which can be controlled by adjusting parameters) before they leave it and 416

start to burst. Hence, the passage through the folded-node funnel organizes the 417

transition from quiescence to burst and it can only be understood by suitably analyzing 418

the slow subsystem. We subsequently describe a strategy for constructing folded-node 419

bursting systems. 420

Construction of minimal folded-node bursting systems 421

As a starting point, we consider the prototypical fold-initiated burster of 422

Hindmarsh-Rose type [37]. By this we mean a three-dimensional slow-fast system with 423

two fast variables and one slow and a cubic-shaped family of equilibria in the fast 424

subsystem, namely the critical manifold S0. We can write the following set of differential 425

equations (using the so-called fast time τ) to describe the dynamics of such a system 426

x′ = y − f(x) + az,

y′ = G(x, y, z),

z′ = ε(αx+ γβ − δz),
(1)

where f is a cubic polynomial function, G is (at least) quadratic in x; moreover, 427

0< ε� 1 is a small parameter and (a, α, β, γ, δ) are potential bifurcation parameters; 428

why we use a product of two parameters in the z equation will become clear below. As 429

we shall see in the example of Fig 10, one can also obtain all fold-initiated scenarios by 430

using an unfolding of a codimension-3 degenerate Bogdanov-Takens (BT) bifurcation; 431

see [74] for details. 432

A few assumptions are required in order for system (1) to display fold-initiated 433

bursting. First of all, we assume that f and G are adequately chosen so that the fast 434

subsystem has a cubic-shaped family of equilibria that depends on z as a parameter (for 435

the fast subsystem). Therefore, the corresponding bifurcation diagram (of the fast 436

subsystem) in z is S-shaped and will have fold points. The critical manifold is then 437

given by 438

S0 :=
{

(x, y, z) ∈ R3
/
G(x, y, z) = 0 , z = (f(x)− y) /a

}
. (2)

We also require bistability in the fast subsystem between equilibria and limit cycles, in 439

an interval of z-values. One bound of this interval correspond to a fold bifurcation and, 440

geometrically, to one fold point of the cubic family of equilibria S0. The other boundary 441

of the region of bistability of the fast subsystem will be a bifurcation of limit cycles and 442

we shall consider three main cases, namely, saddle-homoclinic bifurcation (see Fig 8 (a)), 443

Hopf bifurcation (see Fig 9 (a)) and fold bifurcation of cycles (see Fig 10 (a)); the list is 444

not exhaustive, we chose to focus on these three examplary cases however more 445

examples of folded-node bursting scenarios can be constructed by following the 446

procedure highlighted here and by choosing a different bifurcation of the fast subsystem 447

ending the burst. Now, considering the linear slow dynamics of system (1) for the slow 448

variable z, we assume that a variation of one of the two parameters α and β in the full 449

system induces the linear z-nullsurface to cut through the fold point of the critical 450

manifold S0 for a certain value of this parameter. One can show that this creates a 451

Hopf bifurcation in the full system, which induces limit cycles to appear. Provided this 452

transversal cut of the z-nullsurface with the critical manifold takes place, then a 453

spike-adding canard explosion will emerge, whereby bursting solutions appear from 454

subthreshold (spikeless) periodic solutions along branch of limit cycles undergoing 455

multiple canard explosions; see [35] for an example of this spike-adding phenomenon in 456

the context of square-wave bursting. In Figs 8, 9 and 10 panels (a), we show the 457

standard slow-fast dissection of 3D fold-initiated bursters of the type of system (1), with 458

January 12, 2022 15/35



several limit cycles of the 3D bursting system (orange curves) within the spike-adding 459

regime (with respect to parameter β) are superimposed onto the fast subsystem 460

bifurcation diagram (which does not depend on the value of β). In panel (b) of each 461

figure, we show the bifurcation diagram of the 3D burster (1) with respect to parameter 462

β, where the sharp rise of the (orange) branches of limit cycles (born at the Hopf 463

bifurcation, labelled HB and indicated by a black dot) indicates spike-adding canard 464

explosions that organize the transition from the stationary to the bursting regime. 465

As explained in the previous section, one salient feature of the spike-adding canard 466

explosion is the presence of a turning point (a canard point) in the slow flow of 467

system (1). To compute this slow flow, we first rescale time in (1) by a factor ε. That is, 468

we rescale the fast time τ (with x′ = dx/dτ) into the so-called slow time t defined by 469

t = ετ . This brings the system to the slow-time parametrization 470

εẋ = y − f(x) + az,

εẏ = G(x, y, z),

ż = αx+ γβ − δz,
(3)

whose ε = 0 limit corresponds to the slow subsystem, also called the reduced system. 471

The slow subsystem is a differential-algebraic equation (DAE), where the dynamics of z 472

is explicitly preserved while x and y are slaved to z by the algebraic constraints that 473

corresponds to the equation (2) of the (here one-dimensional) critical manifold S0. The 474

dynamics of x and y can be revealed by differentiating the algebraic constraint with 475

respect to the slow time t, which gives after rearranging the following one-dimensional 476

dynamical system defined on S0
477

ẋ =
(aGy −Gz)(αx+ γβ − δz)

Gx +Gyf ′(x)
, (4)

where Gp is the partial derivative of G with respect to p ∈ {x, y, z} and f ′(x) is the 478

derivative of f with respect to x. As is typical in slow-fast systems with folded critical 479

manifolds, note that the denominator of the right-hand side of (4) vanishes at fold 480

points of S0 (defined by the condition det(J(x,y)) = 0 where J(x,y) is the Jacobian 481

matrix of (3) with respect to the fast variables (x, y)), which makes generically the 482

dynamics of x explode at the corresponding fold point, referred to as a jump point. 483

However, if the numerator has a zero of the same order as the denominator, then there 484

can be a cancellation and the dynamics of x does not explode; in this case, the fold 485

point is referred to as a canard point or a turning point. The condition for a canard 486

point to occur in this system is then given by 487

zf = (αxf + γβ)/δ, (5)

where (xf , zf ) is a fold point of S0 and assuming aGy −Gz 6= 0 as a non-degeneracy 488

condition. This indeed gives a transversal crossing of the slow nullsurface with the 489

critical manifold at one of its fold points. Even though (5) depends on several 490

parameters, it is a codimension-one condition, therefore by fixing all parameters but 491

one, then the condition can be satisfied by adjusting the last parameter. We arbitrarily 492

choose to vary β, which will become a second slow variable in the full 4D folded-node 493

bursting system that we will construct below. Therefore, the spike-adding transitions 494

leading to bursting in system (1) are obtained as the result of the slow nullsurface 495

moving though one fold point of the critical manifold upon variation of β. 496

The same dynamics would be obtained by varying a parameter affecting the critical 497

manifold while maintaining the slow nullsurface fixed, in particular if we were to append 498

an additive parameter I to the x equation of the system. This would mimick the effect 499
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Fig 8. Folded-node/Homoclinic bursting. Panels (a-b) show the spike-adding
transition in system (1): (a) in the (z, x) plane where we show several limit cycles for
β-values exponentially close to −1.656996 superimposed onto the fast subsystem
bifurcation diagram; (b) bifurcation diagram of the associated 3D bursting system (1)
with respect to parameter β, showing the sharp rise of the amplitude of the limit cycle
branch (orange), corresponding to spike-adding transitions. Panels (c-d) show a
folded-node/homoclinic bursting orbit in the extended 4D system (6): (c) in the (β, z, x)
space (single/double arrows indicate slow/fast motion); (d) time course of the fast
variable x. The bottom panels show a comparison between this folded-node bursting
orbit from (6) and experimental data from [33]. Equations and parameter values are
given in S1 Text.

of an applied (external) current in a neuron-type model such as the Hindmarsh-Rose 500

model [37] or the Morris-Lecar model [69,75]. However, from the pure dynamical 501

viewpoint, varying a parameter in the slow equation results in the same effect and this 502

is the scenario that we chose in order to construct fold-initiated spike-adding transitions 503

in the original 3D burster and folded-node bursting in the extended 4D model. 504

Starting from a fold-initiated bursting scenario with spike-adding canard explosion 505

(controlled via a static variation of parameter β), a folded-node bursting is then 506

obtained by prescribing the dynamics on β by a slow differential equation. That is, we 507
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Fig 9. Folded-node/Hopf bursting. Panels (a-b) show the spike-adding transition
in system (1): (a) in the (z, x) plane where we show several limit cycles for β-values
exponentially close to −1.391279 superimposed onto the fast subsystem bifurcation
diagram; (b) bifurcation diagram of the associated 3D bursting system (1) with respect
to parameter β, showing the sharp rise of the amplitude of the limit cycle branch
(orange), corresponding to spike-adding transitions. Panels (c-d) show a
folded-node/Hopf bursting orbit in the extended 4D system (6): (c) in the (β, z, x)
space (single/double arrows indicate slow/fast motion); (d) time course of the fast
variable x. Equations and parameter values are given in S1 Text.

consider the following extended bursting system 508

x′ = (y − f(x) + az)/c,

y′ = G(x, y, z),

z′ = ε(αz + γβ − δx),

β′ = ε
(
µ− γy(y − yf )2 − γβ(β − βf )2

)
.

(6)

For suitable choices of the additional parameters µ, γy, yf , γβ and βf , we can obtain 509

folded-node bursting dynamics in the resulting 4D system (6), of the type dictated by 510

the underlying bursting in the (x, y, z) system. Then, in panels (c) of Figs 8, 9 and 10, 511

we show the time course for the x fast variable of the ensuing folded-node/homoclinic, 512

folded-node/Hopf, folded-node/fold-of-cycles bursting orbits, respectively. We observe, 513

as expected, that the burst part looks very similar to that of the underlying 3D 514

fold-initiated bursting system, however the quiescent part has small-amplitude 515

oscillations due to the second slow variable β that creates a folded node; see below. The 516

folded-node bursting dynamics is further showcased in panel (d) of Figs 8, 9 and 10, 517

where we show it (orange curve) in the (β, z, x) 3D projection of the 4D phase space 518

together with the 2D critical manifold S0 of the full system (green S-shaped surface), 519

its two fold curves F± and the folded-node point lying on the lower fold curve F−, 520

labelled fn and indicated by a black dot. The critical manifold S0 and the folded node 521
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Fig 10. Folded-node/Fold-of-cycles bursting. Panels (a-b) show the spike-adding
transition in system (1): (a) in the (z, x) plane where we show several limit cycles for
β-values exponentially close to 0.320207 superimposed onto the fast subsystem
bifurcation diagram; (b) bifurcation diagram of the associated 3D bursting system (1)
with respect to parameter β, showing the sharp rise of the amplitude of the limit cycle
branch (orange), corresponding to spike-adding transitions. Panels (c-d) show a
folded-node/fold-of-cycles bursting orbit in the extended 4D system (6): (c) in the
(β, z, x) space (single/double arrows indicate slow/fast motion); (d) time course of the
fast variable x. Equations and parameter values are given in S1 Text.

fn are only obtained through the slow subsystem (singular slow limit ε = 0) and are key 522

to fully characterise these three bursting patterns, which in the classical classification 523

systems would be termed exactly like their underlying 3D burster. Two additional 524

panels are given in Fig 8 to show how this idealized folded-node/homoclinic model can 525

reproduce experimental data that do not match any bursting pattern in the previous 526

classification systems. Note that our idealized model was not initially designed to 527

explain these data from [33] (also displayed in Fig 3), yet the time profiles match 528

remarkably well. The strong similarity between our idealized model and these data 529

suggest that folded-node bursting constructions could potentially inform the design of 530

biophysical models. 531

Note that we consider here prototype systems (6) where either G is directly given as 532

a graph over x, described as, G(x, y, z) = g(x)− y (i.e. Folded-node/homoclinic, in 533

Fig 8, and folded-node/Hopf cases, in Fig 9), or the level set {G(x, y, z) = 0} is a graph 534

over (x, z), expressed as {y = g(x, z)} (i.e. Folded-node/fold-of-cycles case, in Fig 10). 535

We claim that all folded-node initiated bursting scenarios can be obtained in either of 536

these two ways. In the latter case, our minimal model is inspired by the codimension-3 537

degenerate Bogdanov-Takens unfolding introduced in [74] and further applied in the 538

context of bursting in [54]. 539

In practice (for simulation purposes), µ, γy and γβ will be taken O(ε). Therefore, 540

system (6) is effectively a three-timescale dynamical systems with dynamics evolving on 541
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O(1), O(ε) and O(ε2) timescales. For convenience and to ease the folded-node analysis, 542

we will keep the equations written as in (6) with only ε has an apparent timescale 543

separation parameter. 544

Introducing the slow time t = ετ brings system (6) into the parametrization 545

εẋ = (y − f(x) + az)/c,

εẏ = G(x, y, z),

ż = αz + γβ − δx,
β̇ = µ− γy(y − yf )2 − γβ(β − βf )2,

(7)

whose ε=0 limit corresponds to the slow subsystem. We will show that, all other 546

parameters being fixed, the slow subsystem of (7) possesses a folded-node singularity, 547

which creates transient subthreshold oscillations that initiate the burst when 0 < ε� 1, 548

regardless of the values of other parameters. 549

However, simulations require that µ γy and γβ be O(ε) in order for these small 550

subthreshold oscillations to be recurrent, hence entering into a robust periodic bursting 551

attractor which we name folded-node bursting. We provide numerical evidence of this 552

point, based on the strength of the global return mechanism, even though we do not 553

provide a rigorous proof of it. 554

Applying the same strategy as in the three-dimensional (bursting) case, and 555

projecting onto the (x, β)-plane (the dimension of the slow flow corresponds to the 556

number of slow variables), we obtain the following equations for the reduced system 557

(slow subsystem) 558

ẋ =
(gz(x, z) + a)(αz + γβ − δx)

f ′(x)− gx(x, z)
,

β̇ = µ− γy (g(x, z)− yf )
2 − γβ(β − βf )2,

(8)

after substituting for g(x, z) for y from the critical manifold condition. The critical
manifold of system (6) is not normally hyperbolic [31] (loosely speaking, it means that
fast subsystem equilibria are hyperbolic) everywhere and, hence, the system possesses a
(1D here) fold set defined by

F := {(x, y, z) ∈ S0; f ′(x) = gx(x, z)}.

This implies that the slow flow (8) of system (6) is not defined along F . The slow flow 559

can be extended along F by performing an x-dependent time rescaling which amounts 560

to multiply the right-hand side of (6) by a factor f ′(x)− gx(x, z), hence yielding the 561

so-called desingularised reduced system (DRS) 562

ẋ = (gz(x, z) + a) (αz + γβ − δx),

β̇ = (f ′(x)− gx(x, z))
(
µ− γy (g(x, z)− yf )

2 − γβ(β − βf )2
)
,

(9)

with z = z(x) defined by S0, that is, g(x, z)− f(x) + αz = 0. In all cases we will 563

consider (including the general codimension-3 unfolding of a degenerate BT bifurcation 564

from [74]), z can be written as a function of x on S0. As a consequence of this 565

x-dependent time rescaling, the DRS (9) is regular everywhere in R2 including on F , 566

along which it has the possibility for equilibria simply by appearance of the factor 567

f ′(x)− gx(x, z) in the β-equation. 568

The equilibrium condition is then that ẋ = 0 in (9) together with f ′(x)−gx(x, z) = 0, 569

which conveys an idea already seen in the 3D (bursting) case. That is, a singularity of 570

the reduced system at a point on F can be resolved if and only if the numerator of the 571

right-hand side of ẋ in that system vanishes at this point and the zeros of the two 572
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algebraic expressions to be of the same order. Such points are called folded singularities 573

(or folded equilibria) and they are the equivalent of canard points in the cases with (at 574

least) two slow variables. 575

Folded equilibria are equilibria of the DRS (9) and, according to their topological 576

type as equilibria of the DRS, one can generically define folded nodes, folded saddles and 577

folded foci. However they are not equilibria of the reduced system (8) due to the singular 578

time rescaling performed to pass from one to the other. Indeed, this time rescaling is 579

chosen so that trajectories of the DRS have reversed orientation on the repelling sheet 580

of S0 compared to trajectories of the reduced system (both have the same orientation 581

along the attracting sheet). Hence, in the case of folded nodes and folded saddles, 582

trajectories starting on the attracting sheet of S0 may cross the folded singularity in 583

finite time and with finite speed, which is not possible with an equilibrium. 584

The Jacobian matrix of (9) evaluated at a folded equilibrium has the form 585

J =

(
(−δ + αz′(x))(gz(x, z) + a) γ(gz(x, z) + a)

K2 0

)
, (10)

where
K2 = (f ′′(x)− gxx(x, z))

(
µ− γy (g(x, z)− yf )

2 − γβ(β − βf )2
)
.

From (10), one can easily write down conditions that enable the emergence of a 586

folded-node singularity (tr(J) < 0, det J > 0, tr(J)2 − 4 detJ > 0) or a folded-saddle 587

singularity (det J < 0) in the reduced system. 588

As we will explain below, even though only the folded-node case gives rise to robust 589

bursting patterns, the folded-saddle case is still interesting in the study of 4D bursters 590

with two slow variables. One also can easily verify that our minimal example systems all 591

give rise to a folded-node case. Indeed, in the folded-node/homoclinic (Fig 8) and 592

folded-node/Hopf (Fig 9) bursting cases, system (6) has the form 593

x′ = (y − x3 + 3x2 + z)/c,

y′ = 1− 5x2 − y,
z′ = ε(αz + γβ − δx),

β′ = ε
(
µ− γy(y − yf )2 − γβ(β − βf )2

)
,

(11)

which hence gives the following DRS’s Jacobian matrix 594

J1,2 =

(
−δ γ
K2 0

)
, (12)

with: K2 = (−6xfs − 4)
(
µ− γy

(
1− 5x2fs − yf

)2 − γβ(β − βf )2
)

, and xfs = −4/3. 595

Given the chosen parameter values corresponding to Figs 8 and 9, then we 596

immediately conclude that we have indeed a folded node. Likewise, in the 597

folded-node/fold of cycles case illustrated in Fig 10, the slow-fast system corresponding 598

to (6) is 599

x′ = y,

y′ = −x3 +A1(z)x+A2(z)− y(A3(z)− x+ x2),

z′ = ε(αz + γβ − δx),

β′ = ε
(
µ− γy(y − yf )2 − γβ(β − βf )2

)
,

(13)

where Ai = aiz + bi (i = 1, 2, 3) are linear functions of z. Therefore, we obtain the 600

associated DRS’s Jacobian matrix 601

J1,2 =

((
−δ + α

3x2
fs−b1

a1+a2

)
(a1xfs + a2) γ(a1xfs + a2)

K2 0

)
, (14)

January 12, 2022 21/35



with: K2 = (6xfs − a1)
(
µ− γyy2f − γβ(β − βf )2

)
and xfs solution to

−3x2fs + a
x3fs − b1xfs − b2

a1 + a2
+ b1 = 0.

Substituting the parameter values for their chosen numerical value mentioned in the 602

caption of Fig 10 allows to conclude that we are indeed dealing with a folded node. 603

One can obtain the general DRS (9) by applying implicit differentiation to one 604

algebraic equation only (the right-hand side of the ẋ equation in the original system) 605

and substituting g(x, z) for y (coming from the second algebraic equation). This gives 606

the same result as the DRS obtained from both algebraic constraint together. Indeed, in 607

all generality, applying implicit differentiation to the two algebraic equations of the slow 608

subsystem gives 609(
−f ′(x) 1
−gx(x, z) 1

)(
ẋ
ẏ

)
=

(
−a

gz(x, z)

)
(αz + γβ − δx)

ż = αz + γβ − δx,
β̇ = µ− γy(y − yf )2 − γβ(β − βf )2,

(15)

which by Kramer’s rule is equivalent, after posing

J =

(
−f ′(x) 1
−gx(x, z) 1

)
,

(Jacobian matrix of the original vector field with respect to the fast variables at ε = 0) 610

to 611

det(J)

(
ẋ
ẏ

)
= Adj(J)

(
a

−gz(x, z)

)
(αz + γβ − δx)

ż = αz + γβ − δx,
β̇ = µ− γy(y − yf )2 − γβ(β − βf )2,

(16)

where det(J) = gx(x, z)− f ′(x) and

Adj(J) =

(
1 −1

gx(x, z) −f ′(x)

)
,

denote the determinant and the adjugate matrix of J, respectively. The previous system 612

is singular when det(J) vanishes, which happens on the fold set. It can be 613

desingularized by rescaling time by a factor det(J), which brings the DRS in its most 614

general form, namely 615(
ẋ
ẏ

)
= Adj(J)

(
a

−gz(x, z)

)
(αz + γβ − δx)

ż = det(J)(αz + γβ − δx)

β̇ = det(J)
(
µ− γy(y − yf )2 − γβ(β − βf )2

)
.

(17)

After being projected onto the (x, β)-space, system (17) then takes the form 616

ẋ = (a+ gz(x, z))(αz + γβ − δx)

β̇ = (f ′(x)− gx(x, z))
(
µ− γy(y − yf )2 − γβ(β − βf )2

)
,

(18)

which indeed agrees with (9). 617

With the above analysis, we can construct in principle any folded-node burster of 618

our liking. We showcase three examples in Figs 8, 9 and 10: folded-node/homoclinic 619
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Fig 11. Cyclic folded-node bursting cases. We use polar coordinates in order to
construct idealized models. The top panels show the slow-fast dissection for the
amplitude variable r of the underlying bursting model, with three different torus canard
scenarios (a), (b) and (c). Adding a slow dynamics on a parameter β controlling the
slow nullcline then yields associated cyclic folded-node bursting scenarios for which we
show both the slow-fast dissection in the (a, r) plane and the x time series : (a)
initiated by a subcritical Hopf bifurcation; (b) terminated by a fold of cycles; (c)
initiated by a fold of cycles. Equations and parameter values are given in S1 Text.

bursting, folded-node/Hopf bursting and folded-node/fold-of-cycles bursting, 620

respectively. 621

Finally, we quickly reflect on why folded-saddle bursting is not robust. The 622

folded-saddle case is simply a different parameter regime in the slow subsystem, however 623

the resulting dynamics is substantially different than that generated by a folded node. 624

In neuron models with (at least) two slow variables, folded saddles and their associated 625

canard solutions play the role of firing threshold. In particular, in the context of 626

bursting system, they have recently been shown to organize the spike-adding transition 627

in parabolic bursters [45,76]. Counterintuitively, small-amplitude oscillations can also 628
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Fig 12. A folded-node/cyclic folded-node bursting example. The x-times
series of the folded-node/cyclic folded-node bursting solution is shown in panel (a),
where the upper envelope of the burst phase has been traced in black in order to better
show the small-amplitude oscillations of this envelope due to the presence of a cyclic
folded node; panel (b) is a zoom of panel (a) near the classical folded node highlighting
small-amplitude oscillations throughout the silent phase. Equations and parameter
values are given in S1 Text.

emerge in the vicinity of a folded saddle; see [77] for a rigorous analysis of this 629

phenomenon and also [11, 76] for further related work. However, there is no funnel near 630

a folded saddle and the canard dynamics is hence not robust, which applies no matter 631

how many fast variables the system possesses, so in particular in the context of bursting. 632

This is why, in systems with (at least) two fast and two slow variables, only the 633

folded-node case gives rise to a new class of bursting oscillations. 634

Cyclic folded-node bursting case 635

In the same spirit as in the classical folded-node case, one can construct interesting 636

bursting rhythms where the slow oscillations occur on the envelope of the burst and this 637

is due to what we will denote cyclic folded node. Parallel to the construction of a 638

folded-node burster system, one can construct a cyclic-folded-node burster system by 639

considering a three-dimensional slow-fast system which possesses torus canard solutions. 640

Loosely speaking, torus canard corresponds to a canard phenomenon with a fast 641

rotation. Already mentioned by Izhikevich in [78] in a canonical model, it was later 642

found in a biophysical model of Cerebellar Purkinje cell exhibiting fold/fold cycle 643

bursting [44], and subsequently analyzed with more mathematical details in, 644

e.g., [79,80]. Even though to date not all elements of torus canard transitions have been 645

mathematically unravelled, one can summarise this phenomenon by emphasising that its 646

key feature corresponds to a canard explosion within a fast oscillatory motion. Instead 647

of slowly following a family of equilibria past a fold bifurcation, the fast-oscillating 648

system slowly follows a family of limit cycles past a cyclic fold bifurcation. 649

One can draw a parallel between classical canards and torus canards in their role of 650

transitional regime in neuronal dynamics: classical canards can explain the rapid 651

transition from rest to the spiking regime, likewise torus canards can explain the rapid 652

transition from the spiking to the bursting regime. Furthermore, torus canards are also 653

not robust and only exist within exponentially thin parameter regions. 654

Thus, the very same idea that leads from canard point to folded singularities, can 655

lead from torus canard to cyclic folded-node canards, when adding a second slow 656

variable. In this way, a cyclic folded-node can be robust even if the torus canards are 657

not robust. This has been proposed very recently by Vo and collaborators [81, 82] via a 658
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specific example that links the resulting dynamics to the amplitude-modulated bursting 659

already mentioned in [44,78]; see also [83–85] for other examples of 660

amplitude-modulated bursting. 661

In summary, we herein propose a taxonomy of cyclic folded-node bursting patterns, 662

with several numerical examples, which completes our extension of the previous bursting 663

classifications. We complement this with a few examples of idealized models displaying 664

cyclic-folded-node bursting. We consider systems expressed in polar form, in which case 665

the condition for cyclic folded node and then for cyclic folded-node bursting reduce to 666

(classical) folded-node conditions on r; see Fig 11. We start with a bursting system 667

written in (r, θ, a) coordinates and displaying torus-canard dynamics, the type of which 668

depends on the location of the slow nulllcline in the original bursting system, assuming 669

for simplicity that this slow nullcline is horizontal of the form {r = β}. Then, we put a 670

slow dynamics on β similar to the one in system (6), which yields cyclic-folded-node 671

bursting dynamics. 672

In general, it is possible to reduce the system locally near the cyclic fold bifurcation 673

of the fast subsystem enabling the computation of normal form coefficients 674

(see [81,82,84,85]) that effectively characterise the cyclic folded-node. However, the 675

bursting conditions have not been established in general. Finally, for sake of 676

completeness, we construct a limiting case of a non-trivial system that displays both 677

classical folded-node bursting and cyclic-folded-node bursting, as depicted in Fig 12. 678

Application to conductance-based models 679

We now provide a biophysical example, namely a conductance-based bursting model, 680

without explicit timescale separation and which we show can be recast as a folded-node 681

burster. This model is a so-called episodic burster that was introduced by Bertram et al. 682

in [46] to model beta-cell oscillations, known to produce square-wave type bursting 683

patterns. Noteworthy, this model contains four state variables, two being fast —the 684

membrane potential V and the delayed rectifier potassium current activation n— and 685

two slow —activation variables s1, s2 corresponding to two additional potassium 686

currents—, as described in [46]. The system’s equations read 687

V̇ = −(ICa + IKdr + Ileak + IK1 + IK2)/Cm,

ṅ = (n∞(V )− n)/τn(V ),

ṡ1 = (s1∞(V )− s1)/τs1 ,

ṡ2 = (s2∞(V )− s2)/τs2 ,

(19)

where we refer to [46] and the SI of the present article for details on the various ionic 688

currents and gating functions, as well as for the initial parameter set, taken to be that 689

of Fig 3 from [46], reproduced in Fig 13 panels (a1)-(a2). The model was reported to 690

exhibit square-wave bursting dynamics and also it was noted to sustain a more 691

complicated oscillations with “small wiggles” in the quiescent phase. To explain this 692

phenomenon, a slow-fast dissection was performed whereby the fast 3D subsystem was 693

obtained by freezing the slowest of the two slow variables, s2 [46]. The conclusion of the 694

authors’ analysis was that the small oscillations occurring during the quiescent phase 695

can be interpreted as the result of a slow passage through a Hopf bifurcation taking 696

place in this 3D fast subsystem. However, it turns out that this explanation is valid to 697

only a certain extent and fails to explain parsimoniously the complete phenomenon. As 698

alluded by our proposed classification extension, both slow variables of the system 699

suspiciously play a role in shaping these small wiggles. Following our proposed 700

decomposition, we reveal the presence of a folded node in the corresponding 2D slow 701

subsystem, which further elucidates the mechanisms that controls the number of small 702
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Fig 13. A conductance-based episodic bursting example [46]. Left panels:
Folded-node bursting orbits shown in the (s1, s2, V )-space projection together with the
2D critical manifold S0, the lower fold curve F−, the folded-node singularity fn; we also
show the location of the Hopf bifurcation point (HB) of the 3D fast subsystem assuming
only s2 as a slow variable. Right panels: V time series. The top panels show a bursting
orbit for the original parameter values from [30] whereas the bottom ones show a similar
bursting solution for a different parameter set where only the kinetics of the two slow
currents have been modified. In the second parameter set, the HB point moves out of
the subthreshold oscillation region and hence the one-slow-variable scenario does not
fully explain the bursting pattern, which is better cast as folded-node bursting. The
parameters of the slow currents that we modify to obtain the new set are: gK1

= 18.5,
gK2 = 20, τs1 = 600, τs2 = 4000, vs1 = −51, vs2 = −35. All equations and parameter
values are given in S1 Text.

wiggles depending on system parameters; see Fig 13 (a1)-(a2). What is more, when 703

modifying the kinetics of both slow currents, making the timescales of the slow variables 704

closer to each other than in the original parameter set, one can exhibit a different 705

parameter set in which the folded-node scenario still explains the presence of small 706

wiggles during the quiescent phase of the bursting pattern whereas the Hopf bifurcation 707

is unable to do so. Indeed, in this scenario the Hopf point of the 3D fast subsystem 708

obtained by considering s2 as the only slow variable in the model, is now located outside 709

of the region of subthreshold oscillations. In conclusion, the folded-node scenario is 710

more robust and parsimonious at explaining this bursting pattern; see Fig 13 (b1)-(b2). 711

Conclusion 712

The mathematical classification of bursting patterns was initiated with seminal papers 713

published in the mid 1980s with three proposed classes of bursting oscillations [6, 19, 38]. 714
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The key idea of comparing the fast subsystem’s bifurcation diagram and the full systems’ 715

dynamics may seem natural with hindsight, but in fact it was a genuine breakthrough, 716

which shaped the way bursting oscillations have been modelled and dissected ever since. 717

The present review details these footsteps, as well as those of the subsequent 718

contributors on this topic [7–9], hence it was important to gather these results since 719

they form one pilar of mathematical neuroscience and computational biology, but also 720

have impact in other fields. We then take a step forward by proposing an extension of 721

the classification scheme, which allows to cover more types of bursting systems, in 722

particular fold-initiated bursters with two slow variables, namely folded-node bursters. 723

The extended bursting classification crucially focuses on the dynamics during the silent 724

phase where the termination of the trajectory profile is not just a simple rise over the 725

fold of the critical manifold but can involve subthreshold oscillations. 726

We emphasize the importance of the slow flow (ε = 0) in slow-fast systems with (at 727

least) two slow variables, which was somehow previously overlooked in the context of 728

bursting. In such two-slow-variable bursting systems, the silent phase termination is due 729

to the presence of folded node. This scenario is known to give rise to canard solutions 730

that organize, upon parameter variation but also transiently, upon change of initial 731

conditions, the number of subthreshold oscillations. This slow cycle-adding phenomenon 732

is indeed entirely due to canards and it controls the profile of the underlying bursting 733

oscillations. Importantly, it does so in a robust manner in the sense that such bursting 734

patterns with subthreshold oscillations exist over order-one ranges of parameter values. 735

Parabolic bursters have two slow variables as well, however their slow flow possesses a 736

folded saddle and not a folded node [45]. In this context, it will be interesting to study 737

further the transition between some folded-node bursters like folded-node homoclinic 738

bursters and parabolic bursters with a multi-parameter unfolding of the transition in 739

both slow and fast singular limits, where folded-saddle-node singularities and 740

saddle-node homoclinic bifurcations could play key roles, respectively. In summary, we 741

have reviewed the state-of-the-art bursting classification and enhanced it so as to take 742

into account both slow and fast subsystems. Indeed, the slow singular limit, where the 743

fast variables are slaved to the slow ones and the dynamics is constrained to the critical 744

manifold, had not been taken into account in previous classification schemes. This 745

enables to capture a larger class of complex oscillations. 746

Where do we go from here? Following this initial framework for folded-node 747

bursting, it will be important to develop this approach in the context of biophysical 748

excitable cell models with more than one slow process. To this extent, an interesting 749

question for follow-up work is to rethink folded-node bursting dynamics from a 750

biophysical modelling viewpoint. In all our idealized models of folded-node bursting, we 751

have added feedback terms in the second slow differential equation with both positive 752

and negative coefficients, which tends to indicate that both positive and negative 753

feedback loops are useful to produce the desired output behavior. 754

In this context, we highlight two interesting aspects associated with the 755

experimental time series that we attempted to model with our idealized folded-node 756

bursting model reproduced in Figs 3 and 8. First, the subthreshold oscillations appear 757

to be following the excitability threshold, which may be harder to obtain in a 758

three-dimensional model, even though some elliptic bursting models –e.g. 759

FitzHugh-Rinzel, Morris-Lecar as well as some MMO models– could potentially 760

reproduce this aspect. Note that our example of folded-node bursting has 3 time scales; 761

this was done for convenience in the construction and may not be absolutely necessary. 762

Second, the burst phase is located on a plateau (in terms of neuronal membrane 763

potential values) compared to the quiescent phase, which is reminiscent of a 764

square-wave type bursting. Indeed our idealized folded-node bursting model reproduces 765

quite well these data and in fact it can effectively be designated as a folded-node 766

January 12, 2022 27/35



homoclinic bursting model. Three-dimensional elliptic bursting models, or MMO 767

models, would not be able to capture this aspect. 768

One interesting possibility to find biophysical models with folded-node bursting 769

dynamics is perhaps via existing models of thalamic bursting, or alternatively to extend 770

these models to explain the observational data published in [33]. When it comes to 771

biologically plausible models, where the timescale separation may not be explicit or in 772

standard form, the recent theoretical work by Wechselberger and collaborators on 773

extending slow-fast theory to systems in so-called non standard form (see e.g. [86]) may 774

allow to derive new mechanisms and new bursting patterns. 775

In terms of application to neural dynamics, it is legitimate to ask about neural 776

coding [87–89] and the implications of folded-node dynamics within a bursting regime. 777

There, one would want to compare spike-adding to folded-node cycle-adding. The cycle 778

adding can quantize the slow phase duration, which might have significant effect on 779

silent phase (and therefore on active phase) durations. 780

On the other hand, spike-adding has less impact on macroscopic timing and less 781

impact if a spike is added to a burst of several, say, 6 or more, spikes. A single spike 782

added in a 2-4 spike burst might have coding contributions (synaptic transmission) but 783

less so if there are already more than 6 spikes in a burst. These questions go beyond the 784

scope of the present paper but are certainly of direct interest for follow-up work. 785

The question of noise is also a natural one to consider. If small to moderate noise is 786

added to a folded-node bursting systems, it will likely not affect significantly the burst 787

phase. However, it is expected that the phase of spiking oscillations during the burst 788

will be affected, but not the qualitative dynamics. Folded-node dynamics is known to be 789

robust to noise, its time course is parametrically robust and noise-tolerant. The canard 790

phenomenon accounts for subtle dynamic features like cycle-adding, however the 791

subthreshold oscillations near a folded node are robust. The noise will affect these 792

subthreshold oscillations by modifying the rotation sector in which the trajectory falls 793

into from one passage to the the next, however the oscillations will remain. 794

To quantify this variability of the sector of a folded-node burster with noise, one 795

could use results by Berglund et al. [90]. However, here as well the qualitative dynamics 796

and the key role of the slow subsystem and its folded node will remain. A rigorous 797

understanding of the impact of noise on a folded-node bursting model is certainly an 798

interesting question that goes beyond the scope of the present work. 799

Finally, the question of bursting dynamics with at least two slow variables and more 800

than two timescales is also of interest and related to the present work. As 801

aforementioned, in the limit of folded-saddle-node singularities, small subthreshold 802

oscillations will remain and increase in number and shape. In the context of slow-fast 803

systems with two slow variables, this scenario is well-known to be akin to three-timescale 804

dynamics [91]. The associated bifurcation structure is already involved in the 805

three-dimensional setup, with involvement of adding organizing centers such as singular 806

Hopf bifurcation points [92]. Thus, the folded-saddle-node bursting profiles will be more 807

rich and complex to fully describe than the folded-node bursting cases presented herein. 808

Yet, the underlying robust mechanism that gives a bursting pattern and requires the 809

analysis of both slow and fast subsystem will be similar as the one proposed in the 810

present work. A full analysis of this limiting case is a very interesting and natural 811

question for future work. Besides, bursting systems with more than two timescales have 812

recently gained further interest in link with canards [76,93–95], where the additional 813

timescales bring more structure to the system and allow for further slow-fast analysis. 814

Such approaches would certainly shed further light onto folded-node bursting dynamics 815

as presented here and we regard it as a natural and interesting question for future work. 816

Table A in S1 text. Glossary of technical terms used in the figures. 817
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66. Benôıt E. Canards et enlacements. Publications Mathématiques de l’Institut des
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